
RGNC REPORT 1/2011

Ninth Brainstorming Week

on Membrane Computing

Sevilla, January 31 { February 4, 2011

Miguel �Angel Mart��nez del Amor

Gheorghe P�aun

Igna
io P�erez Hurtado de Mendoza

Fran
is
o Jos�e Romero Campero

Luis Valen
ia Cabrera

Editors

Resear
h Group on

Natural Computing

REPORTS

UNIVERSIDAD DE SEVILLA

Ninth Brainstorming Week
on Membrane Computing

Sevilla, January 31 { February 4, 2011

Miguel �Angel Mart��nez del Amor

Gheorghe P�aun

Ignacio P�erez Hurtado de Mendoza

Francisco Jos�e Romero Campero

Luis Valencia Cabrera

Editors

Ninth Brainstorming Week
on Membrane Computing

Sevilla, January 31 { February 4, 2011

Miguel �Angel Mart��nez del Amor

Gheorghe P�aun

Ignacio P�erez Hurtado de Mendoza

Francisco Jos�e Romero Campero

Luis Valencia Cabrera

Editors

RGNC REPORT 1/2011

Research Group on Natural Computing

Sevilla University

F�enix Editora, Sevilla, 2011

c
Autores

ISBN: ??????

Dep�osito Legal: SE-????{06

Edita: F�enix Editora

Avda. de C�adiz, 7 { 1C

41004 Sevilla

fenixeditora@telefonica.net
Telf. 954 41 29 91

Preface

This volume contains the papers emerged from the Ninth Brainstorming Week on
Membrane Computing (BWMC), held in Sevilla, from January 31 to February 4,
2011, in the organization of the Research Group on Natural Computing from the
Department of Computer Science and Arti�cial Intelligence of Sevilla University.
The �rst edition of BWMC was organized at the beginning of February 2003 in
Rovira i Virgili University, Tarragona, and the next seven editions took place in
Sevilla at the beginning of February 2004, 2005, 2006, 2007, 2008, 2009, and 2010,
respectively.

In the style of previous meetings in this series, the ninth BWMC was conceived
as a period of active interaction among the participants, with the emphasis on
exchanging ideas and on cooperation. Interesting enough, both the number of
presentations and the number of participants have continuously increased in the
last years. (The list of the participants is given in the end of this preface.) However,
in the style of the of this series of meeting, these presentations were \provocative",
mainly proposing new ideas, open problems, research topics, results which need
further improvements. The e�ciency of this type of meetings was again proved to
be very high and the present volume proves this assertion.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of the papers from this volume will be considered for publication in
a special issues of International Journal of Natural Computing Research. After the
�rst BWMC, a special issue of Natural Computing { volume 2, number 3, 2003,
and a special issue of New Generation Computing { volume 22, number 4, 2004,
were published; papers from the second BWMC have appeared in a special issue
of Journal of Universal Computer Science { volume 10, number 5, 2004, as well
as in a special issue of Soft Computing { volume 9, number 5, 2005; a selection

viii Preface

of papers written during the third BWMC have appeared in a special issue of
International Journal of Foundations of Computer Science { volume 17, number
1, 2006; after the fourth BWMC a special issue of Theoretical Computer Science

was edited { volume 372, numbers 2-3, 2007; after the �fth edition, a special is-
sue of International Journal of Unconventional Computing was edited { volume 5,
number 5, 2009; a selection of papers elaborated during the sixth BWMC has ap-
peared in a special issue of Fundamenta Informaticae { volume 87, number 1, 2008;
after the seventh BWMC, a special issue of International Journal of Computers,

Control and Communication was published { volume 4, number 3, 2009; �nally, a
selection of papers elaborated during the eight BWMC was published as a special
issue of Romanian Journal of Information Science and Technology (published by
the Romanian Academy) { volume 13, number 2, 2010. Other papers elaborated
during the ninth BWMC will be submitted to other journals or to suitable confer-
ences. The reader interested in the �nal version of these papers is advised to check
the current bibliography of membrane computing available in the domain website
http://ppage.psystems.eu.

The list of participants as well as their email addresses are given below, with

the aim of facilitating the further communication and interaction:

1. Arroyo Montoro Fernando, Polytechnical University of Madrid, Spain,
farroyo@eui.upm.es

2. C�ampora P�erez Daniel Hugo, University of Sevilla, Spain
danielcampora@gmail.com

3. Carmona Pirez Jon�as, Andalusian Center of Development in Biology CABD-
CSIC, Seville, Spain
jcarpir@upo.es

4. Carnero Iglesias Javier, University of Sevilla, Spain
javier@carnero.net

5. Cecilia Canales Jos�e Mar��a, University of Murcia, Spain
chema@ditec.um.es

6. Cavaliere Matteo, Spanish National Biotechnology Centre, Madrid, Spain
mcavaliere@cnb.csic.es

7. Cienciala Ludek, Silesian University, Opava, Czech Republic
ludek.cienciala@fpf.slu.cz

8. Ciencialova Lucie, Silesian University, Opava, Czech Republic
lucie.ciencialova@fpf.slu.cz

9. Csuhaj-Varj�u Erzs�ebet, Hungarian Academy of Sciences, Budapest, Hungary,
csuhaj@sztaki.hu

10. De-Vega-Rodr��guez David, University of Sevilla, Spain,
ddevega@gmail.com

11. D��az-Pernil Daniel, University of Sevilla, Spain,
sbdani@us.es

Preface ix

12. Fondevilla Moreu Cristian, University of Lleida, Spain,
cfondevilla@matematica.udl.cat

13. Franco Giuditta, University of Verona, Italy,
giuditta.franco@univr.it

14. Garc��a-Carrasco Jos�e Manuel, University of Murcia, Spain
jmgarcia@ditec.um.es

15. Garc��a-Quismondo Manuel, University of Sevilla, Spain
mgarciaquismondo@us.es

16. Gazdag Zsolt, E�otv�os Lor�and University, Budapest, Hungary,
gazdagzs@inf.elte.hu

17. Gheorghe Marian, University of She�eld, United Kingdom,
marian@dcs.shef.ac.uk

18. Giraldez Cr�u Jes�us, University of Sevilla, Spain
giraldez.jesus@gmail.com

19. Graciani-D��az Carmen, University of Sevilla, Spain,
cgdiaz@us.es

20. Guisado-Lizar Jos�e Luis, University of Sevilla, Spain,
jlguisado@us.es

21. Guti�errez-Naranjo Miguel �Angel, University of Sevilla, Spain,
magutier@us.es

22. Ionescu Mihai, University of Pite�sti, Romania
armandmihai.ionescu@gmail.com

23. Ipate Florentin Eugen, University of Pite�sti, Romania,
florentin.ipate@ifsoft.ro

24. Kelemenova Alica, Silesian University, Opava, Czech Republic
Alica.Kelemenova@fpf.slu.cz

25. Krassovitskiy Alexander, Rovira i Virgili University, Tarragona, Spain,
alexander.krassovitskiy@estudiants.urv.cat

26. Langer Miroslav, Silesian University, Opava, Czech Republic
miroslav.langer@fpf.slu.cz

27. Lefticaru Raluca, University of Pite�sti, Romania,
raluca.lefticaru@gmail.com

28. Leporati Alberto, University of Milano-Bicocca, Italy,
leporati@disco.unimib.it

29. Marchetti Luca, University of Verona, Italy,
luca.marchetti@univr.it

30. Mart��nez-del-Amor Miguel Angel, University of Sevilla, Spain,
mdelamor@us.es

31. Mill�an Alejandro, University of Sevilla, Spain,
amillan@us.es

32. Mina-Caicedo Juli�an Andr�es, University of Sevilla, Spain,
julmincai@alum.us.es

33. Molina Abril, Helena, University of Sevilla, Spain,
habril@us.es

x Preface

34. Murphy Niall, NUI Maynooth, Ireland
nmurphy@cs.nuim.ie

35. Nicolescu Radu, University of Auckland, New Zealand
r.nicolescu@auckland.ac.nz

36. Obtu lowicz Adam, Polish Academy of Sciences, Poland,
A.Obtulowicz@impan.gov.pl

37. P�aun Gheorghe, Institute of Mathematics of the Romanian Academy, Bucharest,
Romania, and University of Sevilla, Spain,
george.paun@imar.ro, gpaun@us.es

38. Pe~na Camacho Miguel Angel, Polytechnical University of Madrid, Spain,
mapc@eui.upm.es

39. P�erez-Hurtado-de-Mendoza Ignacio, University of Sevilla, Spain,
perezh@us.es

40. P�erez-Jim�enez Mario de Jes�us, University of Sevilla, Spain,
marper@us.es

41. Porreca Antonio E., University of Milano-Bicocca, Italy,
porreca@disco.unimib.it

42. Quir�os-Carmona Juan, University of Sevilla, Spain,
quirole@gmail.com

43. Reina-Molina Ra�ul, University of Sevilla, Spain,
raulrm75@gmail.com

44. Riscos-N�u~nez Agust��n, University of Sevilla, Spain,
ariscosn@us.es

45. Rodr��guez-Pat�on Aradas Alfonso, Polytechnical University of Madrid, Spain,
arpaton@fi.upm.es

46. Romero-Campero Francisco Jos�e, University of Sevilla, Spain,
fran@us.es

47. Rogozhin Yurii, Institute of Mathematics and Computer Science,
Chi�sin�au, Moldova,
rogozhin@math.md

48. Romero-Jim�enez �Alvaro, University of Sevilla, Spain,
romero.alvaro@us.es

49. Rossell�o Llompart Francesc, University of Balearic Islands, Spain,
frossello@mac.com

50. Sarri�on Morillo Enrique, University of Sevilla, Spain,
esmesm@gmail.com

51. Sempere Luna Jos�e Mar��a, Polytechnical University of Valencia, Spain,
jsempere@dsic.upv.es

52. Sosik Petr, Silesian University, Opava, Czech Republic
petr.sosik@fpf.slu.cz

53. T� urcanu Adrian, University of Pite�sti, Romania,
adrianturcanu85@yahoo.com

54. Valencia Cabrera Luis, University of Sevilla, Spain,
lvalencia@us.es

Preface xi

55. Vaszil Gy�orgy, Hungarian Academy of Sciences, Budapest, Hungary,
vaszil@sztaki.hu

56. Verlan Serghei, Paris XII University, Cr�eteil, France,
verlan@univ-paris12.fr

57. Viejo Cort�es Juli�an, University of Sevilla, Spain,
julian@dte.us.es

As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Sevilla University (http://www.gcn.us.es){ and all
the members of this group were enthusiastically involved in this (not always easy)
work. The meeting was supported from various sources: (i) Proyecto de Excelencia
con investigador de reconocida val��a, de la Junta de Andaluc��a, grant P08 { TIC
04200, (ii) Proyecto del Ministerio de Ciencia e Innovaci�on, grant TIN 2009 -
13192, (iii) Red Tem�atica Nacional en Computaci�on Biomolecular y Biocelular,
grant TIN 2008 - 04487-E, (iv) IV Plan Propio de la Universidad de Sevilla, (v)
Consejer��a de Innovaci�on, Ciencia y Empresas de la Junta de Andaluc��a, as well
as by the Department of Computer Science and Arti�cial Intelligence from Sevilla
University.

Gheorghe P�aun
Mario de Jes�us P�erez-Jim�enez

(Sevilla, May 5, 2011)

Contents

Preface . vii

Asynchronous P Systems (Draft)
T. B�al�anescu, R. Nicolescu, H. Wu . 1

Simulating Spiking Neural P Systems Without Delay Using GPUs
F. Cabarle, H. Adorna, M.A. Mart��nez-del-Amor . 23

Designing Tissue-like P Systems for Image Segmentation
on Parallel Architectures
J. Carnero, D. D��az-Pernil, M.A. Guti�errez-Naranjo . 43

P Systems with Replicator Dynamics: A Proposal
M. Cavaliere, M.A. Guti�errez-Naranjo . 63

P Colonies of Capacity One and Modularity
L. Cienciala, L. Ciencialov�a, M. Langer . 71

A New P System to Model the Subalpine and Alpine
Plant Communities
M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera . 91

P Systems for Social Networks
E. Csuhaj-Varj�u, M. Gheorghe, G. Vaszil, M. Oswald 113

Using Central Nodes to Improve P System Synchronization
M.J. Dinneen, Y.-B. Kim, R. Nicolescu . 125

Toward a Self-replicating Metabolic P System
G. Franco, V. Manca . 151

Implementing Local Search with Membrane Computing
M.A. Guti�errez-Naranjo, M.J. P�erez-Jim�enez . 159

Notes About Spiking Neural P Systems
M. Ionescu, Gh. P�aun . 169

xiv Contents

Spiking Neural P Systems with Several Types of Spikes
M. Ionescu, Gh. P�aun, M.J. P�erez-Jim�enez, A. Rodr��guez-Pat�on 183

Spiking Neural dP Systems
M. Ionescu, Gh. P�aun, M.J. P�erez-Jim�enez, T. Yokomori 193

Modeling, Veri�cation and Testing of P Systems Using Rodin and ProB
F. Ipate, A. T� urcanu . 209

Forward and Backward Chaining with P Systems
S. Ivanov, A. Alhazov, V. Rogojin, M.A. Guti�errez-Naranjo 221

Towards Automated Veri�cation of P Systems Using Spin
R. Lefticaru, C. Tudose, F. Ipate . 237

MP Modeling of Glucose-Insulin Interactions
in the Intravenous Glucose Tolerance Test
V. Manca, L. Marchetti, R. Pagliarini . 251

BFS Solution for Disjoint Paths in P Systems
R. Nicolescu, H. Wu . 265

On a Contribution of Membrane Computing to a Cultural Synthesis
of Computer Science, Mathematics, and Biological Sciences
Adam Obtu lowicz . 287

Well-Tempered P Systems: Towards a Membrane Computing
Environment for Music Composition
Adam Obtu lowicz . 291

dP Automata versus Right-Linear Simple Matrix Grammars
Gh. P�aun, M.J. P�erez-Jim�enez . 293

Towards Bridging Two Cell-Inspired Models: P Systems and R Systems
Gh. P�aun, M.J. P�erez-Jim�enez . 305

Smoothing Problem in 2D Images with Tissue-like P Systems
and Parallel Implementation
F. Pe~na-Cantillana, D. D��az-Pernil, H.A. Christinal,

M.A. Guti�errez-Naranjo . 317

Elementary Active Membranes Have the Power of Counting
A.E. Porreca, A. Leporati, G. Mauri, C. Zandron . 329

Integer Linear Programming for Tissue-like P Systems
R. Reina-Molina, D. D��az-Pernil, M.A. Guti�errez-Naranjo 343

Linear Time Solution to Prime Factorization by Tissue P Systems
with Cell Division
X. Zhang, Y. Niu, L. Pan, M.J. P�erez-Jim�enez . 355

Author index . 373

Asynchronous P Systems (Draft)

Tudor Bălănescu1, Radu Nicolescu2, and Huiling Wu2

1 Department of Computer Science, University of Piteşti,
Târgu din Vale 1, 110040 Piteşti, Romania,
tudor balanescu@yahoo.com

2 Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand,
r.nicolescu@auckland.ac.nz, hwu065@aucklanduni.ac.nz

Summary. In this paper, we propose a new approach to fully asynchronous P sys-
tems, and a matching complexity measure, both inspired from the field of distributed
algorithms. We validate our approach by implementing several well-known distributed
depth-first search (DFS) and breadth-first search (BFS) algorithms. Empirical results
show that our P algorithms achieve a performance comparable to the standard versions.

Key words: P systems, synchronous, asynchronous, distributed, depth-first search,
breadth-first search

1 Introduction

P systems is bio-inspired computational model, based on the way in which chem-
icals interact and cross cell membranes, introduced by Păun [20]. The essential
specification of a P system includes a membrane structure, objects and rules.
Cells evolve by applying rules in a non-deterministic and (potentially maximally)
parallel manner. These characteristics make P systems a promising candidate as
a model for distributed and parallel computing.

The traditional P system model is synchronous, i.e. all cells evolution is con-
trolled by a single global clock. P systems with various asynchronous features have
been investigated by recent research, such as Casiraghi et al. [3], Cavaliere et al.
[6, 4, 5], Freund et al. [11], Gutiérrez et al. [12], Kleijn et al. [13], Pan et al. [18],
Yuan et al. [24]. Here we are looking for similar but simpler definitions, closer to
the definitions used in the field of distributed algorithms [14, 22], which will enable
us to consider essential distributed feature, such as fairness, safety, liveness and
possibly infinite executions. In our approach, algorithms are non-deterministic, not
necessarily constrained to return exactly the same result.

Fully asynchronous P systems are characterized by the absence of any system
clock, much less a global one; however, an outside observer may very well use a
clock to time the evolutions. Our approach does not require any change in the

2 T. Balanescu, R. Nicolescu and H. Wu

static descriptions of P systems, only their evolutions differ (i.e. the underlying
P engine works differently):

• Local rules execution takes zero time units (i.e. it occurs instantaneously).

• The message delay is unpredictable, so outgoing objects can arrive at the target
cell in any number of time units (after being sent).

For the purpose of time complexity, the time unit is chosen greater than any
message delay, i.e. the delay between sending and receiving a message is any real
number in the closed interval [0, 1].

This paper is organized as follows. Section 2 gives a definition of a simple
P module, as a unified model of various P systems. Section 3 presents asynchronous
P systems and discusses a standard set of time complexity measures. Section 4 and
Section 5 discuss several well-known distributed DFS and BFS algorithms and pro-
pose corresponding asynchronous P system implementations. Section 6 compares
the complexity of our asynchronous P system algorithms with the theoretical com-
plexity of distributed DFS and BFS algorithms. Finally, Section 7 summarizes our
work and highlights future work.

2 Preliminary

In this paper, we use simple P modules, an umbrella concept, which is general
enough to cover several basic P system families, with states, priorities, promoters
and duplex channels. For the full definition of P modules and modular composi-
tions, we refer readers to [10].

Essentially, a simple P module is a system, Π = (O, σ1, σ2, . . . , σn, δ), where:

1. O is a finite non-empty alphabet of objects;
2. σ1, . . . , σn are cells, of the form σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ n, where:

– Qi is a finite set of states;
– si,0 ∈ Qi is the initial state;
– wi,0 ∈ O∗ is the initial multiset of objects;
– Ri is a finite ordered set of rewriting/communication rules of the form:
s x →α s′ x′ (y)β |z, where: s, s′ ∈ Qi, x, x

′, y, z ∈ O∗, α ∈ {min,max},
β ∈ {↑, ↓, l}.

3. δ is a set of digraph arcs on {1, 2, . . . , n}, without reflexive arcs, representing
duplex channels between cells.

The membrane structure is a digraph with duplex channels, so parents can send
messages to children and children to parents. Rules are prioritized and are applied
in weak priority order [19]. The general form of a rule, which transforms state s
to state s′, is s x→α s

′ x′ (y)βγ |z. This rule consumes multiset x, and then (after
all applicable rules have consumed their left-hand objects) produces multiset x′,
in the same cell (“here”). Also, it produces multiset y and sends it, by replication

Asynchronous P Systems 3

(“repl” mode), to all parents (“up”), to all children (“down”) or to all parents and
children (“up and down”), according to the target indicator β ∈ {↑, ↓, l}.

We also use a targeted sending, β = ↑j , ↓j , lj , where j is either an arc label
or a cell ID. If j is an arc label, y is sent via the arc labelled j, provided that
it points, respectively, up (to a parent), down (to a child) or in any direction (to
either a parent or a child). If j is a cell ID of a structural neighbor, y is sent to
that neighbor j, provided that it lies, respectively, up (j is a parent), down (j is a
child) or in any direction (j is either a parent or a child); nothing is sent if cell j
is not a structural neighbor (we do not use teleportation). More about cell IDs in
a following paragraph.

α ∈ {min,max} describes the rewriting mode. In the minimal mode, an ap-
plicable rule is applied once. In the maximal mode, an applicable rule is used as
many times as possible and all rules with the same states s and s′ can be applied
in the maximally parallel manner. Finally, the optional z indicates a multiset of
promoters, which enable rules but are not consumed.

Note

The algorithms presented in this paper make full use of duplex channels and work
regardless of specific arc orientation. Therefore, to avoid superfluous details, the
structure of our sample P systems will be given as undirected graphs, with the
assumption that the results will be the same, regardless of actual arc orientation.

Extensions

In this article, we use an extended version of the basic P module framework,
described above. Specifically, we assume that each cell σi ∈ K was “blessed” from
factory with a unique cell ID symbol ιi, which is exclusively used as an immutable
promoter. We also allow high-level rules, with a simple form of complex symbols
and free variable matching.

To explain these additional features, consider, for example, rule 3.1 of algorithm
2: S3 a nj →min S4 a (ci) ↓j |ιi. This rule uses complex symbols nj and ci, where
j and i are free variables, which, in principle, could match anything, but, in this
case, they will be only required to match cell IDs. Briefly, this rule, promoted by
ιi, consumes one a and one nj , produces another a and sends down a ci, where i
is the index of the current cell, to child j, if this child exists.

3 Asynchronous P Systems

In traditional P systems, a universal clock is assumed to control the application
of all rules, i.e. traditional P systems work synchronously, in lock-step. Practically,
such universal clock is unrealistic in many distributed computing applications,
where there is no such global clock and the communication delay is unpredictable.

4 T. Balanescu, R. Nicolescu and H. Wu

Thus, it is interesting to investigate P systems that work in the asynchronous
mode.

We define asynchronous P systems as follows. The rule format of asynchronous
P systems is the same as for synchronous P systems, i.e., s x →α s

′ x′ (y)βγ |z.
However, we focus on typical distributed systems, where communications take
substantially longer than actual local computations, therefore we consider that
the message delay is totally unpredictable. In such systems, we assume that rules
are applied in zero time and each message arrives in its own time t, t ∈ [0, 1].
Synchronous P systems are a special case of asynchronous P systems, where t =
1, for all evolutions. The runtime complexity of an asynchronous system is the
supremum over all possible executions. We typically assume that messages sent
over the same arc arrive in FIFO order (queue), or, as a possible extension—all
messages sent over the same arc eventually arrive, but in arbitrary order (multiset).

We illustrate these concepts by means of a basic algorithm, Echo [22], in two
distributed scenarios: (1) synchronous and (2) asynchronous, with a different (and
less expected) evolution. Essentially, the Echo algorithm starts from a source cell,
which broadcasts forward messages. These forward messages transitively reach
all cells and, at the end, are reflected back to the initial source. The forward
phase establishes a virtual spanning tree and the return phase is supposed to
follow up its branches. The tree is only virtual, because it does not involve any
structural changes; instead, virtual child-parent links are established by way of
pointer objects.

Scenario 1 in Figure 1 assumes that all messages arrive in one time unit, i.e. in
the synchronous mode. The forward and return phases take the same time, i.e. D
time units each, where D is diameter of the undirected graph, G. Scenario 2 in
Figure 2 assumes that some messages travel much faster than others, which is
bad, but possible in asynchronous mode: t = ε, where 0 < ε � 1. In this case,
the forward and return phases take very different times, D and N − 1 time units,
respectively, where N is the number of nodes of the undirected graph, G. The
P system rules of the Echo algorithm are presented in Section 5.3.

(a) (b) (c)

1

2

3

4

1

2

3

4

1

2

3

4

Time Unit = 1 Time Unit = 2 Time Unit = 3

1

2

3

4

Time Unit = 0

(d)

Fig. 1. Echo algorithm in synchronous mode—or in a “lucky” asynchronous mode, when
all messages are propagated with the same delay (1). Arcs with arrows indicate child-
parent arcs in the virtual spanning tree built by the algorithm. Thick arrows near arcs
indicate messages.

Asynchronous P Systems 5

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

(a) (b) (c) (d)

(e) (f) (g) (h)

Time Unit = ε Time Unit = 2ε Time Unit = 3ε Time Unit = 4ε

Time Unit = 2 Time Unit = 3 Time Unit = 4

1

2

3

4

Time Unit = 1

Fig. 2. Echo algorithm in asynchronous mode—one possible “bad” execution, among
the many possible. Dotted thick arrows near arcs indicate messages still in transit.

4 Distributed Depth-First Search (DFS)

Depth-first search (DFS) and breadth-first search (BFS) are graph traversal al-
gorithms, which construct a DFS spanning tree and a BFS spanning tree, re-
spectively. Figure 3 shows the structure of a sample P system, Π, based on an
“undirected” graph, G, and one possible virtual DFS spanning tree, T . We use
quotation marks to indicate that G actually is a directed graph, but we do not
care about arc orientation. The spanning tree is virtual, as it is described by “soft”
pointer objects, not by “hard” structural arcs.

1

2 3

6

4 5

Fig. 3. P system Π based on an “undirected” graph and one possible virtual DFS
spanning tree. Thick arrows indicate virtual child-parent arcs in this tree, linked by
pointer objects.

DFS is a fundamental technique, inherently sequential, or so it appears. Several
distributed DFS algorithms have been proposed, which attempt to make DFS run
faster on distributed systems, such as the classical DFS [22], Awerbuch’s DFS
[1], Cidon’s DFS [7], Sharma et al’s DFS [21], Makki et al’s DFS [15], Sense of
Direction (SOD) DFS [22]. This is vast topic, which is impossible to present here

6 T. Balanescu, R. Nicolescu and H. Wu

at the required length. Therefore, we refer the reader to the original articles, or to
a fundamental text, which covers all these algorithms, [22].

Several articles have proposed various synchronous P algorithms for DFS.
Gutiérrez-Naranjo et al. proposed a DFS algorithm [12], using inhibitors to avoid
visiting already-visited neighbor cells. Dinneen et al. [8] proposed a P algorithm
to find disjoint paths in a digraph, using a distributed DFS strategy, which avoids
visiting already-visited cells by changing the state of visited cells [9]. Bernardini et
al. proposed a DFS algorithm in the P system synchronization problem [2]. This
approach uses an operator, mark+, to select one not-yet-visited cell, indicated by
a 0 polarity, and then mark the cell as visited, by changing the polarity to +. In
this case, the cell that performs a mark+ operation, actually “knows” which child
cell has been visited or not, without any message exchanges. In fact, all above
mentioned P algorithms implement the classical DFS, which is discussed later in
Section 4.2.

In the following sections, we present asynchronous P system implementations
of the well-known distributed DFS algorithms, which leverage the parallel and
distributed characteristics of P systems.

4.1 Discovering Neighbors

All our distributed DFS and BFS P algorithms, except the SoD algorithm, can,
if needed, start with the same preliminary Phase I, in which cells discover their
neighbors, i.e. their local topology. Nicolescu et al. have developed P algorithms
to discover local topology and local neighbors [16, 9]. In this paper, we propose a
crisper algorithm, Algorithm 1, with fewer symbols.

Algorithm 1 (Discovering cell neighbors)

Input: All cells start in the same initial state, S0, with the same set of rules.
Initially, each cell, σi, contains a cell ID object, ιi, which is immutable and used
as a promoter. Additionally, the source cell, σs, is decorated with one object a.

Output: All cells end in the same state, S3. On completion, each cell contains
the cell ID object, ιi, and objects nj , pointing to their neighbors. The source cell,
σs, is still decorated with object a. Table 1 shows the neighborhoods of Figure 3,
computed by Algorithm 1, in three P steps.

Table 1. Partial Trace of Algorithm 1 for Figure 3.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S0 ι1a S0 ι2 S0 ι3 S0 ι4 S0 ι5 S0 ι6
3 S3 ι1an2n4 S3 ι2n1n3n4 S3 ι3n2n4n5n6 S3 ι4n1n2n3n5 S3 ι5n3n4n6 S3 ι6n3n5

Asynchronous P Systems 7

0. Rules in state S0:
1 S0 a→min S1 ay (z) l
2 S0 z →min S1 y (z) l
3 S0 z →max S1

1. Rules in state S1:

1 S1 y →min S2 (ni) l |ιi
2 S1 z →max S2

2. Rules for state S2:
1 S2 →min S3

2 S2 z →max S3

In state S0, the source cell, σs, which is decorated by object a, broadcasts signal
z, to all cells, and enters state S1. Each cell receiving z produces one object y, and
changes to state S1. Superfluous signals z are discarded. Then, in state S1, each
cell that has object y, sends its own ID, which appears as subscript in complex
object ni, to all its neighbors. In state S2, cells accumulate the received neighbor
objects, discard superfluous objects z, and enter S3.

4.2 Classical DFS

The classical DFS algorithm is based on Tarry’s traversal algorithm, which tra-
verses all arcs sequentially, in both directions, using a visiting token [22]. Because
it traverses all arcs twice, serially, the classical DFS algorithm is not the most
efficient distributed DFS algorithm.

Algorithm 2 (Classical DFS)

Input: All cells start in the same quiescent state, S3, and with the same set of
rules. Each cell, σi, contains an immutable cell ID object, ιi. All cells know their
neighbors, i.e. they have topological awareness, which are indicated by pointer
objects, nj (as built by Algorithm 1). The source cell, σs, is additionally decorated
with one object, a, which triggers the search.

Output: All cells end in the same final state (S5). On completion, the cell IDs
are intact. Cell σs is still decorated with one a and all other cells contain DFS
spanning tree pointer objects, indicating predecessors, pj .

Table 2 shows one possible DFS spanning tree, built by this algorithm, for the
P system Π of Figure 3.

Table 2. Partial Trace of Algorithm 2 for Figure 3.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S3 ι1an2n4 S3 ι2n1n3n4 S3 ι3n2n4n5n6 S3 ι4n1n2n3n5 S3 ι5n3n4n6 S3 ι6n3n5

19 S5 ι1a S5 ι2p1 S5 ι3p2 S5 ι4p5 S5 ι5p3 S5 ι6p5

8 T. Balanescu, R. Nicolescu and H. Wu

3. Rules in state S3:
1 S3 anj →min S4 a (ci) ↓j |ιi
2 S3 cjnjnk →min S4 pj (ci) ↓k |ιi

4. Rules for state S4:

1 S4 cjnj →min S4 (xi) ↓j |ιi
2 S4 xjnk →min S4 (ci) ↓k |ιi
3 S4 xjpk →min S5 pk (xi) ↓k |ιi
4 S4 xj →min S5

4.3 Awerbuch DFS

Awerbuch’s algorithm [1] and other more efficient algorithms improve time com-
plexity by having the visiting token traversing tree arcs only, all other arcs are
traversed in parallel, by auxiliary messages. Specifically, in Awerbuch’s algorithm,
when the node is visited for the first time, it notifies all neighbors that it has been
visited and waits until it receives all neighbors’ acknowledgments. After that, the
node can visit one of its unvisited neighbors. Thus, the node knows exactly which
of its neighbors have been visited and avoids visiting the already-visited neighbors,
which saves time.

Algorithm 3 (Awerbuch DFS)

Input: Same as in Algorithm 2.

Output: Similar to Algorithm 2, but the final state is S7. Also, cells may
contain “garbage” objects, which can be cleared, by using a few more steps.

Table 3 shows the resulting DFS spanning tree, for Figure 3. Table 16 from
Appendix A contains full traces for this algorithm, including the preliminary phase,
of Algorithm 1.

Table 3. Partial Trace of Algorithm 3 for Figure 3.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S3 ι1an2n4 S3 ι2n1n3n4 S3 ι3n2n4n5n6 S3 ι4n1n2n3n5 S3 ι5n3n4n6 S3 ι6n3n5

24 S7 ι1a . . . S7 ι2p1 . . . S7 ι3p2 . . . S7 ι4p5 . . . S7 ι5p3 . . . S7 ι6p5 . . .

3. Rules in state S3:

1 S3 nj →min S4 njmj

4. Rules in state S4:

1 S4 vj →min S4 uj (bi) ↓j |ιi
2 S4 nj →min S5 nj (vi) ↓j |aιi
3 S4 cjmjnj →min S5 pj
4 S4 nj →min S5 nj (vi) ↓j |tιi

5. Rules for state S5:

1 S5 nj →min S6 njwj

6. Rules for state S6:

1 S6 wj →min S7 |bj
2 S6 wjpk →min S7 wjpk|bl
3 S6 bj →min S7

4 S6 ujmj →min S7 uj
5 S6 amj →min S7 auj (cit) ↓j |ιi
6 S6 pkmj →min S7 pkuj (cit) ↓j |ιi
7 S6 pj →min S7 pj (xit) ↓j |ιi
8 S6 t→min S7

7. Rules for state S7:

Asynchronous P Systems 9

1 S7 wj →min S7 |bj
2 S7 wjpk →min S7 wjpk
3 S7 pkmj →min

S7 pkuj (cit) ↓j |blιi
4 S7 pj →min S7 pj (xit) ↓j |blιi
5 S7 bj →min S7

6 S7 mkxj →min S7 uk (cit) ↓k |ιi
7 S7 pkxj →min S7 pk (xit) ↓k |ιi
8 S7 vj →min S7 uj (bi) ↓j |ιi
9 S7 ujmj →min S7 uj

10 S7 axj →min S7 a
11 S7 t→min S7

4.4 Cidon DFS

Cidon’s algorithm [7] improves Awerbuch’s algorithm by not using acknowledg-
ments, therefore removing a delay. The token holding cell does not wait for the
neighbors’ acknowledgments, but immediately visits a neighbor. However, it needs
to record the most recent neighbor used, to solve cases when visiting notifications
arrive after the visiting token.

Algorithm 4 (Cidon DFS)

Input: Same as in Algorithm 2.

Output: Similar to Algorithm 2, but the final state is S5. Also, cells may
contain “garbage” objects, which can be cleared, by using a few more steps.

Table 4 shows one possible DFS spanning tree, built by this algorithm, for the
P system Π of Figure 3.

Table 4. Partial Trace of Algorithm 4 for Figure 3.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S3 ι1an2n4 S3 ι2n1n3n4 S3 ι3n2n4n5n6 S3 ι4n1n2n3n5 S3 ι5n3n4n6 S3 ι6n3n5

12 S5 ι1a . . . S5 ι2p1 . . . S5 ι3p2 . . . S5 ι4p5 . . . S5 ι5p3 . . . S5 ι6p5 . . .

3. Rules in state S3:
1 S3 nj →min S4 njmj

2 S3 a→min S4 at

4. Rules in state S4:
1 S4 anjmj →min

S5 avj (vicit) ↓j |tιi
2 S4 cknkmknjmj →min

S5 pkrjmj (vicit) ↓j |tιi
3 S4 ckmknjmj →min

S5 pkrjmj (vicit) ↓j |tιi
4 S4 cjnjmj →min S5 pj (xit) ↓j |tιi
5 S4 cjmj →min S5 pj (xit) ↓j |tιi
6 S4 mj →min S5 mj (vi) ↓j |tιi

7 S4 vjnj →min S4 vj
8 S4 t→min S5

5. Rules for state S5:
1 S5 rkvknj →min S5 rj (cit) ↓j |ιi
2 S5 rkvkpj →min S5 pj (xit) ↓j |ιi
3 S5 xjnkmk →min

S5 rkmk (vicit) ↓k |tιi
4 S5 xjpkrj →min

S5 pkrj (xit) ↓k |tιi
5 S5 cjpk →min S5 pkvj
6 S5 vjnj →min S5 vj
7 S5 axj →min S5 a
8 S5 t→min S5

10 T. Balanescu, R. Nicolescu and H. Wu

4.5 Sharma DFS

Sharma et al.’s algorithm [21] further improves time complexity, at the cost of
increasing the message size, by including a list of visited nodes when passing the
visiting token [23]. Thus, it eliminates unnecessary message exchanges to inform
neighbors of visited status.

Algorithm 5 (Sharma DFS)

Input: Same as in Algorithm 2.

Output: Similar to Algorithm 2, but the final state is S4. Also, cells may
contain “garbage” objects, which can be cleared, by using a few more steps.

Table 5 shows one possible DFS spanning tree, built by this algorithm, for the
P system Π of Figure 3.

Table 5. Partial Trace of Algorithm 5 for Figure 3.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S3 ι1an2n4 S3 ι2n1n3n4 S3 ι3n2n4n5n6 S3 ι4n1n2n3n5 S3 ι5n3n4n6 S3 ι6n3n5

11 S4 ι1a . . . S4 ι2p1 . . . S4 ι3p2 . . . S4 ι4p5 . . . S4 ι5p3 . . . S4 ι6p5 . . .

3. Rules in state S3:

1 S3 anj →min S4 a (civit) ↓j |ιi
2 S3 nj →min S4 |tvj
3 S3 cj →min S4 pj (civit) ↓k |nkιi
4 S3 cj →min S4 pj (xivivjt) ↓j |ιi
5 S3 vj →min S4 vj (vj) ↓k |tnk
6 S3 t→min S4

4. Rules for state S4:
1 S4 nj →min S4 vj
2 S4 xj →min S4 (civit) ↓k |nkιi
3 S4 xj →min S4 (xivit) ↓k |pkιi
4 S4 vj →min S4 vj (vj) ↓k |tnk
5 S4 vj →min S4 vj (vj) ↓k |tpk
6 S4 t→min S4

7 S4 axj →min S4 a

4.6 Makki DFS

Makki et al.’s algorithm [15] improves Sharma et al.’s algorithm by using a dynamic
backtracking technique. It keeps track of the most recent split point, i.e. the lowest
ancestor node. When the search path backtracks to a node, if the node has a non-
tree edge to its split point, it backtracks to the split point directly via that edge,
rather than following the longer tree path to its split point.

Algorithm 6 (Makki DFS)

Input: Same as in Algorithm 2.

Output: Similar to Algorithm 2, but the final state is S4. Also, cells may
contain “garbage” objects, which can be cleared, by using a few more steps.

Table 6 shows one possible DFS spanning tree, built by this algorithm, for the
P system Π of Figure 3.

Asynchronous P Systems 11

Table 6. Partial Trace of Algorithm 6 for Figure 3.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S3 ι1an2n4 S3 ι2n1n3n4 S3 ι3n2n4n5n6 S3 ι4n1n2n3n5 S3 ι5n3n4n6 S3 ι6n3n5

10 S4 ι1a . . . S4 ι2p1 . . . S4 ι3p2 . . . S4 ι4p5 . . . S4 ι5p3 . . . S4 ι6p5 . . .

3. Rules in state S3:
1 S3 anj →min S4 a (civisit) ↓j |ιi
2 S3 nj →min S4 |tvj
3 S3 cjsm →min

S4 pjrm (civisit) ↓k |nknlιi
4 S3 cjsl →min

S4 pjrl (civislt) ↓k |nkιi
5 S3 cj →min S4 pjrk (xivit) ↓k |skιi
6 S3 cj →min S4 pjrk (xivit) ↓j |skιi
7 S3 vj →min S4 vj (vj) ↓k |tnk
8 S3 vj →min S4 vj (vj) ↓k |tsk
9 S3 t→min S4

4. Rules for state S4:
1 S4 nj →min S4 vj
2 S4 xj →min S4 (civisit) ↓k |nknlιi
3 S4 xjrl →min

S4 (civisislt) ↓k |nkιi
4 S4 xj →min S4 (xivit) ↓k |rkιi
5 S4 xj →min S4 (xivit) ↓k |pkιi
6 S4 vj →min S4 vj (vj) ↓k |tnk
7 S4 vj →min S4 vj (vj) ↓k |trk
8 S4 vj →min S4 vj (vj) ↓k |tpk
9 S4 t→min S4

10 S4 axj →min S4 a

4.7 Sense of Direction DFS

With Sense of Direction (SOD), the node labeling is not required. Instead, arc
labeling is used, with the following properties:

• Edges are labeled with elements of a group G, typically G = Zn, where Zn =
{0, 1, . . . , n− 1}.

• Given labeled arcs a0
x1→ a1, a1

x2→ a2, . . . ak−1
xk→ ak, the path a0

x1→ a1
x2→

a2 . . . ak−1
xk→ ak has label x1 + x2 + . . .+ xk.

• Given labelled paths a
x⇒ b and c

x⇒ d, a = c if and only if b = d.

Thus, in search algorithms, path labels can very handily indicate the already-
visited nodes. Path labels are kept as a growing list and are appended when the
search path passes a node.

If the search path reaching the node, ak, wants to visit the node, ak+1, it first
checks whether ak+1 is an already-visited node, e.g., ai, 0 ≤ i ≤ n. The node ak
checks whether one of the partial path labels, e.g., xi+1 + . . .+ xk + xk+1, equals
zero. If yes, then ak+1 = ai, thus ak+1 is an already-visited node. We refer the
readers to [22] for more details about SOD.

Figure 4 shows a sample P system based on directed graph with SOD arc labels.

Algorithm 7 (Sense of Direction DFS)

For this particular algorithm, here, we only present a P system-like high-level
pseudo-code. Additional investigation is required to achieve an efficient translation
to usual rewriting rules.

12 T. Balanescu, R. Nicolescu and H. Wu

1

2 3

6

5 4

1

1

3

3

4
1

1

2

2

Fig. 4. A sample P system based on a SOD structure, with arc labelling, indicated by
gray arrows. Thick arc arrows indicate a possible virtual DFS tree.

Input: All cells start with the same set of rules and start in the same quiescent
state, S0. Initially, all cells contain objects indicating the labels of neighbor arcs:
objects oj for outgoing arcs and objects ej for incoming arcs. The source cell, σs,
is additionally decorated with one trigger object, a.

Output: All cells end in the same final state, S1. On completion, cell σs is still
decorated with one a. All other cells contain DFS spanning tree pointer objects,
indicating its tree predecessors: pj , for incoming arcs and qj , for outgoing arcs.
Also, cells may contain “garbage” objects, which can be cleared, in a few more
steps.

Table 7 shows one possible DFS spanning tree, built by this algorithm, for the
P system of Figure 4.

Table 7. Partial Trace of Algorithm 7 for Figure 4.

Step# σ1 σ2 σ3 σ4 σ5 σ6

0 S0ao1o4 S0e1o1o3 S0e1o1o2o3 S0e1o1o2 S0e1e2e3e4 S0e2e3
11 S1 a . . . S1 p1 . . . S1 p1 . . . S1 p1 . . . S1 p1 . . . S1 p2 . . .

The ruleset below uses a few additional “magical” algebraic operators and
prompters, which do fit properly into the basic framework outlined in Section 2
(or not yet).

• Operation π⊕ j adds j, modulo n, to every element in list π and also appends
+j to list π.

• Operation π 	 j subtracts j, modulo n, from every element in list π and also
appends n− j (i.e. −j modulo n) to list π.

• Complex promoters π ⊕ j? and π 	 j? enable the associated rule only if the
resulting list does not contain any 0.

0. Rules in state S0:

1 S0 aoj →min S1 a (cjb⊕j) ↑j
2 S0 bπojckek →min

S1 pk(cjbπ⊕j) ↑j |π⊕j?

3 S0 bπejckek →min

S1 pk(ljbπ	j) ↓j |π	j?
4 S0 bπoj lkok →min

S1 qk(cjbπ⊕j) ↑j |π⊕j?

Asynchronous P Systems 13

5 S0 bπej lkok →min

S1 qk(ljbπ	j) ↓j |π	j?
6 S0 bπcjej →min S1 pj(xjbπ	j) ↓j
7 S0 bπljoj →min S1 pj(xjbπ⊕j) ↑j

1. Rules in state S1:

1 S1 bπxkoj →min

S1 (cjbπ⊕j) ↑j |π⊕j?
2 S1 bπxkej →min

S1 (ljbπ	j) ↓j |π	j?
3 S1 bπxkpj →min S1 pj (xjbπ	j) ↓j
4 S1 bπxkqj →min S1 qj (xjbπ⊕j) ↑j
5 S1 axj →min S1 a

5 Distributed Breadth-First Search (BFS)

BFS is a fundamental technique, inherently parallel, or so it appears. There are
a number of distributed BFS algorithms to make BFS run faster on parallel and
distributed systems, such as Synchronous BFS [22], Asynchronous BFS [22], an
improved Asynchronous BFS with known graph diameter [22], Layered BFS [22],
Hybrid BFS [22].

Our previous research proposed a P algorithm to find disjoint paths using BFS,
and empirical results show that BFS can leverage the parallel and distributed
characteristics of P systems [17]. In this paper, we first present a P implementa-
tion of synchronous BFS (SyncBFS) and discuss how SyncBFS succeeds in the
synchronous mode but fails in the asynchronous mode. Next, we propose a P im-
plementation of an algorithm which works correctly in the asynchronous mode,
the simple Asynchronous BFS (AsyncBFS) algorithm, and we show how it works
in both synchronous and asynchronous scenarios.

5.1 Synchronous BFS

Initially, the source cell broadcasts out a search token. On receiving the search
token, an unmarked cell marks itself and chooses one of the cells from which
the search token arrived as its parent. Then in the first round after the cell gets
marked, it broadcasts a search token to all its neighbors [14]. SyncBFS is a “wave”
algorithm and it produces a BFS spanning tree in synchronous mode, as shown in
Figure 5. However, it often fails in asynchronous mode, as shown in Figure 6.

Algorithm 8 (Synchronous BFS)

Input: Same as in Algorithm 2.

Synchronous output: All cells end in the same final state, S5. On completion,
each cell, σi, still contains its cell ID object, ιi. The source cell, σs, is still decorated
with one a. All other cells contain BFS spanning tree pointer objects, indicating
predecessors, pj . Also, cells may contain “garbage” objects, which can be cleared,
by using a few more steps.

Table 8 shows the BFS spanning tree built by this algorithm (in the syn-
chronous mode), for the P system of Figure 5 (there is only one BFS tree in this
case).

14 T. Balanescu, R. Nicolescu and H. Wu

1

2

3 4 5 6

7 8

9 10

Fig. 5. BFS spanning tree.

Table 8. Partial Trace of Algorithm 8 for Figure 5 in synchronous mode.

Step# σ1 σ2 σ3 σ4 σ5

0 S3 ι1n2 S3 ι2n1n4n5 S3 ι3n4 S3 ι4n2n3n7 S3 ι5n2n6n8

8 S5 ι1p2 . . . S5 ι2a . . . S5 ι3p4 . . . S5 ι4p2 . . . S5 ι5p2 . . .

Step# σ6 σ7 σ8 σ9 σ10

0 S3 ι6n5 S3 ι7n4n8n9 S3 ι8n5n7n10 S3 ι9n7 S3 ι10n8

8 S5 ι6p5 . . . S5 ι7p4 . . . S5 ι8p5 . . . S5 ι9p7 . . . S5 ι10p8 . . .

3. Rules in state S3:
1 S3 a→min S4 a
2 S3 cjnj →min S4 pj

4. Rules for state S4:

1 S4 nj →min S5 (ci) ↓j |ιi
2 S4 →min S5

5. Rules for state S5:
1 S5 cj →min S5

However, if Algorithm 8 runs in asynchronous mode, the result is still a span-
ning tree, but not necessarily a BFS spanning tree, as illustrated in Table 9 and
Figure 6. The search token from cell σ2 to σ5 is delayed and arrives in cell σ5 after
σ5 records its parent as σ8. The resulting spanning tree is not a BFS spanning
tree.

Table 9. Partial Trace of Algorithm 8 for Figure 6 in asynchronous mode.

Step# σ1 σ2 σ3 σ4 σ5

0 S3 ι1n2 S3 ι2n1n4n5 S3 ι3n4 S3 ι4n2n3n7 S3 ι5n2n6n8

14 S5 ι1p1 . . . S5 ι2a . . . S5 ι3p4 . . . S5 ι4p2 . . . S5 ι5p8 . . .

Step# σ6 σ7 σ8 σ9 σ10

0 S3 ι6n5 S3 ι7n4n8n9 S3 ι8n5n7n10 S3 ι9n7 S3 ι10n8

14 S5 ι6p5 . . . S5 ι7p4 . . . S5 ι8p7 . . . S5 ι9p7 . . . S5 ι10p8 . . .

Asynchronous P Systems 15

1

2

3 4 5 6

7 8

9 10

Fig. 6. BFS spanning tree output of Algorithm 8 in an asynchronous scenario.

5.2 Asynchronous BFS

Asynchronous BFS (AsyncBFS) algorithm is not just a asynchronous version of
SyncBFS [14], as previously discussed in the asynchronous mode of SyncBFS. It
has modifications to correct the parent destination, therefore obtaining a BFS
spanning tree.

Although the known problem of AsyncBFS is that there is no way to know
when there are no further parent corrections to make, i.e. it never produces the
tree structure output. However, in P systems, there is no such problem, because
the objects in cells are actually the tree link output. Thus, P systems provides a fa-
vorable way to implement this algorithm, which does not require other augmenting
approaches, such as adding acknowledgments, convergecasting acknowledgments,
bookkeeping, etc [14].

Algorithm 9 (Asynchronous BFS)

Input: Same as in Algorithms 2 (and 8).

Output: Similar to Algorithm 8 (running in synchronous mode), but the final
state is S4. Also, cells may contain “garbage” objects, which can be cleared, by
using a few more steps.

Table 10 shows the BFS spanning tree built by this algorithm, for the P system
of Figure 5 (there is only one BFS tree in this case).

Table 10. Partial Trace of Algorithm 9 for Figure 5.

Step# σ1 σ2 σ3 σ4 σ5

0 S3 ι1n2 S3 ι2n1n4n5 S3 ι3n4 S3 ι4n2n3n7 S3 ι5n2n6n8

5 S4p2 . . . S4a . . . S4p4 . . . S4p2 . . . S4p2 . . .

Step# σ6 σ7 σ8 σ9 σ10

0 S3 ι6n5 S3 ι7n4n8n9 S3 ι8n5n7n10 S3 ι9n7 S3 ι10n8

5 S4 ι6p5 . . . S4 ι7p4 . . . S4 ι8p5 . . . S4 ι9p7 . . . S4 ι10p8 . . .

16 T. Balanescu, R. Nicolescu and H. Wu

3. Rules in state S3:
1 S3 →min S4 h|a
2 S3 nj →min

S4 mj (citgguu) ↓j |aιi
3 S3 cjnj →min S4 pjmj |t
4 S3 →min S4 (cit) ↓j |tnjιi
5 S3 gu→min S4 h (gguu) l |t
6 S3 gu→max S4 h (gu) l |t
7 S3 nj →min S4 mj |t
8 S3 t→max S4

4. Rules for state S4:

1 S4 gh→max S4 |t
2 S4 pj →min S4 |ht
3 S4 cjmj →min S4 pj |ht
4 S4 cj →min S4 |t
5 S4 mj →min S4 (cit) ↓j |htιi
6 S4 u→min S4 h (gguu) l |ht
7 S4 u→max S4 h (gu) l |ht
8 S4 h→max S4 |t
9 S4 gu→max S4

10 S4 gu→max S4|t
11 S4 t→max S4

5.3 Echo Algorithm

The Echo algorithm shares the similar “wave” characteristics of distributed BFS
algorithms, but, as discussed in Section 3, it only builds a spanning tree, not
necessarily a BFS spanning tree.

Algorithm 10 (Echo Algorithm)

Input: Same as in Algorithms 2 (and 8).

Output: All cells end in the same final state, S4. On completion, each cell,
σi, still contains its cell ID object, ιi. he source cell, σs, is still decorated with
an object, a. All other cells contain a spanning tree pointer objects, indicating
predecessors, pj .

Table 11 and 12 show two spanning trees, built by this algorithm, for the
P system of Figures 1 and 2, in synchronous and asynchronous modes, respectively.

Table 11. Partial Trace of Algorithm 10 for Figure 1 in synchronous mode.

Step# σ1 σ2 σ3 σ4

0 S3 ι1an2n3n4 S3 ι2n1n3n4 S3 ι3n1n2n4 S3 ι4n1n2n3

4 S4 ι1a S4 ι2p1 S4 ι3p1 S4 ι4p1

Table 12. Partial Trace of Algorithm 10 for Figure 2 in asynchronous mode.

Step# σ1 σ2 σ3 σ4

0 S3 ι1an2n3n4 S3 ι2n1n3n4 S3 ι3n1n2n4 S3 ι4n1n2n3

4 S4 ι1a S4 ι2p1 S4 ι3p2 S4 ι4p3

Asynchronous P Systems 17

3. Rules in state S3:
1 S3 nj →min S4 wj (cit) ↓j |aιi
2 S3 cjnjnk →min

S4 pjwk (cit) ↓k |ιi
3 S3 cjnj →min S4 pj (cit) ↓j |ιi
4 S3 nj →min S4 wj (cit) ↓j |tιi
5 S3 t→max S4

4. Rules for state S4:
1 S4 wj →min S4 |cj
2 S4 wjpk →min S4 wjpk
3 S4 wja→min S4 wja
4 S4 cj →min S4

5 S4 pj →min S4 pj (cit) ↓j |tιi
6 S4 t→max S4

6 Complexity

All our distributed DFS and BFS implementations, except the SoD implementa-
tion, assume that each cells knows the IDs of its neighbors (parents and children).
Our SoD implementation assumes that each cell knows the labels of its adjacent
arcs (incoming and outgoing). In the complexity analysis, we skip over a prelimi-
nary phase which could build such knowledge, see Algorithm 1.

All our P system DFS implementations take one final step, to prompt the
source cell to discard the token; we also omit this step in the complexity analysis.
Moreover, there is one beginning step in our implementations for Awerbuch (rule
3.1) and Cidon (rules 3.1, 3.2), which instantiates initial list objects. These steps
can be included in Algorithm 1. However, we do not follow this approach, because
we want to keep Algorithm 1 a common preliminary phase for all our algorithms.
We also skip these beginning steps, in the complexity analysis.

Table 13 shows the resulting complexity of our P system DFS implementations,
in terms of P steps. The runtime complexity of our P system implementations is
exactly the same as for the standard distributed DFS algorithms. The complexity
of our SOD algorithm must be considered with a big grain of salt, for the reasons
explained in the description of Algorithm 7 (high-level pseudo-code).

Table 13. DFS algorithms comparisons and complexity (P steps) of Figure 3.

Algorithm P Steps Time units Messages Notes

Classical 18 2M 2M Local cell IDs

Awerbuch 22 4N − 2 4M Local cell IDs

Cidon 10 2N − 2 ≤ 4M Local cell IDs

Sharma 10 2N − 2 ≤ 2N − 2 Global cell IDs

SOD 10? 2N − 2 ≤ 2N − 2 Sense of Direction (Zn)

Makki 9 (1 + r)N (1 + r)N Global cell IDs (or SOD)

Table 14 shows the runtime complexity of our P system SyncBFS and AsyncBFS
implementations, which is consistent with the runtime complexity of the standard
algorithms.

18 T. Balanescu, R. Nicolescu and H. Wu

Table 14. BFS algorithms comparisons and complexity (P steps) of Figure 5.

Algorithm P Steps Time units Messages Notes

Sync 8 O(D) O(M) Local IDs

Simple Async 5 O(DN) O(NM) Local IDs

Simple Async2 ? O(D2) O(DM) D and Local IDs

Layered Async ? O(D2) O(M +DN) Local IDs

Hybrid Async ? O(Dk +D2/k) O(Mk +DN/k) Local IDs

7 Conclusions

We proposed a new approach to fully asynchronous P systems, and a matching
complexity measure, both inspired from the field of distributed algorithms. We val-
idated our approach by implementing several well-known distributed depth-first
search (DFS) and breadth-first search (BFS) algorithms. We believe that these
are the first P implementations of the standard distributed DFS and BFS algo-
rithms. Empirical results show that, in terms of P steps, the runtime complexity
of our distributed P algorithms is the same as the runtime complexity of standard
distributed DFS and BFS.

Several interesting questions remain open. We intend to complete this quest
by completing the implementation of the SOD algorithm and by implementing
three other, more sophisticated, distributed BFS algorithms and compare their
performance against the standard versions. We also intend to elaborate the foun-
dations of fully asynchronous P systems and further validate this, by investigating
a few famous critical problems, such as building minimal spanning trees. Finally,
we intend to formulate fundamental distributed asynchronous concepts, such as
fairness, safety and liveness, and investigate methods for their proofs.

References

1. Awerbuch, B.: A new distributed depth-first-search algorithm. Information Pro-
cessing Letters 20(3), 147 – 150 (1985), http://www.sciencedirect.com/science/
article/B6V0F-482R9G2-S/2/22537b651ddd5c1a0e3ae5d5ba723079

2. Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: How to synchronize the
activity of all components of a P system? Int. J. Found. Comput. Sci. 19(5), 1183–
1198 (2008)

3. Casiraghi, G., Ferretti, C., Gallini, A., Mauri, G.: A membrane computing system
mapped on an asynchronous, distributed computational environment. In: Freund, R.,
Paun, G., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane Computing.
Lecture Notes in Computer Science, vol. 3850, pp. 159–164. Springer (2005)

4. Cavaliere, M., Egecioglu, O., Ibarra, O., Ionescu, M., Pun, G., Woodworth, S.: Asyn-
chronous spiking neural p systems: Decidability and undecidability. In: Garzon, M.,
Yan, H. (eds.) DNA Computing, Lecture Notes in Computer Science, vol. 4848,
pp. 246–255. Springer Berlin / Heidelberg (2008), http://dx.doi.org/10.1007/

978-3-540-77962-9_26

Asynchronous P Systems 19

5. Cavaliere, M., Ibarra, O.H., Pun, G., Egecioglu, O., Ionescu, M., Woodworth, S.:
Asynchronous spiking neural p systems. Theor. Comput. Sci. 410, 2352–2364 (May
2009), http://portal.acm.org/citation.cfm?id=1539070.1540146

6. Cavaliere, M., Sburlan, D.: Time and synchronization in membrane systems. Fundam.
Inf. 64, 65–77 (July 2004), http://portal.acm.org/citation.cfm?id=1227085.

1227092

7. Cidon, I.: Yet another distributed depth-first-search algorithm. Inf. Process. Lett.
26, 301–305 (1988)

8. Dinneen, M.J., Kim, Y.B., Nicolescu, R.: Edge- and node-disjoint paths in P systems.
Electronic Proceedings in Theoretical Computer Science 40, 121–141 (2010)

9. Dinneen, M.J., Kim, Y.B., Nicolescu, R.: Edge- and vertex-disjoint paths in P mod-
ules. In: Ciobanu, G., Koutny, M. (eds.) Workshop on Membrane Computing and
Biologically Inspired Process Calculi. pp. 117–136 (2010)

10. Dinneen, M.J., Kim, Y.B., Nicolescu, R.: P systems and the Byzan-
tine agreement. Journal of Logic and Algebraic Programming 79(6), 334–
349 (2010), http://www.sciencedirect.com/science/article/B6W8D-4YPPPW1-2/
2/17b82b2cdd8f159b7fea380939193e4d

11. Freund, R.: Asynchronous p systems and p systems working in the sequential mode.
In: Mauri, G., Paun, G., Prez-Jimnez, M., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing, Lecture Notes in Computer Science, vol. 3365, pp. 36–62. Springer
Berlin / Heidelberg (2005), http://dx.doi.org/10.1007/978-3-540-31837-8_3

12. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Depth-first search with p systems.
In: Proceedings of the 11th international conference on Membrane computing. pp.
257–264. CMC’10, Springer-Verlag, Berlin, Heidelberg (2010), http://portal.acm.
org/citation.cfm?id=1946067.1946090

13. Kleijn, J., Koutny, M.: Synchrony and asynchrony in membrane systems. In: Mem-
brane Computing, WMC2006, Leiden, Revised, Selected and Invited Papers, LNCS
4361. pp. 66–85. Springer (2006)

14. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (1996)

15. Makki, S.A.M., Havas, G.: Distributed algorithms for depth-first search. Inf. Process.
Lett. 60, 7–12 (October 1996), http://portal.acm.org/citation.cfm?id=244081.
244085

16. Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Discovering the membrane topology of
hyperdag P systems. In: Păun, G., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozen-
berg, G., Salomaa, A. (eds.) Workshop on Membrane Computing. Lecture Notes in
Computer Science, vol. 5957, pp. 410–435. Springer-Verlag (2009)

17. Nicolescu, R., Wu, H.: BFS solution for disjoint paths in P systems. Report
CDMTCS-399, Centre for Discrete Mathematics and Theoretical Computer Sci-
ence, The University of Auckland, Auckland, New Zealand (March 2011), http:

//www.cs.auckland.ac.nz/CDMTCS//researchreports/399radu.pdf

18. Pan, L., Zeng, X., Zhang, X.: Time-free spiking neural p systems. Neural Com-
putation 0(0), 1–23 (2011), http://www.mitpressjournals.org/doi/abs/10.1162/
NECO_a_00115

19. Păun, G.: Introduction to membrane computing. In: Ciobanu, G., Pérez-Jiménez,
M.J., Păun, G. (eds.) Applications of Membrane Computing, pp. 1–42. Natural Com-
puting Series, Springer-Verlag (2006)

20. Păun, G., Centre, T., Science, C.: Computing with membranes. Journal of Computer
and System Sciences 61, 108–143 (1998)

20 T. Balanescu, R. Nicolescu and H. Wu

21. Sharma, M.B., Iyengar, S.S.: An efficient distributed depth-first-search algorithm. Inf.
Process. Lett. 32, 183–186 (September 1989), http://portal.acm.org/citation.

cfm?id=69686.69691

22. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press (2000)
23. Tsin, Y.H.: Some remarks on distributed depth-first search. Inf. Process. Lett. 82,

173–178 (May 2002), http://portal.acm.org/citation.cfm?id=585580.585581
24. Yuan, Z., Zhang, Z.: Asynchronous spiking neural p system with promoters. In:

Proceedings of the 7th international conference on Advanced parallel processing
technologies. pp. 693–702. APPT’07, Springer-Verlag, Berlin, Heidelberg (2007),
http://portal.acm.org/citation.cfm?id=1785246.1785331

A Appendix

Asynchronous P Systems 21

T
a
b
le

1
5
.

A
w

er
b
u
ch

D
F

S
a
lg

o
ri

th
m

tr
a
ce

s
(s

te
p
s

0
,

..
.,

1
5
)

o
f

F
ig

u
re

3
in

sy
n
ch

ro
n
o
u
s

m
o
d
e,

w
h
er

e
σ
1

is
th

e
so

u
rc

e
ce

ll
.

S
te
p
σ
1

σ
2

σ
3

σ
4

σ
5

σ
6

0
S
0
a
ι 1

S
0
ι 2

S
0
ι 3

S
0
ι 4

S
0
ι 5

S
0
ι 6

1
S
1
a
ι 1
y

S
0
ι 2
z

S
0
ι 3

S
0
ι 4
z

S
0
ι 5

S
0
ι 6

2
S
2
a
ι 1
z
2

S
1
ι 2
n
1
y
z

S
0
ι 3
z
2

S
1
ι 4
n
1
y
z

S
0
ι 5
z

S
0
ι 6

3
S
3
a
ι 1
n
2
n
4

S
2
ι 2
n
1
n
4
z

S
1
ι 3
n
2
n
4
y
z

S
2
ι 4
n
1
n
2
z
2

S
1
ι 5
n
4
y
z

S
0
ι 6
z
2

4
S
4
a
ι 1
m

2
m

4
n
2
n
4

S
3
ι 2
n
1
n
3
n
4

S
2
ι 3
n
2
n
4
n
5
z

S
3
ι 4
n
1
n
2
n
3
n
5

S
2
ι 5
n
3
n
4
z

S
1
ι 6
n
3
n
5
y

5
S
5
a
ι 1
m

2
m

4
n
2
n
4

S
4
ι 2
m

1
m

3
m

4
n
1
n
3
n
4

v
1

S
3
ι 3
n
2
n
4
n
5
n
6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
v
1

S
3
ι 5
n
3
n
4
n
6

S
2
ι 6
n
3
n
5

6
S
6
a
b
2
b
4
ι 1
m

2
m

4
n
2

n
4
w

2
w

4

S
4
ι 2
m

1
m

3
m

4
n
1
n
3
n
4

u
1

S
4
ι 3
m

2
m

4
m

5
m

6
n
2
n
4

n
5
n
6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

S
3
ι 6
n
3
n
5

7
S
7
a
ι 1
m

4
n
2
n
4
u
2

S
4
c
1
ι 2
m

1
m

3
m

4
n
1
n
3

n
4
tu

1

S
4
ι 3
m

2
m

4
m

5
m

6
n
2
n
4

n
5
n
6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

S
4
ι 6
m

3
m

5
n
3
n
5

8
S
7
a
ι 1
m

4
n
2
n
4
u
2

S
5
ι 2
m

3
m

4
n
3
n
4
p
1
t
u
1
S
4
ι 3
m

2
m

4
m

5
m

6
n
2
n
4

n
5
n
6
v
2

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
v
2

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

S
4
ι 6
m

3
m

5
n
3
n
5

9
S
7
a
ι 1
m

4
n
2
n
4
u
2

S
6
b
3
b
4
ι 2
m

3
m

4
n
3
n
4

p
1
tu

1
w

3
w

4

S
4
ι 3
m

2
m

4
m

5
m

6
n
2
n
4

n
5
n
6
u
2

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

S
4
ι 6
m

3
m

5
n
3
n
5

1
0

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
4
c
2
ι 3
m

2
m

4
m

5
m

6
n
2

n
4
n
5
n
6
tu

2

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

S
4
ι 6
m

3
m

5
n
3
n
5

1
1

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
5
ι 3
m

4
m

5
m

6
n
4
n
5
n
6

p
2
tu

2

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
v
3

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

v
3

S
4
ι 6
m

3
m

5
n
3
n
5
v
3

1
2

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
6
b
4
b
5
b
6
ι 3
m

4
m

5
m

6

n
4
n
5
n
6
p
2
tu

2
w

4
w

5
w

6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3

S
4
ι 5
m

3
m

4
m

6
n
3
n
4
n
6

u
3

S
4
ι 6
m

3
m

5
n
3
n
5
u
3

1
3

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
m

6
n
4
n
5
n
6
p
2

u
2
u
5

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3

S
4
c
3
ι 5
m

3
m

4
m

6
n
3
n
4

n
6
tu

3

S
4
ι 6
m

3
m

5
n
3
n
5
u
3

1
4

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
m

6
n
4
n
5
n
6
p
2

u
2
u
5

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3
v
5

S
5
ι 5
m

4
m

6
n
4
n
6
p
3
t
u
3
S
4
ι 6
m

3
m

5
n
3
n
5
u
3
v
5

1
5

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
m

6
n
4
n
5
n
6
p
2

u
2
u
5

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3
u
5

S
6
b
4
b
6
ι 5
m

4
m

6
n
4
n
6

p
3
tu

3
w

4
w

6

S
4
ι 6
m

3
m

5
n
3
n
5
u
3
u
5

T
a
b
le

1
6
.

A
w

er
b
u
ch

D
F

S
a
lg

o
ri

th
m

tr
a
ce

s
(s

te
p
s

1
6
,

..
.,

2
7
)

o
f

F
ig

u
re

3
in

sy
n
ch

ro
n
o
u
s

m
o
d
e,

w
h
er

e
σ
1

is
th

e
so

u
rc

e
ce

ll
.

S
te
p
σ
1

σ
2

σ
3

σ
4

σ
5

σ
6

1
6

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
m

6
n
4
n
5
n
6
p
2

u
2
u
5

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3
u
5

S
7
ι 5
m

4
n
4
n
6
p
3
u
3
u
6

S
4
c
5
ι 6
m

3
m

5
n
3
n
5
t

u
3
u
5

1
7

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
m

6
n
4
n
5
n
6
p
2

u
2
u
5
v
6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3
u
5

S
7
ι 5
m

4
n
4
n
6
p
3
u
3
u
6

S
5
ι 6
m

3
n
3
p
5
tu

3
u
5

1
8

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
m

6
n
4
n
5
n
6
p
2

u
2
u
5
u
6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3
u
5

S
7
ι 5
m

4
n
4
n
6
p
3
u
3
u
6

S
6
b
3
ι 6
m

3
n
3
p
5
tu

3

u
5
w

3

1
9

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
n
4
n
5
n
6
p
2
u
2

u
5
u
6

S
4
ι 4
m

1
m

2
m

3
m

5
n
1
n
2

n
3
n
5
u
1
u
2
u
3
u
5

S
7
ι 5
m

4
n
4
n
6
p
3
tu

3

u
6
x
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
0

S
7
a
ι 1
m

4
n
2
n
4
u
2

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3

S
7
ι 3
m

4
n
4
n
5
n
6
p
2
u
2

u
5
u
6

S
4
c
5
ι 4
m

1
m

2
m

3
m

5
n
1

n
2
n
3
n
5
tu

1
u
2
u
3
u
5

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
1

S
7
a
ι 1
m

4
n
2
n
4
u
2
v
4

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3
v
4
S
7
ι 3
m

4
n
4
n
5
n
6
p
2
u
2

u
5
u
6
v
4

S
5
ι 4
m

1
m

2
m

3
n
1
n
2
n
3

p
5
tu

1
u
2
u
3
u
5

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
2

S
7
a
ι 1
m

4
n
2
n
4
u
2
u
4

S
7
ι 2
m

4
n
3
n
4
p
1
u
1
u
3
u
4
S
7
ι 3
m

4
n
4
n
5
n
6
p
2
u
2

u
4
u
5
u
6

S
6
b
1
b
2
b
3
ι 4
m

1
m

2
m

3

n
1
n
2
n
3
p
5
tu

1
u
2
u
3

u
5
w

1
w

2
w

3

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
3

S
7
a
ι 1
n
2
n
4
u
2
u
4

S
7
ι 2
n
3
n
4
p
1
u
1
u
3
u
4

S
7
ι 3
n
4
n
5
n
6
p
2
u
2
u
4

u
5
u
6

S
7
ι 4
n
1
n
2
n
3
p
5
u
1
u
2

u
3
u
5

S
7
ι 5
n
4
n
6
p
3
tu

3
u
4
u
6
x
4
S
7
ι 6
n
3
p
5
u
3
u
5

2
4

S
7
a
ι 1
n
2
n
4
u
2
u
4

S
7
ι 2
n
3
n
4
p
1
u
1
u
3
u
4

S
7
ι 3
n
4
n
5
n
6
p
2
tu

2

u
4
u
5
u
6
x
5

S
7
ι 4
n
1
n
2
n
3
p
5
u
1
u
2

u
3
u
5

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
5

S
7
a
ι 1
n
2
n
4
u
2
u
4

S
7
ι 2
n
3
n
4
p
1
tu

1
u
3
u
4
x
3
S
7
ι 3
n
4
n
5
n
6
p
2
u
2
u
4

u
5
u
6

S
7
ι 4
n
1
n
2
n
3
p
5
u
1
u
2

u
3
u
5

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
6

S
7
a
ι 1
n
2
n
4
tu

2
u
4
x
2

S
7
ι 2
n
3
n
4
p
1
u
1
u
3
u
4

S
7
ι 3
n
4
n
5
n
6
p
2
u
2
u
4

u
5
u
6

S
7
ι 4
n
1
n
2
n
3
p
5
u
1
u
2

u
3
u
5

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

2
7

S
7
a
ι 1
n
2
n
4
u
2
u
4

S
7
ι 2
n
3
n
4
p
1
u
1
u
3
u
4

S
7
ι 3
n
4
n
5
n
6
p
2
u
2
u
4

u
5
u
6

S
7
ι 4
n
1
n
2
n
3
p
5
u
1
u
2

u
3
u
5

S
7
ι 5
n
4
n
6
p
3
u
3
u
4
u
6

S
7
ι 6
n
3
p
5
u
3
u
5

Simulating Spiking Neural P Systems Without
Delays Using GPUs

Francis Cabarle1, Henry Adorna1, Miguel A. Mart́ınez–del–Amor2

1 Algorithms & Complexity Lab
Department of Computer Science
University of the Philippines Diliman
Diliman 1101 Quezon City, Philippines
E-mail: fccabarle@up.edu.ph, hnadorna@dcs.upd.edu.ph

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Seville
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
E-mail: mdelamor@us.es

Summary. We present in this paper our work regarding simulating a type of P sys-
tem known as a spiking neural P system (SNP system) using graphics processing units
(GPUs). GPUs, because of their architectural optimization for parallel computations,
are well-suited for highly parallelizable problems. Due to the advent of general purpose
GPU computing in recent years, GPUs are not limited to graphics and video processing
alone, but include computationally intensive scientific and mathematical applications as
well. Moreover P systems, including SNP systems, are inherently and maximally parallel
computing models whose inspirations are taken from the functioning and dynamics of a
living cell. In particular, SNP systems try to give a modest but formal representation of
a special type of cell known as the neuron and their interactions with one another. The
nature of SNP systems allowed their representation as matrices, which is a crucial step
in simulating them on highly parallel devices such as GPUs. The highly parallel nature
of SNP systems necessitate the use of hardware intended for parallel computations. The
simulation algorithms, design considerations, and implementation are presented. Finally,
simulation results, observations, and analyses using an SNP system that generates all
numbers in N - {1} are discussed, as well as recommendations for future work.

Key words: Membrane computing, Parallel computing, GPU computing

1 Introduction

1.1 Parallel computing: Via graphics processing units (GPUs)

The trend for massively parallel computation is moving from the more common
multi-core CPUs towards GPUs for several significant reasons [13, 14]. One impor-

24 F. Cabarle, H. Adorna, M. Mart́ınez–del–Amor

tant reason for such a trend in recent years include the low consumption in terms
of power of GPUs compared to setting up machines and infrastructure which will
utilize multiple CPUs in order to obtain the same level of parallelization and per-
formance [15]. Another more important reason is that GPUs are architectured
for massively parallel computations since unlike most general purpose multicore
CPUs, a large part of the architecture of GPUs are devoted to parallel execu-
tion of arithmetic operations, and not on control and caching just like in CPUs
[13, 14]. Arithmetic operations are at the heart of many basic operations as well
as scientific computations, and these are performed with larger speedups when
done in parallel as compared to performing them sequentially. In order to per-
form these arithmetic operations on the GPU, there is a set of techniques called
GPGPU (General Purpose computations on the GPU) coined by Mark Harris in
2002 which allows programmers to do computations on GPUs and not be limited
to just graphics and video processing alone [1].

1.2 Parallel computing: Via Membranes

Membrane computing or its more specific counterpart, a P system, is a Turing
complete computing model (for several P system variants) that perform computa-
tions nondeterministically, exhausting all possible computations at any given time.
This type of unconventional model of computation was introduced by Gheorghe
Păun in 1998 and takes inspiration and abstraction, similar to other members
of Natural computing (e.g. DNA/molecular computing, neural networks, quantum
computing), from nature [6, 7]. Specifically, P systems try to mimic the consti-
tution and dynamics of the living cell: the multitude of elements inside it, and
their interactions within themselves and their environment, or outside the cell’s
skin (the cell’s outermost membrane). Before proceeding, it is important to clarify
what is meant when it is said that nature computes, particularly life or the cell:
computation in this case involves reading information from memory from past or
present stimuli, rewrite and retrieve this data as a stimuli from the environment,
process the gathered data and act accordingly due to this processing [2]. Thus, we
try to extend the classical meaning of computation presented by Allan Turing.

SN P systems differ from other types of P systems precisely because they
are mono−membranar and the working alphabet contains only one object type.
These characteristics, among others, are meant to capture the workings of a special
type of cell known as the neuron. Neurons, such as those in the human brain,
communicate or ’compute’ by sending indistinct signals more commonly known
as action potential or spikes [3]. Information is then communicated and encoded
not by the spikes themselves, since the spikes are unrecognizable from one another,
but by (a) the time elapsed between spikes, as well as (b) the number of spikes
sent/received from one neuron to another, oftentimes under a certain time interval
[3].

It has been shown that SN P systems, given their nature, are representable by
matrices [4, 5]. This representation allows design and implementation of an SN P
system simulator using parallel devices such as GPUs.

Simulating Spiking Neural P Systems Without Delays Using GPUs 25

1.3 Simulating SNP systems in GPUs

Since the time P systems were presented, many simulators and software applica-
tions have been produced [10]. In terms of High Performance Computing, many
P system simulators have been also designed for clusters of computers [11], for
reconfigurable hardware as in FPGAs [12], and even for GPUs [9, 8]. All of these
efforts have shown that parallel architectures are well-suited in performance to
simulate P systems. However, these previous works on hardware are designed to
simulate cell-like P system variants, which are among the first P system variants
to have been introduced. Thus, the efficient simulation of SNP systems is a new
challenge that requires novel attempts.

A matrix representation of SN P systems is quite intuitive and natural due
to their graph-like configurations and properties (as will be further shown in the
succeeding sections such as in subsection 2.1).

On the other hand, linear algebra operations have been efficiently implemented
on parallel platforms and devices in the past years. For instance, there is a large
number of algorithms implementing matrix−matrix and vector −matrix oper-
ations on the GPU. These algorithms offer huge performance since dense linear
algebra readily maps to the data-parallel architecture of GPUs [16, 17].

It would thus seem then that a matrix represented SN P system simulator
implementation on highly parallel computing devices such as GPUs be a natural
confluence of the earlier points made. The matrix representation of SN P systems
bridges the gap between the theoretical yet still computationally powerful SN
P systems and the applicative and more tangible GPUs, via an SN P system
simulator.

The design and implementation of the simulator, including the algorithms
deviced, architectural considerations, are then implemented using CUDA. The
Compute Unified Device Architecture (CUDA) programming model, launched by
NVIDIA in mid-2007, is a hardware and software architecture for issuing and man-
aging computations on their most recent GPU families (G80 family onward), mak-
ing the GPU operate as a highly parallel computing device [15]. CUDA program-
ming model extends the widely known ANSI C programming language (among
other languages which can interface with CUDA), allowing programmers to easily
design the code to be executed on the GPU, avoiding the use of low-level graph-
ical primitives. CUDA also provides other benefits for the programmer such as
abstracted and automated scaling of the parallel executed code.

This paper starts out by introducing and defining the type of SNP system
that will be simulated. Afterwards the NVIDIA CUDA model and architecture
are discussed, baring the scalability and parallelization CUDA offers. Next, the
design of the simulator, constraints and considerations, as well as the details of
the algorithms used to realize the SNP system are discussed. The simulation results
are presented next, as well as observations and analysis of these results. The paper
ends by providing the conclusions and future work.

The objective of this work is to continue the creation of P system simulators ,
in this particular case an SN P system, using highly parallel devices such as GPUs.

26 F. Cabarle, H. Adorna, M. Mart́ınez–del–Amor

Fidelity to the computing model (the type of SNP system in this paper) is a part
of this objective.

2 Spiking neural p systems

2.1 Computing with SN P systems

The type of SNP systems focused on by this paper (scope) are those without delays
i.e. those that spike or transmit signals the moment they are able to do so [4, 5].
Variants which allow for delays before a neuron produces a spike, are also available
[3]. An SNP system without delay is of the form:

Definition 1.
Π = (O, σ1, . . . , σm, syn, in, out),

where:

1. O = {a} is the alphabet made up of only one object, the system spike a.
2. σ1, . . . , σm are m number of neurons of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 gives the initial number of as i.e. spikes contained in neuron σi
b) Ri is a finite set of rules of with two forms:
(b-1) E/ac → ap, are known as Spiking rules, where E is a regular expression

over a, and c ≥ 1, such that p ≥ 1 number of spikes are produced,
one for each adjacent neuron with σi as the originating neuron and
ac ∈ L(E).

(b-2) as → λ, are known as Forgetting rules, for s ≥ 1, such that for each
rule E/ac → a of type (b-1) from Ri, a

s /∈ L(E).
(b-3) ak → a, a special case of (b-1) where E = ac, k ≥ c.

3. syn = {(i, j) | 1 ≤ i, j ≤ m, i 6= j } are the synapses i.e. connection between
neurons.

4. in, out ∈ {1, 2, . . . ,m} are the input and output neurons, respectively.

Furthermore, rules of type (b-1) are applied if σi contains k spikes, ak ∈ L(E)
and k ≥ c. Using this type of rule uses up or consumes k spikes from the neuron,
producing a spike to each of the neurons connected to it via a forward pointing
arrow i.e. away from the neuron. In this manner, for rules of type (b-2) if σi
contains s spikes, then s spikes are forgotten or removed once the rule is used.

The non-determinism of SN P systems comes with the fact that more than
one rule of the several types are applicable at a given time, given enough spikes.
The rule to be used is chosen non-deterministically in the neuron. However, only
one rule can be applied or used at a given time [3, 4, 5]. The neurons in an SN
P system operate in parallel and in unison, under a global clock [3]. For Figure 1

Simulating Spiking Neural P Systems Without Delays Using GPUs 27

no input neuron is present, but neuron 3 is the output neuron, hence the arrow
pointing towards the environment, outside the SNP system.

The SN P system in Figure 1 is Π, a 3 neuron system whose neurons are labeled
(neuron 1/σ1 to neuron 3/σ3) and whose rules have a total system ordering from
(1) to (5). Neuron 1/σ1 can be seen to have an initial number of spikes equal to
2 (hence the a2 seen inside it). There is no input neuron, but σ3 is the output
neuron, as seen by the arrow pointing towards the environment (not to another
neuron). More formally, Π can be represented as follows:

Π = ({a}, σ1, σ2, σ3, syn, out) where σ1 = (2, R1), n1 = 2, R1 = {a2/a →
a}, (neurons 2 to 3 and their nis and Ris can be similarly shown), syn =
{(1, 2), (1, 3), (2, 1), (2, 3)} are the synapses for Π, out = σ3. This SN P system
generates all numbers in the set N - {1}, hence it doesn’t halt, which can be eas-
ily verified by applying the rules in Π, and checking the spikes produced by the
output neuron σ3. This generated set is the result of the computation in Π.

Fig. 1. An SNP P system Π, generating all numbers in N - {1}, from [5].

2.2 Matrix representation of SNP systems

A matrix representation of an SN P system makes use of the following vectors and
matrix definitions [4, 5] . It is important to note that, just as in Figure 1, a total
ordering of rules is considered.

Configuration vector Ck is the vector containing all spikes in every neuron on
the kth computation step/time, where C0 is the initial vector containing all spikes
in the system at the beginning of the computation. For Π (in Figure 1) the initial
configuration vector is C0 =< 2, 1, 1 >.

Spiking vector shows at a given configuration Ck, if a rule is applicable (has
value 1) or not (has value 0 instead). For Π we have the spiking vector Sk =<
1, 0, 1, 1, 0 > given C0. Note that a 2nd spiking vector, Sk =< 0, 1, 1, 1, 0 >, is
possible if we use rule (2) over rule (1) instead (but not both at the same time,
hence we cannot have a vector equal to < 1, 1, 1, 1, 0 >, so this Sk is invalid).
V alidity in this case means that only one among several applicable rules is used
and thus represented in the spiking vector. We can have all the possible vectors

28 F. Cabarle, H. Adorna, M. Mart́ınez–del–Amor

composed of 0s and 1s with length equal to the number of rules, but have only
some of them be valid, given by Ψ later at subsection 4.2.

Spiking transition matrix MΠ is a matrix comprised of aij elements where aij
is given as

Definition 2.

aij =


−c, rule ri is in σj and is applied consuming c spikes;
p, rule ri is in σs (s 6= j and (s, j) ∈ syn)

and is applied producing p spikes in total;
0, rule ri is in σs (s 6= j and (s, j) /∈ syn).

For Π, the MΠ is as follows:

MΠ =


−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

 (1)

In such a scheme, rows represent rules and columns represent neurons.
Finally, the following equation provides the configuration vector at the (k+1)th

step, given the configuration vector and spiking vector at the kth step, and MΠ :

Ck+1 = Ck + Sk ·MΠ . (2)

3 The NVIDIA CUDA architecture

NVIDIA, a well known manufacturer of GPUs, released in 2007 the CUDA pro-
gramming model and architecture [15]. Using extensions of the widely known C
language, a programmer can write parallel code which will then execute in multi-
ple threads within multiple thread blocks, each contained within a grid of (thread)
blocks. These grids belong to a single device i.e. a single GPU. Each device/ GPU
has multiple cores, each capable of running its own block of threads The program
run in the CUDA model scales up or down, depending on the number of cores
the programmer currently has in a device. This scaling is done in a manner that
is abstracted from the user, and is efficiently handled by the architecture as well.
Automatic and efficient scaling is shown in Figure 2. Parallelized code will run
faster with more cores than with fewer ones [14].

Figure 3 shows another important feature of the CUDA model: the host and
the device parts. The host controls the execution flow while the device is a highly-
parallel co-processor. Device pertains to the GPU/s of the system, while the host
pertains to the CPU/s. A function known as a kernel function, is a function called
from the host but executed in the device.

A general model for creating a CUDA enabled program is shown in Listing 1.

Simulating Spiking Neural P Systems Without Delays Using GPUs 29

Fig. 2. NVIDIA CUDA automatic scaling, hence more cores result to faster execution,
from [14].

Fig. 3. NVIDIA CUDA programming model showing the sequential execution of the
host code alongside the parallel execution of the kernel function on the device side, from
[9].

30 F. Cabarle, H. Adorna, M. Mart́ınez–del–Amor

Listing 1. General code flow for CUDA programming written in the CUDA extended C
language

1 // a l l o c a t e memory on GPU e . g .
2 cudaMalloc ((void ∗∗)&dev a , N ∗ s i z e o f (i n t)
3

4 // populate ar rays
5 . . .
6

7 // copy ar rays from host to dev i ce e . g .
8 cudaMemcpy(dev a , a , N ∗ s i z e o f (i n t) ,
9 cudaMemcpyHostToDevice)

10

11 // c a l l k e rne l (GPU) func t i on e . g .
12 add<<<N, 1>>>(dev a , dev b , dev c) ;
13

14 // copy ar rays from dev i ce to host e . g .
15 cudaMemcpy(c , dev c , N ∗ s i z e o f (i n t) ,
16 cudaMemcpyDeviceToHost)
17

18 // d i s p l a y r e s u l t s
19

20 // f r e e memory e . g .
21 cudaFree (dev a) ;

Lines 2 and 21, implement CUDA versions of the standard C language functions
e.g. the standard C function malloc has the CUDA C function counterpart being
cudaMalloc, and the standard C function free has cudaFree as its CUDA C
counterpart.

Lines 8 and 15 show a CUDA C specific function, namely cudaMemcpy, which,
given an input of pointers (from Listing 1 host code pointers are single letter vari-
ables such as a and c,while device code variable counterparts are prefixed by dev
such as dev a and dev c) and the size to copy (as computed by the sizeof func-
tion), moves data from host to device (parameter cudaMemcpyHostToDevice)
or device to host (parameter cudaMemcpyDeviceToHost).

A kernel function call uses the triple < and > operator, in this case the kernel
function

add <<< N, 1 >>>(dev a, dev b, dev c).
This function adds the values, per element (and each element is associated to

1 thread), of the variables dev a and dev b sent to the device, collected in variable
dev c before being sent back to the host/CPU. The variable N in this case allows
the programmer to specify N number of threads which will execute the add kernel
function in parallel, with 1 specifying only one block of thread for all N threads.

Simulating Spiking Neural P Systems Without Delays Using GPUs 31

3.1 Design considerations for the hardware and software setup

Since the kernel function is executed in parallel in the device, the function needs
to have its inputs initially moved from the CPU/host to the device, and then back
from the device to the host after computation for the results. This movement
of data back and forth should be minimized in order to obtain more efficient, in
terms of time, execution. Implementing an equation such as (2), which involves
multiplication and addition between vectors and a matrix, can be done in parallel
with the previous considerations in mind. In this case, Ck, Sk, and MΠ are loaded,
manipulated, and pre-processed within the host code, before being sent to the
kernel function which will perform computations on these function arguments in
parallel. To represent Ck, Sk, and MΠ , text files are created to house each input,
whereby each element of the vector or matrix is entered in the file in order, from
left to right, with a blank space in between as a delimiter. The matrix however is
entered in row-major (a linear array of all the elements, rows first, then columns)
order format i.e. for the matrix MΠ seen in (1), the row-major order version is
simply

−1, 1, 1,−2, 1, 1, 1,−1, 1, 0, 0,−1, 0, 0,−2 (3)

Row major ordering is a well-known ordering and representation of matrices for
their linear as well as parallel manipulation in corresponding algorithms [13]. Once
all computations are done for the (k + 1)th configuration, the result of equation
(2) are then collected and moved from the device back to the host, where they can
once again be operated on by the host/CPU. It is also important to note that these
operations in the host/CPU provide logic and control of the data/inputs, while
the device/GPU provides the arithmetic or computational ’muscle’, the laborious
task of working on multiple data at a given time in parallel, hence the current
dichotomy of the CUDA programming model [9]. The GPU acts as a co-processor
of the central processor. This division of labor is observed in Listing 1 .

3.2 Matrix computations and CPU-GPU interactions

Once all 3 initial and necessary inputs are loaded, as is to be expected from equa-
tion 2, the device is first instructed to perform multiplication between the spiking
vector Sk and the matrix MΠ . To further simplify computations at this point,
the vectors are treated and automatically formatted by the host code to appear
as single row matrices, since vectors can be considered as such. Multiplication is
done per element (one element is in one thread of the device/GPU), and then the
products are collected and summed to produce a single element of the resulting
vector/single row matrix.

Once multiplication of the Sk and MΠ is done, the result is added to the
Ck, once again element per element, with each element belonging to one thread,
executed at the same time as the others.

For this simulator, the host code consists largely of the programming language
Python, a well-known high- level, object oriented programming (OOP) language.

32 F. Cabarle, H. Adorna, M. Mart́ınez–del–Amor

The reason for using a high-level language such as Python is because the initial
inputs, as well as succeeding ones resulting from exhaustively applying the rules
and equation (2) require manipulation of the vector/matrix elements or values as
strings. The strings are then concatenated, checked on (if they conform to the
form (b-3) for example) by the host, as well as manipulated in ways which will
be elaborated in the following sections along with the discussion of the algorithm
for producing all possible and valid Sks and Cks given initial conditions. The host
code/Python part thus implements the logic and control as mentioned earlier,
while in it, the device/GPU code which is written in C executes the parallel parts
of the simulator for CUDA to be utilized.

4 Simulator design and implementation

The current SNP simulator, which is based on the type of SNP systems without
time delays, is capable of implementing rules of the form (b-3) i.e. whenever the
regular expression E is equivalent to the regular expression ak in that rule. Rules
are entered in the same manner as the earlier mentioned vectors and matrix, as
blank space delimited values (from one rule to the other, belonging to the same
neuron) and $ delimited (from one neuron to the other). Thus for the SNP system
Π shown earlier, the file r containing the blank space and $ delimited values is as
follows:

2 2 $ 1 $ 1 2 (4)

That is, rule (1) from Figure 1 has the value 2 in the file r (though rule (1)
isn’t of the form (b-3) it nevertheless consumes a spike since its regular expression
is of the same regular expression type as the rest of the rules of Π). Another
implementation consideration was the use of lists in Python, since unlike dic-
tionaries or tuples, lists in Python are mutable, which is a direct requirement of
the vector/matrix element manipulation to be performed later on (concatenation
mostly). Hence a Ck =< 2, 1, 1 > is represented as [2, 1, 1] in Python. That is, at
the kth configuration of the system, the number of spikes of neuron 1 are given
by accessing the index (starting at zero) of the configuration vector Python list
variable confV ec, in this case if

confV ec = [2, 1, 1] (5)

then confV ec[0] = 2 gives the number of spikes available at that time for
neuron 1, confV ec[1] = 1 for neuron 2, and so on. The file r, which contains the
ordered list of neurons and the rules that comprise each of them, is represented as
a list of sub- lists in the Python/host code. For SNP system Π and from (4) we
have the following:

r = [[2, 2], [1], [1, 2]] (6)

Neuron 1’s rules are given by accessing the sub-lists of r (again, starting at
index zero) i.e. rule (1) is given by r[0][0] = 2 and rule (4) is given by r[2][1] = 1.
Finally, we have the input file M , which holds the Python list version of (3).

Simulating Spiking Neural P Systems Without Delays Using GPUs 33

4.1 Simulation algorithm implementation

The general algorithm is shown in Algorithm 1. Each line in Algorithm 1 mentions
which part/s the simulator code runs in, either in the device (DEVICE) or in
the host (HOST) part. Step IV of Algorithm 1 makes the algorithm stop with 2
stopping criteria to do this:

One is when there are no more available spikes in the system (hence a zero
value for a configuration vector), and the second one being the fact that all pre-
viously generated configuration vectors have been produced in an earlier time or
computation, hence using them again in part I of Algorithm 1 would be pointless,
since a redundant, infinite loop will only be formed.

Algorithm 1 Overview of the algorithm for the SNP system simulator

Require: Input files: confV ec, M, r.
I. (HOST) Load input files. Note that M and r need only be loaded once since they
are unchanging, C0 is loaded once, and then Cks are loaded afterwards.
II. (HOST) Determine if a rule/element in r is applicable based on its corresponding
spike value in confV ec, and then generate all valid and possible spiking vectors in a
list of lists spikV ec given the 3 initial inputs.
III. (DEVICE) From part II., run the kernel function on spikV ec, which contains all
the valid and possible spiking vectors for the current confV ec and r. This will generate
the succeeding Cks and their corresponding Sks.
IV. (HOST+DEVICE) Repeat steps I to IV (except instead of loading C0 as
confV ec, use the generated Cks in III) until a zero configuration vector (vector with
only zeros as elements) or further Cks produced are repetitions of a Ck produced at
an earlier time. (Stopping criteria in subsection 4.1)

Another important point to notice is that either of the stopping criterion from
4.1 could allow for a deeply nested computation tree, one that can continue exe-
cuting for a significantly lengthy amount of time even with a multi-core CPU and
even the more parallelized GPU.

4.2 Closer inspection of the SN P system simulator

The more detailed algorithm for part II of Algorithm 1 is as follows.
Recall from the definition of an SNP system (Definitin 1) that we have m

number of σs. We related m to our implementation by noticing the cardinality of
the Python list r.

|r| = m (7)

Ψ = |σV1 ||σV2 |...|σVm | (8)

where

34 F. Cabarle, H. Adorna, M. Mart́ınez–del–Amor

|σVm
|

means the total number of rules in the mth neuron which satisfy the regular
expresion E in (b-3). m gives the total number of neurons, while Ψ gives the
expected number of valid and possible Sks which should be produced in a given
configuration. We also define ω as both the largest and last integer value in the sub-
list (neuron) created in step II of Algorithm 1 and further detailed in Algorithm
2, which tells us how many elements of that neuron satisfy E.

During the exposition of the algorithm, the previous Python lists (from their
vector/matrix counterparts in earlier sections) (5) and (6) will be utilized. For part
II Algorithm 1 we have a sub-algorithm (Algorithm 2) for generating all valid and
possible spiking vectors given input files M , confV ec, and r.

Algorithm 2 Algorithm further detailing part II in Algorithm 1

II-1. Create a list tmp, a copy of r, marking each element of tmp in increasing order of
N, as long as the element/s satisfy the rule’s regular expression E of a rule (given by
list r). Elements that don’t satisfy E are marked with 0.

II-2. To generate all possible and valid spiking vectors from tmp, we go through each neu-
ron i.e. all elements of tmp, since we know a priori m as well as the number of elements
per neuron which satisfy E. We only need to iterate through each neuron/element of
tmp, ω times. (from II-1). We then produce a new list, tmp2, which is made up of
a sub-list of strings from all possible and valid {1,0} strings i.e. spiking vectors per
neuron.

II-3. To obtain all possible and valid {1,0} strings (Sks), given that there are multiple
strings to be concatenated (as in tmp2’s case), pairing up the neurons first, in order,
and then exhaustively distributing every element of the first neuron to the elements of
the 2nd one in the pair. These paired-distributed strings will be stored in a new list,
tmp3.

Algorithm 2 ends once all {1,0} have been paired up to one another. As an
illustration of Algorithm 2, consider (5), (6), and (1) as inputs to our SNP system
simulator. The following details the production of all valid and possible spiking
vectors using Algorithm 2.

Initially from II-1 of Algorithm 2, we have
r = tmp = [[2, 2], [1], [1, 2]].
Proceeding to illustrate II-2 we have the following passes.
1st pass: tmp = [[1, 2], [1], [1, 2]]

Remark/s: previously, tmp[0][0] was equal to 2, but now has been changed to 1,
since it satisfies E (configV ec[0] = 2 w/c is equal to 2, the number of spikes
consumed by that rule).Σ

2nd pass: tmp = [[1, 2], [1], [1, 2]]
Remark/s: previously tmp[0][1] = 2, which has now been changed (incidentally)
to 2 as well, since it’s the 2nd element of σ1 which satisfies E.

3rd pass: tmp = [[1, 2], [1], [1, 2]]
Remark/s: 1st (and only) element of neuron 2 which satisfies E.

Simulating Spiking Neural P Systems Without Delays Using GPUs 35

4th pass: tmp = [[1, 2], [1], [1, 2]]
Remark/s: Same as the 1st pass

5th pass: tmp = [[1, 2], [1], [1, 0]]
Remark/s: element tmp[2][1], or the 2nd element/rule of neuron 3 doesn’t satisfy
E.

Final result: tmp = [[1, 2], [1], [1, 0]]
At this point we have the following, based on the earlier definitions:
m = 3 (3 neurons in total, one per element/value of confV ec)
Ψ = |σV1

||σV2
||σV3

| = 2 ∗ 1 ∗ 1 = 2
Ψ tells us the number of valid strings of 1 s and 0 s i.e. Sks, which need to be

produced later, for a given Ck which in this case is confvec. There are only 2 valid
Sks/spiking vectors from (5) and the rules given in (6) encoded in the Python list
r. These Sks are

< 0, 1, 1, 1, 0 > (9)

< 1, 0, 1, 1, 0 > (10)

In order to produce all Sks in an algorithmic way as is done in Algorithm 2 , it’s
important to notice that first, all possible and valid Sks (made up of 1 s and 0 s)
per σ have to be produced first, which is facilitated by II-1 of Algorithm 2 and its
output (the current value of the list tmp).

Continuing the illustration of II-1, and illustrating II-2 this time, we iterate
over neuron 1 twice, since its ω = 2, i.e. neuron 1 has only 2 elements which
satisfy E, and consequently, it is its 2nd element,

tmp[0][1] = 2.
For neuron 1, our first pass along its elements/list is as follows. Its 1st element,
tmp[0][0] = 1
is the first element to satisfy E, hence it requires a 1 in its place, and 0 in the

others. We therefore produce the string ’10 ’ for it. Next, the 2nd element satisfies
E and it too, deserves a 1, while the rest get 0 s. We produce the string ’01 ’ for it.

The new list, tmp2, collecting the strings produced for neuron 1 therefore
becomes

tmp2 = [[10, 01]]
Following these procedures, for neuron 2 we get tmp2 to be as follows:
tmp2 = [[10, 01], [1]]
Since neuron 2 which has only one element only has 1 possible and valid string,

the string 1. Finally, for neuron 3, we get tmp2 to be
tmp2 = [[10, 01], [1], [10]]
In neuron 3, we iterated over it only once because ω, the number of elements

it has which satisfy E, is equal to 1 only. Observe that the sublist
tmp2[0] = [10, 01]
is equal to all possible and valid {1,0} strings for neuron 1, given rules in (6)

and the number of spikes in configV ec.
Illustrating II-3 of Algorithm 2, given the valid and possible {1,0} strings

(spiking vectors) for neurons 1, 2, and 3 (separated per neuron-column) from (5)

36 F. Cabarle, H. Adorna, M. Mart́ınez–del–Amor

and (6) and from the illustration of II-2, all possible and valid list of {1,0} string/s
for neuron 1: [’10’,’01’], neuron 2: [’1’], and neuron 3: [’10’].

First, pair the strings of neurons 1 and 2, and then distribute them exhaustively
to the other neuron’s possible and valid strings, concatenating them in the process
(since they are considered as strings in Python).

’10’ + ’1’ → ’101’
’01’

and
’10’
’01’ + ’1’ → ’011’
now we have to create a new list from tmp2, which will house the concatenations

we’ll be doing. In this case,
tmp3 = [101, 011]
next, we pair up tmp3 and the possible and valid strings of neuron 3
’101’ + ’10’ → ’10110’
’011’

and
’101’
’011’ + ’10’ → ’01110’
eventually turning tmp3 into
tmp3 = [10110, 01110]
The final output of the sub-algorithm for the generation of all valid and possible

spiking vectors is a list,
tmp3 = [10110, 01110]
As mentioned earlier, Ψ = 2 is the number of valid and possible Sks to be

expected from r, MΠ , and C0 = [2,1,1] in Π. Thus tmp3 is the list of all possible
and valid spiking vectors given (5) and (6) in this illustration. Furthermore, tmp3
includes all possible and valid spiking vectors for a given neuron in a given con-
figuration of an SN P system with all its rules and synapses (interconnections).
Part II-3 is done (m − 1) times, albeit exhaustively still so, between the two
lists/neurons in the pair.

5 Simulation results, observations, and analyses

The SNP system simulator (combination of Python and CUDA C) implements the
algorithms in section 4 earlier. A sample simulation run with the SNP system Π
is shown below (most of the output has been truncated due to space constraints)
with C0 = [2,1,1]

****SN P system simulation run STARTS here****

Spiking transition Matrix:

...

Rules of the form a^n/a^m -> a or a^n ->a loaded:

Simulating Spiking Neural P Systems Without Delays Using GPUs 37

[’2’, ’2’, ’$’, ’1’, ’$’, ’1’, ’2’]

Initial configuration vector: 211

Number of neurons for the SN P system is 3

Neuron 1 rules criterion/criteria and total order

...

tmpList = [[’10’, ’01’], [’1’], [’10’]]

All valid spiking vectors: allValidSpikVec =

[[’10110’, ’01110’]]

All generated Cks are allGenCk =

[’2-1-1’, ’2-1-2’, ’1-1-2’]

End of C0

**

**

**

initial total Ck list is

[’2-1-1’, ’2-1-2’, ’1-1-2’]

Current confVec: 212

All generated Cks are allGenCk =

[’2-1-1’, ’2-1-2’, ’1-1-2’, ’2-1-3’, ’1-1-3’]

**

**

**

Current confVec: 112

All generated Cks are allGenCk =

[’2-1-1’, ’2-1-2’, ’1-1-2’, ’2-1-3’, ’1-1-3’,

’2-0-2’, ’2-0-1’]

**

**

...

Current confVec: 109

All generated Cks are allGenCk = [’2-1-1’, ’2-1-2’,

...

’1-0-7’, ’0-1-9’, ’1-0-8’, ’1-0-9’]

**

**

**

No more Cks to use (infinite loop/s otherwise). Stop.

****SN P system simulation run ENDS here****

38 F. Cabarle, H. Adorna, M. Mart́ınez–del–Amor

That is, the computation tree for SNP system Π with C0 = [2,1,1] went down
as deep as confV ec = 109. At that point, all configuration vectors for all possible
and valid spiking vectors have been produced. The Python list variable allGenCk
collects all the Cks produced. In Algorithm 2 all the values of tmp3 are added to
allGenCk. The final value of allGenCk for the above simulation run is

allGenCk = [’2-1-1’, ’2-1-2’, ’1-1-2’, ’2-1-3’, ’1-1-3’, ’2-0-2’, ’2-0-1’, ’2-1-4’, ’1-1-
4’, ’2-0-3’, ’1-1-1’, ’0-1-2’, ’0-1-1’, ’2-1-5’, ’1-1-5’, ’2-0-4’, ’0-1-3’, ’1-0-2’, ’1-0-1’,
’2-1-6’, ’1-1-6’, ’2-0-5’, ’0-1-4’, ’1-0-3’, ’1-0-0’, ’2-1-7’, ’1-1-7’, ’2-0-6’, ’0-1-5’,
’1-0-4’, ’2-1-8’, ’1-1-8’, ’2-0-7’, ’0-1-6’, ’1-0-5’, ’2-1-9’, ’1-1-9’, ’2-0-8’, ’0-1-7’,
’1-0-6’, ’2-1-10’, ’1-1-10’, ’2-0-9’, ’0-1-8’, ’1-0-7’, ’0-1-9’, ’1-0-8’, ’1-0-9’]

It’s also noteworthy that the simulation for Π didn’t stop at the 1st stopping
criteria (arriving at a zero vector i.e. Ck = [0,0,0]) since Π generates all natural
counting numbers greater than 1, hence a loop (an infinite one) is to be expected.
The simulation run shown above stopped with the 2nd stopping criteria from Sec-
tion 4. Thus the simulation was able to exhaust all possible configuration vectors
and their spiking vectors, stopping only since a repetition of an earlier generated
confV ec/Ck would introduce a loop (triggering the 2nd stopping criteria in sub-
section 4.1). Graphically (though not shown exhaustively) the computation tree
for Π is shown in Figure 4.

The confV ecs followed by (...) are the confV ecs that went deeper i.e. produced
more Cks than Figure 4 has shown.

6 Conclusions and future work

Using a highly parallel computing device such as a GPU, and the NVIDIA CUDA
programming model, an SNP system simulator was successfully designed and im-
plemented as per the objective of this work. The simulator was shown to model
the workings of an SN P system without delay using the system’s matrix rep-
resentation. The use of a high level programming language such as Python for
host tasks, mainly for logic and string representation and manipulation of values
(vector/matrix elements) has provided the necessary expressivity to implement
the algorithms created to produce and exhaust all possible and valid configuration
and spiking vectors. For the device tasks, CUDA allowed the manipulation of the
NVIDIA CUDA enabled GPU which took care of repetitive and highly parallel
computations (vector-matrix addition and multiplication essentially).

Future versions of the SNP system simulator will focus on several improve-
ments. These improvements include the use of an optimized algorithm for matrix
computations on the GPU without requiring the input matrix to be transformed
into a square matrix (this is currently handled by the simulator by padding ze-
ros to an otherwise non-square matrix input). Another improvement would be
the simulation of systems not of the form (b-3). Byte-compiling the Python/host

Simulating Spiking Neural P Systems Without Delays Using GPUs 39

Fig. 4. The computation tree graphically representing the output of the simulator run
over Π with C0 = [2, 1, 1]

part of the code to improve performance as well as metrics to further enhance
and measure execution time are desirable as well. Finally, deeper understanding
of the CUDA architecture, such as inter- thread/block communication, for very
large systems with equally large matrices, is required. These improvements as well
as the current version of the simulator should also be run in a machine or setup
with higher versions of GPUs supporting NVIDIA CUDA.

7 Acknowledgments

Francis Cabarle is supported by the DOST-ERDT scholarship program. Henry
Adorna is funded by the DOST-ERDT research grant and the Alexan professo-
rial chair of the UP Diliman Department of Computer Science, University of the
Philippines Diliman. They would also like to acknowledge the Algorithms and

40 F. Cabarle, H. Adorna, M. Mart́ınez–del–Amor

Complexity laboratory for the use of Apple iMacs with NVIDIA CUDA enabled
GPUs for this work. Miguel A. Mart́ınez–del–Amor is supported by “Proyecto de
Excelencia con Investigador de Reconocida Vaĺıa” of the “Junta de Andalućıa”
under grant P08-TIC04200, and the support of the project TIN2009–13192 of the
“Ministerio de Educación y Ciencia” of Spain, both co-financed by FEDER funds.
Finally, they would also like to thank the valuable insights of Mr. Neil Ibo.

References

1. M. Harris, “Mapping computational concepts to GPUs”, ACM SIGGRAPH 2005
Courses, NY, USA, 2005.

2. M. Gross, “Molecular computation”, Chapter 2 of Non-Standard Computation, (T.
Gramss, S. Bornholdt, M. Gross, M. Mitchel, Th. Pellizzari, eds.), Wiley-VCH, Wein-
heim, 1998.

3. M. Ionescu, Gh. Păun, T. Yokomori, “Spiking Neural P Systems”, Journal Funda-
menta Informaticae , vol. 71, issue 2,3 pp. 279-308, Feb. 2006.

4. X. Zeng, H. Adorna, M. A. Mart́ınez-del-Amor, L. Pan, “When Matrices Meet
Brains”, Proceedings of the Eighth Brainstorming Week on Membrane Computing
, Sevilla, Spain, Feb. 2010.

5. X. Zeng, H. Adorna, M. A. Mart́ınez-del-Amor, L. Pan, M. Pérez-Jiménez, “Ma-
trix Representation of Spiking Neural P Systems”, 11th International Conference on
Membrane Computing , Jena, Germany, Aug. 2010.

6. Gh. Păun, G. Ciobanu, M. Pérez-Jiménez (Eds), “Applications of Membrane Com-
puting” , Natural Computing Series, Springer, 2006.

7. P systems resource website. (2011, Jan) [Online]. Available: www.ppage.psystems.eu.
8. J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor, I. Pérez-

Hurtado, M.J. Pérez-Jiménez, “Simulating a P system based efficient solution to
SAT by using GPUs”, Journal of Logic and Algebraic Programming, Vol 79, issue 6,
pp. 317-325, Apr. 2010.

9. J.M. Cecilia, J.M. Garćıa, G.D. Guerrero, M.A. Mart́ınez-del-Amor, I. Pérez-
Hurtado, M.J. Pérez-Jiménez, “Simulation of P systems with active membranes on
CUDA”, Briefings in Bioinformatics, Vol 11, issue 3, pp. 313-322, Mar. 2010.

10. D. Dı́az, C. Graciani, M.A. Gutiérrez, I. Pérez-Hurtado, M.J. Pérez-Jiménez. Soft-
ware for P systems. In Gh. Păun, G. Rozenberg, A. Salomaa (eds.) The Oxford
Handbook of Membrane Computing, Oxford University Press, Oxford (U.K.), Chap-
ter 17, pp. 437-454, 2009.

11. G. Ciobanu, G. Wenyuan. P Systems Running on a Cluster of Computers. Lecture
Notes in Computer Science, 2933, 123-139, 2004.

12. V. Nguyen, D. Kearney, G. Gioiosa. A Region-Oriented Hardware Implementation
for Membrane Computing Applications and Its Integration into Reconfig-P. Lecture
Notes in Computer Science, 5957, 385-409, 2010.

13. D. Kirk, W. Hwu, “Programming Massively Parallel Processors: A Hands On Ap-
proach” , 1st ed. MA, USA: Morgan Kaufmann, 2010.

14. NVIDIA corporation, “NVIDIA CUDA C programming guide” , version 3.0, CA,
USA: NVIDIA, 2010.

15. NVIDIA CUDA developers resources page: tools, presentations, whitepapers. (2010,
Jan) [Online]. Available: http://developer.nvidia.com/page/home.html

Simulating Spiking Neural P Systems Without Delays Using GPUs 41

16. V. Volkov, J. Demmel, “Benchmarking GPUs to tune dense linear algebra”, Proceed-
ings of the 2008 ACM/IEEE conference on Supercomputing, NJ, USA, 2008.

17. K. Fatahalian, J. Sugerman, P. Hanrahan, “Understanding the efficiency of GPU
algorithms for matrix-matrix multiplication”, In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware (HWWS ’04) , ACM,
NY, USA, pp. 133-137, 2004

Designing Tissue-like P Systems for Image
Segmentation on Parallel Architectures

Javier Carnero1, Daniel Dı́az-Pernil1, Miguel A. Gutiérrez-Naranjo2

1 Computational Algebraic Topology and Applied Mathematics Research Group
Department of Applied Mathematics I
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
javier@carnero.net, sbdani@us.es

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutier@us.es

Summary. Problems associated with the treatment of digital images have several in-
teresting features from a bio-inspired point of view. One of them is that they can be
suitable for parallel processing, since the same sequential algorithm is usually applied in
different regions of the image. In this paper we report a work-in-progress of a hardware
implementation in Field Programmable Gate Arrays (FPGAs) of a family of tissue-like
P systems which solves the segmentation problem in digital images.

1 Introduction

Membrane Computing is a computational paradigm inspired in the functioning of
living cells and tissues. One of its characteristic features is the use of parallelism as
a computation tool. In many of the models, the devices perform the computation
by applying parallelization in a double sense: on the one hand, several rules can be
applied simultaneously in each membrane; on the other hand, all the membranes
perform the computation at the same time.

In spite of recent efforts [15], it seems that in the next future there will not be
an implementation of P systems in vivo or in vitro. All the possible approaches to
the theoretical model lean on the current computer architectures.

In this line, many efforts have been made for obtaining a simulation of the
P system behavior with current computers [13, 16]. Most of these simulators are
thought for running on one-processor computers. These sequential machines only
perform one action per time unit and the parallelism of the membrane computing
devices is lost. This bottle-neck produces a serious discrepancy between the theo-

44 J. Carnero et al.

retical efficiency of the P systems and the realistic resources needed for performing
a computation.

In the last years, according with the development of new parallel architectures,
new attempts have been made for approaching the computation of P systems by
performing several actions in the same step. This does not mean a real implemen-
tation of the P system, but it can be considered as a new step toward a more
realistic simulation.

The first parallel and distributed simulators were presented in 2003. In [12],
a parallel implementation of transition P systems was presented. The program
was designed for a cluster of 64 dual processor nodes and it was implemented
and tested on a Linux cluster at the National University of Singapore. In [32],
a purely distributive simulator of P systems was presented. It was implemented
using Java’s Remote Methods Invocation to connect a number of computers that
interchange data. The class of P systems that the simulator can accept is a subset
of the NOP2(coo, tar) family of systems, which have the computational power of
Turing machines.

Also in 2003, Petreska and Teuscher [29] presented a parallel hardware im-
plementation of a special class of membrane systems. The implementation was
based on a universal membrane hardware component that allows efficiently run P
system on a reconfigurable hardware known as Field Programmable Gate Arrays
(FPGAs) [35]. Recently, a new research line has arisen due to a novel device ar-
chitecture called CUDATM , (Compute Unified Device Architecture) [39]. It is a
general purpose parallel computing architecture that allows the parallel compute
engine in NVIDIA Graphic Processor Units (GPUs) to solve many complex com-
putational problems in a more efficient way than on a CPU [5, 6, 7]. Following the
research line started in [29], Van Nguyen et al. have proposed the use hardware
implementation for membrane computing applications [22, 23, 24, 25] based on
reconfigurable computing technology called Reconfig-P.

In this paper, we also explore the possibilities of the Field Programmable Gate
Arrays (FPGAs) for building a hardware implementation of P systems. The P
system model chosen for the implementation has been tissue-like P systems and
as a case study we consider the segmentation problem in 2D images.

Segmentation in computer vision (see [31]), refers to the process of partitioning
a digital image into multiple segments (sets of pixels). The goal of segmentation
is to simplify and/or change the representation of an image into something that
is more meaningful and easier to analyze. Image segmentation is typically used to
locate objects and boundaries (lines, curves, etc.) in images. More precisely, image
segmentation is the process of assigning a label to every pixel in an image such
that pixels with the same label share certain visual characteristics. Technically,
the process consists on assigning a label to each pixel, in such way that pixels
with the same label form a meaningful region. There exist different techniques to
segment an image. Some techniques are clustering methods [1, 36], histogram-based
methods [34], Watershed transformation methods [33], image pyramids methods

Designing Tissue-like P Systems to Parallel Architectures 45

[18] or graph partitioning methods [37, 38]. Some of the practical applications of
image segmentation are medical imaging [36] or face recognition [17].

Segmentation in Digital Imagery has several features which make it suitable
for techniques inspired by nature. One of them is that it can be paralleled and
locally solved. Regardless how large is the picture, the segmentation process can
be performed in parallel in different local areas of it. Another interesting feature
is that the basic necessary information can be easily encoded by bio-inspired rep-
resentations.

In the literature, one can find several attempts for bridging problems from
Digital Imagery with Natural Computing as the works by K.G. Subramanian et
al. [8, 9] or the work by Chao and Nakayama where Natural Computing and Al-
gebraic Topology are linked by using Neural Networks [10] (extended Kohonen
mapping). In this paper, we will use an information encoding and techniques bor-
rowed from Membrane Computing. This paper is a new step in the research started
at [4], where the authors present an implementation of a membrane solution of a
segmentation problem using hardware programming. In this paper, we present a
different family of tissue-like P systems to solve the problem and report the hard-
ware implementation. In what follows we assume the reader is already familiar
with the basic notions and the terminology underlying P systems3.

The paper is organized as follows: firstly, we present our bio-inspired formal
framework. Next, we present a family of tissue-like P systems designed to obtain
an edge-based segmentation of a 2D digital image. Then, general considerations
about designing hardware P systems are studied, focusing on the segmentation
problem. The paper finishes with some conclusions and future work.

2 Formal Framework: Tissue-like P Systems

Tissue-like P systems were presented by Mart́ın–Vide et al. in [21]. They have
two biological inspirations (see [20]): intercellular communication and cooperation
between neurons. The common mathematical model of these two mechanisms is
a network of processors dealing with symbols and communicating these symbols
along channels specified in advance.

The main features of this model, from the computational point of view, are
that cells do not have polarization and the membrane structure is a general graph.

Formally, a tissue-like P system with input of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E , w1, . . . , wq,R, iΠ , oΠ),

where
1. Γ is a finite alphabet, whose symbols will be called objects;
2. Σ(⊂ Γ) is the input alphabet;

3 We refer to [26] for basic information in this area, to [28] for a comprehensive presen-
tation and the web site [40] for the up-to-date information.

46 J. Carnero et al.

3. E ⊆ Γ (the objects in the environment);
4. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells at the initial configuration;
5. R is a finite set of communication rules of the following form:

(i, u/v, j)

for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;
6. iΠ ∈ {1, 2, . . . , q} is the input cell;
7. oΠ ∈ {0, 1, 2, . . . , q} is the output cells

A tissue-like P system of degree q ≥ 1 can be seen as a set of q cells (each one
consisting of an elementary membrane) labelled by 1, 2, . . . , q. We will use 0 to
refer to the label of the environment, iΠ denotes the input region and oΠ denotes
the output region (which can be the region inside a cell or the environment).

The strings w1, . . . , wq describe the multisets of objects placed in the q cells
of the P system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them available in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells labelled by i
and j such that u is contained in cell i and v is contained in cell j. The application
of this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells. Note that if either i = 0 or j = 0 then the
objects are interchanged between a cell and the environment.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e., in each step we apply a maximal set of rules.

A configuration is an instantaneous description of the P system Π. Given a
configuration, we can perform a computation step and obtain a new configuration
by applying the rules in a parallel manner as it is shown above. A sequence of
computation steps is called a computation. A configuration is halting when no
rules can be applied to it. Then, a computation halts when the P system reaches
a halting configuration.

3 Segmenting Digital Images

A point set is simply a topological space consisting of a collection of objects called
points and a topology which provides for such notions as nearness of two points,
the connectivity of a subset of the point set, the neighborhood of a point, boundary
points, and curves and arcs.

The most common point sets occurring in image processing are discrete subsets
of N -dimensional Euclidean space Rn with n = 1, 2 or 3 together with the discrete
topology. There is no restriction on the shape of the discrete subsets of Rn used
in applications of image algebra to solve vision problems.

Designing Tissue-like P Systems to Parallel Architectures 47

For a point set X in Z, a neighborhood function from X in Z, is a function
N : X → 2Z . For each point x ∈ X, N(x) ⊆ Z. The set N(x) is called a
neighborhood for x.

There are two neighborhood function on subsets of Z2 which are of particular
importance in image processing, the von Neumann neighborhood and the Moore
neighborhood. The first one N : X → 2Z

2
is defined by N(x) = {y : y =

(x1 ± j, x2) or y = (x1, x2 ± k), j, k ∈ {0, 1}}, where x = (x1, x2) ∈ X ⊂ Z2.
While the Moore neighborhood M : X → 2Z

2
is defined by M(x) = {y : y =

(x1±j, x2±k), j, k ∈ {0, 1}}, where x = (x1, x2) ∈ X ⊂ Z2. The von Neumann and
Moore neighborhood are also called the four neighborhood (4-adjacency) and eight
neighborhood (8-adjacency), respectively. In this paper, we work with 4-adjacency.
The point sets with the usual operations has an algebra structure (see [30]).

An Z-valued image on X is any element of ZX . Given an Z-valued image
I ∈ ZX , i.e. I : X → Z, then Z is called the set of possible range values of I
and X the spatial domain of I. The graph of an image is also referred to as the
data structure representation of the image. Given the data structure representation
I = {(x, I(x)) : x ∈ X}, then an element (x, I(x)) is called a picture element or
pixel. The first coordinate x of a pixel is called the pixel location or image point,
and the second coordinate I(x) is called the pixel value of I at location x.

For example, X could be a subset of Z2 where x = (i, j) denotes spatial location,
and Z could be a subset of N, N3, etc. So, given an image I ∈ ZZ

2
, a pixel of I

is the form ((i, j), I(x)), which will be denoted by I(x)ij . We call the set of colors
or alphabet of colors to the image set of the function I with domain X and the
image point of each pixel is called associated color. We can consider an order in
this set. In this paper, we denote Z as CI . Usually, we consider in digital image a
predefined alphabet of colors C. We define h = |C| as the size (number of colors) of
C. In this paper, we work with images in grey scale, then C = {0, . . . , 255}, where
0 codify the black color and 255 the white color.

By technical reasons, we use below different ways to codify a same pixel. For ex-
ample, if we take the pixel ((i, j), a) we could codify with the following expressions:
aij , Aij , a′ij , aij , (a, l)ij with l ∈ N, etc.

A region could be defined by a subset of the domain of I whose points are all
mapped to the same (or similar) pixel value by I. So, we can consider the region
Ri as the set {x ∈ X : I(x) = i} but this kind of regions has not to be connected.
We prefer to consider a region r as a maximal connected subset of a set like Ri.
We say two regions r1, r2 are adjacent when at less a pair of pixel x1 ∈ r1 and
x2 ∈ r2 are adjacent. We say x1 and x2 are border pixels. If I(x1) < I(x2) we say
x1 is an edge pixel. The set of connected edge pixels with the same pixel value is
called a boundary between two regions.

From a general point of view, segmentation refers to the process of partitioning
a digital image into multiple regions. Thresholding is a method of image segmenta-
tion whose basic aim is to obtain a binary image from a colour one. The idea is to
split the set of pixels into two sets (black and white) depending on its bright and a
fixed valued, the threshold. If the bright of the pixel is greater than the threshold,

48 J. Carnero et al.

then the pixel is labelled as object. Otherwise, it is labelled as background. After
labelling, a new binary image is created by colouring each pixel white or black,
depending on the label.

The basic thresholding method can be generalized in a natural way. Instead
of getting a binary image by labelling the original set of pixels by {0, 1}, we can
consider a larger set of labels, {1, . . . , k} so we obtain a final image with k levels.
Another natural generalization is to replace the colour information by another
scale on the features of the pixel (bright, intensity, gray scale, etc.).

Edge detection is an important operation in a large number of image processing
applications, such as image segmentation, character recognition and scene analysis.

In this paper we work with the first one, the edge-based segmentation of 2D
digital images problem (2D-ES problem), which is described as follows: Given a
digital 2D image with pixels of (possibly) different colors, obtain the boundaries of
regions in that image.

In order to provide a logarithmic-time uniform solution to our problem, we
design a family of tissue-like P systems, Π. Given an image I of size n2, we take
the P system Π(n, k) of the family to work with I. The input data (image I) is
codified by a set of objects a′ij , with a ∈ C and 1 ≤ i, j ≤ n and k is referred to
the number of processing cells. So, when we work with a parallel architecture we
do not have to know previously an exact number of processors to work. Then, we
introduce the parameter k to solve this problem.

The functioning of a P system of the family consists of the following stages:

• First of all, the P system generates 8 auxiliary copies of the input data. Then,
we have 9 codifications of the input image, but one of them is distinguished
of the rest. So, we can work with each pixel without taking into account what
happens with the rest of the image.

• Second, the P system applies a basic noise filter in order to eliminate some
pickle noise that could affect the segmentation process. The P system will
apply the largely used average filter because of its simplicity and good results.
For each pixel, the process consists of calculating the average average of its
adjacent pixels. If the distance between the pixel and its average is greater
than a threshold ρ, the pixel will be considered as noise and it will be replaced
by its average colour.

• Next, the P system performs a thresholding of the image to solve the problem
of degradation of colours of pixels in the boundary of adjacent regions with
different colours.

• Once this process is finished, the P system applies a translation of rules defined
in [11] obtaining an edge-based segmentation of the image took of the previous
stage.

The family Π = {Π(n, k) : n, k ∈ N} of tissue-like P systems of degree k + 1 is
defined as follows:

For each n, k ∈ N,

Π(n, k) = (Γ,Σ, E , w1, . . . , wk+1,R, iΠ , oΠ),

Designing Tissue-like P Systems to Parallel Architectures 49

defined as follows:

• Γ = Σ ∪ {aij , a
′′
ij , āij , Aij , A

′
ij , A

′′
ij , Aij , Aij , (a, 1)ij , (a, 2)ij , (a, 3)ij : 1 ≤ i, j ≤

n, a ∈ C} is the working alphabet;
• the input alphabet is Σ = {a′ij : 1 ≤ i, j ≤ n, a ∈ C, I(i, j) = a};
• the environment alphabet is E = Γ \Σ;
• the multisets of the cells are w1 = {{ν3

ij , ν
3
ji : i = 0, n + 1, 0 ≤ j ≤ n + 1}},

w2 = · · · = wk+1 = T dn
2/ke, respectively. We call to the last k cells as processing

cells;
• R is the following set of communication rules:

1. (1, a′ij/a8
ijAij , 0)

for 1 ≤ i, j ≤ n.
These rules are used to generate new elements, so the P system can work in
parallel with each pixel and forget what happen with the rest of the image.
The P system first uses these elements to work with the noise of our image.

2.


1,

ci−1j−1 di−1j ei−1j+1

bij−1 Aij fij+1

li+1j−1 hi+1j gi+1j+1

/ T, t




for
– 1 ≤ i, j ≤ n,
– a, b, c, d, e, f, g, h, l ∈ C ∪ {ν}.
This type of rules are used to translate each object Aij and one copy of their
neighbours (objects) to a processing cell. We are sure that all the pixels not
go to the same cell, because our P system has n2 or n2 +1 objects T spread
over processing cells, each one with a similar number of copies of T .

3.


t,

ci−1j−1 di−1j ei−1j+1

bij−1 Aij fij+1

li+1j−1 hi+1j gi+1j+1

/ α′ij , 0




for
– 1 ≤ i, j ≤ n,
– a, b, c, d, e, f, g, h, l ∈ C ∪ {ν},
– We take µ as the number of pixels with colors in C and ν = 0. Then,

av(a) = (b + c + d + e + f + g + h + i)/µ,
– α is the nearest colour in C to the average colour av(a) with |α−av(a)| >

ρ, with ρ ∈ R.

4.


t,

ci−1j−1 di−1j ei−1j+1

bij−1 Aij fij+1

ii+1j−1 hi+1j gi+1j+1

/ a′ij , 0




for
– 1 ≤ i, j ≤ n,
– a, b, c, d, e, f, g, h, i ∈ C ∪ {ν},

50 J. Carnero et al.

– We take µ as the number of pixels with colors in C and ν = 0. Then,
av(a) = (b + c + d + e + f + g + h + i)/µ,

– |a− av(a)| ≤ ρ, where ρ1 ∈ R.

This set of rules is used to detect the noise and correct it with the average
colour of its adjacent pixels. We find here a local thresholding (with respect
to the colors) with predefined threshold ρ. In fact, we are simulating one
of the more typical algorithms to remove noise. The P system changes the
notation of the objects which are codifying pixels and they adopt the form
a′ij , with a ∈ C.

5. (t, b′ij/A
′
ij , 0)

for
– 1 ≤ i, j ≤ n,
– τ = (|C|/ρ2), l = 0, 1, 2, . . . , ρ2,
– If b ∈ C then a ∈ C (a < b ≤ a + (τ − 1) and a = τ · l) or (b = a = τ · l),
– If b = ν then A = ν.

These rules are used to discretize the colors dividing the set of colors in ρ2

subsets of length ν. We find here a general thresholding (with respect to
the colors) with predefined threshold ν.

6. (t, A′ij/T, 1)
for
– 0 ≤ i, j ≤ n + 1, 2 ≤ t ≤ k + 1,
– a ∈ C.
This set of rules are used to send our transformed image to the cell 1. Now,
the objects A′ij encode the pixels of our image.

7. (1, A′ij/A
′′
ijAija

8
ij , 0)

for
– 0 ≤ i, j ≤ n + 1,
– a ∈ C ∪ {ν}.
The P system uses these rules to generate enough copies of our image to
perform the segmentation process in the cells 2, . . . , k and k+1. The objects
A′′ij are used in the second part of the segmentation. The rest of the objects
are used in the first part of the segmentation.

8.


t,

ci−1j−1 di−1j ei−1j+1

bij−1 Aij f ij+1

ii+1j−1 hi+1j gi+1j+1

/ T, t




for
– 1 ≤ i, j ≤ n,
– and a, b, c, d, e, f, g, h, i ∈ C ∪ {ν}.
These rules are defined to send new objects to the processing cells to do
the first part of the segmentation. We look for edge pixels.

Designing Tissue-like P Systems to Parallel Architectures 51

9. (t, Aijbkl/Aijbkl, 0),
for
– 1 ≤ i, j, k, l ≤ n, (i, j), (k, l) adjacent pixels,
– a, b ∈ C and a < b.

These rules are used to mark edge pixels. In fact, the the P system brings
from the environment an object of the form Aij for each edge pixel. Our
problem is the edge pixels not always are adjacent. So, we do not have an
only one set of connected edge pixel forming a boundary. Then, we should
add the necessary pixel to connect all the edge pixels of a boundary.

10. (t, Aij/T, 1)
for
– 1 ≤ i, j ≤ n,
– a ∈ C.
These rules send the edge pixels to the cell 1.

11. (1, Aij/(a, 1)2ij , 0)
for
– 0 ≤ i, j ≤ n + 1,
– a ∈ C ∪ {ν}.
The P system uses these rules to generate two copies of our edge pixels to
perform the second part of the segmentation in processing cells.

12. (1, A′′ij/(a, 2)2ij , 0)
for
– 0 ≤ i, j ≤ n + 1,
– a ∈ C ∪ {ν}.
The P system uses these rules to generate enough copies of our image to
perform the second part of the segmentation in processing cells.

13.
(

1,
(a, 1)i−1j−1 (a, 2)i−1j

(b, 2)ij−1 (a, 1)ij
/ T, t

) (
1,

(b, 2)i−1j−1 (a, 1)i−1j

(a, 1)ij−1 (a, 2)ij
/ T, t

)

(
1,

(a, 1)i−1j−1 (b, 2)i−1j

(a, 2)ij−1 (a, 1)ij
/ T, t

) (
1,

(a, 2)i−1j−1 (a, 1)i−1j

(a, 1)ij−1 (b, 2)ij
/ T, t

)

for
– 1 ≤ i, j ≤ n,
– a, b ∈ C.
These rules are defined to send new objects to the processing cells to do
the second part of the segmentation. We look for new edge pixels.

14.
(

1,
(a, 1)i−1j−1 (a, 2)i−1j

(b, 2)ij−1 (a, 1)ij
/

(a, 3)i−1j−1 (a, 3)i−1j

(b, 2)ij−1 (a, 3)ij
, t

)

(
1,

(b, 2)i−1j−1 (a, 1)i−1j

(a, 1)ij−1 (a, 2)ij
/

(b, 2)i−1j−1 (a, 3)i−1j

(a, 3)ij−1 (a, 3)ij
, t

)

52 J. Carnero et al.

(
1,

(a, 1)i−1j−1 (b, 2)i−1j

(a, 2)ij−1 (a, 1)ij
/

(a, 3)i−1j−1 (b, 2)i−1j

(a, 3)ij−1 (a, 3)ij
, t

)

(
1,

(a, 2)i−1j−1 (a, 1)i−1j

(a, 1)ij−1 (b, 2)ij
/

(a, 3)i−1j−1 (a, 3)i−1j

(a, 3)ij−1 (b, 2)ij
, t

)

for
– 1 ≤ i, j ≤ n,
– a, b ∈ C.
These rules are used to complete the set of edge pixels of our image.

15. (t, (a, 3)ij/λ, 1)
for
– 1 ≤ i, j ≤ n,
– a ∈ C.
These rules send to the cell 1 the edge pixels.

16. We can find more than one copy of an specific edge pixel, so if we wish only
one copy of each edge pixel we can add a new type of rules:
(t, (a, 3)ij(a, 3)ij/(a, 3)ij , 1)
for
– 1 ≤ i, j ≤ n,
– a ∈ C.

• iΠ = oΠ = 1.

4 The Hardware Design

In [11], some preliminary segmentation results were obtained using the tissue sim-
ulator developed in [3]. Such a tissue simulator follows one of the common features
of the first generation of simulators of P systems (see [13]): the lack of efficiency
in favor of expressiveness. Therefore, experiments performed using this tool were
extremely slow, and it could only use synthetic images of at most 30 × 30 pix-
els. Recently, a new sequential software was presented in [14], implementing ideas
borrowed from [11].

In order to make the hardware design of a tissue-like P system there are several
considerations that must be considered:

1. On a tissue-like P system, not only each cell evolve in a parallel manner. Every
rule in every cell must be executed as many times as possible at each step.
Thus, if we want that the hardware system to work exactly like the theoretical
model, the system has to implement as many minimal computation units as
the maximum number of rules in all the cells that could be executed in the
same step in order to be fully parallel. If we are designing a general tissue-like
P system which we want to use to configure different tissue-like P systems that
solve specific problems, this is probably the main problem, as this number is
defined by each P system configuration. In this case, the only way to do this is

Designing Tissue-like P Systems to Parallel Architectures 53

to design the minimal computation units as small as possible in terms of chip
area, in order to have the maximum number of them. Then, if this number is
not enough to solve our problem, the system can be designed in order to do
the following:
• Separate each conflicting step, into two or more sub-steps. So, in the first

sub-step the system executes all the possible rules, using a piece of memory
to save the results, and then it continues executing the rest of the rules that
could not be executed before due to insufficient minimal computation units
.

• Connect with other clone system(s) to solve the hole problem using more
computation capacity. This options is not always possible and, in general,
it is more difficult to design that the first one, but it can be the best choice
dealing with hard computation problems.

On the other hand, if we want to design a specific P system, usually the best
choice to deal with this issue is finding sets of rules that are mutually exclusive,
that is, rules that we know that if the executing condition is true for one of
them, then we know that the other ones in the same set cannot be executed.
Thus, in fact we have only to design one minimal computation unit for each
set of rules, optimizing the system area. This is the case of the described
segmentation problem, in which we know that we can define only one set of
rules mutually exclusive for each pixel, so in fact the system will have as many
minimal computation units as the biggest segmentation. So the computational
order will be constant, and the spatial order will be lineal.

2. The copy rules are necessary in the theoretical tissue-like P system, but in the
hardware design it is not necessary in general to implement them as rules like
the other ones, since they can be seen as parallel readings of some informa-
tion.
So usually those rules can be ignored in the design, seeing them as multi-
lectures of the data that is trying to copy the rule. Also is easily to transform
those rules into asynchronous rules. That is the segmentation case that we
present, where main rules are synchronized by the clock system represent-
ing the synchronous P system, and the copy rules are asynchronous and are
implicit in the interconnection circuit of the design.

3. Depending on the variant of tissue-like P systems we work with, cells could
create or remove other cells during the execution in order to solve the problem.
This is one of the biggest problems when simulating tissue-like P systems in
software in a efficient way, but could not be the case in hardware. The FPGAs
can be reconfigured while the system is still working. This feature help us to
design the addition or removal cell rules as partial on air reconfigurations of
the system on air easily. The only thing that we have to worry about is that
those operations are not fast in terms of time, so the steps with those rules will
be slower than the other ones. Because of that, trying to avoid those kind of
rules while defining the P system is a good practice. The segmentation problem
described has no rule of this kind.

54 J. Carnero et al.

4. The halting condition can be redefined in order to save some final computation
step. This is the case of rule 9 on the segmentation problem. In most of
synchronous P systems, we can know that the system has finished without
make an explicit operation. For example, in our design we know that the
system stops three clock cycles after the beginning. Another simple option
can be found by observing the system behavior.

5. The system has to be always running while there are instances of the problem
that does not have been solved yet. In fact that is a consideration that have to
be done every time a hardware design is made, besides designing the P system
it is important that it can return the results whereas the system is starting
with a new problem. So, perhaps this is a consideration that has to be only
considered not only in the design step, but in the previous theoretical P system
definition before.

4.1 Segmentation Problem Design Based on FPGA

Following the segmentation example, an formal hardware system design based on
the tissue-like P system described above is shown in Figures 1, 2, 3 and 4. It
has been done by following the previous considerations. The system consists on
processing units capable of dealing with 4×4 images. These units can be combined
like a puzzle in order to process n×m images.

Each pixel in the image is codified with 56 bits in order to represent the theo-
retical objects (it contains color information, original color information, and type
of object). Using this codification, a 4 × 4 section of the initial image is passed
through the image port of each processing unit. Also additional information about
the neighborhood of the 4 × 4 is required in order to work correctly, using the
blec, blrec, trec, tlec, and bb, rb, tb, lb buses for that. If the neighborhood (or a part
of it), does not exist those inputs will be at high impedance (ghost pixel).

The t and k ports specify the maximum distance between the pixel and its
average (noise filter), and the number of different levels for the thresholding re-
spectively. The different system steps are controlled by the clock signal (CLK).

As it is shown in figure 1, inside the processing unit are 16 pixel processing
units capable of execute any rule for each pixel and each step (using the tech-
niques described before in the first point.). The signal change is used to feed this
units with the input data (the original image), or feed them with its own output
(representing in that way the copy rules as described before in item two).

These pixel processing units shown in figure 2 receives a pixel and its neighbor-
hood, and the t, k and CLK signals, and send this information to four units that
implements the four sets of rules mutually exclusive mentioned before. The results
are collected and processed as output. In general a fixed group of pixel processing
units will represent a fixed group of cells in the theoretical model. But looking
at the described tissue-like P, we have that each cell except cells zero and one is
representing the computation of one pixel, so there is exactly one pixel processing

Designing Tissue-like P Systems to Parallel Architectures 55

Fig. 1. Processing unit, and neighborhood of an image

unit for each cell. Then we can say that these units represents each cell in the
theoretical model except zero and one.

The four units that implement the four sets of rules mutually exclusive are
shown in figure 3: removing noise rules (types 3 and 4), thresholding rules (type
5), rules of the first part of the segmentation (type 9) and rules of the second
part of the segmentation (type 14). The rest of rules of the theoretical family of
systems are rules of coping and sending objects. These units detect automatically
if the input data is a corner, an edge, or an interior pixel. Finally, in order to
deal with bigger images, we can use the blec, blrec, trec, tlec, and bb, rb, tb, lb buses
to interconnect as many as processing units we need (figure 4). A very simple
interconnection circuit is necessary in order to give the input data to the different
processing units.

The implementation of this hardware tool allows the system to apply the max-
imum number of rules at each moment, using the pixel units to solve the whole
problem. Therefore, the system works exactly like the theoretical model in terms
of complexity, time, concurrency and results. As said before, the implementation

56 J. Carnero et al.

Fig. 2. Pixel Processing Unit

Fig. 3. Chips that implements the sets of rules mutually exclusive

of this design reveals that in fact the system is able to process any image of size
n×m by using at most four clock cycles.

In figure 5, it is shown a simulation of the code following the described design
that deals with 16×16 images, and some simple results using a SP605 Xilinx board
with a Spartan 6 XC6SLX45T FPGA chip.

Designing Tissue-like P Systems to Parallel Architectures 57

Fig. 4. Processing Units Interconnection

Fig. 5. Hardware design

Fig. 6. 16x16 black and white image segmentation

Fig. 7. 16x16 black and white image segmentation

58 J. Carnero et al.

Fig. 8. 16x16 color image segmentation

5 Conclusions and Future Works

Problems associated with the treatment of Digital Images have several interesting
features from a bio-inspired point of view. One of them is that they can be suitable
for parallel processing, since the same sequential algorithm is usually applied in
different regions of the image.

In this paper, we study the advantages and drawbacks of considering a hard-
ware implementation of tissue-like P systems solving the segmentation problem on
a hardware programming tool (FPGA). The theoretical study has been made via
the language programming VHDL [2] and currently we are in the process of the
real hardware implementation.

In addition, although the segmentation example showed here is a synchronous
tissue-like P system, we want in the next future to work with asynchronous tissue-
like P systems in order to optimize performance.

Many questions remains open as future work. One of them is the treatment
of the noise in images with Membrane Computing techniques, or the paralleliza-
tion and automatization of the choice of the threshold by artificial intelligence
techniques.

Acknowledgements

DDP and MAGN acknowledge the support of the projects TIN-2009-13192 of the
Ministerio de Ciencia e Innovación of Spain and the support of the Project of
Excellence of the Junta de Andalućıa, grant P08-TIC-04200. JC acknowledges the
support of the project MTM2009-12716 of the Ministerio español de Educación
y Ciencia, the project PO6-TIC-02268 of Excellence of Junta de Andalućıa, and
the Computational Topology and Applied Mathematics PAICYT research group
FQM-296.

References

1. Abdala, D.D., Jiang, X.: Fiber segmentation using constrained clustering. In: Zhang,
D., Sonka, M. (eds.) ICMB. Lecture Notes in Computer Science, vol. 6165, pp. 1–10.
Springer (2010)

Designing Tissue-like P Systems to Parallel Architectures 59

2. Ashenden, P.J.: The Designer’s Guide to VHDL. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2nd edn. (2001)

3. Borrego-Ropero, R., Dı́az-Pernil, D., Pérez-Jiménez, M.J.: Tissue simulator: A graph-
ical tool for tissue P systems. In: Vaszil, G. (ed.) Proceedings of the International
Workshop Automata for Cellular and Molecular Computing. pp. 23–34. MTA SZ-
TAKI, Budapest, Hungary (August 2007), satellite of the 16th International Sympo-
sium on Fundamentals of Computational Theory

4. Carnero, J., Dı́az-Pernil, D., Molina-Abril, H., Real, P.: Image segmentation inspired
by cellular models using hardware programming. Image-A 1(3), 143–150 (2010)

5. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Implementing P systems parallelism by means
of GPUs. In: Păun et al. [27], pp. 227–241

6. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution
to SAT by using GPUs. Journal of Logic and Algebraic Programming 79(6), 317–325
(2010)

7. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mat́ınez-de-Amor, M.A., Pérez-Hurtado,
I., Pérez-Jiménez, M.J.: Simulation of P systems with active membranes on CUDA.
Briefings in Bioinformatics 11(3), 313–322 (2010)

8. Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.G.: Tissue-like P systems
with active membranes for picture generation. Fundamenta Informaticae 56(4), 311–
328 (2003)

9. Ceterchi, R., Mutyam, M., Păun, Gh., Subramanian, K.G.: Array-rewriting P sys-
tems. Natural Computing 2(3), 229–249 (2003)

10. Chao, J., Nakayama, J.: Cubical singular simplex model for 3D objects and fast com-
putation of homology groups. In: 13th International Conference on Pattern Recog-
nition (ICPR’96). vol. IV, pp. 190–194. IEEE Computer Society, IEEE Computer
Society, Los Alamitos, CA, USA (1996)

11. Christinal, H.A., Dı́az-Pernil, D., Real, P.: Segmentation in 2D and 3D image using
tissue-like P system. In: Bayro-Corrochano, E., Eklundh, J.O. (eds.) CIARP. Lecture
Notes in Computer Science, vol. 5856, pp. 169–176. Springer (2009)

12. Ciobanu, G., Wenyuan, G.: P systems running on a cluster of computers. In: Mart́ın-
Vide et al. [19], pp. 123–139

13. Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Pérez-Hurtado, I., Mario J.
Pérez-Jiménez, M.: Software for P systems. In: Păun et al. [28], pp. 437–454

14. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Molina-Abril, H., Real, P.: A bio-inspired
software for segmenting digital images. In: Nagar, A.K., Thamburaj, R., Li, K.,
Tang, Z., Li, R. (eds.) Proceedings of the 2010 IEEE Fifth International Conference
on Bio-Inspired Computing: Theories and Applications BIC-TA. vol. 2, pp. 1377 –
1381. IEEE Computer Society (2010)

15. Gershoni, R., Keinan, E., Păun, Gh., Piran, R., Ratner, T., Shoshani, S.: Research
topics arising from the (planned) P systems implementation experiment in Tech-
nion. In: Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Păun, Gh., Pérez-
Hurtado, I., Riscos-Núñez, A. (eds.) Sixth Brainstorming Week on Membrane Com-
puting. pp. 183–192. Fénix Editora, Sevilla, Spain (2008)

16. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Available mem-
brane computing software. In: Ciobanu, G., Pérez-Jiménez, M.J., Păun, Gh. (eds.)
Applications of Membrane Computing, pp. 411–436. Natural Computing Series,
Springer (2006)

60 J. Carnero et al.

17. Kim, S.H., Kim, H.G., Tchah, K.H.: Object oriented face detection using colour trans-
formation and range segmentation. Electronics Letters, IEEE 34, 979–980 (1998)

18. Kropatsch, W.G., Haxhimusa, Y., Ion, A.: Multiresolution image segmentations in
graph pyramids. In: Kandel, A., Bunke, H., Last, M. (eds.) Applied Graph Theory
in Computer Vision and Pattern Recognition, Studies in Computational Intelligence,
vol. 52, pp. 3–41. Springer (2007)

19. Mart́ın-Vide, C., Mauri, G., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): Mem-
brane Computing, International Workshop, WMC 2003, Tarragona, Spain, July 17-
22, 2003, Revised Papers, Lecture Notes in Computer Science, vol. 2933. Springer
(2004)

20. Mart́ın-Vide, C., Păun, Gh., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems. The-
oretical Computer Science 296(2), 295–326 (2003)

21. Mart́ın-Vide, C., Pazos, J., Păun, Gh., Rodŕıguez-Patón, A.: A new class of symbolic
abstract neural nets: Tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON.
Lecture Notes in Computer Science, vol. 2387, pp. 290–299. Springer (2002)

22. Nguyen, V., Kearney, D., Gioiosa, G.: Balancing performance, flexibility, and scal-
ability in a parallel computing platform for membrane computing applications. In:
Eleftherakis, G., Kefalas, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Work-
shop on Membrane Computing. Lecture Notes in Computer Science, vol. 4860, pp.
385–413. Springer (2007)

23. Nguyen, V., Kearney, D., Gioiosa, G.: An algorithm for non-deterministic object
distribution in p systems and its implementation in hardware. In: Corne, D.W.,
Frisco, P., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane
Computing. Lecture Notes in Computer Science, vol. 5391, pp. 325–354. Springer
(2008)

24. Nguyen, V., Kearney, D., Gioiosa, G.: A region-oriented hardware implementation
for membrane computing applications. In: Păun et al. [27], pp. 385–409

25. Nguyen, V., Kearney, D., Gioiosa, G.: An extensible, maintainable and elegant ap-
proach to hardware source code generation in reconfig-P. Journal of Logic and Alge-
braic Programming 79(6), 383–396 (2010)

26. Păun, Gh.: Membrane Computing. An Introduction. Springer-Verlag, Berlin, Ger-
many (2002)

27. Păun, Gh., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A.
(eds.): Membrane Computing, 10th International Workshop, WMC 2009, Curtea de
Arges, Romania, August 24-27, 2009. Revised Selected and Invited Papers, Lecture
Notes in Computer Science, vol. 5957. Springer (2010)

28. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

29. Petreska, B., Teuscher, C.: A reconfigurable hardware membrane system. In: Mart́ın-
Vide et al. [19], pp. 269–285

30. Ritter, G.X., Wilson, J.N., Davidson, J.L.: Image algebra: An overview. Computer
Vision, Graphics, and Image Processing 49(3), 297–331 (1990)

31. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall PTR, Upper Saddle
River, NJ, USA (2001)

32. Syropoulos, A., Mamatas, L., Allilomes, P.C., Sotiriades, K.T.: A distributed simu-
lation of transition P systems. In: Mart́ın-Vide et al. [19], pp. 357–368

33. Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation and classification of
hyperspectral images using Watershed transformation. Pattern Recognition 43(7),
2367–2379 (2010)

Designing Tissue-like P Systems to Parallel Architectures 61

34. Tobias, O.J., Seara, R.: Image segmentation by histogram thresholding using fuzzy
sets. IEEE Transactions on Image Processing 11(12), 1457–1465 (2002)

35. Trimberger, S.M.: Field-Programmable Gate Array Technology. Kluwer Academic
Publishers, Norwell, MA, USA (1994)

36. Wang, D., Lu, H., Zhang, J., Liang, J.Z.: A knowledge-based fuzzy clustering method
with adaptation penalty for bone segmentation of ct images. In: Proceedings of the
2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. pp. 6488–
6491 (2005)

37. Yazid, H., Arof, H.: Image segmentation using watershed transformation for facial
expression recognition. In: IFMBE Proceedings, 4th Kuala Lumpur International
Conference on Biomedical Engineering. pp. 575–578 (2008)

38. Yuan, X., Situ, N., Zouridakis, G.: A narrow band graph partitioning method for
skin lesion segmentation. Pattern Recognition 42(6), 1017–1028 (2009)

39. NVIDIA Corporation. NVIDIA CUDATM Programming Guide.
http://www.nvidia.com/object/cuda home new.html

40. P system web page. http://ppage.psystems.eu

P Systems with Replicator Dynamics: A Proposal

Matteo Cavaliere1, Miguel A. Gutiérrez-Naranjo2

1 Spanish National Biotechnology Centre
(CNB-CSIC), Madrid 28049, Spain
mcavaliere@cnb.csic.es

2 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutier@us.es

Summary. This short note proposes some ideas for considering evolutionary game the-
ory in the area of membrane computing.

1 Introduction

Evolutionary game theory is a field started by J. Maynard Smith [4] with the
aim of modelling the evolution of animal behavior by using game theory. Repli-
cator dynamics [2] is a specific type of evolutionary dynamics where individuals,
called replicators, exist in several different types. Each type of individual uses
a pre-programmed strategy and passes this behavior to its descendants without
modification. Replicator dynamics is one of the is one of most used approach to
define the evolutionary dynamics of a population.

The main idea of the mechanism the following one. One assumes a population of
players (individuals/organisms) interacting in a game composed by several possible
strategies. Individuals have fixed strategies. The players randomly interact with
other individuals (if space is considered, then the interactions are done according
to the defined structure). Each of these encounters produces a payoff for the two
individuals that depend on their strategies and on the payoff matrix that defines
the game. The payoff of all these encounters are added up. Payoff is interpreted as
fitness (reproductive success). Strategies that do well reproduce faster. Strategies
that do poorly are outcompeted.

In this note we propose the possibilities of consider replicator dynamics in the
framework of Membrane Computing (P Systems), [3].

We imagine two possibilities. The first one is using replication dynamics as
“evolution” rules of a membrane system. A second possibility consists in “simu-
lating” replication dynamics by using the tools and the notions provided by the
membrane computing paradigms.

64 M. Cavaliere, M.A. Gutiérrez-Naranjo

We believe that both possibilities could be sources of new kinds of problems
for the area.

2 Using Replicator Dynamics in P Systems

As a simple example of replication dynamics let us consider the following payoff
matrix of a well-known game, the prisoner’s dilemma, [2].

cooperate defect
cooperate 4, 4 1, 5

defect 5, 1 2, 2

This is read in the following way. When a cooperator meets another cooperator,
they both gets 4. If a cooperator meets a defector, the cooperator gets 1 and the
defector 5. If two defectors meet, they both gets 2. If we have a population of
n individuals, k of them being cooperators (symbol c) and n − k being defectors
(symbol d) then the population is updated in the following manner (one step of
the evolutionary dynamics).

Each object c receives a payoff that is the sum of all the payoffs obtained by
considering the meetings with all other players. In this case the payoff accumulated
by each single c is: 4(k − 1) + 1(n − k). In the same manner, each d receives
2(n − k − 1) + 5k. The replication dynamics impose that each object (c or d)
replicates (produce off-springs) with a rate function of the obtained payoff (in
other words, the payoff is interpreted as fitness, [4]).

The simplest approach could then assume that each object c divides in 4(k −
1) + 1(n− k) copies (off-springs), while each d divides in 2(n− k− 1) + 5k copies.
This means that each c produces 4(k−1)+1(n−k) copies of c and each d produces
2(n− k − 1) + 5k copies of d.

Moreover, one can also assume that, at each step, a certain number of objects is
removed from the population. The simplest scenario is to assume a death/removal
rate that indicates the number of objects (constant) removed at each step. In a
more complex scenario, the removal, as the replication, could depend on the accu-
mulated payoff (e.g., the players with worst fitness are removed). Many variants
have been considered [2].

In P systems, there is the notion of compartment that has been shown to be
relevant for the evolutionary dynamics of a population [2]. In this respect, there
are many examples that show that the evolutionary dynamics can be very different
when observed in structured populations and in homogeneous populations (e.g.,
[2]). One could then consider a P system where the objects in the compartments
represent the individuals (players) of a population. Each object indicates (is asso-
ciated to) the strategy of a certain chosen game (for instance, in the case of the
prisoner’s dilemma (PD), we have objects c and d).

The population (e.g, a multiset over the alphabet c and d in the PD game)
evolves, in parallel, in the compartments, according to the replicator dynamics.

P Systems with Replicator Dynamics: A Proposal 65

Specifically, the payoff matrix is used to calculate the payoff for each individual
object (as described above), by considering all other objects present in the same
compartment. Then, based on these obtained payoffs, one decides which objects
to replicate and which objects to remove. For instance, this could be done us-
ing thresholds (e.g., if payoff > ..then replicates, if payoff < ..then the object is
removed). Each object is then replicated (e.g., a c creates more copies of c, a d
creates more copies of d) or is removed based on such threshold and on its obtained
payoff. Target indications could be used to move the created objects across com-
partments. The number of objects in a certain compartment could be naturally
interpreted as output produced. However, the programmability of such device re-
mains an open issue. In fact, notice that, differently from standard P systems, the
rules here cannot be programmed – they are “naturally” assigned by the evolu-
tionary dynamics.

3 Simulating Replicator Dynamics

The second possibility is to program the replication dynamics using the tools
available in the membrane computing area. The task is non-trivial, in particular
to implement the payoff-based replication that is naturally present in the replicator
dynamics.

We propose a first solution where any individual produces a new set of individ-
uals identical to the original, at each time unit according to a discrete global clock.
The number of off-spring depends on the number of encounters with defectors and
cooperators and their corresponding payoffs.

We suggest a family of P systems for dealing with prisoner’s dilemmas in its
most general form (however, the approach proposed here can be generalized to
different games). The family of P systems considers the following initial situation:
A population of n individuals, k of them being cooperators (c) and n − k being
defectors (d). Let us consider four non negative integers R, S, T and P and the
following general payoff matrix for the prisoner’s dilemma.

cooperate defect
cooperate R,R S,T

defect T ,S P ,P

As standard in the area, [2], we use the terms R, reward, P, punishment, T,
temptation and S, sucker’s payoff. Hence, the 4-uple PD ≡ 〈R, S, T, P 〉 can encode
the game.

We assume the simplest replication mechanism where each individual c or d is
substituted in the next stage (by using mitosis or whatever replication mode) by
as many objects of the same type as its payoff. In other words, if cn and dn is the
number of individuals of type c and d in the stage n, then

66 M. Cavaliere, M.A. Gutiérrez-Naranjo

c0 = k
d0 = n− k

cn+1 = R (cn − 1) + S dn

dn+1 = T cn + P (dn − 1)

In the membrane computing framework one can consider rules of type c → cα

and d → dβ . This reproduces the idea of replication of the original individuals.
The drawback is, of course, than α and β depends on the number of individuals
of the current configuration. This idea leads us to consider a set of rules c → cα1 ,
c → cα2 , c → cα3 , . . . , but even in case of having an oracle which decides the right
rule in each configuration, we will need a potentially infinite amount of rules.

We propose an alternative solution that uses a P systems family (a P system
for each 4-uple 〈R,S, T, P 〉 in the framework of P systems with active membranes,
[3], that computes {cn, dn}n∈N). The proposed systems have been checked with
the SCPS simulator [1]. As usual in this P system model, each membrane can be
crossed out by a unique object (at most) in each computation step. This feature
will be used to control the flow of objects between regions.

Given a 4-uple PD ≡ 〈R, S, T, P 〉 encoding a prisoner’s dilemma, let us consider
the following P system

ΠPD = 〈Γ, H, EC, µ, we, ws, R〉

where

• The alphabet of objects is Γ = {c, c∗, ca, c1, c2, c3, d, d∗, da, d1, d2, d3, z, z1, z2, z3, z4};
• H = {e, s} is the set of labels;
• EC = {q0, q1, q2, q3, q4, qc, qd, qcc, qdd} is the set of electrical charges;
• the membrane structure has only two membranes, the skin with label s an an

elementary membrane with label e, µ = [[]q0e]q0s ;
• the initial multisets are we = z and ws = ∅. We also consider as input, the

population of objects ck and dn−k. They will be placed in membrane e in the
initial configuration.

We will also consider the following sets of rules

R1 ≡ [z]q0e → [z1]q1e [z1]q2e

R2 ≡ [z1 → λ]q1e

R3 ≡ [z1 → λ]q2e

R4 ≡ [c]q1e → c []q3e

R5 ≡ [d]q1e → d []q3e

In the initial configuration we have only one membrane e with the population
of objects c and d and one extra object z. This extra object z produces the division
(R1) of the membrane. We have two copies of the population: one with charge q1
and the second one with charge q2.

The main idea is that all the objects in the membrane e with charge q1 will pass
sequentially to membrane with charge q2. In this second membrane the payoffs will

P Systems with Replicator Dynamics: A Proposal 67

be computed. The charges will be used as traffic-lights in order to control the flow
of objects.

R6 ≡ c []q2e → [c1]qc
e

R7 ≡ d []q2e → [d1]qd
e

R8 ≡ [c]qc
e → z4 []qcc

e

R9 ≡ [d]qd
e → z4 []qdd

e

When an object c or d arrives to the membrane with label q2 with R6 or R7,
the calculation of the payoff starts. Since an individual does not meet itself in
order to get a payoff, an object c or d is sent out of the membrane (R8 or R9).

R10 ≡ [c1 → c2c3]qc
e

R11 ≡ [d1 → d2d3]qd
e

R12 ≡ [z4 → λ]q0s

These rules R10 − R12 are technical rules in order to adjust the proposed
P system to the model of active membranes, where rules c []q2e → [c2c3]qc

e or
[c]qc

e → λ []qcc
e are not allowed. The computation of the payoff is performed by the

following rules:

R13 ≡ [c → cR
∗ c]qcc

e

R14 ≡ [d → cS
∗ d]qcc

e

R15 ≡ [c → dT
∗ c]qdd

e

R16 ≡ [d → dP
∗ d]qdd

e

The charge qcc can be interpreted as the visit of an individual c. The objects
c in the membrane produce R copies of c∗ and all the objects d produce S copies
of d∗. Analogously, the charge qdd can be interpreted as the visit of an individual
d. In this case, the objects c in the membrane produce T copies of c∗ and all the
objects d produce P copies of d∗.

The path to complete the cycle and to start again begins with the following
rules. An object z2 is sent to the first membrane labeled with e in order to get a
new individual for the calculation of the payoff.

R17 ≡ [c2]qcc
e → z2 []q2e

R18 ≡ [d2]qdd
e → z2 []q2e

R19 ≡ z2 []q3e → [z2]q1e

The object c or d sent out by the rule R8 or R9 is placed again on the corre-
sponding membrane by rule R20 or R21.

R20 ≡ [c3 → c]q2e

R21 ≡ [d3 → d]q2e

68 M. Cavaliere, M.A. Gutiérrez-Naranjo

Sending z2 into the corresponding membrane opens the traffic light by changing
the charge to q1. The cycle starts again and rules R4 and R5 can be triggered again,
if any object c or d remains in the membrane. In order to control the behavior
of the membrane when all the objects c and d have been sent out, we add some
technical rules.

R22 ≡ [z2 → z3]q1e

R23 ≡ [z3 → λ]q3e

If z3 appears in a membrane, it means that all objects c or d have been sent
out in previous steps. In this case, the membrane can be dissolved and the cycle
of computing the payoffs is completed.

R24 ≡ [z3]q1e → z3

R25 ≡ z3 []q2e → [z3]q4e

When an object z3 goes into the membrane with label e, the old objects c and
d are removed and the objects c∗ and d∗ become the new population.

R26 ≡ [c∗ → ca]q4e

R27 ≡ [d∗ → da]q4e

R28 ≡ [z3 → z z4]q4e

R29 ≡ [ca → c]q4e

R30 ≡ [da → d]q4e

R31 ≡ [c → λ]q4e

R32 ≡ [d → λ]q4e

Finally, we change the charge of the membrane e and a new stage can start

R33 ≡ [z4]q4e → z4 []q0e

3.1 Overview of the Computation

The main idea of the design is to consider two copies of the population. The first
copy (which acts as a counter) sends individuals to the second one: when all the
objects have been sent, the computation of all payoffs is completed and we finish
a cycle. In the second copy, the payoffs are computed and stored. For each object,
the P system takes five computational steps in order to calculate its payoff.

We start with the initial configuration C0 = [[zckdn−k]q0e]q0s . Initially,
the two copies of the population are created by applying the rule R1, C1 =
[[z1c

kdn−k]q1e [z1c
kdn−k]q2e]q0s . The first new membrane, with label q1 will send

objects to the second one with label q2. At this moment, rules R4 and R5 can be
non-deterministically applied, but, due to the semantics of active membranes, only
one of them is chosen. Let us suppose that R3 is taken (the other case is analo-
gous) and we reach C2 = [[ck−1dn−k]q3e [ckdn−k]q2e c]q0s . Notice that the label in

P Systems with Replicator Dynamics: A Proposal 69

the first membrane has been changed to q3. Intuitively, this membrane is closed
till the arrival of the object z2 at step 6. Objects z1 are removed.

In the next step, the object c in the skin is sent as c1 into the second elemen-
tary membrane and changes the polarization, C3 = [[ck−1dn−k]q3e [ckdn−kc1]qc

e]q0s .
The process of computing the payoff of this object c1 starts: c1 is replaced
by c2c3 and one object c is sent to the skin, changing again the polariza-
tion, C4 = [[ck−1dn−k]q3e [ck−1dn−kc2c3]qcc

e z4]q0s . The computation of the pay-
off is made now by application in parallel of the rules R13 and R14. In or-
der to avoid that this rule can be applied in the next step, the object c2 is
sent out (as z2) and the polarization changes again. According to R13 and
R14, R objects c∗ are produced for each c and S objects c∗ for each d, C5 =
[[ck−1dn−k]q3e [ck−1dn−kc3c

R(k−1)+S(n−k)
∗]q2e z2]q0s . Finally, c3 goes to c in the sec-

ond elementary membrane and z2 goes into the first one, changes the polarization
and opens the membrane, C6 = [[ck−1dn−kz2]q1e [ckdn−kc

R(k−1)+S(n−k)
∗]q2e z2]q0s .

Notice that we have again two membranes, one of them with charge q1 and the
other one with charge q2 as in the configuration C1. In the next steps the process
goes on by sending all the objects from the first membrane to the second one,
where the payoffs will be stored.

After 5n + 1 steps we arrive at the configuration

C5n+1 = [[z2]q1e [ckdn−kc
k(R(k−1)+S(n−k))
∗ d

(n−k)(Tk+P (n−k−1))
∗]q2e]q0s

No more objects are left in the first membrane. In C5n+2 we have an object z3

inside a membrane with label e and charge q1. In the next step, the rule r24 is
applied and the membrane is dissolved,

C5n+3 = [[ckdn−kc
k(R(k−1)+S(n−k))
∗ d

(n−k)(Tk+P (n−k−1))
∗]q2e z3]q0s

The object z3 goes into the elementary membrane and changes the polarization to
q4,

C5n+4 = [[ckdn−kc
k(R(k−1)+S(n−k))
∗ d

(n−k)(Tk+P (n−k−1))
∗ z3]q4e]q0s

This new polarization produces the updating of the payoff to a new population in
two steps, so

C5n+6 = [[ck(R(k−1)+S(n−k))d(n−k)(Tk+P (n−k−1))]q4e z4]q0s

which is analogous to the configuration C0, so a new stage starts (the object z4

disappears in the next step by using the rule R12).

4 Conclusions and Future Work

Replicator dynamics in one of most used mechanisms in evolutionary game theory.
In this context, several papers have shown the relevance of compartments and
structures. On the other hand, membrane computing explicitly investigates the

70 M. Cavaliere, M.A. Gutiérrez-Naranjo

relevances of compartments for computation. A natural possibility, proposed in
this note, is to bridge these two areas. We have sketched two possibilities. The
first one consists in using rules inspired from the replicator dynamics. A second
one consists in programming the replicator dynamics using the tools of membrane
computing. In this case, we have presented a possible solution using membrane
systems with active membranes. However several other solutions can be imagined,
in particular replacing the cell-like membrane structure by a tissue-like structure
could allow a simpler version of the simulations.

Acknowledgments

MAGN acknowledges the support of the projects TIN-2009-13192 of the Ministerio
de Ciencia e Innovación of Spain and the support of the Project of Excellence of
the Junta de Andalućıa, grant P08-TIC-04200. M. C. acknowledges the support of
the program JAEDoc15 (”Programa junta para la ampliacion de estudios”) and
of the Research Group on Natural Computing of the University of Sevilla.

References

1. Gutiérrez-Naranjo, M.A., Riscos-Núñez, A., Pérez-Jiménez, M.J.: A simulator for con-
fluent P systems. In: Gutiérrez-Naranjo, M.A., Riscos-Núñez, A., Romero-Campero,
F.J., Sburlan, D. (eds.) Third Brainstorming Week on Membrane Computing. pp.
169–184. Fénix Editora, Sevilla, Spain (2005)

2. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge
University Press (Jun 1998)

3. Păun Gh., Rozenberg G., Salomaa A. Eds.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press, 2010.

4. Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press, 1st
edition edn. (Dec 1982)

P Colonies of Capacity One and Modularity

Luděk Cienciala, Lucie Ciencialová, and Miroslav Langer

Institute of Computer Science, Silesian University in Opava, Czech Republic
{ludek.cienciala, lucie.ciencialova, miroslav.langer}@fpf.slu.cz

Summary. We continue the investigation of P colonies introduced in [8], a class of
abstract computing devices composed of independent agents, acting and evolving in a
shared environment. The first part is devoted to the P colonies of the capacity one. We
present improved allready presented results concerning the computional power of the
P colonies. The second part is devoted to the modularity of the P colonies. We deal with
dividing the agents into modules.

1 Introduction

P colonies were introduced in the paper [7] as formal models of a computing
device inspired by membrane systems and formal grammars called colonies. This
model is inspired by structure and functioning of a community of living organisms
in a shared environment.

The independent organisms living in a P colony are called agents or cells. Each
agent is represented by a collection of objects embedded in a membrane.

The number of objects inside each agent is the same and constant during
computation.

The environment contains several copies of the basic environmental object de-
noted by e. The number of the copies of e in the environment is sufficient.

With each agent a set of programs is associated. The program, which deter-
mines the activity of the agent, is very simple and depends on content of the agent
and on multiset of objects placed in the environment. Agent can change content
of the environment by programs and through the environment it can affect the be-
havior of other agents.

This influence between agents is a key factor in functioning of the P colony. In
each moment each object inside the agent is affected by executing the program.

For more information about P systems see [12] or [13].

72 L. Cienciala, L. Ciencialová, M. Langer

2 Definitions

Throughout the paper we assume that the reader is familiar with the basics of the
formal language theory.

We use NRE to denote the family of the recursively enumerable sets of natural
numbers. Let Σ be the alphabet. Let Σ∗ be the set of all words over Σ (includ-
ing the empty word ε). We denote the length of the word w ∈ Σ∗ by |w| and
the number of occurrences of the symbol a ∈ Σ in w by |w|a.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f : V → N ; f assigns to each
object in V its multiplicity in M . The set of all multisets with the set of objects
V is denoted by V ◦. The set V ′ is called the support of M and is denoted by
supp(M) if for all x ∈ V ′ f(x) 6= 0 holds. The cardinality of M , denoted by
|M |, is defined by |M | =

∑
a∈V f(a). Each multiset of objects M with the set of

objects V ′ = {a1, . . . an} can be represented as a string w over alphabet V ′, where
|w|ai

= f(ai); 1 ≤ i ≤ n. Obviously, all words obtained from w by permuting
the letters represent the same multiset M . The ε represents the empty multiset.

2.1 P colonies

We briefly recall the notion of P colonies. A P colony consists of agents and an
environment. Both the agents and the environment contain objects. With each
agent a set of programs is associated. There are two types of rules in the programs.
The first type of rules, called the evolution rules, are of the form a → b. It means
that the object a inside the agent is rewritten (evolved) to the object b. The second
type of rules, called the communication rules, are of the form c ↔ d. When the
comunication rule is performed, the object c inside the agent and the object d
outside the agent swap their places. Thus after execution of the rule, the object d
appears inside the agent and the object c is placed outside the agent.

In [7] the set of programs was extended by the checking rules. These rules give
an opportunity to the agents to opt between two possibilities. The rules are in the
form r1/r2. If the checking rule is performed, then the rule r1 has higher priority
to be executed over the rule r2. It means that the agent checks whether the rule
r1 is applicable. If the rule can be executed, then the agent is compulsory to use
it. If the rule r1 cannot be applied, then the agent uses the rule r2.

Definition 1. The P colony of the capacity k is a construct
Π = (A, e, f, VE , B1, . . . , Bn), where

• A is an alphabet of the colony, its elements are called objects,
• e ∈ A is the basic object of the colony,
• f ∈ A is the final object of the colony,
• VE is a multiset over A− {e},
• Bi, 1 ≤ i ≤ n, are agents, each agent is a construct Bi = (Oi, Pi), where

P Colonies of Capacity One and Modularity 73

– Oi is a multiset over A, it determines the initial state (content) of the agent,
|Oi| = k,

– Pi = {pi,1, . . . , pi,ki
} is a finite multiset of programs, where each program

contains exactly k rules, which are in one of the following forms each:
· a→ b, called the evolution rule,
· c↔ d, called the communication rule,
· r1/r2, called the checking rule; r1, r2 are the evolution rules or the com-

munication rules.

An initial configuration of the P colony is an (n+ 1)-tuple of strings of objects
present in the P colony at the beginning of the computation. It is given by the
multiset Oi for 1 ≤ i ≤ n and by the set VE . Formally, the configuration of the P
colony Π is given by (w1, . . . , wn, wE), where |wi| = k, 1 ≤ i ≤ n, wi represents
all the objects placed inside the i-th agent, and wE ∈ (A−{e})◦ represents all the
objects in the environment different from the object e.

In the paper parallel model of P colonies will be studied. At each step of the
parallel computation each agent tries to find one usable program. If the number
of applicable programs are higher than one, then the agent chooses one of the rule
nondeterministically. At one step of the computation the maximal possible number
of agents are active.

Let the programs of each Pi be labeled in a one-to-one manner by labels in a
set lab (Pi) in such a way that lab (Pi) ∩ lab (Pj) = ∅ for i 6= j, 1 ≤ i, j ≤ n.

To express derivation step formally, we introduce following four functions for
the agent using the rule r of program p ∈ P with objects w in the environment:

For the rule r which is a → b, c ↔ d and c ↔ d/c′ ↔ d′ respectively, and for
multiset w ∈ V ◦ we define:

left (a→ b, w) = a
right (a→ b, w) = b
export (a→ b, w) = ε
import (a→ b, w) = ε

left (c↔ d,w) = ε
right (c↔ d,w) = ε
export (c↔ d,w) = c
import (c↔ d,w) = d

left (c↔ d/c′ ↔ d′, w) = ε
right (c↔ d/c′ ↔ d′, w) = ε
export (c↔ d/c′ ↔ d′, w) = c
import (c↔ d/c′ ↔ d′, w) = d

}
for |w|d ≥ 1

export (c↔ d/c′ ↔ d′, w) = c′

import (c↔ d/c′ ↔ d′, w) = d′

}
for |w|d = 0 and |w|d′ ≥ 1

For a program p and any α ∈ {left, right, export, import}, let be
α (p, w) = ∪r∈pα (r, w).

A transition from a configuration to another is denoted as
(w1, . . . , wn;wE)⇒ (w′1, . . . , w

′
n;w′E) , where the following conditions

are satisfied:

74 L. Cienciala, L. Ciencialová, M. Langer

• There is a set of program labels P with |P | ≤ n such that
– p, p′ ∈ P , p 6= p′, p ∈ lab (Pj) implies p′ /∈ lab (Pj),
– for each p ∈ P , p ∈ lab (Pj), left (p, wE) ∪ export (p, wE) = wj , and⋃

p∈P

import (p, wE) ⊆ wE .

• Furthermore, the chosen set P is maximal, i.e. if any other program r ∈
∪1≤i≤nlab (Pi), r /∈ P is added to P , then the conditions listed above are
not satisfied.

Now, for each j, 1 ≤ j ≤ n, for which there exists a p ∈ P with p ∈ lab (Pj),
let be w′j = right (p, wE) ∪ import (p, wE) . If there is no p ∈ P with p ∈ lab (Pj)
for some j, 1 ≤ j ≤ n, then let be w′j = wj and moreover, let be

w′E = wE −
⋃

p∈P

import (p, wE) ∪
⋃

p∈P

export (p, wE) .

A configuration is halting if the set of program labels P satisfying the conditions
above cannot vary from the empty set. A set of all possible halting configurations
is denoted by H. A halting computation can be associated with the result of the
computation. It is given by the number of copies of the special symbol f present
in the environment. The set of numbers computed by a P colony Π is defined as

N (Π) =
{
|vE |f | (w1, . . . , wn, VE)⇒∗ (v1, . . . , vn, vE) ∈ H

}
,

where (w1, . . . , wn, VE) is the initial configuration, (v1, . . . , vn, vE) is a halting
configuration, and ⇒∗ denotes the reflexive and transitive closure of ⇒.

Consider a P colony Π = (A, e, f, VE , B1, . . . , Bn). The maximal number
of programs associated with the agents in the P colony Π are called the height
of the P colony Π. The degree of the P colony Π is the number of agents in it.
The third parameter characterizing the P colony is the capacity of the P colony
Π describing the number of the objects inside each agent.

Let us use the following notations:
NPCOLpar(k, n, h) for the family of all sets of numbers computed by the P
colonies working in a parallel, using no checking rules and with:

- the capacity at most k,
- the degree at most n and
- the height at most h.

If we allow the checking rules, then the family of all sets of numbers computed by
the P colonies is denoted by NPCOLparK. If the P colonies are restricted, we use
the notation NPCOLparR, respectively NPCOLparKR.

2.2 Register machines

The aim of the paper is to characterize the size of the families NPCOLpar(k, n, h)
comparing them with the recursively enumerable sets of numbers. To meet the
target, we use the notion of a register machine.

P Colonies of Capacity One and Modularity 75

Definition 2. [9] A register machine is the construct M = (m,H, l0, lh, P) where:
- m is the number of registers,
- H is the set of instruction labels,
- l0 is the start label, lh is the final label,
- P is a finite set of instructions injectively labeled with the elements

from the set H.

The instructions of the register machine are of the following forms:
l1 : (ADD(r), l2, l3) Add 1 to the content of the register r and proceed to the

instruction (labeled with) l2 or l3.
l1 : (SUB(r), l2, l3) If the register r stores the value different from zero, then

subtract 1 from its content and go to instruction l2, other-
wise proceed to instruction l3.

lh : HALT Stop the machine. The final label lh is only assigned to this
instruction.

Without loss of generality, it can be assumed that in each ADD-instruction
l1 : (ADD(r), l2, l3) and in each conditional SUB-instruction l1 : (SUB(r), l2, l3),
the labels l1, l2, l3 are mutually distinct.

The register machine M computes a set N(M) of numbers in the following
way: the computation starts with all registers empty (hence storing the number
zero) and with the instruction labeled l0. The computation proceeds by applying
the instructions indicated by the labels (and the content of registers allows its
application). If it reaches the halt instruction, then the number stored at that
time in the register 1 is said to be computed by M and hence it is introduced
in N(M). (Because of the nondeterminism in choosing the continuation of the
computation in the case of ADD-instructions, N(M) can be an infinite set.) It is
known (see e.g.[9]) that in this way we can compute all sets of numbers which are
Turing computable.

Moreover, we call a register machine partially blind [6] if we interpret a subtract
instruction in the following way: l1 : (SUB(r); l2; l3) - if there is a value different
from zero in the register r, then subtract one from its contents and go to instruction
l2 or to instruction l3; if there is stored zero in the register r when attempting to
decrement the register r, then the program ends without yielding a result.

When the register machine reaches the final state, the result obtained in the
first register is only taken into account if the remaining registers store value zero.
The family of sets of non-negative integers generated by partially blind register
machines is denoted by NRMpb. The partially blind register machine accepts a
proper subset of NRE.

3 P colonies with one object inside the agent

In this Section we analyze the behavior of P colonies with only one object inside
each agent of P colonies. It means that each program is formed by only one rule,

76 L. Cienciala, L. Ciencialová, M. Langer

either the evolution rule or the communication rule. If all agents have their pro-
grams with the evolution rules, the agents ”live only for themselves” and do not
communicate with the environment.

Following results were proved:
– NPCOLparK(1, ∗, 7) = NRE in [1],
– NPCOLparK(1, 4, ∗) = NRE in [2],
– NPCOLpar(1, 2, ∗) = NPBRM in [2].

Theorem 1. NPCOLpar(1, 4, ∗) = NRE

Proof. We construct a P colony simulating the computation of the register ma-
chine. Because there are only copies of e in the environment and inside the agents,
we have to initialize a computation by generating the initial label l0. After gen-
erating the symbol l0, the agent stops. It can continue its activity only by using
a program with the communication rule. Two agents will cooperate in order to
simulate the ADD and SUB instructions. Let us consider an m-register machine
M = (m,H, l0, lh, P) and present the content of the register i by the number
of copies of a specific object ai in the environment. We construct the P colony

Π = (A, e, f, ∅, B1, . . . , B4) with:
– alphabet A = {li, Li, li©, li , Li ,mi,m

′
i, mi©, mi , yi, ni, | 0 ≤ i ≤ |H|}∪

∪ {ai|1 ≤ i ≤ m} ∪ {Ai
r | for every li : (SUB(r), lj , lk) ∈ H}∪

∪ {e, d, C},
– f = a1,
– Bi = (e, Pi), 1 ≤ i ≤ 4.

(1) To initialize simulation of computation of M we define the agent B1 = (e, P1)
with a set of programs:

P1 :
1 : 〈e→ l0〉 ;

(2) We need an additional agent to generate a special object d. This agent will be
working during whole computation. In each pair of steps the agent B2 places a copy
of d to the environment. This agent stops working when it consumes the symbol
which is generated by the simulation of the instruction lh from the environment.

P2 :
2 : 〈e→ d〉 , 3 : 〈d↔ e〉 , 4 : 〈d↔ lh〉 ;
The P colony Π starts its computation in the initial configuration (e, e, e, e, ε).

In the first subsequence of steps of the P colony Π only agents B1, B2 can apply
their programs.

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. e e e e 1 2
2. l0 d e e 3
3. l0 e e e d 2

P Colonies of Capacity One and Modularity 77

(3) To simulate the ADD-instruction l1 : (ADD(r), l2, l3), we define two agents
B3 and B4 in the P colony Π. These agents help each other to add a copy of
the object ar and the object l2 or l3 into the environment.
P1 P1 P3 P3

5 : 〈l1 ↔ D1〉 , 9 :
〈

l1 → L1

〉
, 13 : 〈e↔ D1〉 , 16 : 〈e↔ l1©〉 ,

6 : 〈D1 ↔ d〉 , 10 :
〈

L1 → L1

〉
, 14 :

〈
D1 → l1

〉
, 17 : 〈 l1©→ ar〉 ,

7 : 〈d→ l1©〉 , 11 : 〈L1 → l2〉 , 15 :
〈

l1 ↔ e
〉
, 18 : 〈ar ↔ e〉 ,

8 :
〈

l1©↔ l1

〉
, 12 : 〈L1 → l3〉 ,

This pair of agents generate two objects. One object increments value of the
particular register and the second one defines of which instruction will simulation
continue. One agent is not able to generate both objects corresponding to the sim-
ulation of one instruction, because at the moment of placing all of its content into
the environment via the communication rules, it does not know which instruction
it simulates. It nondeterministically chooses one of the possible instructions. Now
it is necessary to check whether the agent has chosen the right instruction. For this
purpose the second agent slightly changes first generated object. The first agent
swaps this changed object for the new one generated only if it belongs to the same
instruction. If this is not done succesfully, the computation never stops because of
absence of the halting object for the agent B2.

An instruction l1 : (ADD(r), l2, l3) is simulated by the following sequence
of steps. Let the content of the agent B2 be d.

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. l1 d e e au
rd

v 5 3
2. D1 e e e au

rd
v+1 6 2

3. d d e e D1a
u
rd

v 7 3 13
4. l1© e D1 e au

rd
v+1 2 14

5. l1© d l1 e au
rd

v+1 3 15
6. l1© e e e l1 au

rd
v+2 8 2

7. l1 d e e l1©au
rd

v+2 9 3 16
8. L1 e l1© e au

rd
v+3 10 2 17

9. L1 d ar e au
rd

v+3 11 or 12 3 18
10. l2 e e e au+1

r dv+4

(4) For each SUB-instruction l1 : (SUB(r), l2, l3) , the following programs are
introduced in the sets P1, P3 and in the set P4:

78 L. Cienciala, L. Ciencialová, M. Langer

P1 P1 P3 P3

19 : 〈l1 → D1〉 , 28 :
〈
l′1 → n1

〉
, 36 : 〈e↔ D1〉 , 45 :

〈
e↔ y1

〉
,

20 : 〈D1 ↔ d〉 , 29 :
〈
n1 ↔ m1

〉
, 37 :

〈
D1 → l1

〉
, 46 :

〈
y1 → l2

〉
,

21 : 〈d→ l1©〉 , 30 : 〈m1 → m′1〉 , 38 :
〈

l1 ↔ e
〉
, 47 : 〈l2 ↔ e〉 ,

22 :
〈

l1©↔ l1

〉
, 31 : 〈m′1 → m′′1〉 , 39 : 〈e↔ l1©〉 , 48 :

〈
e↔ n1

〉
,

23 :
〈

l1 → A1
r

〉
, 32 : 〈m′′1 → m1©〉 , 40 : 〈 l1©→ l′1〉 , 49 : 〈n1 → l3〉 ,

24 :
〈
A1

r ↔ ar

〉
, 33 : 〈m1©↔ l2〉 , 41 : 〈l′1 ↔ e〉 , 50 : 〈l3 ↔ e〉 ,

25 :
〈
A1

r ↔ l′1
〉
, 34 :

〈
m1©→ m1

〉
, 42 :

〈
e↔ A1

r

〉
,

26 :
〈
ar → y1

〉
, 35 :

〈
m1 ↔ l3

〉
, 43 :

〈
A1

r → m1

〉
,

27 :
〈
y1 ↔ m1

〉
, 44 : 〈m1 ↔ e〉 ,

Agents B1, B3 and B4 collectively check the state of particular register and
generate label of following instruction. Part of the simulation is devoted to purify
the environment from redundant objects.
P4

51 : 〈e↔ m1©〉 , 54 : 〈l′1 → e〉 ,
52 : 〈m1©→ d〉 , 55 :

〈
e↔ m1

〉
,

53 : 〈d↔ l′1〉 , 56 :
〈

m1 → e
〉
,

The instruction l1 : (SUB(r), l2, l3) is simulated by the following sequence of
steps. If the value in counter r is zero:

P Colonies of Capacity One and Modularity 79

configuration of Π applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. l1 d e e dv 19 3
2. D1 e e e dv+1 20 2
3. d d e e D1d

v 21 3 36
4. l1© e D1 e dv+1 2 37
5. l1© d l1 e dv+1 3 38
6. l1© e e e l1 dv+2 22 2
7. l1 d e e l1©dv+2 23 3 39
8. A1

r e l1© e dv+3 2 40
9. A1

r d l′1 e dv+3 3 41
10. A1

r e e e l′1d
v+4 25 2

11. l′1 d e e A1
rd

v+4 28 3 42
12. n1 e A1

r e dv+5 2 43
13. n1 d m1 e dv+5 3 44
14. n1 e e e m1d

v+6 29 2
15. m1 d e e n1d

v+6 30 3 48
16. m′1 e n1 e dv+7 31 2 49
17. m′′1 d l3 e dv+7 32 3 50
18. m1© e e e l3d

v+8 34 2
19. m1 d e e l3d

v+8 35 3
20. l3 e e e m1 dv+9 2 55
21. l3 d e m1 dv+9 3 56
22. l3 e e e dv+10 2

If the register r stores a value different from zero:

configuration of Π applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. l1 d e e au
rd

v 19 3
2. D1 e e e au

rd
v+1 20 2

3. d d e e D1a
u
rd

v 21 3 36
4. l1© e D1 e au

rd
v+1 2 37

5. l1© d l1 e au
rd

v+1 3 38
6. l1© e e e l1 au

rd
v+2 22 2

7. l1 d e e l1©au
rd

v+2 23 3 39

80 L. Cienciala, L. Ciencialová, M. Langer

configuration of Π applicable programs
step B1 B2 B3 B4 Env P1 P2 P3 P4

8. A1
r e 1© e au

rd
v+3 24 2 40

9. ar d l′1 e A1
ra

u−1
r dv+3 26 3 41

10. y1 e e e l′1A
1
ra

u−1
r dv+4 2 42

11. y1 d A1
r e l′1a

u−1
r dv+4 28 3 43

12. y1 e m1 e l′1a
u−1
r dv+5 2 44

13. y1 d e e m1l
′
1a

u−1
r dv+5 27 3

14. m1 e e e y1l
′
1a

u−1
r dv+6 30 2 45

15. m′1 d y1 e l′1a
u−1
r dv+6 31 3 46

16. m′′1 e l2 e l′1a
u−1
r dv+7 32 2 47

17. m1© d e e l2l
′
1a

u−1
r dv+7 33 3

18. l2 e e e m1©l′1a
u−1
r dv+8 2 51

19. l2 d e m1© l′1a
u−1
r dv+8 3 52

20. l2 e e d l′1a
u−1
r dv+9 2 53

21. l2 d e l′1 au−1
r dv+10 3 54

22. l2 e e e au−1
r dv+11 2

(5) The halting instruction lh is simulated by the agent B1 with a subset of pro-
grams:

P1

57 : 〈lh ↔ d〉 .
The agent places the object lh into the environment, from where it can be

consumed by the agent B2 and by this the agent B2 stops its activity.

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. lh e e e dv 57 2
2. d e d e lhd

v 4
3. d lh e e dv+1

The P colony Π correctly simulates computation of the register machine
M . The computation of Π starts with no object ar placed in the environment
in the same way as the computation of M starts with zeros in all registers.
The computation of Π stops if the symbol lh is placed inside the agent B2

in the same way as M stops by executing the halting instruction labeled lh. Conse-
quently, N(M) = N(Π) and because the number of agents equals four, the proof
is complete. ut

Theorem 2. NPCOLpar(1, ∗, 8) = NRE

Proof. We construct a P colony simulating the computation of the register ma-
chine. Because there are only copies of e in the environment and inside the agents,
we have to initialize a computation by generating the initial label l0. After gen-
erating the symbol l0 this agent stops and it can start its activity only by using

P Colonies of Capacity One and Modularity 81

a program with the communication rule. Two agents will cooperate in order to
simulate the ADD and SUB instructions.

Let us consider an m-register machine M = (m,H, l0, lh, P) and present
the content of the register i by the number of copies of a specific object ai in the en-
vironment. We construct the P colony

Π = (A, e, f, ∅, B1, . . . , Bn), n = |H|+ 2 where:
– alphabet A = {li, l′i, i′, i′′, i©, i , Di, li|0 ≤ i ≤ |H|}∪

∪ {ai|1 ≤ i ≤ m} ∪ {e, d},
– f = a1,
– Bi = (e, Pi), 1 ≤ i ≤ 4.

(1) To initialize simulation of computation of M , we define the agent B1 = (e, P1)
with a set of programs:

P1 :
1 : 〈e→ l0〉 , 2 : 〈l0 ↔ d〉 ;

(2) We need an additional agent to generate a special object d. This agent will
be working during whole computation. In each pair of steps the agent B2 places a
copy of d to the environment..

P2 :
3 : 〈e→ d〉 , 4 : 〈d↔ e〉 , 5 : 〈d↔ lh〉 ;
The P colony Π starts its computation in the initial configuration (e, e, e, e, ε).

In the first subsequence of steps of the P colony Π, only the agents B1 and B2

can apply their programs.

configuration of Π
step B1 B2 B3 B4 Env P1 P2 P3 P4

1. e e e e 1 3
2. l0 d e e 4
3. l0 e e e d 2 3
4. d e e d 4

(3) To simulate the ADD-instruction l1 : (ADD(r), l2, l3), there are two agents
Bl11

and Bl21
in the P colony Π. These agents help each other to add one copy of

the object ar and the object l2 or l3 to the environment.
Pl11

Pl11
Pl21

6 : 〈e↔ l1〉 , 10 : 〈d→ l3〉 , 13 : 〈e↔ D1〉 ,
7 : 〈l1 → D1〉 , 11 : 〈l2 ↔ e〉 , 14 : 〈D1 → ar〉 ,
8 : 〈D1 ↔ d〉 , 12 : 〈l3 ↔ e〉 , 15 : 〈ar ↔ e〉 ,
9 : 〈d→ l2〉 ,

The instruction l1 : (ADD(r), l2, l3) is simulated by the following sequence
of steps. Let the content of the agent B2 be d.

82 L. Cienciala, L. Ciencialová, M. Langer

configuration of Π
step B2 Bl11

Bl21
Env P2 P3 P4

1. d e e l1a
u
rd

v 3 6
2. e l1 e au

rd
v+1 2 7

3. d D1 e au
rd

v+1 3 8
4. e d e D1a

u
rd

v+1 2 9 or 10 13
5. d l2 D1 au

rd
v+1 3 11 14

6. e e ar l2a
u
rd

v+2 2 15
7. d e e l2a

u+1
r dv+2 3

(4) For each SUB-instruction l1 : (SUB(r), l2, l3) , the below mentioned programs
are introduced in the sets Pl11

, Pl21
, Pl31

, Pl41
and in the set Pl51

:

Pl11
Pl11

Pl21
Pl51

16 : 〈e↔ l1〉 , 19 :
〈
d→ 1

〉
, 21 : 〈e↔ D1〉 , 32 : 〈e↔ 1©〉 ,

17 : 〈l1 → D1〉 , 20 :
〈

1 ↔ e
〉
, 22 : 〈D1 → 1©〉 , 33 : 〈 1©→ 1′′〉 ,

18 : 〈D1 ↔ d〉 , 23 : 〈 1©↔ e〉 , 34 : 〈1′′ ↔ e〉 ,
Pl31

Pl31
Pl51

Pl51

24 :
〈
e↔ 1

〉
, 28 : 〈l2 ↔ e〉 , 35 : 〈e↔ 1′〉 , 39 : 〈1′′ → e〉 ,

25 :
〈

1 → 1′
〉
, 29 : 〈1′ ↔ 1′′〉 , 36 : 〈1′ → d〉 , 40 :

〈
l3 → l3

〉
,

26 : 〈1′ ↔ ar〉 , 30 :
〈
1′′ → l3

〉
, 37 : 〈d↔ 1′′〉 , 41 : 〈l3 ↔ e〉 ,

27 : 〈ar → l2〉 , 31 :
〈
l3 ↔ e

〉
, 38 :

〈
d↔ l3

〉
,

The instruction l1 : (SUB(r), l2, l3) is simulated by the following sequence of
steps.

If the register r stores a value different from zero, then the computation pro-
ceeds as follows (we do not consider the number of copies of the object d in the
environment):

configuration of Π applicable programs
step Bl11

Bl21
Bl31

Bl41
Bl51

Env Pl11
Pl21

Pl31
Pl41

Pl51

1. e e e e e l1a
u
rd

v 16
2. l1 e e e e au

rd
v 17

3. D1 e e e e au
rd

v 18
4. d e e e e D1a

u
rd

v−1 19 21
5. 1 D1 e e e au

rd
v−1 20 22

6. e 1© e e e 1 au
rd

v−1 23 24
7. e e 1 e e 1©au

rd
v−1 25 32

8. e e 1′ 1© e au
rd

v−1 26 33
9. e e ar 1′′ e 1′au−1

r dv−1 27 34 35
10. e e l2 e 1′ 1′′au−1

r dv−1 28 36
11. e e e e d l21′′au−1

r dv−1 37
12. e e e e 1′′ l2a

u−1
r dv 39

13. e e e e e l2a
u−1
r dv

P Colonies of Capacity One and Modularity 83

From the 12th step the agent Bl12
starts to work and consumes the object l2.

We do not notice this fact in the table.
When the value in the counter r is zero:

configuration of Π applicable programs
step Bl11

Bl21
Bl31

Bl41
Bl51

Env Pl11
Pl21

Pl31
Pl41

Pl41

1. e e e e e l1d
v 16

2. l1 e e e e dv 17
3. D1 e e e e dv 18
4. d e e e e D1d

v−1 19 21
5. 1 D1 e e e dv−1 20 22
6. e 1© e e e 1 dv−1 23 24
7. e e 1 e e 1©dv−1 25 32
8. e e 1′ 1© e dv−1 33
9. e e 1′ 1′′ e dv−1 34
10. e e 1′ e e 1′′dv−1 29
11. e e 1′′ e e 1′dv−1 30 35
12. e e l3 e 1′ dv−1 31 36
13. e e e e d l3d

v−1 38
14. e e e e l3 dv 40
15. e e e e l3 dv 41
16. e e e e e l3d

v

(5) The halting instruction lh is simulated by agent B2 which consumes the object
lh and that stops the computation.

The P colony Π correctly simulates the computation of the register machine
M . The computation of the Π starts with no object ar, which indicates the content
of the register r, placed in the environment, in the same way as the computation in
the register machine M starts with zeros in all registers. Then the agents simulate
the computation by simulating ADD and SUB instructions. The computation of
the P colony Π stops if the symbol lh is placed inside the corresponding agent as
well as the register machine M stops by executing the halting instruction labeled
lh. Consequently, N(M) = N(Π) and because the number of agents equals four,
the proof is complete.

ut

4 Modularity in the terms of P colonies

During the evolution unicellular organisms have evolved into multicellular. Some
cells specialized their activities for the particular function and have to cooperate
with other specialized cells to be alive. In that way the organs have evolved and
living organisms have become more complex. But the cooperating organs and
more complex living organisms are more sophisticated, live longer and their life is
improving.

84 L. Cienciala, L. Ciencialová, M. Langer

From the previous section we can observe that some agents in the P colonies are
providing the same function during the computation. This inspired us to introduce
the modules in the P colonies. We have defined five modules, where each of them is
providing one specific function. These modules are the module for the duplication,
the module for the addition, the module for the subtraction, the balance-wheel
module, the control module (see Fig. 1). Definition of each module’s function is
given in the proof of following theorem.

Controlmodule

Watch balance

Duplication module

Subtractionmodule

Additionmodule registers

Fig. 1. Modular P colony

Theorem 3. NPCOLpar(1, 8, ∗) = NRE.

Proof. Let us consider a register machine M with m registers. We construct
the P colony Π = (A, e, f, VE , B1, B2) simulating a computation of the register
machine M with:

- A = {J, J ′, V,Q} ∪ {li, l′i, l′′i , Li, L
′
i, L
′′
i , Ei | li ∈ H} ∪ {ar | 1 ≤ r ≤ m},

- f = a1,
- Bi = (Oi, Pi), Oi = {e}, i = 1, 2

We can group the agents of the P colony into five modules. Each module needs
for its work an imput and requires some objects. The result of its computation is
an output:
(1) module for the duplication (uses 2 agents):

P Colonies of Capacity One and Modularity 85

P1 : P2 :

1 : 〈e→ Di〉 , 8 :
〈
e↔ Di

〉
,

2 :
〈
Di → Di

〉
, 9 :

〈
Di → i′

〉
,

3 :
〈

Di ↔ d
〉
, 10 : 〈i′ ↔ e〉 ,

4 :
〈
d→ i

〉
, 11 :

〈
e↔ i

〉
,

5 :
〈

i ↔ i′
〉
, 12 :

〈
i → i©〉

,
6 : 〈i′ → i〉 , 13 : 〈 i©↔ e〉 .
7 : 〈i↔ e〉 ,
Duplicating module is activated when the object Di appears in the environment.
This object carries a message ”Duplicate object i.”.

input: one object Di

output: one object i after 10 steps and one object i© after 11 steps
requirements: one object d

configuration of Π

B1 B2 Env P1 P2

1. e e dDi 1 −
2. Di e d 2 −
3. Di e d 3 −
4. d e Di 4 8
5. i Di − 9
6. i i′ − 10
7. i e i′ 5 −
8. i′ e i 6 11
9. i i 7 12
10. e i© i − 13
11. e e i©i − −

Duplicating module duplicates requested object.
(2) module for the addition (uses 1 agent):

P1 :
1 : 〈e↔ Ar〉 ,
2 : 〈Ar → ar〉 ,
3 : 〈ar ↔ e〉 .
input: one object Ar

output: one object ar after 4 steps
requirements: ∅

configuration of Π

B1 Env P1

1. e Ar 1
2. Ar 2
3. ar 3
4. e ar −

86 L. Cienciala, L. Ciencialová, M. Langer

Module for the addition adds one symbol into the environment.
(3) module for the subtraction (uses 3 agents):

P1 : P2 : P3 :
1 : 〈e↔ Sr〉 , 11 : 〈e↔ Br©〉 , 19 : 〈e↔ y′〉 ,
2 : 〈Sr → DBr

〉 , 12 : 〈Br©→ B′
r©〉 , 20 : 〈y′ → y〉 ,

3 : 〈DBr ↔ d〉 , 13 : 〈B′
r©↔ ar〉 21 : 〈y ↔ B′r〉 ,

4 : 〈d↔ Br〉 , 14 : 〈B′
r©↔ B′r〉 22 : 〈B′r → e〉 ,

P1 : P2 : P3 :
5 : 〈Br → Br〉 , 15 : 〈ar → y′〉
6 :

〈
Br → Br

〉
, 16 : 〈B′r → n〉

7 :
〈
Br → B′r

〉
, 17 : 〈y′ ↔ e〉

8 : 〈B′r ↔ d〉 , 18 : 〈n↔ e〉
9 : 〈d↔ B′

r©〉 ,
10 : 〈B′

r©→ e〉 ,
input: one object Br

output: one object y after 23 steps or one object n after 22 steps
requirements: two objects d, object ar (if there is at least one in the en-

vironment)
uses: duplication module

configuration of Π

B1 B2 B3 Env P1 P2 P3

1. e e e Srard 1 − −
2. Sr e e ard 2 − −
3. DBr

e e ard 3 − −
4. d e e arDBr

− − −
waiting for objects from duplication unit

14. d e e arBr 4 − −
15. Br e e ar Br© 5 11 −
16. Br Br© e ar 6 12 −
17. Br B′

r© e ar 7 13 −
18. B′r ar e B′

r© 8 15 −
19. d y′ e B′

r©B′r 9 17 −
20. B′

r© e e y′B′r 10 − 19
21. e e y′ B′r − − 20
22. e e y B′r − − 21
23. e e B′r y − − 22
24. e e e y − − −

P Colonies of Capacity One and Modularity 87

configuration of Π

B1 B2 B3 Env P1 P2 P3

1. e e e Srd 1 − −
2. Sr e e d 2 − −
3. DBr e e d 3 − −
4. d e e DBr

− − −
waiting for objects from duplication unit

14. d e e Br 4 − −
15. Br e e Br© 5 11 −
16. Br Br© e 6 12 −
17. Br B′

r© e 7 − −
18. B′r B′

r© e 8 − −
19. d B′

r© e B′r − 14 −
20. d B′r e B′

r© 9 16 −
21. B′

r© n e 10 − −
22. e e e n − − −

Module for the subtraction removes requested object from the environment.
(4) Balance-wheel module (uses 1 agent):
P1 :
1 : 〈e→ d〉
2 : 〈d↔ e〉
3 : 〈d↔ f©〉
The balance-wheel module ”keeps the computation alive”. It inserts the objects

d into the environment until it consumes a special symbol f© from the environ-
ment. This action makes it stop working. The object f© gets into the environment
from the duplicating module which is activated by the simulation of the halt in-
struction by the control module.

(5) Control module (uses 2 agents):
a) initialization:
P1 :
1 : 〈e→ l0〉
First agent in this module generates label of the first instruction of the register

machine.
b) adding instruction l1 : (ADD(r), l2, l3):
P1 : notes
1 : 〈l1 → D1〉 ,
2 : 〈D1 ↔ d〉 , −→ Duplication module
3 : 〈d↔ 1〉 , ←− Duplication module
4 : 〈1→ Br〉 ,

5 : 〈Br ↔ 1©〉 , ←− Duplication module
−→ Addition module

6 : 〈 1©→ l2〉 ,
7 : 〈 1©→ l3〉 ,

88 L. Cienciala, L. Ciencialová, M. Langer

configuration of Π

B1 B2 Env P1 P2

1. l1 e d 1 −
2. D1 e d 2 −
3. d e D1 − −

waiting for response of duplication unit
13. d e 1 3 −
14. 1 e d 1© 4 −
15. Br e d 1© 5 −
16. 1© e Br 6 or 7 −
17. l2 e d − −

c) subtracting instruction l1 : (SUB(r), l2, l3):
P1 : notes P2 :
1 : 〈l1 → D1〉 , 16 : 〈e↔ L1〉 ,
2 : 〈D1 ↔ d〉 , −→ Duplication module 17 :

〈
L1 → L1

〉
,

3 : 〈d↔ 1〉 , ←− Duplication module 18 :
〈

L1 ↔ e
〉
,

4 : 〈1→ Sr〉 , 19 : 〈e↔ L′1〉 ,

5 : 〈Sr ↔ 1©〉 , ←− Duplication module
−→ Subtraction module 20 : 〈 e↔ L′′1〉 ,

6 : 〈 1©→ L1〉 , 21 : 〈L′1 → l2〉 ,
7 : 〈L1 ↔ y〉 , ←− Subtraction module 22 : 〈L′′1 → l3〉 ,
8 : 〈L1 ↔ n〉 , ←− Subtraction module 23 : 〈l2 ↔ e〉 ,
9 : 〈y → L′1〉 , 24 : 〈l3 ↔ e〉 ,
10 : 〈n→ L′′1〉 ,
11 :

〈
L′1 ↔ L1

〉
,

12 :
〈
L′′1 ↔ L1

〉
,

13 :
〈

L1 → d
〉
,

14 : 〈d↔ l2〉 ,
15 : 〈d↔ l3〉 ,

configuration of Π

B1 B2 Env P1 P2

1. l1 e d 1 −
2. D1 e d 2 −
3. d e D1 − −

waiting for response of duplication module
13. d e 1 3 −
14. 1 e d 1© 4 −
15. Sr e d 1© 5 −
16. 1© e Sr 6 −
17. L1 e d − −

waiting for response of subtraction module

P Colonies of Capacity One and Modularity 89

If subtraction module generates y
configuration of Π

B1 B2 Env P1 P2

49. L1 e y 7 −
50. y e L1 9 16
51. L′1 L1 − 17
52. L′1 L1 − 18
53. L′1 e L1 11 −
54. L1 e L′1 13 19
55. d L′1 − 21
56. d l2 − 23
57. d e l2 14 −
58. l2 e d − −

If subtraction module generates n
configuration of Π

B1 B2 Env P1 P2

48. L1 e n 8 −
49. n e L1 10 16
50. L′′1 L1 − 17
51. L′′1 L1 − 18
52. L′′1 e L1 12 −
53. L1 e L′′1 13 20
54. d L′′1 − 22
55. d l3 − 24
56. d e l3 15 −
57. l3 e d − −

d) halting instruction lh:
P1 :
1 : 〈lf → Df 〉
2 : 〈Df ↔ d〉 −→ Duplication module
3 : 〈d↔ f〉 ←− Duplication module
Control module controls all the computation. It sends necessary objects into

the environment for the work of the other modules.
The P colony Π correctly simulates any computation of the register machine

M . ut

5 Conclusion

We have proved that the P colonies with capacity k = 2 and without checking
programs with height at most 2 are computationally complete. In Section 3 we
have shown that the P colonies with capacity k = 1 and with checking/evolution
programs and 4 agents are computationally complete.

90 L. Cienciala, L. Ciencialová, M. Langer

We have also verified that partially blind register machines can be simulated
by P colonies with capacity k = 1 without checking programs with two agents.
The generative power of NPCOLparK(1, n, ∗) for n = 2, 3 remains open.

In Section 4 we have studied P colonies with capacity k = 2 without checking
programs. Two agents guarantee the computational completeness in this case.

Remark 1. This work has been supported by the Grant Agency of the Czech Re-
public grants No. 201/06/0567 and SGS/5/2010.

References

1. Ciencialová, L., Cienciala, L.: Variations on the theme: P Colonies, Proceedings of the
1st International workshop WFM’06 (Kolář, D., Meduna, A., eds.), Ostrava, 2006, pp.
27–34.

2. Ciencialová, L. Cienciala, L., Kelemenová, A.: On the number of agents in P colonies,
In G. Eleftherakis, P. Kefalas, and G. Paun (eds.), Proceedings of the 8th Workshop
on Membrane Computing (WMC’07), June 25-28, Thessaloniki, Greece, 2007, pp. 227–
242.

3. Csuhaj-Varjú, E., Kelemen, J., Kelemenová, A., Păun, Gh., Vaszil, G.: Cells in en-
vironment: P colonies, Multiple-valued Logic and Soft Computing, 12, 3-4, 2006, pp.
201–215.

4. Csuhaj-Varjú, E., Margenstern, M., Vaszil, G.: P Colonies with a bounded number
of cells and programs. Pre-Proceedings of the 7th Workshop on Membrane Computing
(H. J. Hoogeboom, Gh. Păun, G. Rozenberg, eds.), Leiden, The Netherlands, 2006,
pp. 311–322.

5. Freund, R., Oswald, M.: P colonies working in the maximally parallel and in the se-
quential mode. Pre-Proceedings of the 1st International Workshop on Theory and
Application of P Systems (G. Ciobanu, Gh. Păun, eds.), Timisoara, Romania, 2005,
pp. 49–56.

6. Greibach, S. A.: Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science, 7(1), 1978, pp. 311–324.

7. Kelemen, J., Kelemenová, A.: On P colonies, a biochemically inspired model of compu-
tation. Proc. of the 6th International Symposium of Hungarian Researchers on Com-
putational Intelligence, Budapest TECH, Hungary, 2005, pp. 40–56.

8. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: A biochemically in-
spired computing model. Workshop and Tutorial Proceedings, Ninth International Con-
ference on the Simulation and Synthesis of Living Systems, ALIFE IX (M. Bedau at
al., eds.) Boston, Mass., 2004, pp. 82–86.

9. Minsky, M. L.: Computation: Finite and Infinite Machines. Prentice Hall, Engle-wood
Cliffs, NJ, 1967.

10. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61, 2000, pp. 108–143.

11. Păun, Gh.: Membrane computing: An introduction. Springer-Verlag, Berlin, 2002.
12. Păun, Gh., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-

puting, Oxford University Press, 2009.
13. P systems web page: http://psystems.disco.unimib.it

A New P System to Model the Subalpine and
Alpine Plant Communities

Maria Angels Colomer1, Cristian Fondevilla1, and Luis Valencia-Cabrera2

1 Dpt. of Mathematics, University of Lleida
Av. Alcalde Rovira Roure, 191. 25198 Lleida, Spain
{colomer,cfondevilla}@matematica.udl.cat

2 Research Group on Natural Computing
Dpt. of Computer Science and Artificial Intelligence, University of Sevilla
Avda. Reina Mercedes s/n. 41012 Sevilla, Spain
lvalencia@us.es

Summary. In this work we present a P system based model of the ecosystem dynamics of
plant communities. It is applied to four National Hunting Reservoirs in Catalan Pyrenees
(Spain). In previous works several natural high- mountain- ecosystems and population
dynamics were modeled, but in those works grass was considered unlimited and changes
in plant communities were not taken into account. In our new model we take advantage
of the modularity of P systems, adding the plant communities to an existing model on
scavengers dynamics [6]. We introduce the plant community production and two possible
changes or evolutions in communities: (1) due to less grazing pressure, and (2) due to
recovering pastures with human management as for example fire or clearing.

1 Introduction

Everyday the knowledge on the functioning of biological processes and involved
variables gain more importance. It is interesting to model this acquired knowledge
through parallel independent work, defining a model as close to reality as possible,
allowing to simulate behavioural processes in different possible scenarios.

Natural processes have a great complexity, because each biological process
involves a large number of variables and their interactions, so that modelling
ecosystems is not a simple task [5]. Classical models such as differential equa-
tions present several limitations. Most of all they cannot consider simultaneously
multiple species and their interactions. The most frequently used models are viabi-
lity models or multi-agent models, that do not allow the study of different species
with their interactions. In the work at hand, we make use of bio-inspired models,
called P systems, which could serve as an alternative to the multi-agent models,
having in mind that in the case of the P systems the evolution rules cannot be
expressed mathematically.

92 M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera

The use of P systems to model these natural processes has important advan-
tages, such as the modularity (P systems can be composed of modules, which make
it easier to modify and improve existing models). Another important characteristic
of P systems is their ability to work parallel. Also, because strictly mathematical
expressions are not required, there is no limitation to the number of variables.
These characteristics make P systems very helpful for modelling complex ecosys-
tems [6]. Their problem is, just like for every complex model, the necessity to hold
an extensive set of experimental data to be successful. The more complex is the
process to study, the more knowledge is needed. For this reason it is required to
work with interdisciplinary teams of experts.

P systems are very useful to model natural ecosystems. Their properties make
them very attractive for modelling complex ecosystems. Recently some works that
model ecosystems using P Systems have been published [3, 4, 6]. In these works
models focusing on animal population dynamics were presented. They model nat-
ural processes as feeding, grazing, reproduction and mortality. The food source is
grass for ungulate species and meat or bones for avian scavengers.

In the present work, the amount of grass available for grazing is not a fixed
value, as it was in previous ones. It depends of a large number of factors and fur-
thermore of the existence of plant communities which evolve due to their manage-
ment. The aim is to define new modules, which are incorporated into the model
presented for the avian scavengers [6]. These modules operate parallel with the
modules of the existent scavengers model.

We have developed a model in which different plant communities produce an
amount of grass, in function on climate variables. In addition the plant communi-
ties can change and evolve over time due to changes in biotic or abiotic processes.
Generally the abiotic processes occur in higher altitudes, and are not sufficiently
known to be understood and to be modelled. The biotic processes play a more
important role, causing changes in plant communities, in particular due to the
grazing management.

2 Alpine and Subalpine Plant Communities

In the plant-geographic sense alpine life zone exclusively encompasses vegetation
above the natural high altitude treeline [10]. In our work we also consider the
subalpine life zone above the actual treeline. Both zones can be defined as man
made pastures for summer grazing above the actual treeline.

The Phytosociology is the science that analyses and characterises the different
levels of plant associations called formally ”Plant Communities”. These communi-
ties are divided into classes, these consist of orders, these of alliances and the latter
of associations. The alliance level was chosen as the focus of this work, because of
its better availability of information.

In high altitude zones the vegetation activity does not occur throughout
the whole year, but is concentrated in the months in which the conditions are

Modeling the Subalpine and Alpine Plant Communities 93

favourable. Thus, the growing season, is the part of the year when the vegetation
is active and productive [10].

2.1 Communities production

Production is the amount of new biomass accumulation over a longer period of
time.[10].

There are many methods to quantify the aerial net primary production (ANP)
in grasslands; Singh et al. [15] provide in their work a list of exhaustive methods
that have applied in the following several authors [8, 11]. In the present work we
have chosen the method defined as peak standing crop of current live material plus
recent dead, because it is the most commonly used and allows comparisons. This
method includes the estimate of ANP, the peak community biomass (weight of the
live vegetation) plus the weight of current season’s growth which has reached the
senescence before the date of peak live biomass [15].

2.2 Grassland dynamics. Plant Communities changes

This concept refers to changes over time of grassland structures and the replace-
ment of some plant communities by others in relation to the variation of envi-
ronmental factors, including animal grazing and human management [9]. Thus,
grasslands are not static, but they evolve and transform over time due to abiotic
and biotic factors. In our current work we analyse two changes in plant alliances:
(1) the evolution due to less grazing pressure and, the inverse case, (2) the evolu-
tion due to recovering pastures with human management. However there are many
other possible changes to treat. The observation and the study of these changes,
some of which are still quite unknown [9], give the model wide possibilities for
future research.

There are two different types of changes in plant communities: biotic and abi-
otic processes. The two situations taken into consideration in our work are located
within the second group, inside the landscape changes due to anthropic manage-
ment below 2000 meters.

Some plant communities, represented here by plant alliances, are not stable, but
were created thanks to the use of these surfaces by cattle. Thus, very important
ecological communities with a high degree of biodiversity have emerged. They
increase the visual quality of landscape, without forgetting its significance for
animal grazing, both domestic and wild. Therefore its protection, conservation
and study are of importance.

Changes due to less grazing pressure are the most important ones that occur in
our days in alpine and subalpine ecosystems, upper 1500 meters. Nowadays exist
less domestic animals that exploit these grasslands, or in other words the currently
carrying capacity is higher than the real number of animals.

In this case the grassland evolves first to a bush land and then to a conif-
erous forest (i.e. Class. Vaccinio-Piceetea Br.-Bl. in Br.-Bl., Sissingh & Vlieger

94 M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera

1939). In this first version of our work only the transformation from grassland (Al.
Bromion erecti Koch 1926) to scrubland (Al. Juniperion nanae Br.-Bl. et al. 1939)
is introduced into the model.

The alliance Bromion erecti can be defined as Pyrenean meso-xerophytic grass-
land; and Juniperion nanae as Alpine-Pyrenean dwarfed shrub and heaths of wind-
swept places without long snow cover and sunny expositions [14].

The evolution of the vegetation due to human management to recover grass-
lands (e.g. fire, clearing) is the opposite of the previous case occurred due a low
livestock pressure. In this processes the shrub Juniperion nanae evolve to the
grassland Bromion erecti. The most likely cause is the controlled burning of these
areas for grazing.

3 Materials and methods

The National Hunting Reserves of Catalonia (Spain) (NHR) are geographically
defined territories, with special characteristics, declared to promote, preserve and
protect native fauna species. They are located in mountainous areas with high
ecological and landscape quality. In these areas exists a very important wildlife
fauna, including some species of great significance for hunting. In this work we
have chosen the four National hunting reserves placed in the Catalan Pyrenees:
Alt Pallars-Aran (106.661 ha), Cerdanya-Alt Urgell (19.003 ha), Cad́ı (48.449 ha)
and Freser-Setcases (20.200 ha) (data provided by [12], see figure 1). Over the
centuries, these alpine and subalpine zones have been exploited by man to feed
their herds, sheep, cows and mares and themselves, and their management has
contributed to the landscape transformation. The Pyrenean orography presents
altitudinal zones between 1000 and 3000 m but we use only the higher zones
between 1500 and 3000 m, occupied mostly by grass.

In the Pyrenean region, the level of annual rainfall ranges from 800 to 1200 mm
and the maximum average temperatures do not exceed 25 � in summer and do not
fall under 5 � in winter. To characterise it, we provide a series of temperatures
and precipitation obtained from different weather stations located in the study
area provided by the Meteorological Service of Catalonia.

To model the high mountain ecosystem as correctly as possible, we have sepa-
rated our range (from 1500 to 3000 meters) into three different zones in function
of their height due to their different climatic and orographic characteristics, that
define which plant communities are established in each range. As a result we have
defined a low altitude zone (from 1500 to 2000 m), an intermediate zone (from
2000 to 2500 m) and an upper zone (more than 2500 m). The first and the second
range zone can be considered as low and high subalpine zones, while the third is
alpine altitudinal range. This distinction is related to different plant communities
available in each range, their primary production and the different length of their
seasonal growing periods, as the growing season in low ranges is longer than in the
high one.

Modeling the Subalpine and Alpine Plant Communities 95

Fig. 1. Study area in the Catalan Pyrenees. Area 1: National Hunting Reservoir in
l’Alt Pallars-Aran. Area 2: RNC Cerdanya-Alt Urgell. Area 3: RNC Cad́ı. Area 4 RNC:
Freser-Setcases. Area 5: National Park, not include in the study.

Based on vegetation maps available [7], we defined the areas corresponding
to the four National Hunting Reserves (RNC) and areas with an altitude below
1.500 meters were eliminated. As a result, we get the entire area bounded by
the RNC situated above 1.500 meters, corresponding to the subalpine and alpine
biogeographic regions.

In the present work we have identified a total of 26 different plant alliances (ta-
ble 1). Each plant alliance is associated to an average production and a standard
deviation [2, 1, 8, 11]. Each Natural Hunting Reservoir has a determinate surface
at each altitude level, obtained from vegetation maps at scale 1:50000 [7].

The plant community production depends on:

� Type of plant community; in this work we focus on the alliance level.
� Weather, that determine the community production and the length of the grow-

ing season.
� Altitude, closely related to the previous concept. At higher altitudes, we have

lower temperatures and shorter growing season.

An important variable is the length of the growing season. It is determined by
climate and elevation. The beginning of the growing season is defined by means
of the thermal integral, being the starting day of this period, for each altitudinal

96 M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera

range, in which the sum of positive daily temperatures from the beginning of the
year exceed 300 �. The end of the period is set from the consulted references [11].

Table 1. The 26 alpine and subalpine plant communities (at alliance level) defined in our
model, their primary production (g ·m−2 · day−1) and their standard deviation [2, 1, 11]
and their altitude range [9].* These alliances are assimilated to other similar alliances.
** Shrub community, not available for grazing.

Plant community Production Standard deviation Altitude

Al.Aphyllantion * * Low

Al.Arabidion caeruleae * * Medium, High

Al.Arrhenatherion-Bromion 4,322 0,395 Low

Al.Arrhenatherion 1 7,253 0,662 Low

Al.Arrhenatherion 2 4,403 0,402 Low

Al.Arrhenatherion 3 3,529 0,322 Low

Al.Bromion erecti 4,026 0,368 Low, Medium

Al.Bromion-Nardion 4,026 0,410 Low, Medium

Al.Caricion davallinae * * Low, Medium

Al.Caricion nigrae 2,966 0,271 Low, Medium

Al.Cynosurion cristati 2,292 0,209 Low

Al.Elyonion myosuroidis 1,750 0,160 Medium, High

Al.Festuca panniculata 3,895 0,356 Low, Medium

Al.Festucion airoidis * * Medium, High

Al.Festucion eskiae 4,538 0,414 Low, Medium, High

Al.Festucion scopariae 0,967 0,088 Low, Medium, High

Al.Juniperion nannae ** ** Low

Al.Nardion strictae 3,091 0,282 Low, Medium

Al.Ononidion striatae 4,028 0,368 Low, Medium

Al.Polygonion avicularis 3,266 0,298 Low, Medium

Al.Primulion intricatae 2,472 0,226 Low, Medium

Al.Rumicion pseudoalpini 3,26 0,298 Low, Medium

Al.Salicion herbaceae 1,292 0,118 Medium, High

Al.Saponarion cespitosae * * Low, Medium, High

Cl.Thlaspietea rotundifolii 0,041 0,004 Low, Medium, High

Al.Triseto-Polygonion 2,795 0,255 Low, Medium

4 A P System Based modeling framework

In this section, we define a P system based framework where additional features,
such as probabilistic functions and three electrical charges that better describe
specific properties, are used.

A skeleton of an extended P system with active membranes of degree
q ≤ 1, Π = (Γ, µ,R), can be viewed as a set of (polarised) membranes hierar-
chised by a structure of membranes µ (a rooted tree) labeled by 0, 1, . . . , q− 1. All

Modeling the Subalpine and Alpine Plant Communities 97

membranes in µ are supposed to be (initially) neutral and they have associated
with them R, a finite set of evolution rules of the form u[v]αi → u′[v′]βi that can
modify their polarisation but not their label. Γ is an alphabet that represents the
objects (i.e., animals, plant alliances, etc., see Fig. 3).

A probabilistic functional extended P system with active membranes of degree
q ≤ 1 taking T time units, Π = (Γ, µ,R, T, {fr : r ∈ R},M0, . . . ,Mq−1), can be
viewed as a skeleton (Π,µ,R) with the membranes hierarchized by the structure
µ labeled by 0, 1, . . . , q − 1. T is a natural number that represents the simulation
time of the system. For each rule r ∈ R and a, 1 ≤ a ≤ T, fr(a) is a whole number
between 0 and 1, which represents a probabilistic constant associated with rule r

at moment a. In a generic way, we denote r : u[v]αi
fr(a)→ u′[v′]α

′

i .
The tuple of multisets of objects present at any moment in the q regions of

the system constitutes the configuration of the system at that moment. The tuple
(M0, , . . . ,Mq−1) is the initial configuration of Π.

The P system can pass from one configuration to another by using the rules
from R as follows:

� A rule r : u[v]αi
fr(a)→ u′[v′]α

′

i is applicable to a membrane labeled by i, and with
α as electrical charge if multiset u is contained in the membrane immediately
outside of membrane i, it is to say membrane father of membrane i, and multiset
v is contained in the membrane labeled by i having α as electrical charge. When
that rule is applied, multiset u (respectively v) in the father of membrane i
(respectively in membrane i) is removed from that membrane, and multiset u′

(respectively v′) is produced in that membrane, changing its electrical charge
to α′.

� M(Γ) is the set formed by the multisets of Γ . If u, v ∈M(Γ), i ∈ {0, . . . , q−1},
α ∈ {0,+,−} and r1, . . . rz are the rules applicable whose left-hand side is
u[v]αi at given moment a, then it should be verified that fr1(a) + · · ·+frz(a) =
1, and the rules will be applied according to the corresponding probabilities
fr1(a), . . . , frz(a).

A multienvironment functional probabilistic P system with active membranes
of degree (q,m) with q ≥ 1, m ≥ 1, taking T time units T ≥ 1.
(G,Γ,Σ,RE , Π, {fr,j : r ∈ RΠ , 1 ≤ j ≤ m}, {Mi,j : 0 ≤ i ≤ q − 1, 1 ≤ j ≤ m})

can be viewed as a set of m environments e− 1, . . . , em linked by the arcs from
the directed graph G. Each environment ej contains a probabilistic functional
extended P system with active membranes of degree q, Π = (Γ, µ,R, T, {fr,j ∈
RΠ , 1 ≤ j ≤ m},Mi,j : 0 ≤ i ≤ q − 1, 1 ≤ j ≤ m) each of them with the
same skeleton, Π = (Γ, µ,R), and such that M0j , . . . ,Mq−1j describes their initial
multisets. Σ is an alphabet that represents the objects of Γ that can be present
in the different environments.

The communication rule between environments in RE are of the form re :
(x)ej

px,j,k→ (y)ek, and for each x ∈ Σ, 1 ≤ j ≤ m, 1 ≤ a ≤ T , it verifies∑
Px,j,k(a) = 1. When a rule of this type is applied the object x moves from

98 M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera

environment ej to environment ek converted into y, according to the probability
pj,k.

We assume that a global clock exists, marking the time for the whole system
(for its compartments), that is, all membranes and the application of all rules are
synchronized. In the P systems, a configuration consists of multisets of objects
present in the m environments and at each of the regions of the P systems located
in the environment.

The P system can pass from one configuration to another by using the rules
from R = RE ∪

⋃m
j=1 as follows: at each transition step, the rules to be applied are

selected according to the probabilities assigned to them, and all applicable rules
are simultaneously applied and all occurrences of the left-hand side of the rules
are consumed, as usual.

5 Model

In order to model this ecosystem we use a multienvironment functional probabilistic
P system with active membranes of degree (5,5) (five membranes and five environ-
ments), taking T time units (simulation years). We model the population dynamics
of 13 animal species (N = 13) with 26 different plant communities (NA = 26) in
5 different environments (E = 5).

(G,Γ,Σ,RE , Π, {fr,j : r ∈ RΠ , 1 ≤ j ≤ 5}, {Mi,j : 0 ≤ i ≤ 4, 1 ≤ j ≤ 5})
We have 5 environments, 4 of them associated to a each National Hunting

Reservoir and a fifth environment, in which occur the processes under a lack of
resources.

Where:

1. The graph of the system is G = (φ) because, in this case, there are no animal
movements between environments.

2. The membrane structure is
µ = [[]1[]2[]3[]4]0
The first three membranes are associated with the altitude: low, medium and
high altitudinal ranges.
The initial configuration is:

Environment : {T,R}
Membranes : M0 = {P0, dm,i : 1 ≤ m ≤ 3, 1 ≤ i ≤ N},

Mi = {Xij , Av, U, ρ0, β : 1 ≤ i ≤ N, 0 ≤ j ≤ gi,6, 1 ≤ v ≤ NA}

3. The working alphabet of the P system is

Modeling the Subalpine and Alpine Plant Communities 99

Γ = {Xij , Yij , Zij , Z′mij , Z′′kmij ,WNmij , Vkmij , V
′
mij ,W

′
kmij :

1 ≤ i ≤ N, 0 ≤ j ≤ gi,6, 1 ≤ k ≤ E, 1 ≤ m ≤ 3} ∪
{dmi, ai, ei, e′mi, a′mi, a′′kmi : 1 ≤ i ≤ N, 1 ≤ m ≤ 3, 1 ≤ k ≤ E} ∪
{Av, Gv, G′mv, G′′kmv : 1 ≤ v ≤ NA, 1 ≤ m ≤ 3, 1 ≤ k ≤ E} ∪ {U, β, γ, α} ∪
{Di, Hi, Ci : 1 ≤ i ≤ N} ∪
{B,B′m, B′km,M,M ′m,M

′
km : 1 ≤ m ≤ 3, 1 ≤ k ≤ E} ∪

{Pi, ρi : 0 ≤ i ≤ 15}

Objects Xij , Yij , Zij , Z
′
mij , Z

′′
kmij , WNmij , Vkmij , V

′
mij , W

′
kmij represent the same

animal but in different states. Objects B, B′i, B
′′
km and Hi, represent bones, and

M , M ′i , M
′′
km and Ci represent meat left by specie i. By the objects di, ai, a

′
mi,

a′kmi, ei and e′mi is controlled the maximum number of animals per species in the
ecosystem. Di is an object used to count the existing animals of specie i. If a species
overcomes the maximum density values, it will be regulated. In all these objects
index i is associated with the type of animal, index j is associated with the age, and
gi,6 is the average life expectancy, k is the environment and m the altitudinal range.
Av is a surface unit of the alliance v and Gv, G′′vm, G′′kmv is the amount of grass
produced per hectare by alliance (Av) in each altitudinal range m and environment
k. U is an object used to control the carrying capacity, and objects β, α and γ are
used to determine the grazing pressure level in the environment. At the end, objects
Pi and ρi are counters that allow the synchronization of the P system. Necessary
parameters introduced into the model to model the plant communities’ dynamics,
is given in table 2. The parameters related to animal dynamics can be consulted in
Colomer et al. [6].

4. The environment alphabet is

Σ = {R, T} ∪ {T ′k,j , R′k,s, Nj,s : 1 ≤ k ≤ E, 1 ≤ j ≤ 100, 1 ≤ s ≤ 100} ∪
{G′m,v, G′′k,m,v : 1 ≤ k ≤ E, 1 ≤ m ≤ 3, 1 ≤ v ≤ NA} ∪
{B′m, B′′k,m,M ′m,M ′′k,m : 1 ≤ k ≤ E, 1 ≤ m ≤ 3} ∪
{a′m,i, a′′k,m,i, Z′m,i,j , Z′′k,m,i,j : 1 ≤ k ≤ E, 1 ≤ m ≤ 3, 1 ≤ i ≤ N, 0 ≤ j ≤ gi,6}.

T and R are objects that include the climatic variability, T for the length of the
growing season and R for the production of plant communities. The object N carries
both information. All other objects belong to Γ and have been discussed in the
respective sections.

5. The set RE and RΠ is presented in the Appendix.

The model is structured in 8 modules, the scheme appears in the figure 2 and
the details of rules in the Appendix. In the following the different modules are
described.

5.1 Animal modules

The modules referring to the population dynamics (reproduction, mortality, feed-
ing and density regulation and change in the environment module) were explained
in detail in previous works [5, 6], therefore we only give a brief summary of all
these modules in this work.

100 M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera

Table 2. Parameters that affect animals and plant communities dynamics (v animal
specie, i plant community (alliance), m altitudinal range, k environment (NHR)).

Climatic variables Parameter

Random numbers 1 ≤ NZ ≤ 100

Animals Parameter

Equivalent weight ewv, 1 ≤ v ≤ 13

Plant communities Parameter

Amount of grass produced dairy
(net primary production NPP) µRi, 1 ≤ i ≤ 26

Standard deviation of plant
net primary production σRi, 1 ≤ i ≤ 26

Carrying capacity Cak, 1 ≤ k ≤ 4

Mean of the growing season length µTi, 1 ≤ i ≤ 26

Standard deviation of growing season length σTi, 1 ≤ i ≤ 26

Surface at low, medium and high altitude asi, 1 ≤ as ≤ 3

Abandoned land evolution ta

Fire evolution fe

Fire evolution probabilities fp

Ecosystem (plant community,
altitude range, environment) δi,m,k, 1 ≤ i ≤ 26, 1 ≤ m ≤ 3, 1 ≤ k ≤ 4

Reproduction module

At the beginning an object of type X is associated with each animal. When rules
from the reproduction module are applied to objects of type X, they evolve into
objects of type Y. Objects associated with females that reproduce create new
objects Y at age 0 (Yi,0) and evolve to the object Z with the same index. The

rules applied in this module are of the type: [Xi,j]αh
fr→ [Xi,j , Xi,0]αh .

Mortality module

Two different mortality causes are considered, natural mortality and hunting mor-
tality. When the domestic animals reach their life expectancy, they do not die, but
they are removed from the ecosystem. when the animals die in the ecosystem and
their bodies are not removed, they leave biomass, meat (C,M) and bones, (B,H).
Mortality rules are of the form:

� When they leave biomass:

[Yi,j]αh
fr→ [Hi, Ci, B,M]αh .

� When they are removed from the ecosystem:

[Yi,gi,6]αh
fr→ [#]α−h .

Modeling the Subalpine and Alpine Plant Communities 101

There are enough

resources

There are not enough

resources

Alliances evolution

Climatic variability

Grass

production

Change

environment

Updating

Feeding

+

Density regualtion

(1)

Mortality

Reproduction

Feeding

+

Density regualtion

(2)

Fig. 2. Scheme model of the plant community and animal dynamics model.

Feeding and density regulation module

Whether or not the maximum carrying capacity of the ecosystem for each species
has been reached, is determined by using objects a previously generated. Each
altitudinal range of each environment and animal specie has associated its own
carrying capacity.

Furthermore, objects Y evolve to objects Z to begin the feeding process. In
the second step of this module, objects Z evolve to objects W if there is enough
physical space and food.

If there are not enough resources for animals, objects Z leave the environment.

5.2 Plant community modules

The following modules have been added to improve and complete the modelling of
the ecosystem presented by Colomer et al. [6]. It consists of three separate modules,
the first one incorporates the production of grass that includes the grazing process,
and the second which is dedicated to the changes and developments that occur in
plant communities, in our ecosystem at alliance level. Finally we included also a
preliminary module to introduce the climatic variability into the model.

102 M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera

Climate variability module

With the aim to introduce the climatic variability in the model, the objects T
and R are used, whereat T includes the variability of the duration of the growing
season, and R the production of communities. Previously, we created a set of
100 random numbers following a normal distribution with mean 0 and standard
deviation 1. In the environment labeled as 1, T object evolves to four objects of
type T ′k,j , and these are sent to their respective environments (2,3,4). The rest of
T objects, placed in the environments 2, 3 and 4 disappear at the same moment.
The same occurs with the object R. T ′k,j and R′k,s evolve in each environment into
a new object Nm,j,s, which contains the information of both objects T and R and
enters into the membrane m (1 ≤ j ≤ 100, 1 ≤ s ≤ 100, 1 ≤ k ≤ E, 1 ≤ m ≤ 3).

Plant communities production and grazing modules

The following rule produces an amount of grass, according to the information
included into the object Nj,s,m. Thus, when the object Nj,s,m and the object Ai
(a surface unit of the alliance i) come together, they produce an amount of grass
Gi available for herbivores.

Once food is produced, it serves as food for different species of ungulates present
in the ecosystem. In this process it is possible to obtain two different scenarios:
(1) the animal has enough available food and feeds, and (2) the animal cannot
find food and goes to another high range. In the first one the animal (object Z)
eats, and transforms itself into object Wn. In the second case the environmental
module is applied as is explained in the following section.

Change environment module

When the animals cannot find enough resources, they leave their zone (membrane)
with the following set of objects (G′, a′, B′,M ′) and go to a membrane 4 of an
environment 5. From there, objects that represent the animals can find resources
and evolve into an object W ′ or evolve directly into an object V . These objects
return to their environment and membrane and objects W ′ evolve into object
WN , objects V evolve into V ′ and disappear later on creating objects of type
B,M,C,H.

Plant communities evolution

Two different processes are introduced into the model encompassed into the evo-
lution of the plant communities due to management: (1) less grazing pressure, and
(2) recovering pastures with fire.

In the first case the object U controls the minimal carrying capacity required
to maintain the type of grassland or plant community. If there is no abandonment,
an object α is created, in the contrary case the β object evolves to gamma and

Modeling the Subalpine and Alpine Plant Communities 103

changes the charge of the membrane to positive. When it occurs the alliance Ai
can evolve into an alliance Aj with a stated probability.

When the surface of the alliance Aj scrubland exceeds a certain value, this
plant community can evolve to grassland Ai with a stated probability due to
human management (in this case fire).

Updating module

This module has the aim to restore the initial configuration in order to start a new
simulation.

6 Final considerations

In this work we have presented a model to simulate the grassland dynamics, which
allow to simulate behaviour in different scenarios. The next step is to define the
simulator with MeCoSim [13] to validate the results. Afterwards we will improve
the model by introducing new possible plant communities’ evolutions.

Acknowledgement

We thank Ricardo Garćıa-González and Daniel Gómez for data provided and Fed-
eric Fillat for his help and contributed ideas throughout the work.

Appendix

Rules of the model.

� Counters
� In order to synchronize the model are needed objects that act as counters.

r0 ≡ [ρi]0m → [ρi+1]0m,

0 ≤ i ≤ 11,
i <> 5,
1 ≤ m ≤ 3.

r1 ≡ [ρi]0m → [ρi+1]04,
{

0 ≤ i ≤ 12,
i <> 10.

r2 ≡ [Pi]00 → [Pi+1]00,
{

0 ≤ i ≤ 14.

104 M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera

� Density control.

r3 ≡ [dm,i]00 → dm,i[]00,
{

1 ≤ i ≤ N,
1 ≤ m ≤ 3.

r4 ≡ dm,i[]00 → [d′m,i, a
′0.9di1mk
i , e′0.2di1mk

m.i]00,


1 ≤ j ≤ 2,
1 ≤ i ≤ N,
1 ≤ m ≤ 3,
1 ≤ k ≤ E.

r5 ≡ d′m,i[]−m → [d′m,i]
0
m,

{
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

r6 ≡ [d′m,i]
−
m → dm,i[]0m,

{
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

Reproduction module

� Males that do not reproduce.

r7 ≡ [Xi,j
(1−ki,1)→ Yi,j]0m,

{
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

� Females at fertile age that reproduce.

r8 ≡ [Xi,j
ki,1·ki,2→ Yi,j , Y

ki,3
i,0]0m,

 gi,3 ≤ j < gi,4,
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

� Females at fertile age that do not reproduce.

r9 ≡ [Xi,j
ki,1·ki,2→ Yi,j]0m,

 gi,3 ≤ j < gi,4,
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

� Adult non-fertile males and females.

r10 ≡ [Xi,j → Yi,j]0m,

 gi,4 ≤ j ≤ gi,5,
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

� Non-fertile young animals

r11 ≡ [Xi,j → Yi,j]0m,

0 ≤ j < gi,3,
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

r12 ≡ [Xi,j → Yi,j]0m,

0 ≤ j < gi,3,
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

Climatic variability module

� Generate randomise climatic variables

Modeling the Subalpine and Alpine Plant Communities 105

re1 ≡ (T
1

100→ T ′1,j , T
′
2,j , T

′
3,j , T

′
4,j)e1,

{
1 ≤ j ≤ 100,

re2 ≡ (R
1

100→ R′1,s, R
′
2,s, R

′
3,s, R

′
4,s)e1,

{
1 ≤ s ≤ 100,

re3 ≡ (T → #)k,
{

2 ≤ k ≤ E,

re4 ≡ (R→ #)k,
{

2 ≤ k ≤ E,

Plant communities evolution module

Less grazing pressure

� If do not exist abandonment an object α is created.

r13 ≡ [β, U (Cam,k·δm,k)]0m
a→ [α]0m,

1 ≤ i ≤ 13,
1 ≤ m ≤ 3,
1 ≤ k ≤ E.

� If the abandonment exist the object β evolve to γ.

r14 ≡ [β]−m → [γ]0m,
{

1 ≤ m ≤ 3.

� The alliance evolve if during a time period has been abandoned.

r15 ≡ [α, γ]0m[#]0m,
{

1 ≤ m ≤ 3.

� If there are the conditions, the membrane charge change.

r16 ≡ [ρ12, γ · Ca]0m → [ρ12]+m,
{

1 ≤ m ≤ 3.

� The alliances evolve.

r17 ≡ [Ai]+m
pi,j→ [Aj]0m,

1 ≤ m ≤ 3,
1 ≤ i ≤ NA,
1 ≤ j ≤ NA.

Human management
� When the surface of alliance i exceeds a certain value it evolves to the alliance

j with a given probability.

r18 ≡ [Afei]0m
fp→ [Afej]0m,

1 ≤ i ≤ 26,
1 ≤ j ≤ 26,
1 ≤ m ≤ 3.

r19 ≡ [Afei]0m
1−fp→ [Afei]0m,

{
1 ≤ i ≤ 26,
1 ≤ m ≤ 3.

Mortality module

� Young animals that survive.

r20 ≡ [Yi,j]0l
1−mi,1−mi,3→ [Zi,j , Di]0l ,

1 ≤ l ≤ 3,
1 ≤ i ≤ N,
0 ≤ j ≤ gi,2.

106 M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera

� Young animals that die and leave biomass in the form of meat and bones.

r21 ≡ [Yi,j]0l
mi,1→ [H(fi,1fi,5+0.5)

i , C
(fi,2fi,6+0.5)
i ,

B(fi,1fi,5+0.5),M (fi,2fi,6+0.5)]0l ,

1 ≤ l ≤ 3,
0 ≤ j < gi,2,
1 ≤ i ≤ N.

� Young animals removed from the ecosystem that do not leave biomass.

r22 ≡ [Yi,j]0l
mi,3→ []0l ,

1 ≤ l ≤ 3,
0 ≤ j < gi,2,
1 ≤ i ≤ N.

� Adult animals that survive.

r23 ≡ [Yi,j]0l
1−mi,2→ [Zi,j , Di]0l ,

1 ≤ l ≤ 3,
gi,2 ≤ j < gi,5,
1 ≤ i ≤ N.

� Adult animals that die and leave biomass.

r24 ≡ [Yi,j]0l
mi,2→ [H(fi,3fi,5+0.5)

i , C
(fi,4fi,6+0.5)
i ,

B(fi,3fi,5+0.5),M (fi,4fi,6+0.5)]0l ,

1 ≤ l ≤ 3,
gi,2 ≤ j ≤ gi,5,
1 ≤ i ≤ N.

� Animals that die by hunter and can leave biomass or not

r25 ≡ [Yi,j]0l
mi,2→ [H(fi,3fi,5hpi+0.5)

i , C
(fi,4fi,6hpi+0.5)
i ,

B
(fi,3fi,5hpi+0.5)
i ,M

(fi,4fi,6hpi+0.5)
i]0m,

where 1 ≤ l ≤ 3, 1 ≤ i ≤ N, gi,2 ≤ j ≤ gi,5.

� Randomnes generation of the total amount of animals. The following rules are
applied at the same time than mortality rules.

r26 ≡ a′m,i[]0m → [ai]0m,
{

1 ≤ m ≤ 3,
1 ≤ i ≤ N.

r27 ≡ e′m,i[]0m
0.5→ [ai]0m,

{
1 ≤ m ≤ 3,
1 ≤ i ≤ N.

r28 ≡ e′m,i[]0m
0.5→ [#]0m,

{
1 ≤ m ≤ 3,
1 ≤ i ≤ N.

� Seasonal growth and production randomness.

re5 ≡ (T ′k,j , R
′
k,s)e1()ek → ()e1(Nj,s)ek,

1 ≤ j ≤ 100,
1 ≤ s ≤ 100,
1 ≤ k ≤ E.

Modeling the Subalpine and Alpine Plant Communities 107

re6 ≡ (T ′1,j , R
′
1,s)e1 → (Nj,s)e1,

1 ≤ j ≤ 100,
1 ≤ s ≤ 100,
1 ≤ k ≤ E.

Alliance production

� Objects N ′j,s associated with altitude are introduced into the membrane to
produce grass.

r29 ≡ Nj,s[]00 → [N ′1,j,s, N
′
2,j,s, N

′
3,j,s]

0
0,

1 ≤ i ≤ 4,
1 ≤ j ≤ 100,
1 ≤ s ≤ 100.

r30 ≡ N ′m,j,s[]0m → [Nj,s]0m,


1 ≤ m ≤ 3,
1 ≤ j ≤ 100,
1 ≤ s ≤ 100,
1 ≤ k ≤ 4.

� Animal density control.

r31 ≡ [D(di,1,m,k)
i , a

(di,1,m,k−di,2,m,k)
i → #]0m,

1 ≤ k ≤ E,
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

� Grass production.

r32 ≡ [N ′j,s, Ai → G
(NZjσTi+µTi)(NZjσRi+µRi)
i , Ai]0m,


1 ≤ m ≤ 3,
1 ≤ j ≤ 100,
1 ≤ s ≤ 100,
1 ≤ k ≤ 4.

Feeding and density regulation

� When the animal Zi,j into the membrane m and environment k finds grass
Gi and has enough space ai it eat and evolve to WNm,i,j and abandons the
membrane.

r33 ≡ [Zi,j , ai, G
fai

k]0m
fti,k→ WNm,i,j []−m,


1 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ k ≤ NA,
1 ≤ m ≤ 3.

� The following rules generate the membrane charge change.

r34 ≡ [ρ5]0m → [ρ6]−m,
{

1 ≤ m ≤ 3.

r35 ≡ [ρ6]−m → [ρ7]0m, 1 ≤ m ≤ 3.

Change environment module

� The animals that don’t eat (Zi,j), grass production (Gi), the biomass deposited
in the ecosystem (Bm and Mm) and the density regulator object a abandon
the membrane m.

108 M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera

r36 ≡ [Zi,j]−m → Z ′m,i,j []0m,

0 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

r37 ≡ [Gk]−m → G′m,k[]0m,
{

1 ≤ k ≤ NA,
1 ≤ m ≤ 3.

r38 ≡ [B]−m → B′[]0m, 1 ≤ m ≤ 3.

r39 ≡ [M]−m →M ′[]0m, 1 ≤ m ≤ 3.

r40 ≡ [ai]−m → a′m,i[]0m,
{

1 ≤ i ≤ N,
1 ≤ m ≤ 3.

� The same objects go out the skin membrane.

r41 ≡ [Z ′m,i,j]
0
0 → Z ′m,i,j []00,


1 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ k ≤ NA,
1 ≤ m ≤ 3.

r42 ≡ [G′m,i]
0
0 → G′m,i[]00,

{
1 ≤ i ≤ NA,
1 ≤ m ≤ 3.

r43 ≡ [B′m]00 → B′m[]00, 1 ≤ m ≤ 3.

r44 ≡ [M ′m]00 →M ′m[]00,
{

1 ≤ m ≤ 3.

r45 ≡ [a′m,i]
0
0 → a′m,i[]00,

{
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

� Then the objects Z ′′k,m,i,j , G
′′
k,m,i, B

′′
m,i, M

′′
m,i and a′′k,m,i abandon the environ-

ment k: 1 ≤ k ≤ 4 and enter in environment 5.

re7 ≡ (Z ′m,i,j)ek()e5 → ()ek(Z ′′k,m,i,j)e5,


1 ≤ i ≤ N,
0 ≤ j ≤ gi,6,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

re8 ≡ (G′m,i)ek()e5 → ()ek(G′′k,m,i)e5,

1 ≤ i ≤ NA,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

re9 ≡ (B′m)ek()e5 → ()ek(B′′k,m)e5,
{

1 ≤ k ≤ E,
1 ≤ m ≤ 3.

re10 ≡ (M ′m)ek()e5 → ()ek(M ′′k,m)e5,
{

1 ≤ k ≤ E,
1 ≤ m ≤ 3.

re11 ≡ (a′m,i)ek()e5 → ()ek(a′′k,m,i)e5,

1 ≤ i ≤ N,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

Modeling the Subalpine and Alpine Plant Communities 109

r46 ≡ Z ′′k,m,i,j []00 → [Z ′′k,m,i,j]
0
0,


0 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

r47 ≡ G′′k,m,i[]00 → [G′′k,m,i]
0
0,

1 ≤ k ≤ E,
1 ≤ i ≤ Na,
1 ≤ m ≤ 3.

r48 ≡ B′′k,m[]00 → [G′′k,m]00,
{

1 ≤ k ≤ E,
1 ≤ m ≤ 3.

r49 ≡M ′′k,m[]00 → [M ′′k,m]00,
{

1 ≤ k ≤ E,
1 ≤ m ≤ 3.

r50 ≡ a′′k,m,i[]00 → [a′′k,m,i]
0
0,

1 ≤ k ≤ E,
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

� These objects enter into a virtual environment (e = 5) and membrane m = 4.

r51 ≡ Z ′′k,m,i,j []04 → [Z ′′k,m,i,j]
0
4,


0 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

r52 ≡ G′′k,m,i[]04 → [G′′k,m,i]
0
4,

1 ≤ i ≤ Na,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

r53 ≡ B′′k,m[]04 → [B′′k,m]04,
{

1 ≤ k ≤ E,
1 ≤ m ≤ 3.

r54 ≡M ′′k,m[]04 → [M ′′k,m]04,
{

1 ≤ k ≤ E,
1 ≤ m ≤ 3.

r55 ≡ a′′k,m,i[]04 → [a′′k,m,i]
0
4,

1 ≤ i ≤ N,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

Feeding rules

r56 ≡ [Z ′′k,m,i,j , a
′′
v,m,i, G

′′fai
v,m,s]

0
4

fti,spi,k,v→ W ′v,m,i,j []−4 ,



0 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ s ≤ Na,
1 ≤ k ≤ E,
1 ≤ v ≤ E,
1 ≤ m ≤ 3.

r57 ≡ [ρ11]04 → [ρ12]−4

110 M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera

r58 ≡ [ρ12]−4 → [ρ13]04
� When the charge of the membrane 5 changes to negative, the remaining

Z ′′k,m, i, j objects (aniamls that have not enough resources) transform to an
object Vk,m,i,j and it also abandons this membrane. The remaining objects
(G′′k,m,i, B

′′
k,m,M

′′
k,manda

′′
k,m,i) disappear. And the membrane change its polar-

ity to null.

r59 ≡ [Z ′′k,m,i,j]
−
4 → Vk,m,i,j []04,


0 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

r60 ≡ [G′′k,m,i]
−
4 → [#]04,

1 ≤ i ≤ Na,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

r61 ≡ [B′′k,m]−4 → [#]04,
{

1 ≤ k ≤ E,
1 ≤ m ≤ 3.

r62 ≡ [M ′′k,m]−4 → [#]04,
{

1 ≤ k ≤ E,
1 ≤ m ≤ 3.

r63 ≡ [a′′k,m,i]
−
4 → [#]04,

1 ≤ i ≤ N,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

� The objects associated to the animals move to their environment.

r64 ≡ [W ′k,m,i,j]
0
0 →W ′k,m,i,j []00,


0 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

r65 ≡ [Vk,m,i,j]00 → Vk,m,i,j []00,


0 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

re12 ≡ (W ′k,m,i,j)e5()ek → ()e5(WNm,i,j)ek,


0 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

re13 ≡ (Vk,m,i,j)e5()ek → ()e5(V ′m,i,j)ek,


0 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ k ≤ E,
1 ≤ m ≤ 3.

Modeling the Subalpine and Alpine Plant Communities 111

r66 ≡WNm,i,j []00 → [WNm,i,j]00,

 0 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

r67 ≡ V ′m,i,j []00 → [V ′m,i,j]
0
0,

 0 ≤ j ≤ gi,6,
1 ≤ i ≤ N,
1 ≤ m ≤ 3.

Updating module

r68 ≡ [P14 → F1, F2, F3, P15]00
r69 ≡ Fm[]0m → []−m, 1 ≤ m ≤ 3.

r70 ≡WNm,i,j []−m → [Xi,j+1]0m,

1 ≤ m ≤ 3,
1 ≤ j < gi,5,
1 ≤ i ≤ N.

� The objects associated to animals that have not found resources, disappear
leaving biomass.

r71 ≡ V ′m,i,j []−m → [H(fi,1fi,5+0.5)
i , C

(fi,2fi,6+0.5)
i ,

B
(fi,1fi,5+0.5)
i ,M

(fi,2fi,6+0.5)
i]0m,

1 ≤ m ≤ 3,
1 ≤ j < gi,5,
1 ≤ i ≤ N.

r72 ≡ V ′m,i,j []−m → [H(fi,3fi,5hpi+0.5)
i , C

(fi,4fi,6hpi+0.5)
i ,

B
(fi,3fi,5hpi+0.5)
i ,M

(fi,4fi,6hpi+0.5)
i]0m,

where 1 ≤ m ≤ 3, gi,2 ≤ j < gi,5, 1 ≤ i ≤ N.

� The objects associated to animals that have reached their life expectancy trans-
form into objects associated to biomass.

r73 ≡ WNm,i,gi,5 []−m → [H(fi,3fi,5hpi+0.5)
i , C

(fi,4fi,6hpi+0.5)
i ,

B
(fi,3fi,5hpi+0.5)
i ,M

(fi,4fi,6hpi+0.5)
i]0m,

where 1 ≤ m ≤ 3, 1 ≤ i ≤ N.

r74 ≡ [P16]00 → T,R[P0]00
r75 ≡ [ρ12]−m → [ρ0]0m, 1 ≤ m ≤ 3.

References

1. A. Aldezabal. Análisis de la interacción vegetación-Grandes herb́ıvoros en las co-
munidades supraforestales del Parque Nacional de Ordesa y Monte Perdido (Pirineo

112 M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera

Central, Aragón). PhD thesis, Euskal Herriko Unibertsitatea/Universidad del Paś
Vasco, Leioa, 1997.

2. A. Aldezabal, I. Gaŕın, and R. Garćıa-González. Comparación de varios métodos para
la estima de la producción primaria aérea en comunidades herbáceas subalpinas del
pirineo central. Actas de la XXXVI reunión cient́ıfica de la SEEP., pages 167–171,
1996.

3. M. Cardona, M.A. Colomer, A. Margalida, A. Palau, I. Pérez-Hurtado, M. Pérez-
Jiménez, and D. Sanuy. A computational modeling for real ecosystems based on p
systems. Natural Computing, 10:39–53, March 2010.

4. M. Cardona, M.A. Colomer, A. Margalida, I. Pérez-Hurtado, M. Pérez-Jiménez, and
D. Sanuy. A p system based model of an ecosystem of some scavenger birds. Lecture
Notes in Computer Science, 5957:182–195, 2010.

5. M.A. Colomer, S. Lav́ın, I. Marco, A. Margalida, I. Pérez-Hurtado, M.J. Pérez-
Jiménez, D. Sanuy, E. Serrano, and L. Valencia-Cabrera. Modeling population growth
of pyrenean chamois (rupicapra p. pyrenaica) by using p-systems. In M. Gheorghe,
T. Hinze, G. Paun, G. Rozenberg, and A. Salomaa, editors, Membrane Computing.
11th International Conference, CMC 2010 Jena, Germany. Revised Selected Papers,
pages 144–159. Springer-Verlag, August 2010.

6. M.A. Colomer, A. Margalida, D. Sanuy, and M.J. Pérez-Jiménez. A bio-inspired
computing model as a new tool for modeling ecosystems: The avian scavengers as a
case study. Ecological Modelling, 222:33–47, 2011.

7. Grup de Recerca de Geobotànica i Cartografia de la Vegetació. Geoveg. Universitat
de Barcelona, 2011.

8. R. Garćıa-González, A. Marinas, D. Gómez, and A. Aldezabal. Revisión bibliográfica
de la producción primaria neta aérea de las principales comunidades pasćıcolas pire-
naicas. XLII Reunión Cient́ıfica de la SEEP, 2001.

9. D. Gómez. Pastos del Pirineo, chapter Métodos para el estudio de los pastos, su
caracterización ecológica y valoración. Dpto. de Publicaciones del CSIC, 2008.

10. C. Koerner. Alpine Plant Life. Functional Plant Ecology of High Mountain Ecosys-
tems. Springer - Verlag, 1999.

11. A. Marinas and R. Garćıa-González. Pastos del Pirineo, chapter Aspectos produc-
tivos de los pastos pirenaicos. Dpto. de Publicaciones del CSIC, 2008.

12. Generalitat de Catalunya. Reserves Nacionals de Caa Natural environment depart-
ment. http://www20.gencat.cat/portal/site/dmah.

13. Ignacio Pérez-Hurtado, Luis Valencia-Cabrera, Mario J. Pérez-Jiménez, M. A.
Colomer, and Agust́ın Riscos-Núñez. Mecosim: A general purpose software tool for
simulating biological phenomena by means of p systems. IEEE Fifth International
Conference on Bio-inpired Computing: Theories and Applications (BIC-TA 2010),
1:637–643, 2010.

14. S. Rivas-Mart́ınez, T.E. Dı́az, F. Fernández-González, J. Izco, J. Loidi, M. Lousa,
and A. Penas. Vascular plant communities of spain and portugal. addenda to the
syntaxonomical checklist of 2001. Itinera Geobotanica, 15:5–922, 2002.

15. J.S. Singh, W.K. Lauenroth, and R.K. Steinhorst. Review and assessment of various
techniques for estimating net aerial primary production in grasslands from harvest
data. The Botanical Review, 41(2):181–232, 1975.

P Systems for Social Networks

Erzsébet Csuhaj-Varjú1, Marian Gheorghe2, György Vaszil1, Marion Oswald3

1 Computer and Automation Research Institute
Hungarian Academy of Sciences
H-1111, Budapest, Kende u. 13-17, Hungary
{csuhaj,marion,vaszil}@sztaki.hu

2 Department of Computer Science
University of Sheffield
Regent Court, Portobello Street, Sheffield S1 4DP, United Kingdom
m.gheorghe@dcs.shef.ac.uk

3 Institute for Computer Languages
Vienna University of Technology
Favoritenstr. 9-11, 1040 Vienna, Austria
marion@logic.at

Summary. We introduce some variants of P systems that mimic the behaviour of social
networks and illustrate some of the characteristics of them. Other concepts related to
social networks are discussed and suitable classes of P systems are suggested. A simple
example shows the capabilities of such a P system where the intensity of the communi-
cation is modelled with complementary alphabets.

1 Introduction

Membrane computing (also called P systems theory) is a new computing paradigm,
which in its initial variants was inspired by the structure and functionality of the
living cell [19]. Later on some other biological entities have been considered in
order to extend the capabilities of this computational model - tissues or special
types of cells, like neurons, or colonies of cells, like bacteria. So far, concepts and
methods of P systems theory have been successfully employed in solving important
problems of computer science and describing various biological phenomena, but,
except promising applications in linguistics and natural language processing, only
a limited amount of attention has been paid to the suitability of membrane systems
in modelling social phenomena.

In this paper, we attempt to build a bridge between membrane computing and
the theory of social networks, an area of great interest in contemporary computer
science and practice. For this reason, we define certain classes of P systems which
are suitable for modelling features of social networks and which can be derived
from problems in this field, and we formulate various research topics related to

114 E. Csuhaj-Varjú et al.

connections between P systems theory and the theory of social interactions and
networks. The underlying mathematical tool set is the theory of formal languages,
i.e., our approach to social networks is a purely syntactic one. We note that social
phenomena have already been described by different frameworks in formal lan-
guage theory, our recent aim is to formulate models which combine tools of both
membrane computing and formal language theory. In terms of formal grammars,
communities of agents interacting with each other and with their dynamically
changing environment were modelled by eco-grammar systems, a research field
launched in [9]. Population of agents, called networks of (parallel) language pro-
cessors, with biological and social background were described by rewriting systems
in [12, 7]. Another formal language-theoretic model for communities of evolving
agents, called evolutionary systems, was introduced in [10]. Multi-agent systems
in terms of formal language theory and membrane computing were discussed in
[4], [5], [3], and [15].

2 Social Networks

In various formalisms related to the study of social phenomena, interpersonal rela-
tionships between individuals are defined as information-carrying connections [14].
These relationships come in various forms, two of them are strong and weak ties.
Weak ties seem to be responsible for the embeddedness and structure of social net-
works and for the communication within these systems [14]. There are other mea-
sures that characterise connections between nodes (individuals). Centrality gives
an indication of the social power of a node and the strength of its connections.
It relies on other measures, betweenness, closeness, degree. Betweenness measures
to what extent a node is connected to nodes that have a significant number of
neighbours (direct connections). Closeness is the degree describing that a node is
close to all other nodes in the network: it counts the number of connections. For
the above concepts as well as for other measures of the connections existing in
social networks, we refer to [23].

3 P Systems Capturing Communication Aspects

We are focusing now on identifying some classes of P systems that capture com-
munication aspects in social networks. We can consider various types of nodes:
ordinary or popular nodes - those that host individuals and allow communication
between them; new-born nodes - those that are dynamically created and linked to
the existing network; non-visible or extinct nodes - the nodes that are no longer
connected to the network or have disappeared; nodes with one way communication,
only allowing information to go into, blackholes or allowing only to exit from, white-
holes. Some of these aspects have been already considered in the current research
framework of membrane computing; for instance population P systems allow nodes

P Systems for Social Networks 115

to be dynamically connected and disconnected [6]; the one-way communication for
communicating accepting P systems has been considered in [13]. We can also take
into account connections between nodes and look at the volume of communication
- the amount of (new) information generated or sent-received by various nodes or
groups of nodes; frequency of communicated messages - the number of communi-
cation steps related to the evolution (computation) steps; communication motifs -
patterns of communication identified throughout the network evolution. In order
to capture these phenomena we aim to formally define a generic and flexible frame-
work whereby these concepts can be appropriately accommodated. In this respect
we provide the following general definition of a population P system governed by
communication, a pgcP system, for short.

4 Preliminaries and Definitions

Throughout the paper we assume that the reader is familiar with the basics of
membrane computing and formal language theory; for details we refer to [17, 21]
and [22]. For an alphabet V , we denote by |V | the cardinality of V , and by V ∗

the set of all finite words over V . If λ, the empty word is excluded, then we
use the notation V +. As usual in membrane computing, we represent the finite
multisets over V by strings over V as well, that is, a string and all its permutations
correspond to the same multiset. We denote by |w|a the number of occurrences of
a symbol a ∈ V in a string w ∈ V ∗ which is equal to the multiplicity of that object
in the represented multiset. We use ∅ to denote the empty multiset, and also use
V ∗ to denote the set of finite multisets over an alphabet V .

In the following we consider P systems with static underlying graph structure;
the notion can easily be extended to a construct capturing dynamically changing
underlying graph architecture as well.

Definition 1. A population P system governed by communication (a pgcP system,
for short), is a construct

(Σ, E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρk, Rk)), n, k ≥ 1,

where

• Σ = Σ1∪Σ2 is a finite alphabet of objects, Σ1 is the alphabet of cellular objects,
i.e., the objects in the nodes, and Σ2 is the set of communication symbols;

• E ⊆ {1, . . . , n} × {1, . . . , n} is the set of (directed) links between the nodes;
• ωi ∈ Σ∗

1 , 1 ≤ i ≤ n, is a multiset of cellular objects, the initial content of the
node i of the system; and

• (ρi, Ri), 1 ≤ i ≤ k, are predicate based rule-sets governing the transitions of
the system, with
– ρi : Σ∗

2 → {true, false}, a predicate over the multisets of communication
symbols, and

116 E. Csuhaj-Varjú et al.

– Ri = (Ri,1, . . . , Ri,n), an n-tuple of sets of rewriting rules, where Ri,j , 1 ≤
j ≤ n, is the set of rules that are allowed to be applied at node j, and any
rule is of the form u → v for u ∈ Σ∗

1 , v ∈ (Σ1 ∪ (Σ1 ×Σ2 × Tar))∗ where
Tar = {1, . . . n} is a set of target indicators.

Definition 2. A configuration of a pgcP system

Π = (Σ,E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρk, Rk)), n, k ≥ 1,

is an n + s-tuple for s = |E|,

(w1, ..., wn;u1, ..., us), wi ∈ Σ∗
1 , uj ∈ Σ∗

2 , 1 ≤ i ≤ n, 1 ≤ j ≤ s,

where multiset wi is the multiset of cellular objects at the i-th node, i.e., the current
content of node i, 1 ≤ i ≤ n, and uj is the multiset of communication symbols
associated to the communication link ej ∈ E, 1 ≤ j ≤ s.

The initial configuration of Π is (ω1, . . . , ωn; ∅, . . . , ∅).
The pgcP system works by changing its configurations. In the following we

describe the transition or configuration change: it takes place by rewriting and
communication of the cellular objects and recording the performed communication.
The rewriting rules are applied to the cellular objects in the maximally parallel
manner, i.e., any object can be involved in at most one rule application, and
as many rules are applied simultaneously to the cellular objects at the nodes as
possible.

Definition 3. Let Π = (Σ, E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρk, Rk)), n, k ≥ 1, be a
pgcP system and let c1 = (w1, ..., wn;u1, ..., us) and c2 = (w′1, ..., w

′
n;u′1, ..., u

′
s) be

two configurations of Π.
We say that c1 changes directly to c2 (or c2 is obtained from c1 with a transi-

tion), denoted by

c1 = (w1, ..., wn;u1, ..., us) ⇒(ρi,Ri) c2 = (w′1, ..., w
′
n; u′1, ..., u

′
s)

for some i ∈ {1, . . . , k}, if the following hold:

• ρi(u1, . . . , us) = true,
• c1 is changed to c2 by using the rules of Ri = (Ri,1, . . . , Ri,n) as follows:

– the rules of Ri,j are applied in the maximal parallel manner in the node j
to the multiset wj , 1 ≤ j ≤ n; and

– if a rule of the form u → v where v = v1v2 for v1 ∈ Σ∗
1 and v2 ∈ (Σ1 ×

Σ2 × Tar)∗ is applied in a node j, then the following holds:
· u is changed to v1v2 and all objects in v1 remain in node j;
· all symbols of (a, a′, l) ∈ v2 are processed by sending the cellular object

a ∈ Σ1 to node l and adding the communication object a′ ∈ Σ2 to the
multiset associated to the link (j, l) ∈ E, 1 ≤ j 6= l ≤ n.

P Systems for Social Networks 117

The pgcP system may record information on the communication performed
during the whole computation or only on communication during the last configu-
ration change. This is captured in the following definition.

Definition 4. Let Π = (Σ, E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρk, Rk)), n, k ≥ 1, be a
pgcP system. We say that Π works in the

• history preserving mode, if for any transition

(w1, ..., wn;u1, ..., us) ⇒(ρi,Ri) (w′1, ..., w
′
n; u′1, ..., u

′
s)

it holds that u′j = uju
′′
j , for 1 ≤ j ≤ s, where u′′j is the multiset of communica-

tion symbols sent to link j during the transition,
• non-history preserving mode, if u′j consists of the communication symbols sent

to link j during the transition (the communication symbols in uj are forgotten).

Definition 5. Let Π = (Σ, E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρk, Rk)), n, k ≥ 1, be a
pgcP system. A derivation (or computation) in Π is a sequence of transitions
starting in the initial configuration and ending in some final (possibly halting)
configuration.

The result of a computation in a pgcP system Π can be defined in various
manners. We may consider the number (vector) of (certain) communication objects
going through (certain) communication links or the number (vector) of (certain)
cellular objects in (certain) nodes. If we assume distinguished, so called output
link(s) or node(s), then we indicate this fact in the notation for the accepted
languages of the pgcP system. As usual in membrane computing we consider only
halting computations.

Definition 6. Let Π = (Σ,E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρk, Rk)), where n, k ≥ 1,
and let Ti ⊆ Σi, 1 ≤ i ≤ 2, be the sets of terminal cellular and communication
objects; Out1 ⊆ {1, . . . , n} and Out2 ⊆ E be the sets of output nodes and output
links, respectively.

• We define Ncell(Π, T1, Out1) (Pscell(Π,T1, Out1)) as the number (vector) of
terminal cellular objects in the output nodes in a final configuration.

• We define Ncom(Π, T2, Out2) (Pscom(Π, T2, Out2)) as the number (vector) of
terminal communication objects associated to the output links in a final config-
uration.

5 Complementary Alphabets in pgcP Systems

We are focusing now on communication in these networks. In order to characterize
its intensity and the fact that the importance of a connection might evolve in time
by either increasing or decreasing its value, we would need some sort of symbols
that act in this respect. One way to model this is by considering complementary

118 E. Csuhaj-Varjú et al.

communication symbols, whereby the customary (or positive) symbols strengthen
a connection, whereas the complementary (negative) ones weaken it. Formally this
is achieved by splitting the alphabets Σ1 and Σ2 as follows:

Σi = Σ′
i ∪ Σ̄′

i ∪Σ′′
i

where Σ′
i and Σ̄′

i, i = 1, 2 are dual alphabets. Σ′
i consists of normal (positive)

elements and Σ̄′
i contains complementary symbols.

The idea of complementary alphabets is not new in the field of natural com-
puting. DNA computing has as a core data structure a double-strand structure
consisting of dual elements, the DNA nucleotides, adenine, thymine, cytosine and
guanine represented by the four letter alphabet, {A, T,C, G}, respectively; the
pairs (A, T) and (C, G) are known as complementary base pairs [20]. In the con-
text of networks of Watson-Crick D0L systems, networks of such systems over
DNA-like alphabets are introduced and operations relying on complementarity
properties are utilised [8, 11].

Active and passive objects have been considered in a similar way with comple-
mentary elements. Two types of such objects have been introduced and studied:
within components [1] and on membranes [2]. Other membrane systems using com-
plementary features are spiking neural P systems with anti-spikes where a neuron
receiving s spikes and t anti-spikes is left with s − t if s ≥ t or t − s when t ≥ s
objects [18], and membrane systems with bi-stable catalysts, where the system
may switch between two states [17].

To demonstrate the above ideas, we present a simulation of an n-register ma-
chine M where the communication is controlled by “Watson-Crick-like” predicates.

An n-register machine M = (Q, R, q0, qf , P), n ≥ 1, is defined as usual, that
is, with internal state set Q, registers R = (A1, . . . , An), initial and final states
q0, qf ∈ Q, respectively, and a set of instructions P of the form (q,Ai+, r, s) or
(q, Ai−, r, s), q, r, s ∈ Q, q 6= qf , Ai ∈ R. When an instruction of the first type
is performed, then M is in state q, increases the value of register Ai by one, and
enters a state r or s, chosen nondeterministically. When an instruction of the
second type is performed, then M is in state q and it subtracts one from the value
of register Ai if it stores a positive number and then enters state r, or it leaves
the value of Ai unchanged if it stores zero and then enters state s. There are no
instructions for the final state, therefore the machine halts after entering state qf .
M starts its work in the initial state, q0, with empty registers. Then it performs
a sequence of instructions; if the sequence is finite (it ends with halting), then we
speak of a computation by M . The result of the computation is the number stored
in the output register A1 after halting.

It is known that 2-register machines are able to compute any recursively enu-
merable set of numbers [16].

Example 1. Let M = (Q,R, q0, qf , P), n ≥ 1, be an n-register machine. We con-
struct the pgcP system Π with n + 1 nodes simulating M as follows. Let

Π = (Σ, T1, E, w0, w1, . . . , wn, (ρ1, R1), (ρ2, R2), Out)

P Systems for Social Networks 119

where Σ = Σ1 ∪Σ2 with Σ1 = {a, ā} ∪ {q, [q, r, s] | q, r, s ∈ Q}, Σ2 = {a, ā}, and
E = {(0, i) | 1 ≤ i ≤ n}, T1 = {a}, and Out = 1. The initial configuration and the
rule sets are defined as follows. Let

w0 = q0, and wi = ∅, 1 ≤ i ≤ n.

Moreover, let R1 = (R1,0, . . . , R1,n), R2 = (R2,0, . . . , R2,n), and let

ρ1(u1, . . . , un) : |ui|a ≥ |ui|ā for all 1 ≤ i ≤ n,

R1,0 = {q → [q, r, s](a, a, j) | (q,Aj+, r, s) ∈ P} ∪
{q → [q, r, s](ā, ā, j) | (q,Aj−, r, s) ∈ P} ∪
{[q, r, s] → r, [q, r, s] → s | q, r, s ∈ Q},

ρ2(u1, . . . , un) : |ui|a < |ui|ā for some i, 1 ≤ i ≤ n,

R2,0 = {[q, r, s] → s(a, a, j) | (q, Aj−, r, s) ∈ P}, and finally

Rj,k = {aā → ε} for all 1 ≤ j ≤ 2, 1 ≤ k ≤ n.

If Π works in the history preserving mode, then the difference between the
number of symbols a and ā on a link (0, j) for some 1 ≤ j ≤ n corresponds to the
value of register j.

The result of the computation can be found in node 1 corresponding to the
output register A1 of M if the system introduces the symbol qf in node 0 and
halts (because there is no rule for the final state in M). Thus, these variants of
pgcP systems are computationally complete.

The reader may observe that in the above example we have not only comple-
mentary alphabets, but through various global predicates, the sets of rules are
split into “normal” rules in R1 and “recovery” rules in R2.

We note that it is possible to simulate a register machine with one active com-
ponent and n others receiving values a or ā. In a very similar way, we can consider
a distributed model where the n components corresponding to registers are used
in such a way that each one has its own addition and subtraction rules, similar to
R1,0, R2,0. In this case we have to communicate not only a or ā but also the label
of the next register to the component simulating this register; some other variants
of rules can be considered. Regarding these two models, one immediate question,
perhaps not difficult to be addressed, is which one is simpler, more efficient - with
respect to the number of rules, symbols etc; or are they just the same? What about
simulating one with the other one?

Furthermore, the example of simulating a register machine suggests the use of
dual sets of rules, triggered by predicates, i.e., to have for each rule, r, its dual rule,
r̄, defined in such a way that the complementary rules introduce complementary
symbols (only).

120 E. Csuhaj-Varjú et al.

6 Further Research Topics

In the previous sections we introduced the concept of a pgcP system inspired by
social networks and made some steps towards identifying the necessary abstract
elements related to measuring the intensity of the communication in these systems.
In this respect, complementary alphabets and particular variants of pgcP systems
have been considered. In the following, we define some further concepts regarding
some specific types of pgcP systems, and list some preliminary results for these
so-called deterministic and non-cooperative pgcP systems.

Definition 7. Let Π = (Σ, E, ω1, . . . , ωn, (ρ1, R1), . . . , (ρs, Rs)), n, s ≥ 1, be a
non-cooperative deterministic pgcP system.

Let c(t) = (w1(t), ..., wn(t); u1(t), ..., us(t)), t ≥ 0, be a computation in Π in
the history preserving mode.

We define the

1. growth of communication volume on link i at derivation step t, t ≥ 1, by
fi : N→ N where fi(t) = |ui(t)| − |ui(t− 1)|.

2. frequency of communication on link i:
hi : N → {0, 1} where hi(t) = 0 if |ui(t)| − |ui(t − 1)| = 0 and hi(t) = 1 if
|ui(t)| − |ui(t− 1)| ≥ 1;

3. intensity of communication on link i:
gi : N→ R, where gi(t) = fi(t)

t .

If Σ2 = Σ′
2 ∪ Σ̄′

2 ∪Σ′′
2 , i.e., complementary symbols are considered, then f̄i(t)

defined over Σ̄′
2, and difference functions as fi(t) − f̄i(t) can also be defined and

examined.
We note that the above concepts can be extended with suitable modifications

to gcpP systems in the general sense; obviously, in this case we speak of relations,
instead of functions.

These notions have their roots in concepts related to networks of parallel lan-
guage processors [12] and evolutionary systems [10]. A network of parallel language
processors with D0L systems as components (an NLP-D0L system) consists of D0L
systems located in nodes of a finite virtual graph (each node has at most one D0L
system) which rewrite and communicate multisets of strings present in the nodes
according to their own rule sets. A D0L system G = (V, P, ω) is a triplet, where V
is an alphabet, P is a finite set of rules of the form a → α with a ∈ V, α ∈ V ∗ and
for each a ∈ V there exists exactly one rule in P , and, finally, ω ∈ V +. For any
string x = x1 . . . xn, xi ∈ V, 1 ≤ i ≤ n, we say that x directly derives y = y1 . . . yn,
if xi → yi ∈ P holds for 1 ≤ i ≤ n. (For more details on D0L systems, we refer
to [21]). The NLP-D0L system functions with alternating rewriting and commu-
nication steps. By rewriting, each string at every node is rewritten in parallel; the
D0L systems work in a synchronized manner. By communication, a copy of each
string at a node is sent to each other node, given that the string satisfies the sender
node’s output context condition (predicate) and the receiver node’s input context
condition (predicate). Communication is performed in a parallel and synchronized

P Systems for Social Networks 121

manner as well. In [12] it was shown that if the conditions for communication are
random context conditions, i.e., they check the presence and /or the absence of cer-
tain symbols in the strings to be communicated, then the growth of the number of
the strings in the network can be described by a growth function of a D0L system.
The growth function of a D0L system orders to the number of derivation steps the
length of the string obtained at that step. It was also shown, that the number of
strings at specific nodes and the number of communicated strings between nodes
can also be obtained from D0L growth functions with suitable homomorphisms.
The idea of the proofs comes from the property that in the case of D0L systems
any string generates only one string and the alphabet of the successor string can
be calculated from the alphabet of the predecessor string.

The reader may easily notice the close relation between NLP-D0L systems and
non-cooperative deterministic pgcP systems: The multisets of different symbols
communicated from a node to some other one by an NLP-D0L system at any
computation step corresponds to multisets of communication symbols added to
the links of an appropriate pgcP system (where the predicates checks the pres-
ence/absence of types of objects in the multiset). Therefore, we may describe the
growth of the communication volume, the frequency, and the intensity of commu-
nication on the links by tools of Lindenmayer systems, in particular the theory of
D0L systems. Since D0L systems demonstrate several nice decidability properties,
the theory provides efficient tools for characterizing the behaviour of particular
types of pgcP systems. The detailed comparison is a topic for future research.

In context of social networks and pgcP systems, a number of other general
problems can also be formulated. For example, how to describe and characterize
other concepts and measures from social networks and how to define and model
problems like leaders and clusters emergence. Or, how to dynamically restructure
the links and distinguish between good and bad or strong and weak links; what
about breaking the links. Finally, how to solve various problems or compute func-
tions with such systems. These and similar questions form the basis of challenging
future research.

7 Acknowledgement

The work of Erzsébet Csuhaj-Varjú and György Vaszil was supported in part by
the Hungarian Scientific Research Fund, OTKA, Grant no. K75952. The work
of Marian Gheorghe was partially done during his visit to the Computer and
Automation Research Institute, Hungarian Academy of Sciences, in June 2010,
and partially was supported by the grant K75952, Hungarian Scientific Research
Fund, OTKA.

122 E. Csuhaj-Varjú et al.

References

1. B. Aman, G. Ciobanu. Turing completeness using three mobile membranes. In Un-
conventional Computing 2009, LNCS, 5715, 42–55, 2009.

2. B. Aman, G. Ciobanu. Mutual mobile membranes systems with surface objects. In
7-th Brainstorming Week of Membrane Computing, 29–39, 2009.

3. G. Bel-Enguix. A Multi-agent Model for Simulating the Impact of Social Structure
in Linguistic Convergence. InICAART(2) (J. Filipe et. al, Eds.), INSTICC Press,
367–372, 2009.

4. G. Bel-Enguix, M. A. Grando, M. D. Jiménez López. A Grammatical Framework for
Modelling Multi-Agent Dialogues. In PRIMA 2006 (Z.-Z. Shi, R. Sadananda, Eds.),
LNAI 4088, Springer Verlag, Berlin Heidelberg, 10–21, 2009.

5. G. Bel-Enguix, M. D. Jiménez López. Membranes as Multi-agent Systems: an Appli-
cation for Dialogue Modelling. In IFIP PPAI 2006 (J.K. Debenham, Ed.), Springer,
31–40, 2006.

6. F. Bernardini, M. Gheorghe. Population P systems. Intern J of Universal Comp Sci,
10, 509–539, 2004.

7. E. Csuhaj-Varjú. Networks of Language Processors. EATCS Bulletin 63, 120–134,
1997.

8. E. Csuhaj-Varjú. Computing by networks of Watson-Crick D0L systems. In Proc. Al-
gebraic Systems, Formal Languages and Computation (M. Ito, Ed.) RIMS Kokyuroku
1166, August 2000, Research Institute for Mathematical Sciences, Kyoto University,
Kyoto, 43–51, 2000.

9. E. Csuhaj-Varjú, J. Kelemen, A. Kelemenová, Gh. Păun. Eco-Grammar Systems:
A Grammatical Framework for Studying Lifelike Interactions. Artificial Life, 3(3),
1–28, 1997.

10. E. Csuhaj-Varjú, V. Mitrana. Evolutionary systems: a language generating device
inspired by evolving communities of cells. Acta Informatica, 36(11), 913–926, 2000.

11. E. Csuhaj-Varjú, A. Salomaa. Networks of Watson-Crick D0L systems. In Words,
Languages & Combinatorics III. Proceedings of the International Colloquium, Kyoto,
Japan, March 14-21, 2000. (M. Ito, T. Imaoka, Eds.), World Scientific Publishing
Co., Singapore, 134–149, 2003.

12. E. Csuhaj-Varjú, A. Salomaa. Networks of Parallel Language Processors. In New
Trends in Formal Languages. Control, Cooperation, and Combinatorics (Gh. Păun,
A. Salomaa, Eds.), LNCS 1218, Springer Verlag, Berlin Heidelberg, 299-318, 1997.

13. E. Csuhaj-Varjú, G. Vaszil. P automata or purely communicating accepting P sys-
tems. In Membrane Computing(Gh. Păun, G. Rozenberg, A. Salomaa, C. Zandron,
Eds.), LNCS 2597, Springer Verlag, Berlin Heidelberg, 219–233, 2003.

14. M.D. Granovetter. The Impact of Social Structures on Economic Development. Jour-
nal of Economic Perspectives, 19, 33–50, 2004.

15. M. D. Jiménez López. Agents in Formal Language Theory: An Overview. In High-
lights in Practical Applications of Agents and Multiagent Systems. 9th International
Conference on Practical Applications of Agents and Multiagent Systems (J. Bajo
Pérez et. al, Eds.) Advances in Intelligent and Soft Computing 89, Springer, 283–
290, 2011.

16. M. Minsky. Finite and Infinite Machines. Prentice Hall, Englewood Cliffs, New Jer-
sey, 1967.

17. Gh. Păun. Membrane Computing. An Introduction. Springer, 2002.

P Systems for Social Networks 123

18. L. Pan, Gh. Păun. Spiking neural P systems with anti-spikes, Int J Computers
Comms Control, 4, 273–282, 2009.

19. Gh. Păun. Computing with Membranes. J. of Comput. Syst. Sci., 61, 108–143, 2000.
20. Gh. Păun, G. Rozenberg, A. Salomaa. DNA Computing - New Computing Paradigms.

Springer Verlag, 1998.
21. G. Rozenberg, A. Salomaa. (Eds). Handbook of Formal Languages I-III. Springer,

1997.
22. Gh. Păun, G. Rozenberg, A. Salomaa. (Eds). The Handbook of Membrane Computing.

Oxford University Press, 2009.
23. S. Wasserman, K. Faust. Social Networks Analysis: Methods and Applications. Cam-

bridge University Press, 1994.

Using Central Nodes to Improve
P System Synchronization

Michael J. Dinneen, Yun-Bum Kim, and Radu Nicolescu

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand
{mjd,yun,radu}@cs.auckland.ac.nz

Summary. We present an improved solution for the Firing Squad Synchronization Prob-
lem (FSSP) for digraph-based P systems. We improve our previous FSSP algorithm by
allowing the general to delegate a more central cell in the P system to send the final
command to synchronize. With e being the eccentricity of the general and r denoting the
radius of the underlying digraph, our new algorithm guarantees to synchronize all cells
of the system, between e+ 2r+ 3 steps (for all trees structures and many digraphs) and
up to 3e + 7 steps, in the worst case for any digraph. Empirical results show our new
algorithm for tree-based P systems yields at least 20% reduction in the number of steps
needed to synchronize over the previous best-known algorithm.

1 Introduction

The Firing Squad Synchronization Problem (FSSP) is one of the best studied
problems for cellular automata, originally proposed by Myhill in 1957 [11]. The
initial problem involves finding a cellular automaton, such that after the “firing”
order is given by the general, after some finite time, all the cells in a line enter a
designated firing state, simultaneously and for the first time. For an array of length
n with the general at one end, minimal time (2n− 2) solutions was presented by
Goto [6], Waksman [18] and Balzer [2]. Several variations of the FSSP have been
proposed and studied [12, 15]. The FSSP have been proposed and studied for
variety of structures [10, 13, 7, 4].

In the field of membrane computing, deterministic solutions to the FSSP for a
tree-based P system have been presented by Bernardini et al. [3] and Alhazov et
al. [1]. For digraph-based P systems, we presented a deterministic solution in [5]
for the generalized FSSP (in which the general is located at an arbitrary cell of the
digraph), which runs in 3e+ 11 steps, where e is the eccentricity of the general.

In this paper, we present an improved FSSP solution for tree-based P systems,
where the key improvement comes in having the general delegate a more central
cell, as an alternative to itself, to broadcast the final “firing” order, to enter the

126 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

firing state. We also give details on how to use this approach to improve the
synchronization time of digraph-based P systems.

It is well known in cellular automata [17], where “signals” with propagating
speeds 1/1 and 1/3 are used to find a half point of one-dimensional arrays; the
signal with speed 1/1 is reflected and meets the signal with speed 1/3 at half point.
We generalize the idea used in cellular automata to find the center of a tree that
defines the membrane structure of a P system.

Let r denote the radius of the underlying graph of a digraph, where e/2 ≤ r ≤ e.
Our new algorithm is guaranteed to synchronize in t steps, where e + 2r + 3 ≤
t ≤ 3e+ 7. In fact, the lower bound is achieved, for all digraphs that are trees. In
addition to our FSSP solution, determining a center cell has many potential real
world applications, such as facility location problems and broadcasting.

The rest of the paper is organized as follows. In Section 2, we give some basic
preliminary definitions including our P system model and formally introduce the
synchronization problem that we solve. In Section 3, we provide a detailed P system
specification for solving the FSSP for tree-based P systems. In Section 4, we provide
a detailed P system specification for solving the FSSP for digraph-based P systems.
Finally, in Section 5, we summarize our results and conclude with some open
problems.

2 Preliminary

We assume that the reader is familiar with the basic terminology and notations,
such as relations, graphs, nodes (vertices), edges, directed graphs (digraphs), di-
rected acyclic graphs (dag), arcs, alphabets, strings and multisets.

For a digraph (X, δ), recall that Neighbor(x) = δ(x) ∪ δ−1(x). The relation
Neighbor is always symmetric and defines a graph structure, which will be here
called the virtual communication graph defined by δ.

A special node g ∈ X is designated as the general. For a given general g, we
define the depth of a node x, depthg(x) ∈ N, as the length of a shortest path
between g and x, over the Neighbor relation. Recall that the eccentricity of a
node x ∈ X, ecc(x), as the maximum length of a shortest path between x and
any other node. We note ecc(g) = max{depthg(x) | x ∈ X}.

Recall that a (free or unrooted) tree has either one or two center nodes—any
node with minimum eccentricity. We denote a tree T = (X,A), rooted at node
g ∈ X by Tg. The height of a node x in Tg is denoted by heightg(x). For a tree
Tg, we define the middle node to be the center node closest to g of the underlying
tree T of Tg. Let Tg(x) denote the subtree rooted at node x in Tg.

Given nodes x and y, if y ∈ Neighbor(x) and depthg(y) = depthg(x) + 1,
then x is a predecessor of y and y is a successor of x. Similarly, a node z is a
peer of x, if z ∈ Neighbor(x) and depthg(z) = depthg(x). Note that, for node x,
the set of peers and the set of successors are disjoint with respect to g. For node
x, Predg(x) = {y | y is a predecessor of x}, Peerg(x) = {y | y is a peer of x} and
Succg(x) = {y | y is a successor of x}.

Using Central Nodes to Improve P System Synchronization 127

Definition 1. A P system of order n with duplex channels and cell states is a
system Π = (O,K, δ), where:

1. O is a finite non-empty alphabet of objects;
2. K = {σ1, σ2, . . . , σn} is a finite set of cells;
3. δ is an irreflexive binary relation on K, which represents a set of structural

arcs between cells, with duplex communication capabilities.

Each cell, σi ∈ K, has the initial configuration σi = (Qi, si0, wi0, Ri), and the
current configuration σi = (Qi, si, wi, Ri), where:

• Qi is a finite set of states;
• si0 ∈ Qi is the initial state; si ∈ Qi is the current state;
• wi0 ∈ O∗ is the initial content ; wi ∈ O∗ is the current content ; note that, for

o ∈ O, |wi|o denotes the multiplicity of object o in the multiset wi;
• Ri is a finite ordered set of multiset rewriting rules (with promoters) of the

form: s x →α s′ x′ (u)β | z, where s, s′ ∈ Q, x, x′, u ∈ O∗, z ∈ O∗ is the
promoter [9], α ∈ {min, max} and β ∈ {↑, ↓, l}. For convenience, we also allow
a rule to contain zero or more instances of (u)β . For example, if u = λ, i.e. the
empty multiset of objects, this rule can be abbreviated as s x→α s

′ x′.

A cell evolves by applying one or more rules, which can change its content and
state and can send objects to its neighbors. For a cell σi = (Qi, si, wi, Ri), a rule
s x →α s

′ x′ (u)β | z ∈ Ri is applicable, if s = si, x ⊆ wi, z ⊆ wi, δ(i) 6= ∅ for
β =↓, δ−1(i) 6= ∅ for β =↑ and δ(i) ∪ δ−1(i) 6= ∅ for β =l.

The application of a rule transforms the current state s to the target state
s′ transforms multiset x to x′ and sends multiset u as specified by the transfer
operator β (as further described below). Note that, multisets x′ and u will not be
visible to other applicable rules in this same step, but they will be visible after all
the applicable rules have been applied.

The rules are applied in the weak priority order [14], i.e. (1) higher priority
applicable rules are applied before lower priority applicable rules, and (2) a lower
priority applicable rule is applied only if it indicates the same target state as the
previously applied rules.

The rewriting operator α = max indicates that an applicable rewriting rule of
Ri is applied as many times as possible. The rewriting operator α = min indicates
that an applicable rewriting rule of Ri is applied once. If the right-hand side of a
rule contains (u)β , β ∈ {↑, ↓, l}, then for each application of this rule, a copy of
multiset u is replicated and sent to each cell σj ∈ δ−1(i) if β =↑, σj ∈ δ(i) if β =↓
and σj ∈ δ(i) ∪ δ−1(i) if β =l.

All applicable rules are applied in one step. An execution of a P system is a
sequence of steps, that starts from the initial configuration. An execution halts if
no further rules are applicable for all cells.

Problem 2. We formulate the FSSP to P systems as follows:
Input: An integer n ≥ 2 and an integer g, 1 ≤ g ≤ n.
Output: A class C of P systems that satisfies the following two conditions for any

128 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

weakly connected digraph (X,A), isomorphic to the structure of a member of C
with n = |X| cells.

1. Cell σg is the only cell with an applicable rule (i.e. σg can evolve) from its
initial configuration.

2. There exists state sf ∈ Qi, for all σi ∈ K, such that during the last step of
the system’s execution, all cells enter state sf , simultaneously and for the first
time.

We want to find a general-purpose solution to the FSSP that synchronizes
in the fewest number of steps, as a function of some of the natural structural
properties of a weakly-connected digraph (X,A), such as the eccentricity of node
g ∈ X in the communication graph defined by A.

3 Deterministic FSSP solution for rooted trees

We first solve Problem 2 for the subclass of weakly-connected digraphs (X,A),
where the underlying graph of (X,A) is a tree. This section is organized as follow.
In Section 3.1, we present the P system for solving the FSSP for trees rooted at the
general. In order to help the comprehension of our FSSP algorithm, we provide a
trace of the FSSP algorithm in Table 1. Phase I of our FSSP algorithm is described
in Section 3.2, which finds the middle cell (i.e. a center of a tree, closest to the
root) and determines the height of the middle cell. Phase II of our FSSP algorithm
is described in Section 3.3, which broadcasts the “command” that prompts all cells
to enter the firing state. Finally, in Section 3.4, we present some empirical results
that show improvements of our algorithm over the previously best-known FSSP
algorithms for tree-based P systems [1, 5].

3.1 P systems for solving the FSSP for rooted trees

Given a tree (X,A) and g ∈ X, our FSSP algorithm is implemented using the
P system Π = (O,K, δ) of order n = |X|, where:

1. O = {a, b, c, e, h, o, v, w}.
2. K = {σ1, σ2, . . . , σn}.
3. δ is a rooted tree, with an underlying graph isomorphic to (X,A), where the

general σg ∈ K (the root of δ) corresponds to g ∈ X.

All cells have the same set of states, the same set of rules and start at the
same initial quiescent state s0, but with different initial contents. The first output
condition of Problem 2 will be satisfied by our chosen set of rules.

For each cell σi ∈ K, its initial configuration is σi = (Q, s0, wi0, R) and its final
configuration at the end of the execution is σi = (Q, s6, ∅, R), where:

• Q = {s0, s1, s2, s3, s4, s5, s6}, where s0 is the initial quiescent state and s6 is
the firing state.

Using Central Nodes to Improve P System Synchronization 129

• wi0 =
{
{o} if σi = σg,
∅ if σi 6= σg.

• R is defined by the following rulesets.
Rules used in Phase I: all the rules in states s0, s1, s2, s3 and rule 4.6 in
state s4.
Rules used in Phase II: all the rules in states s4 and s5, except rule 4.6.

0. Rules in state s0:
1. s0 o→max s1 ahou (b)↓
2. s0 b→max s1 ah (e)↑ (b)↓
3. s0 b→max s4 a (ce)↑

1. Rules in state s1:
1. s1 a→max s2 ah

2. Rules in state s2:
1. s2 aaa→max s4 a
2. s2 aa→max s3 a
3. s2 ceu→max s2
4. s2 ce→max s2
5. s2 aee→max s2 aeeh
6. s2 aeooo→max s2 aa (o)↓
7. s2 aeou→max s2 aa (o)↓
8. s2 aeo→max s2 aehoo
9. s2 ao→max s2 aaa

10. s2 ae→max s2 aeh
11. s2 a→max s2 aa (c)↑
12. s2 u→max s2

3. Rules in state s3:
1. s3 a→max s4 a
2. s3 h→max s4

4. Rules in state s4:
1. s4 hh→max s5 w (v)l
2. s4 avv →max s5 aw (v)l
3. s4 avv →max s5 aw
4. s4 av →max s6
5. s4 v →max s5 w (v)l
6. s4 o→max s4

5. Rules in state s5:
1. s5 aww →max s5 aw
2. s5 aw →max s6
3. s5 v →max s6
4. s5 o→max s6

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

(a) (b)

Fig. 1. (a) a tree with the center σ5; (b) a tree with two centers σ3 and σ5, σ3 being the
middle cell.

130 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

T
a
b
le

1
.

T
h
e

tra
ces

o
f

th
e

F
S
S
P

a
lg

o
rith

m
o
n

a
P

sy
stem

w
ith

th
e

m
em

b
ra

n
e

stru
ctu

re
d
efi

n
ed

b
y

th
e

tree
sh

ow
n

in
F

ig
u
re

1
(a

),
w

h
ere

th
e

g
en

era
l

is
σ

1
a
n
d

th
e

m
id

d
le

cell
is
σ

5 .
T

h
e

step
in

w
h
ich

th
e

P
h
a
se

I
en

d
s

(o
r

th
e

P
h
a
se

II
b

eg
in

s)
is

in
d
ica

ted
b
y

th
e

sh
a
d
ed

ta
b
le

cells.

S
tep

σ
1

σ
2

σ
3

σ
4

σ
5

σ
6

σ
7

σ
8

σ
9

σ
1
0

σ
1
1

0
s
0
o

s
0

s
0

s
0

s
0

s
0

s
0

s
0

s
0

s
0

s
0

1
s
1
a
h
ou

s
0
b

s
0
b

s
0

s
0

s
0

s
0

s
0

s
0

s
0

s
0

2
s
2
a
ce

2h
2ou

s
4
a

s
1
a
h

s
0
b

s
0
b

s
0

s
0

s
0

s
0

s
0

s
0

3
s
2
a
eh

3o
2

s
4
a

s
2
a
e
2h

2
s
1
a
h

s
1
a
h

s
0
b

s
0
b

s
0

s
0

s
0

s
0

4
s
2
a
eh

4o
3

s
4
a

s
2
a
e
2h

3
s
2
a
eh

2
s
2
a
eh

2
s
1
a
h

s
1
a
h

s
0
b

s
0
b

s
0

s
0

5
s
2
a
2h

4
s
4
a
o
s
2
a
e
2h

4o
s
2
a
eh

3
s
2
a
eh

3
s
2
a
ceh

2
s
2
a
eh

2
s
4
a

s
1
a
h

s
0
b

s
0

6
s
3
a
h

4
s
4
a

s
2
a
e
2h

5o
s
2
a
ceh

4
s
2
a
eh

4
s
2
a
2h

2
s
2
a
eh

3
s
4
a

s
2
a
eh

2
s
1
a
h

s
0
b

7
s
4
a

s
4
a

s
2
a
ce

2h
6o
s
2
a
2h

4
s
2
a
eh

5
s
3
a
h

2
s
2
a
eh

4
s
4
a

s
2
a
eh

3
s
2
a
ceh

2
s
4
a

8
s
4
a

s
4
a

s
2
a
eh

7o
2
s
3
a
h

4
s
2
a
eh

6
s
4
a

s
2
a
eh

5
s
4
a

s
2
a
ceh

4
s
2
a
2h

2
s
4
a

9
s
4
a

s
4
a

s
2
a
eh

8o
3
s
4
a

s
2
a
eh

7
s
4
a

s
2
a
ceh

6
s
4
a

s
2
a
2h

4
s
3
a
h

2
s
4
a

1
0

s
4
a

s
4
a

s
2
a
2h

8
s
4
a
o

s
2
a
ceh

8o
s
4
a

s
2
a
2h

6
s
4
a

s
3
a
h

4
s
4
a

s
4
a

1
1

s
4
a

s
4
a

s
3
a
h

8
s
4
a

s
2
a
3h

8
s
4
a

s
3
a
h

6
s
4
a

s
4
a

s
4
a

s
4
a

1
2

s
4
a

s
4
a

s
4
a

s
4
a

s
4
a
h

8
s
4
a

s
4
a

s
4
a

s
4
a

s
4
a

s
4
a

1
3

s
4
a

s
4
a

s
4
a
v
4

s
4
a

s
5
a
w

4
s
4
a

s
4
a
v
4

s
4
a

s
4
a

s
4
a

s
4
a

1
4

s
4
a
v
3

s
4
a

s
5
a
w

3
s
4
a
v
3

s
5
a
v
6w

3
s
4
a

s
5
a
w

3
s
4
a

s
4
a
v
3

s
4
a

s
4
a

1
5

s
5
a
w

2
s
4
a
v
2
s
5
a
v
4w

2
s
5
a
w

2
s
5
a
v
6w

2
s
4
a
v
2

s
5
a
v
2w

2
s
4
a

s
5
a
w

2
s
4
a
v
2

s
4
a

1
6

s
5
a
v
w

s
5
a
w
s
5
a
v
4w

s
5
a
v
w

s
5
a
v
6w

s
5
a
w

s
5
a
v
2w

s
4
a
v
s
5
a
v
w

s
5
a
w

s
4
a
v

1
7

s
6

s
6

s
6

s
6

s
6

s
6

s
6

s
6

s
6

s
6

s
6

Using Central Nodes to Improve P System Synchronization 131

3.2 Phase I: Find the middle cell of rooted trees

In this phase, a breadth-first search (BFS) is performed from the root, which
propagates symbol b from the root to all other cells. When the symbol b from the
BFS reaches a leaf cell, symbol c is reflected back up the tree. Starting from the
root, the search for the middle cell is performed as described below, where symbol
o represents the current search pivot. Note that symbol o’s propagation speed is
1/3 of the propagation speed of symbols b and c; intuitively, this ensures that o
and c meet in the middle cell.

We provide a visual description of the propagations of symbols b, c and o in
Figure 4 (for a tree with one center) and Figure 3 (for a tree with two centers).

Details of Phase I

Objective: The objective of Phase I is to find the middle cell, σm, and its height,
heightg(m).

Precondition: Phase I starts with the initial configuration of P system Π, de-
scribed in Section 3.1.

Postcondition: Phase I ends when σm enters state s4. At the end of Phase I, the
configuration of cell σi ∈ K is (Q, s4, wi, R), where |wi|a = 1; |wi|h = 2·heightg(i),
if σi = σm.

Description: In Phase I, each cell starts in state s0, transits through states
s1, s2, s3, and ends in state s4; a cell in state s4 will ignore any symbol o that
it may receive.

The behaviors of cells in this phase are described below.

• Propagation of symbol b: The root cell sends symbol b to all its children
(Rule 0.1). An internal cell forwards the received symbol b to all its children
(Rule 0.2) After applying Rule 0.1 or 0.2, each of these non-leaf cells produces
a copy of symbol h in each step, until it receives symbol c from all its children
(Rules 1.1 and 2.10).

• Propagation of symbol c: If a leaf cell receives symbol b, then it sends
symbol c to its parent (Rule 0.3) and enters state s4 (the end state of Phase I).
If a non-leaf cell receives symbol c from all its children, then it sends symbol c
to its parent (Rules 2.4 and 2.11), consumes all copies of symbol h and enters
state s4 (Rule 3.2).

• Note, when a cell applies Rule 0.2 or 0.3, it sends one copy of symbol e up to
its parent. A copy of symbol e is consumed with a copy of symbol c by Rule
2.4. Hence, |wi|e = k indicates the number of σi’s children that have not sent
symbol c to σi.

• Propagation of symbol o: The root cell initially contains the symbol o. We
denote σj as the current cell that contains symbol o and has not entered state
s4.
Assume, at step t, σj received symbol c from all but one subtree rooted at σv.
Starting from step t+ 1, σj produces a copy of symbol o in each step, until it

132 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

receives symbol c from σv (Rule 2.8), That is, |wj |o − 1 indicates the number
of steps since σj received symbol c from all of its children except σv.
If σj receives symbol c from σv by step t + 2, i.e. |wj |o ≤ 3, then σj is the
middle cell; σj keeps all copies of symbol h and enters state s4 (Rule 2.1).
Otherwise, σj sends a copy of symbol o to σv at step t + 3 (Rule 2.6 or 2.7);
in the subsequent steps, σj consumes all copies of symbol h and enters state
s4 (Rules 2.2 and 3.2). Note, using current setup, σj cannot send a symbol to
a specific child; σj has to send a copy of symbol o to all its children. However,
all σj ’s children, except σv, would have entered state s4.

Proposition 1 indicates the step in which σm receives symbol c from all its
children and Proposition 2 indicates the number of steps needed to propagate
symbol o from σg to σm.

Proposition 1. Cell σm receives the symbol c from all its children by step heightg(g)+
heightg(m).

Proof. Cell σm is at distance heightg(g) − heightg(m) from σg, hence σm re-
ceives symbol b in step heightg(g) − heightg(m). In the subtree rooted at σm,
the propagations of the symbol b from σm to its farthest leaf and the symbol c
reflected from the leaf to σm take 2 · heightg(m) steps. Thus, σm receives sym-
bol c from all its children by step heightg(g) − heightg(m) + 2 · heightg(m) =
heightg(g) + heightg(m). ut

σm

σg

w

x

z

σiσ1 σ2 σk

(a) (b)

Tm(1) Tm(2)

Tm(k)

σm
1

Fig. 2. (a) k subtrees of σm, Tm(1), Tm(2), . . . , Tm(k). (b) The structure of subtree
Tm(j), which contains σg.

Proposition 2. The propagation of the symbol o from σg to σm takes at most
heightg(g) + heightg(m) steps.

Proof. For a given tree Tg, rooted at σg, we construct a tree Tm, which re-roots
Tg at σm. Recall, Tm(i) denotes a subtree rooted at σi in Tm. Assume that σm has
k ≥ 2 subtrees, Tm(1), Tm(2), . . . , Tm(k), such that heightm(1) ≥ heightm(2) ≥

Using Central Nodes to Improve P System Synchronization 133

· · · ≥ heightm(k) and heightm(1)− heightm(2) ≤ 1. Figure 2 (a) illustrates the
subtrees of σm.

Assume Tm(i) is a subtree of σm, which contains σg. In Tm(i), let z be the
height of σg and x + w ≥ 0 be the distance between σg and σi. Figure 2 (b)
illustrates the z, x and w in Tm(i).

In Tm(i), let p be a path from σi to its farthest leaf and t be the number of steps
needed to propagate symbol o from σg to σm. Note, heightm(m) = heightg(m)
and x+ w + 1 = heightg(g)− heightg(m).

We have three cases to consider to prove Proposition 2.

1. heightm(i) = heightm(m)− 1.
• If σg is a part of path p, then z + x+ w + 1 = heightm(m), hence

2z + 3(x+ w + 1) = 2(z + x+ w + 1) + (x+ w + 1)
= 2 · heightm(m) + (heightg(g)− heightg(m))

= heightg(g) + heightg(m)

• If σg is not a part of p, then (v−w) +w+ 1 = v+ 1 = heightm(m), hence

x+ 2(v − w) + 3(w + 1) = 2(v + 1) + (x+ w + 1)
= 2 · heightm(m) + (heightg(g)− heightg(m))

= heightg(g) + heightg(m)

Cell σm receives symbol o in step heightg(g) + heightg(m).
2. heightm(i) = heightm(m)− 2.
• If σg is a part of p, then z + x+ w + 1 = heightm(m)− 1, hence

2z + 3(x+ w + 1) = 2(z + x+ w + 1) + (x+ w + 1)
= 2 · heightm(m)− 2 + heightg(g)− heightg(m)

= heightg(g) + heightg(m)− 2

• If σg is not a part of p, then (v − w) + w + 1 = v + 1 = heightm(m)− 1,
hence

x+ 2(v − w) + 3(w + 1) = 2(v + 1) + (x+ w + 1)
= 2 · heightm(m)− 2 + heightg(g)− heightg(m)

= heightg(g) + heightg(m)− 2

Note, symbol o remains in σm for at least two steps. Thus, symbol o, arrived
in σm at step heightg(g) + heightg(m) − 2, will remain in σm until step
heightg(g) + heightg(m).

3. heightm(i) = heightm(m)− j, j ≥ 3.

134 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

• If σg is a part of p, then z + x+ w + 1 = height(m)− j + 1, hence

2z + 3(x+ w + 1) = 2(z + x+ w + 1) + (x+ w + 1)
= 2 · heightg(m)− 2j + 2 + heightg(g)− heightg(m)

= heightg(g) + heightg(m)− 2j + 2

• If σg is not a part of p, then (v−w) +w+ 1 = v+ 1 = heightg(m)− j+ 1,
hence

x+ 2(v − w) + 3(w + 1) = 2(v + 1) + (x+ w + 1)
= 2 · heightg(m)− 2j + 2 + heightg(g)− heightg(m)

= heightg(g) + heightg(m)− 2j + 2

In Tm, σm has two subtrees, Tm(1) and Tm(2), such that heightm(1) =
heightm(m)− 1 and heightm(1)− heightm(2) ≤ 1.
The symbol o arrived in σm at step heightg(g) + heightg(m)− 2j+ 2, j ≥ 3,
will remain in σm until step heightg(g) + heightg(m).
ut

Proposition 3. Phase I takes heightg(g) + heightg(m) + 2 steps.

Proof. From Propositions 1 and 2, symbols o and cmeets in σm at step heightg(g)+
heightg(m). Cell σm enters state s4 by applying Rule 2.9 and 2.1, which takes
two steps. Thus, Phase I takes heightg(g) + heightg(m) + 2 steps. ut

3.3 Phase II: Determine the step to enter the firing state

Phase II begins immediately after Phase I. In Phase II, the middle cell broadcasts
the “firing” order, which prompts receiving cells to enter the firing state. In general,
the middle cell does not have direct communication channels to all cells. Thus, the
firing order has to be relayed through intermediate cells, which results in some
cells receiving the order before other cells. To ensure that all cells enter the firing
state simultaneously, each cell needs to determine the number of steps it needs to
wait, until all other cells receive the order.

The firing order is paired with a counter, which is initially set to the eccentricity
of the middle cell. Propagating an order from one cell to another decrements
its current counter by one. The current counter of the received order equals the
number of remaining steps before all other cells receive the order. Hence, each cell
waits according to the current counter, before it enters the firing state. Figure 5
illustrates the propagation of the firing order.

Details of Phase II

Objective: The objective of Phase II is to determine the step to enter the firing
state, such that during the last step of Phase II, i.e. the system’s execution, all
cells enter the firing state, simultaneously and for the first time.

Using Central Nodes to Improve P System Synchronization 135

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

b b

b b

c

b b

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

b b

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

b

c

o
σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

c

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

c

c

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

c

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

c

oo

ooo

oo ooo

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

Step 7 Step 8 Step 9

o

o

o o

c

Fig. 3. Propagations of symbols b, c and o, in a tree with two centers. The symbols c
and o meet at the middle cell σ3. Cells that have sent symbol c or o are shaded. The
propagation of symbol o to a shaded cell is omitted. In cell σj , j ∈ {1, 3}, |wj |o − 1
represents the number of steps since σj received symbol c from all of its children but one.

136 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

b b

b b

c

b b

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

b b

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

b

c

o
σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

b

c

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

c

c

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

c

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

c

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

c

o

oo ooo

oo

ooo

Step 1 Step 2 Step 3 Step 4

Step 5 Step 6 Step 7 Step 8

Step 9 Step 10

o o

o o

Fig. 4. Propagations of symbols b, c and o, in a tree with one center. The symbols c
and o meet at the middle cell σ5. Cells that have sent symbol c or o are shaded. The
propagation of symbol o to a shaded cell is omitted. In cell σj , j ∈ {1, 3}, |wj |o − 1
represents the number of steps since σj received symbol c from all of its children but one.

Precondition: Phase II starts with the postcondition of Phase I, described in
Section 3.2.

Using Central Nodes to Improve P System Synchronization 137

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

σ1

σ2 σ3

σ4 σ5

σ6 σ7

σ8 σ9

σ10

σ11

v4

v4

Step 1 Step 2 Step 3

Step 4 Step 5

v3

v3

v3

v3

v3
v2

v2

v2

v2

v2v2

v

v

v

v

v

Fig. 5. Propagations of the firing order from the middle cell, σ5, where the counter is
represented by the multiplicity of symbol v. Cells that have propagated the order are
shaded.

Postcondition: Phase II ends when all cells enter the firing state s6. At the end
of Phase II, the configuration of cell σi ∈ K is (Q, s6, ∅, R).

Description: The behaviors of the middle cell σm and a non-middle cell, σi 6= σm,
in this phase are as follow. We also indicate which rules accomplish the described
behaviors.

• We first describe the behavior of σm. For every two copies of symbol h, σm
produces one copy of symbol w and sends one copy of symbol v to all its
neighbors (Rules 4.1 and 4.2). In the next sequence of steps, σm consumes one
copy of symbol w (Rule 5.1). If σm consumes all copies of symbol w, then σm
enters the firing state (Rule 5.2).

• Next, we describe the behavior of σi 6= σm. Let ki ≥ 1 denote the multiplicity
of symbol v that σi receives for the first time. If ki = 1, then σi enters the firing
state (Rule 4.6). If ki ≥ 2, then σi consumes ki copies of symbol v, produces
ki−1 copies of symbol w and sends ki−1 copies of symbol v to all its neighbors

138 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

(Rules 4.3, 4.4, 4.7 and 4.8); in each subsequent step, σi consumes one copy of
symbol w (Rule 5.1) and σi enters the firing state (Rule 5.2), after all copies
of symbol w is consumed.

Proposition 4. Cell σm produces heightg(m) copies of symbol w and sends
heightg(m) copies of symbol v to all is neighbors.
Proof. At the beginning of Phase II, σm contains 2 · heightg(m) copies of symbol
h. As described earlier, for every two copies of the symbol h that σm consumes, σm
produces one copy of symbol w and sends one copy of symbol v to all its neighbors.
ut

Proposition 5. Cell σi receives k copies of symbol v at step t and sends k − 1
copies of symbol v to all its neighbors at step t + 1, where k = heightg(m) −
depthm(i) + 1 and t = heightg(g) + heightg(m) + depthm(i) + 2.
Proof. Proof by induction on depthm(i) ≥ 1. First, σm sends heightg(m) copies
of symbol v to all its neighbors. Thus, each cell σi, at distance 1 from σm,
receives heightg(m) copies of symbol v. By Rule 4.3, 4.4, 4.7, 4.8, σi consumes
heightg(m) copies of symbol v, produces heightg(m)− 1 copies of symbol w and
sends heightg(m)− 1 copies of symbol v to all its neighbors.

Assume that the induction hypothesis holds for each cell σj at distance
depthm(j). Consider cell σi, where depthm(i) = depthm(j) + 1. By the induction
hypothesis, cell σj ∈ Neighbor(i), sends heightg(m)−depthm(j) = heightg(m)−
depthm(i)+1 copies of symbol v, such that σi receives heightg(m)−depthm(i)+1
copies of symbol v. By Rule 4.3, 4.4, 4.7, 4.8, σi consumes heightg(m)−depthm(i)+
1 copies of symbol v, produces heightg(m) − depthm(i) copies of symbol w and
sends heightg(m)− depthm(i) copies of symbol v to all its neighbors. ut

Proposition 6. Phase II takes heightg(m) + 1 steps.
Proof. Each cell σi receives heightg(m) − depthm(i) + 1 copies of symbol v at
step heightg(g) + heightg(m) + depthm(i) + 2.

Consider σj , where depthm(j) = heightg(m). Cell σj receives one copy of
symbol v. As described earlier, if a cell receives one copy of symbol v, then it
enters the firing state at the next step. Hence, σj enters the firing state at step
heightg(g) + 2 · heightg(m) + 3.

Consider σk, where depthm(k) < heightg(m). Cell σk contains heightg(m)−
depthm(i) copies of symbol w at step heightg(g) + heightg(m) + depthm(i) + 3.
Since σk consumes one copy of symbol w in each step, σk will take heightg(m)−
depthm(i) steps to consume all copies of symbol w. Hence, σj enters the firing state
at step (heightg(g)+heightg(m)+depthm(i)+3)+(heightg(m)−depthm(i)) =
heightg(g) + 2 · heightg(m) + 3.

Phase I ends at step heightg(g) +heightg(m) + 2 and all cells enter the firing
state at step heightg(g)+2 ·heightg(m)+3. Thus, Phase II takes heightg(m)+1
steps. ut

Theorem 3. The synchronization time of our FSSP solution, for a P system with
underlying structure of a tree, is heightg(g) + 2 · heightg(m) + 3.

Using Central Nodes to Improve P System Synchronization 139

Proof. The result is obtained by summing the individual running times of Phases I
and II, as given by Propositions 3 and 6: (heightg(g) + heightg(m) + 2) +
(heightg(m) + 1) = heightg(g) + 2 · heightg(m) + 3. ut

3.4 Empirical results

We tested the improvement in running times over the previously best-known FSSP
algorithms that synchronize tree-based P systems [1, 5]. We wanted to see how our
new running time, that is proportional to e+ 2r, compares with the earlier value
of 3e, where e is the eccentricity of the general (which is also the height of the
tree, rooted at the general) and r is the radius of a tree. We did two tests suites;
one for relatively small trees and one for larger trees as shown in Tables 2 and 3,
respectively. In both cases, our empirical results show at least 20% reduction in
the number of steps needed to synchronize, which we believe is significant.

For the statistics given in Table 2, we generated random (free) trees by starting
from a single node and repeatedly add new leaf nodes to the partially generated
tree. We then averaged over all possible locations for the general node. The “av-
erage gain” is the average difference 3e − (e + 2r) and the “average % gain” is
improvement as a percentage speedup over 3e.

Table 2. Statistics for improvement on many random trees of various (smaller) orders.

average average avgerage avgerage avgerage %
n height radius 3·height height+2·radius gain

100 22.12 14.49 66.36 51.1 23.00

200 31.91 21.35 95.73 74.61 22.06

300 41.13 26.79 123.39 94.71 23.24

400 47.86 31.3 143.58 110.46 23.07

500 51.52 33.77 154.56 119.06 22.97

600 57.16 37.76 171.48 132.68 22.63

700 63.43 42.19 190.29 147.81 22.32

800 68.12 45.37 204.36 158.86 22.26

900 72.46 47.83 217.38 168.12 22.66

1000 79.94 52.21 239.82 184.36 23.13

For the statistics given in Table 3, we generated random labeled trees using
the well-known Prüfer correspondence [19] (using the implementation given in
Sage [16]). In these sets of trees, the first indexed vertex is randomly placed,
unlike the random trees generated in our first test suite. Hence, for this test suite,
we did not need to average over all possible general node locations per tree. Due

140 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

to the uniform randomness of the labeled tree generator, we assumed the general
is placed at the node labeled by 1. Each row in Table 3 is based on 100 random
trees of that given order.

We have run both test suites several times and the results are consistent with
these two tables. Hence, we are pretty confident in the practical speedup that our
new synchronization algorithm provides.

Table 3. Statistics for improvement on random trees of various (larger) orders.

avgerage avgerage avgerage %
n diameter radius eccentricity gain gain

1000 21 11 16.27 10.54 21.59

2000 32 16 23.45 14.90 21.18

3000 26 13 19.97 13.95 23.27

4000 30 15 22.65 15.30 22.51

5000 35 18 26.51 17.01 21.40

6000 32 16 23.82 15.64 21.89

7000 34 17 25.29 16.58 21.85

8000 34 17 25.01 16.03 21.36

9000 40 20 28.37 16.74 19.67

10000 37 19 27.16 16.32 20.03

10000 38 19 27.36 16.72 20.37

20000 37 19 28.23 18.47 21.80

30000 43 22 31.74 19.49 20.46

40000 43 22 31.55 19.09 20.18

50000 42 21 30.81 19.63 21.23

60000 44 22 32.50 21.00 21.54

70000 48 24 34.55 21.09 20.35

80000 45 23 33.08 20.17 20.32

90000 50 25 36.00 22.01 20.37

100000 47 24 34.15 20.29 19.81

4 FSSP solution for digraphs

The key idea of FSSP solution for digraphs is as follows. For a given digraph,
perform a BFS from the general on the communication graph and construct a
virtual spanning tree, implemented via pointer symbols, not by changing existing

Using Central Nodes to Improve P System Synchronization 141

arcs. If a node finds multiple parents in the BFS, then one of the parents is chosen
as its spanning tree parent. In Figure 6, (a) illustrates a digraph G, (b) illustrates
the underlying graph of G and (c) illustrates a spanning tree of the underlying
graph of G, rooted at σ1.

Using the spanning tree constructed from the BFS, the FSSP algorithm de-
scribed in Section 3, is applied to achieve the synchronization.

We present the details of P system for solving the FSSP (Problem 2) for di-
graphs in Section 4.1. A trace of the FSSP algorithm for digraphs is given in
Table 4. The details Phases I and II of this FSSP algorithm are described in
Sections 4.2 and 4.3, respectively. Finally, in Section 4.4, we present some empir-
ical results that illustrates expected improvements of our new algorithm over our
previous FSSP algorithm for digraphs [5].

σ1σ2

σ3

σ4σ5

σ6

σ7σ8

σ9

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ8

σ9

(a) (c)

σ1

σ2 σ3 σ4

σ5 σ6 σ7

σ8

σ9

(b)

Fig. 6. (a) A digraph G. (b) The underlying graph of G. (c) A spanning tree of the
underlying graph of G, rooted at σ1.

4.1 P systems for solving the FSSP for digraphs

Given a digraph (X,A) and g ∈ X, our FSSP algorithm is implemented using the
P system Π ′ = (O,K, δ) of order n = |X|, where:

1. O = {a, h, o, v, w, x, z} ∪ {ιk, bk, ck, ek, pk | 1 ≤ k ≤ n}.
2. K = {σ1, σ2, . . . , σn}.
3. δ is a digraph, isomorphic to (X,A), where the general σg ∈ K corresponds to
g ∈ X.

All cells have the same set of states and start at the same initial quiescent state
s0, but with different initial contents and set of rules. The first output condition
of Problem 2 will be satisfied by our chosen set of rules.

In this FSSP solution, we extend the basic P module framework, described
Section 2. Specifically, we assume that each cell σi ∈ K has a unique cell ID
symbol ιi, which will be used as an immutable promoter and we allow rules with
a simple form of complex symbols.

142 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

To explain these additional features, consider rules 3.10 and 3.11 from the
ruleset R, listed below. In this ruleset, symbols i and j are free variables (which in
our case happen to match cell IDs). Symbols ei and ej are complex symbols. Rule
3.11 deletes all existing ej symbols, regardless of the actual values matched by
the free variable j. However, the preceding rule 3.10 fires only for symbols ei, with
indices i matching the local cell ID, as required by the right-hand side promoter ιi.
Together, rules 3.10 and 3.11, applied in a weak priority scheme, keep all symbols
ei, with indices i matching the local cell ID, and delete all other symbols ej .

For each cell σi ∈ K, its initial configuration is σi = (Q, s0, wi0, R) and its final
configuration at the end of the execution is σi = (Q, s7, {ιi}, R), where:

• Q = {s0, s1, s2, s3, s4, s5, s6, s7}, where s0 is the initial quiescent state and s7
is the firing state.

• wi0 =
{
{ιgo} if σi = σg,
{ιi} if σi 6= σg.

• R is defined by the following rulesets.
Rules used in Phase I: all the rules in states s0, s1, s2, s3, s4 and rules 5.5
and 5.6 in state s5.
Rules used in Phase II: all the rules in states s5 and s6, except rules 5.5
and 5.6.
0. Rules for cells in state s0:

1. s0 o→min s1 ao (xbi)l | ιi
2. s0 x→min s1 a (xbi)l | ιi
3. s0 bj →max s1 pj

1. Rules for cells in state s1:
1. s1 apj →max s2 apj (ej)l
2. s1 a→max s2 a
3. s1 pj →max s2

2. Rules for cells in state s2:
1. s2 a→max s3 a
2. s2 bj →max s3
3. s2 x→max s3

3. Rules for cells in state s3:
1. s3 aaa→max s5 a
2. s3 aa→max s4 a
3. s3 ciei →max s3 | ιi
4. s3 aoooei →max s3 aa (o)l | ιi
5. s3 aoeiei →max s3 ahoeiei | ιi
6. s3 aoei →max s3 ahooei | ιi
7. s3 ao→max s3 aaa
8. s3 aei →max s3 aeih | ιi
9. s3 apj →max s3 aa (cj)l

10. s3 ei →max s3 ei | ιi
11. s3 ej →max s3
12. s3 pj →max s4
13. s3 pj →max s5

4. Rules for cells in state s4:
1. s4 a→max s5
2. s4 h→max s5
3. s4 cj →max s5

5. Rules for cells in state s5:
1. s5 a→max s6 a (z)l
2. s5 hh→max s6 w (v)l
3. s5 zv →max s6 a (z)l
4. s5 v →max s6 w (v)l
5. s5 o→max s5
6. s5 cj →max s5

6. Rules for cells in state s6:
1. s6 aw →max s6 a
2. s6 a→max s7
3. s6 z →max s7
4. s6 v →max s7

Using Central Nodes to Improve P System Synchronization 143

T
a
b
le

4
.

T
h
e

tr
a
ce

s
o
f

th
e

F
S
S
P

a
lg

o
ri

th
m

o
n

th
e

d
ig

ra
p
h

o
f

F
ig

u
re

6
(a

),
w

h
er

e
th

e
g
en

er
a
l

is
σ

1
a
n
d

th
e

m
id

d
le

ce
ll

is
σ

2
.

T
h
e

st
ep

in
w

h
ic

h
th

e
P

h
a
se

I
en

d
s

(o
r

th
e

P
h
a
se

II
b

eg
in

s)
is

in
d
ic

a
te

d
b
y

th
e

sh
a
d
ed

ta
b
le

ce
ll
s.

S
te

p
σ
1

σ
2

σ
3

σ
4

σ
5

σ
6

σ
7

σ
8

σ
9

0
s
0
ι
1
o

s
0
ι
2

s
0
ι
3

s
0
ι
4

s
0
ι
5

s
0
ι
6

s
0
ι
7

s
0
ι
8

s
0
ι
9

1
s
1
ι
1
a
o

s
0
ι
2
b
1
x

s
0
ι
3
b
1
x

s
0
ι
4
b
1
x

s
0
ι
5

s
0
ι
6

s
0
ι
7

s
0
ι
8

s
0
ι
9

2
s
2
ι
1
a
b
2
b
3
b
4
o
x
3
s
1
ι
2
a
p
1

s
1
ι
3
a
p
1

s
1
ι
4
a
p
1

s
0
ι
5
b
2
x

s
0
ι
6
b
2
b
3
x
2

s
0
ι
7
b
3
b
4
x
2

s
0
ι
8

s
0
ι
9

3
s
3
ι
1
a
e
3 1
o

s
2
ι
2
a
b
5
b
6
p
1
x
2

s
2
ι
3
a
b
6
b
7
p
1
x
2
s
2
ι
4
a
b
7
p
1
x

s
1
ι
5
a
e
1
p
2

s
1
ι
6
a
e
2 1
p
2
p
3
x

s
1
ι
7
a
e
2 1
p
3
p
4
x

s
0
ι
8
b
5
b
6
b
7
x
3

s
0
ι
9

4
s
3
ι
1
a
e
3 1
h
o

s
3
ι
2
a
e
2 2
p
1

s
3
ι
3
a
e
2
e
4
p
1

s
3
ι
4
a
e
4
p
1

s
2
ι
5
a
b
8
e
1
p
2
x
s
2
ι
6
a
b
8
e
2 1
p
2
x
2

s
2
ι
7
a
b
8
e
2 1
p
4
x
2
s
1
ι
8
a
e
2 2
e
4
p
5
p
6
p
7
x
2
s
0
ι
9
b
8
x

5
s
3
ι
1
a
c
1
e
3 1
h
2
o

s
3
ι
2
a
e
2 2
h
p
1

s
3
ι
3
a
2

s
3
ι
4
a
e
4
h
p
1

s
3
ι
5
a
e
1
e
6
p
2

s
3
ι
6
a
c
1
e
2 1
e
6
p
2

s
3
ι
7
a
c
1
e
2 1
e
6
p
4
s
2
ι
8
a
b
9
e
2 2
e
4
p
6
x
3

s
1
ι
9
a
e
6
p
8

6
s
3
ι
1
a
e
2 1
h
3
o

s
3
ι
2
a
c
2
e
2 2
h
2
p
1

s
4
ι
3
a
c
4

s
3
ι
4
a
c
4
e
4
h
2
p
1
s
3
ι
5
a
2

s
3
ι
6
a
c
1
e
6
h
p
2

s
3
ι
7
a
2
c
1

s
3
ι
8
a
c
2
c
4
e
2 2
e
4
e
8
p
6
s
2
ι
9
a
e
6
p
8

7
s
3
ι
1
a
c
1
e
2 1
h
4
o

s
3
ι
2
a
e
2
h
3
p
1

s
5
ι
3

s
3
ι
4
a
2
h
2

s
4
ι
5
a

s
3
ι
6
a
c
1
e
6
h
2
p
2

s
4
ι
7
a
c
2 1

s
3
ι
8
a
c
2
c
4
e
8
h
p
6

s
3
ι
9
a
e
6
p
8

8
s
3
ι
1
a
e
1
h
5
o
2

s
3
ι
2
a
e
2
h
4
p
1

s
5
ι
3

s
4
ι
4
a
h
2

s
5
ι
5

s
3
ι
6
a
c
1
e
6
h
3
p
2

s
5
ι
7

s
3
ι
8
a
c
2
c
4
c
8
e
8
h
2
p
6
s
3
ι
9
a
2

9
s
3
ι
1
a
e
1
h
6
o
3

s
3
ι
2
a
e
2
h
5
p
1

s
5
ι
3

s
5
ι
4

s
5
ι
5
c
6

s
3
ι
6
a
c
1
c
6
e
6
h
4
p
2
s
5
ι
7
c
6

s
3
ι
8
a
2
c
2
c
4
h
2

s
4
ι
9
a
c
6

1
0

s
3
ι
1
a
2
h
6

s
3
ι
2
a
c
2
e
2
h
6
o
p
1
s
5
ι
3
c
2
o

s
5
ι
4
o

s
5
ι
5

s
3
ι
6
a
2
c
1
h
4

s
5
ι
7

s
4
ι
8
a
c
2 2
c
4
h
2

s
5
ι
9

1
1

s
4
ι
1
a
h
6

s
3
ι
2
a
3
h
6
p
1

s
5
ι
3

s
5
ι
4

s
5
ι
5

s
4
ι
6
a
c
1
h
4

s
5
ι
7

s
5
ι
8

s
5
ι
9

1
2

s
5
ι
1

s
5
ι
2
a
h
6

s
5
ι
3

s
5
ι
4

s
5
ι
5

s
5
ι
6

s
5
ι
7

s
5
ι
8

s
5
ι
9

1
3

s
5
ι
1
v
3
z

s
6
ι
2
a
w

3
s
5
ι
3

s
5
ι
4

s
5
ι
5
v
3
z

s
5
ι
6
v
3
z

s
5
ι
7

s
5
ι
8

s
5
ι
9

1
4

s
6
ι
1
a
w

2
s
6
ι
2
a
v
6
w

2
z
3

s
5
ι
3
v
4
z
2

s
5
ι
4
v
2
z

s
6
ι
5
a
w

2
s
6
ι
6
a
w

2
s
5
ι
7

s
5
ι
8
v
4
z
2

s
5
ι
9

1
5

s
6
ι
1
a
v
3
w
z
3

s
6
ι
2
a
v
6
w
z
3

s
6
ι
3
a
2
w

2
s
6
ι
4
a
w

s
6
ι
5
a
v
2
w
z
2

s
6
ι
6
a
v
4
w
z
4

s
5
ι
7
v
5
z
5

s
6
ι
8
a
2
w

2
s
5
ι
9
v
2
z
2

1
6

s
6
ι
1
a
v
3
z
3

s
6
ι
2
a
v
6
z
3

s
6
ι
3
a
2
z
5

s
6
ι
4
a
z
5

s
6
ι
5
a
v
2
z
2

s
6
ι
6
a
v
4
z
4

s
6
ι
7
a
5

s
6
ι
8
a
2
z
7

s
6
ι
9
a
2

1
7

s
7
ι
1

s
7
ι
2

s
7
ι
3

s
7
ι
4

s
7
ι
5

s
7
ι
6

s
7
ι
7

s
7
ι
8

s
7
ι
9

144 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

4.2 Phase I: Find the middle cell of a BFS spanning tree

For a given digraph-based P system, a (virtual) spanning tree is constructed by a
standard BFS originated from the general, where the tree parent of each cell is one
of its BFS parents (randomly chosen). Each cell keeps the track of its spanning
tree parent and this is achieved by the use of cell IDs (unique identifier ID), e.g.,
i is the cell ID of σi.

Details of Phase I

Objective: The objective of Phase I is to find the middle cell, σm, and its height,
heightg(m).

Precondition: Phase I starts with the initial configuration of P system Π, de-
scribed in Section 4.1.

Postcondition: Phase I ends when σm enters state s5. At the end of Phase I,
the configuration of cell σi ∈ K is (Q, s5, wi, R), where |wi|ιi = 1; |wi|a = 1 and
|wi|h = 2 · heightg(i), if σi = σm.

Description: We describe below the details of the BFS spanning tree construction
and the propagation of the reflected symbol in the BFS tree. The symbol o, starting
from the general, propagates from a tree parent to one of its children, as described
in the FSSP solution for tree-based P systems (Section 3.2). Hence, the details of
symbol o propagation are not given here.

• The details of the BFS spanning tree construction:
A BFS starts from the general. When the search reaches cell σi, σi will send a
copy of symbol bi to all its neighbors (Rule 0.1 or 0.2).
From the BFS, cell σi receives a copy of symbol bj from each σj ∈ Predg(i),
where σj is a BFS dag parent of σi. Cell σi temporarily stores all of its BFS dag
parents by transforming each received symbol bj to symbol pj (Rule 0.3). Note,
σi will also receive a copy of symbol bk from each σk ∈ Peerg(i) ∪ Succg(i);
however, σi will discard each received symbol bk.
Each cell selects one of its BFS dag parents as its tree parent. If cell σi
has chosen σj as its tree parent, then σi will discards each pk, where σk ∈
Predg(i) \ {σj} (Rule 1.3). Additionally, σi will send a copy of symbol ej to
all its neighbors, which will be discarded by all σi’s neighbors, except σj (Rule
1.1).
Hence, in each cell σi, the multiplicity of symbol ei will indicate the number of
σi’s tree children and symbol pj will indicate that σj is the tree parent of σi;
also, symbol pj will later be used to propagate the reflected symbol back up
the tree.

• The details of reflected symbol propagation:
To replicate the propagation of a reflected symbol up the BFS tree, each inter-
nal cell of the BFS tree needs to check if the received a reflected symbol came
from one of its BFS tree children.

Using Central Nodes to Improve P System Synchronization 145

Let σi be a BFS tree child of σj , where |wi|ei = 0. Recall that, in such case, cell
σi contains symbol pj , where the subscript j is the ID of its BFS tree parent,
and σj contains symbol ej , such that |wj |ej is the number of σj ’s BFS tree
children.
Guided by symbol pj , σi sends symbol cj to all its neighbors (Rule 3.9). Cell
σj consumes a copy of symbol ej with a copy of symbol cj by Rule 3.3; σj
cannot consume symbol ej with symbol ck, where j 6= k. If σj receives symbol
cj from all its BFS tree children, then all copies of symbol ej will be consumed,
i.e. |wj |ej = 0.

Proposition 7 indicates the step in which the BFS reaches cell σi and σi receives
symbol bj from each σj ∈ Predg(i). Proposition 8 indicates the step in which σi
receives symbol ei from its tree child.

Proposition 7. Cell σi receives symbol bj from each σj ∈ Predg(i) at step
depthg(i) and sends symbol bi to all its neighbors at step depthg(i) + 1.

Proof. Proof by induction, on d = depthg(i) ≥ 1. At step 1, the general σg sends
symbol bg to all its neighbors by Rule 0.1. Hence, at step 1, each cell σk at depth
1 receives symbol bg. Then, at step 2, by Rule 0.2, σk sends symbol bk to each of
its neighbors.

Assume that the induction hypothesis holds for each cell σj at depth d. Con-
sider cell σi at depthg(i) = m + 1 = depthg(j) + 1. By induction hypothesis, at
step depthg(j) + 1, each σj ∈ Predg(i) sends symbol bj to all its neighbors. Thus,
at step depthg(j) + 1 = depthg(i), σi receives symbol bj . At step depthg(i) + 1,
by Rule 0.2, σi sends symbol bi to all its neighbors. ut

Proposition 8. Cell σi receives a copy of symbol ei from each of its tree children
at step depthg(i) + 3.

Proof. Assume that cell σj ∈ Succg(i) has chosen σi as its tree parent. From
Proposition 7, cell σj receives symbol bi at step depthg(j) = depthg(i) + 1. Ac-
cording to the description, σj will send symbol ei at step depthg(j) + 2. Thus, σi
will receive symbol ei at step depthg(i) + 3. ut

Remark 1. From Proposition 8, σi receives symbol ei from its tree child at step
depthg(i) + 3. If σi does not receive symbol ei at step depthg(i) + 3, then σi can
recognize itself as a tree leaf and send a reflected symbol to its tree parent at step
depthg(i) + 4. That is, once a leaf cell is reached by the BFS, it will take three
additional steps to send reflected symbol to its tree parent. Recall, in the FSSP
algorithm for tree-based P systems, a leaf cell sends reflected symbol to its parent,
one step after reached by the BFS. Thus, this FSSP algorithm for digraph-based
P systems takes three additional steps to send the reflected symbol than the FSSP
algorithm for tree-based P systems.

146 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

4.3 Phase II: Determine the step to enter the firing state

Similar to the Phase II described in Section 3.3, the firing order is broadcasted
from the middle cell σm. The order is paired with a counter, which is initially set
to the eccentricity of σm and decrements by one in each step of this broadcast
operation.

Details of Phase II

Objective: The objective of Phase II is to determine the step to enter the firing
state, such that during the last step of Phase II, i.e. the system’s execution, all
cells enter the firing state, simultaneously and for the first time.

Precondition: Phase II starts with the postcondition of Phase I, described in
Section 4.2.

Postcondition: Phase II ends when all cells enter the firing state s7. At the end
of Phase II, the configuration of cell σi ∈ K is (Q, s7, {ιi}, R).

Description: The order arrives in σi, along every shortest paths from σm to σi.
Hence, to compute the correct step to enter the firing state, cell σi decrements, in
each step, the sum of all received counter by the number of shortest paths from
σm to σi and σi enters the firing state if the sum of all received counter becomes
0. The number of shortest paths from σm to σi is determined as follows. Cell σm
sends a copy of symbol z. Each cell σi forwards symbol z, received from each
σj ∈ Predm(i). The number of shortest paths from σm to σi is the sum of all
copies of symbol z that σi receives from each σj ∈ Predm(i).

Let t be the the current counter and k be the number of shortest paths from σm
to the current cell. In the FSSP solution for tree-based P systems, the condition
for entering the firing state in the next step is when t = 1 (note k = 1). However,
the FSSP solution, as implemented in this section, cannot directly detect if t = k,
since k ≥ 1 Instead, a cell enters the firing state after t = 0 is detected. Thus,
the FSSP algorithm for digraph-based P systems requires one additional step in
Phase II.

Theorem 4. The synchronization time of the FSSP solution for digraph-based
P systems is ecc(g) + 2 · ecc(m) + 7.

Proof. This FSSP algorithm for digraph-based P systems requires four additional
overhead steps than the FSSP algorithm for tree-based P systems. Three of these
four overhead steps are described in Remark 1 and the remaining overhead step is
mentioned in Section 4.3. ut

We end this section with a comment regarding improving the communication
requirements of our FSSP solution. Currently, there may be an exponential number
of broadcast objects generated since a given cell currently receives a copy of the
counter from every possible shortest path from the middle cell. We can reduce
number of broadcasted counters from an exponential to a polynomial as follows.
Assume that, a counter, sent or forwarded from a cell, is annotated with the cell’s
ID. In Phase II, if a cell receives counter from its BFS tree neighbor (from a BFS

Using Central Nodes to Improve P System Synchronization 147

tree child for cells on the path from the general to the middle cell, otherwise from
its original BFS tree parent), then it broadcasts the reduced-by-one counter, now
annotated with its own ID, to all its neighbors. The total number of steps of this
revised algorithm would still be the same as given in Theorem 4.

4.4 Empirical results

We also tested the improvement in running times over our previous FSSP algorithm
on digraph-based P systems. The rate of improvement drops off as the number of
edges increase over n−1, the size of trees of order n. But for several sparse digraph
structured P systems the improvement is still worthwhile.

We did two tests suites; one for relatively small digraphs (illustrated in Fig-
ure 7) and one for larger digraphs as shown in Table 5. The graphs used in our
empirical tests were generated using NetworkX [8].

For the statistics given in Table 5, we first generated connected random graphs
of order n and size m. We then averaged over all possible locations for the general
node. To model the parallel nature of P systems, we needed to generate a random
BFS tree originating at the general. This was created by first performing a BFS
from the general to constructing the BFS dag then randomly picking (for each
non-general node) one parent within the dag structure as the parent for the BFS
tree.

For this BFS tree, with e denoting the eccentricity of the general and r denoting
the radius of the BFS tree, the “average gain” is the average difference of 3e −
(e+ 2r) and the “average % gain” is the average of the (3e− (e+ 2r))/(3e) values.
From our empirical results, we can observe that the radius of the BFS spanning
trees seems to be close to the actual radius of the given virtual communication
graphs.

For the statistics given in the three dimensional plots of Figure 7 (generated
using Gnuplot [20]), we generated 100 random connected (n,m)-graphs, for each
order n, 20 ≤ n ≤ 40, and size m = (n−1)+2k, where 0 ≤ k ≤ 20. Note, the inte-
ger value of 2k represents the number of edges added to a tree. We then averaged
over all possible general starting positions. The vertical axis is the average percent-
age speedup of our new algorithm over our previous synchronization algorithm.
One can also observe from this plot, at least 20% improvements (i.e. reduction in
number of steps needed to synchronize), is maintained for k = 0 (i.e. the graph
is a tree). However, as the graphs become less sparse, the expected improvement
drops to near zero, when as few as 40 edges are added to the trees. In general,
for fixed k, the expected improvement in performance, for (n, n + k) digraphs
slightly increases as n increases. However, for fixed n, the expected improvement
in performance drops drastically as k increases.

148 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

Table 5. Statistics for reduction in number of steps needed to synchronize on a few
random (n,m)-graphs.

graph avg tree avgerage avgerage
n m radius radius gain gain %

100 100 15 15.68 16.7 23.16

100 110 9 11.47 3.14 8.02

100 120 7 8.97 1.6 5.45

100 130 7 8.13 1.0 3.86

100 140 6 7.33 0.72 3.12

200 200 20 20.73 17.91 20.10

200 210 16 19.12 5.08 7.81

200 220 13 15.74 3.9 7.34

200 230 9 11.24 2.24 6.04

200 240 9 11.41 2.13 5.68

300 300 25 25.00 22.32 20.57

300 310 17 18.95 7.95 11.56

300 320 16 18.61 8.29 12.14

300 330 12 15.0 3.37 6.73

300 340 12 14.03 2.46 5.37

400 400 24 24.56 24.10 21.94

400 410 22 24.79 7.73 8.99

400 420 19 21.91 7.12 9.31

400 430 15 17.85 2.78 4.81

400 440 13 15.86 2.29 4.48

500 500 28 29.14 23.30 19.04

500 510 24 27.28 9.68 10.04

500 520 19 23.17 8.72 10.56

500 530 16 19.87 5.68 8.34

500 540 16 19.25 5.70 8.60

600 600 28 30.99 22.35 17.66

600 610 25 28.78 14.63 13.51

600 620 22 24.965 5.39 6.49

600 630 19 22.065 5.72 7.64

600 640 17 20.32 4.15 6.18

graph avg tree avgerage avgerage
n m radius radius gain gain %

700 700 35 38.68 25.58 16.56

700 710 23 29.55 10.09 9.72

700 720 23 26.59 8.39 9.08

700 730 21 24.69 7.70 9.00

700 740 20 25.11 7.50 8.66

800 800 40 42.66 26.93 15.99

800 810 28 32.50 13.08 11.16

800 820 29 33.91 9.13 7.91

800 830 23 26.36 8.06 8.84

800 840 20 25.19 7.80 8.93

900 900 53 60.73 25.92 11.72

900 910 35 39.23 12.94 9.44

900 920 24 30.37 7.44 7.27

900 930 25 29.23 7.42 7.50

900 940 21 24.90 5.74 6.88

1000 1000 60 66.96 26.72 11.09

1000 1010 33 37.43 20.27 14.20

1000 1020 26 31.19 8.64 8.11

1000 1030 25 29.63 7.87 7.81

1000 1040 26 30.32 11.41 10.55

1000 1000 46 48.45 26.58 14.35

1000 1010 31 34.77 20.07 14.93

1000 1020 28 32.98 11.91 10.19

1000 1030 24 29.30 9.23 9.07

1000 1040 23 27.62 6.66 7.17

2000 2000 76 76.07 85.98 24.07

2000 2010 55 61.33 30.50 13.27

2000 2020 39 44.73 18.55 11.45

2000 2030 33 42.11 11.21 7.83

2000 2040 32 39.78 13.68 9.78

5 Conclusions and future works

In this paper, we explicitly presented an improved solution to the FSSP for tree-
based P systems. We improved our previous FSP algorithm [5] by allowing the
general to delegate a more central cell in the tree structure, as an alternative to
itself, to send the final “firing” command. This procedure for trees-based P systems
was extended to digraph-based P systems. Here we use a virtual spanning BFS
tree (rooted at the general) in the digraph and use our tree-based middle-cell
algorithm for that tree to improve the synchronization time. Alternatively, we
would like to develop a way to compute a center of an arbitrary graph since the
radius of the graph may be less than the radius of a particular BFS spanning tree.
Thus this future work may possibly provide even more guaranteed improvements
in synchronization time.

We summarize our work as follows. With e being the eccentricity of the general
and r denoting the radius of the graph, where e/2 ≤ r ≤ e, we note the radius r′

of the spanning BFS tree satisfies e/2 ≤ r ≤ r′ ≤ e. Thus, we have the following
results:

Using Central Nodes to Improve P System Synchronization 149

n

k

 0

 5

 10

 15

 20

 25

%speedup

 20
 22

 24
 26

 28
 30

 32
 34

 36
 38

 40

 0 5 10 15 20 25 30 35 40

%speedup

Fig. 7. Discrete 3-dimensional plot of expected synchronization improvements for a small
range of random connected (n,m)-graph structures, with m = (n− 1) + k edges.

• If the membrane structure of a considered P system is a tree, then synchro-
nization time is e+ 2r + 3.

• If the membrane structure of a considered P system is a digraph, then syn-
chronization time t is e+ 2r + 7 ≤ t ≤ 3e+ 7.

Our empirical work shows that the radius of the BFS spanning tree is often
as small as the radius of its host graph and we expect, more often than not,
the synchronization time to be closer to e + 2r + 7 than to 3e + 7 for arbitrary
digraph-based P systems.

Finally, we mention a couple open problems for the future. We would like
a theoretical proof based on properties of random trees of why it seems that
the our gain in performance is independent of the order of the trees considered.
The current FSSP solution is designed for digraph-based P systems with duplex
channels. Another remaining open problem is to obtain an efficient FSSP solution
that synchronizes strongly connected digraphs using simplex channels.

Acknowledgments

The authors wish to thank Ionuţ-Mihai Niculescu for providing us with some
early empirical statistics on random graphs and to acknowledge the University of
Auckland FRDF grant 9843/3626216 to assist our research.

150 M.J. Dinneen, Y.-B. Kim, R. Nicolescu

References

1. A. Alhazov, M. Margenstern, and S. Verlan. Fast synchronization in P systems. In
D. W. Corne, P. Frisco, G. Păun, G. Rozenberg, and A. Salomaa, editors, Workshop
on Membrane Computing, LNCS 5391, pages 118–128. Springer, 2008.

2. R. Balzer. An 8-state minimal time solution to the firing squad synchronization
problem. Information and Control, 10(1):22–42, 1967.

3. F. Bernardini, M. Gheorghe, M. Margenstern, and S. Verlan. How to synchronize the
activity of all components of a P system? Int. J. Found. Comput. Sci., 19(5):1183–
1198, 2008.

4. A. Berthiaume, T. Bittner, L. Perkovic, A. Settle, and J. Simon. Bounding the firing
synchronization problem on a ring. Theor. Comput. Sci., 320(2-3):213–228, 2004.

5. M. J. Dinneen, Y.-B. Kim, and R. Nicolescu. Faster synchronization in P systems.
International Journal of Natural Computing, pages 1–15, 2011.

6. E. Goto. A minimal time solution of the firing squad problem. Course notes for
Applied Mathematics 298, pages 52–59, Harvard University, 1962.

7. J. J. Grefenstette. Network structure and the firing squad synchronization problem.
J. Comput. Syst. Sci., 26(1):139–152, 1983.

8. A. A. Hagberg, D. A. Schult, and P. J. Swart. Exploring network structure, dynamics,
and function using NetworkX. In Proceedings of the 7th Python in Science Conference
(SciPy2008), pages 11–15, Pasadena, CA USA, Aug 2008.

9. M. Ionescu and D. Sburlan. On P systems with promoters/inhibitors. J. UCS,
10(5):581–599, 2004.

10. K. Kobayashi. The firing squad synchronization problem for a class of polyautomata
networks. J. Comput. Syst. Sci., 17(3):300–318, 1978.

11. E. F. Moore. The firing squad synchronization problem. In E. Moore, editor, Se-
quential Machines, Selected Papers, pages 213–214. Addison-Wesley, Reading MA.,
1964.

12. F. R. Moore and G. G. Langdon. A generalized firing squad problem. Information
and Control, 12(3):212–220, 1968.

13. Y. Nishitani and N. Honda. The firing squad synchronization problem for graphs.
Theor. Comput. Sci., 14:39–61, 1981.

14. G. Păun. Introduction to membrane computing. In G. Ciobanu, M. J. Pérez-Jiménez,
and G. Păun, editors, Applications of Membrane Computing, pages 1–42. Springer-
Verlag, 2006.

15. H. Schmid and T. Worsch. The firing squad synchronization problem with many
generals for one-dimensional CA. In J.-J. Lévy, E. W. Mayr, and J. C. Mitchell,
editors, IFIP TCS, pages 111–124. Kluwer, 2004.

16. W. A. Stein et al. Sage Mathematics Software (Version 4.6). The Sage Development
Team, 2010. http://www.sagemath.org.

17. H. Umeo, N. Kamikawa, K. Nishioka, and S. Akiguchi. Generalized firing squad
synchronization protocols for one-dimensional cellular automata—a survey. Acta
Physica Polonica B Proceedings Supplement, 3(2):267–289, 2010.

18. A. Waksman. An optimum solution to the firing squad synchronization problem.
Information and Control, 9(1):66–78, 1966.

19. E. W. Weisstein. Prüfer code, from MathWorld—a Wolfram web re-
source. http://mathworld.wolfram.com/PrueferCode.html, [Online; accessed 8-
April-2011].

20. T. Williams, C. Kelley, and many others. Gnuplot 4.2: an interactive plotting pro-
gram. http://gnuplot.sourceforge.net/, March 2009.

Toward a Self-replicating Metabolic P System

Giuditta Franco, Vincenzo Manca

Department of Computer Science,
University of Verona
{giuditta.franco, vincenzo.manca}@univr.it

Summary. This work concerns the synthesis of a ‘minimal cell’ by means of a P sys-
tem, which is a distributed rewriting system inspired by the structure and the function-
ing of the biological cell. Specifically, we aim to define a dynamical system which ex-
hibits a steady metabolic evolution, resulting in self-maintenance and self-reproduction.
Metabolic P systems represent a class of P systems particularly promising to model
a minimal cell in discrete terms, since they have already successfully modeled several
metabolisms. The main further step is thus to find a simple way to obtain Metabolic P
system self-replication.

This paper deals with ideas presented at the BWMC11 (held in Seville, Feb 2011) and
opens a new trend in membrane computing, based on computational synthetic biology
oriented applications of P systems modeling. The framework is here outlined, and some
problems to tackle the synthesis of a minimal cell are discussed. Moreover, an overview of
literature and a list of appealing research directions is given, along with several references.

1 Introduction

The idea of synthesizing a minimal cell by mathematical and engineered tools is
not new in literature, namely there is a recent trend in synthetic biology which
is aimed at building a synthetic endomembrane structure, whose compartments
(usually formed by liposomes) contain the minimal and sufficient ingredients to
perform the basic function of a biological cell (essentially self-maintenance and
self-reproduction).

Such an interest originates from the old wondering about ”what is life?”, and
specifically from the question ”how was possible for a primitive chemical system to
evolve through levels of increasing complexity from disordered and unstructured
primordial soup to the cellular life as we know it?” [17]. In scientific research,
the bottom-up approach, which looks for a plausible process leading from simple
molecules to more complex ones, to protocells, and finally to living cells, has still
many open questions, although some progress has been done in our knowledge of
prebiotic chemistry [14]. An alternative approach, called top-down, focuses on the

152 G. Franco, V. Manca

synthesis of minimal forms of life starting from our knowledge of modern cells,
that is, from general principles of structure and function organization (matter
conservation, anabolism and catabolism, species distribution, enzymatic control,
autopoiesis). This has an experimental counterpart, and it can be classified as a
constructivist approach for scientific knowledge, according to Feynmans famous
motto “What I cannot create, I do not understand”.

In principle, several implementations of minimal life are possible [19], namely
primitive cells, minimal cells, bioreactors, molecular robots (soft-robots) [14].
Current experimental strategies consider synthetic cells as systems having two
main components: compartments (i.e., lipid vesicles) and their content (biomacro-
molecules, such as DNA, RNA, enzymes, ribozymes, PNA, ribosomes, catalytic
peptides) [14, 15]. In this context, aggregation phenomena need to be reproduced
in laboratory and a preliminary simulation in silico helps to set the quantity range
of RNA-polimerasi and RNA-sintasi, in order to get an efficient synchronization
of self-mantainance and self-replication [3].

2 Some models

In the cell, molecules react together according to their biochemical reactivity and
environmental conditions, giving rise to complex molecules starting from simpler
ones. Also, a higher chemical complexity (usually referred to as “supramolecu-
lar chemistry”) appears as the result of self-organization of molecules into struc-
tures (membranes) and oscillating reactions such as auto-catalytic networks within
micro-compartments [15].

Among the most active groups working on creating living cells in the labo-
ratory, we recall David Deamer at the University of California, Jack Szostak at
Harvard, Tetsuya Yomo at the Osaka University, Steen Rasmussen at the FLinT
(Southern Denmark University). Besides we mention the notable research, both on
the construction of self-reproducing vesicles and on synthetic minimal cells, started
about twenty years ago in the Luisi’s group at the ETH (Zurich). It roots in the
concept of autopoiesis, the theoretical framework that guides the construction of
minimal living cells and accounts for the dynamical process at the basis of living
entities [15]. The notion of autopoietic cell dates back to the work of H. R. Matu-
rana and F. J. Varela in the seventies [11]. It essentially requires a shell/membrane
composed by i) building blocks L (representing the lipids and the proteins of cell
membranes), that eventually decay to a waste product W, and ii) an internal
metabolism, a black box E (representing the cellular genetic/metabolic network),
able to both generate blocks L (from precursors P entering the membrane from
the environment) and maintain a transformation of metabolites Q (arriving from
outside) that produces and expels waste product Z. According to this scheme, P
and Q are the basic nutrients for cell growth, W and Z the waste materials.

In [15] it has been shown that a supramolecular assembly of L molecules can
grow and duplicate at the expenses of matter P from outside without any internal

Toward a Self-replicating Metabolic P System 153

metabolism. However, if we impose to have an autopoietic mechanism, based on a
minimal, existent DNA/RNA/enzyme genetic/metabolic network E, then minimal
cells exhibiting living properties (self-mantainance, self-reproduction, and possi-
bility to evolve) have a minimal number of genes (a number between 200 and
300, according to results from literature in comparative genomics), enzymes, ro-
bosomes, tRNAs and low molecular weight compounds [1, 15]. In this context,
protein synthesis is one of the key function for a living cell. The expression of
functional proteins inside lipid vesicles by using a minimal set of enzymes, tRNAs
and ribosomes, was also investigated in [15] at the aim of constructing continu-
ous models of functional cells, while an efficient protein-synthesizing system was
developed in [13].

In [3] a kinetic model of (autopoietic) ribocell was built by means of a differen-
tial equation system, where variations of metabolite and lipid concentrations, as
well as membrane volume variations, are established by modeling processes such
as RNA strands replication, catalyzed by polymerase ribozyme, pairings of RNA-
polymerase and RNA-sintase, and conversions of precursors into membrane lipids,
catalyzed by ribozymes. The time evolution is deterministic rather than stochastic,
by assuming that in average different membranes have the same time behavior.
The expansion measure of membrane surfaces is considered, in such a way that
self-replication of the whole cell (in two daughters) is assumed as soon as the mem-
brane surface reaches the area sufficient to form two spherical membranes. This
model resulted in synchronized genomic duplication and cell replication, with the
kinetic values within ranges suggested by the literature. According to the simula-
tions reported in [3], (at room temperature) cell division occurs every 26.6 days,
and may be speeded up by increasing the temperature (for example, up to 42◦C).
The goal of our research is to reproduce a similar autopoietic deterministic system
in discrete terms, where biomolecules are represented by multisets of objects, mem-
branes are compartments where rewriting rules are distributed to work in parallel,
and the computation is the dynamics observed in a cell at a “suitable” level of
abstraction. von Neumann first conceived a self-replicating computational model,
by pioneering cellular automata (CA) able to self-replicate [20], but that “mitosis
process” was not supposed to be synchronized with any internal metabolism or
with other properties typical of the biological cell.

3 Main questions

According to the top-down approach, building a synthetic cell by means of a
computational model is in itself a way to understand (or at least to get more
information on) the basic concepts of living systems and of their parts.

A main question here is: what are the minimal components, the simplest form of
machinery, to get ‘biological universality’ (behaviors typical of life)? We can say that
the minimal number of life criteria is three: self-mantainance, self-reproduction,
and evolution capability [7]. Then, a metabolism (internal dynamics) in compart-

154 G. Franco, V. Manca

ments has to be realized (self-mantainance), together with a simultaneous replica-
tion of main internal components and of all membranes (self-reproduction). This
is driven by genomic information, by means of gene expression, which gives rise to
(structural or enzymatic) proteins, able to perform functions (such as catalyzing
biochemical reactions occurring in metabolism).

From a logical viewpoint, Is it necessary to have the genetic/regulative mechanism
at the basis of metabolism? Or maybe the presence of ribozomes (naturally self-
replicating substances), RNA polymerase and nucleotides, would be enough to
have an RNA-based autocatalyst living system? According to the RNA world
hypothesis [5], a set of rybozymes is actually sufficient, because RNA can both
store information like DNA and act as an enzyme like protein. In this perspective,
DNA polymer is just a product of evolution to have redundancy and robustness
to errors, including point mutations. In modern cells indeed, DNA, through its
greater chemical stability, took over the role of data storage, while proteins, which
are more flexible in catalysis through the great variety of amino acids, play only
the role of specialized catalytic RNA molecules. The presence of both genomes
and ribozymes is therefore redundant to have a simplest self-replicating metabolic
system [6], though most likely an independent storage mechanism is required for
systems which adapt to the environment. To have a system with the capability
to evolve by adaption, sensitivity and adaption to the environment need to be
taken into account in the model, by analyzing the exchange of matter with the
environment, and the reaction of the system dynamics to environment changes.

Overall, nature exhibits the two levels, informational (genes) and functional (en-
zymes) - are they necessary to perform an efficient mitosis, or to realize the cell (Dar-
winian) evolution? A possible answer is that in cells of complex organisms, which
need to store more information and for a longer time, the stability of genomic
molecules make their existence necessary to have life. In this case, the genomic
level would have turned out necessary in the evolution in order to allow a major
and more structured complexity of organisms.

4 Our approach

A self-replicating metabolic system requires a synchronization of its internal dy-
namics in such a way that the metabolic activity is maintained, while the system
exchanges matter with the environment, grows, and replicates its own membrane
structure together with the contained metabolic processes. We aim at modeling
such a dynamical system by a P system [16], that is, by a computational model
inspired by the cell. This approach seems the most natural to reproduce in silico
what is observed in the cell. Hence, this research may be framed in a context of
membrane computing models, and aims at building a self-replicating metabolic
membrane system where molecular and cellular peculiarities are represented in
symbolic and algorithmic terms.

A similar work has been developed in [18], where a self-replicating membrane
system has been exhibited, which initiates with a process of self-inspection, then

Toward a Self-replicating Metabolic P System 155

copies the membrane contents (objects and rules), incrementally composes the
genome and finally create the mother cell outside the current skin membrane.
With respect to our goal, in [18] there is not any metabolism in the cell, and the
rules are inspired by artificial rather than biological systems.

This subject had already attracted attention in [2], where, however, entire
membrane systems were replicated in one macro-step. A closer look to biology may
be found in [12], where a “Dogmatic P system” (inspired by the central dogma of
molecular biology), which exhibits transduction and transcription processes in the
nucleus, is proved to be universal.

A P system is a multi-compartment structure realizing a parallel, distributed,
object multiset rewriting system (for more details see http://ppage.psystems.eu/).
A metabolic P system (shortly, MP system [10]) is essentially a multiset grammar
where multiset transformations are regulated by state functions (called regula-
tors), whose values (at each step) represent the fluxes associated to the rewriting
rules [8]. Once we know the regulators, a deterministic Markovian dynamics of such
systems may be observed as time series of the substances. On the other hand, there
are theories and algorithms developed in the framework of Metabolic P systems,
which allow to compute regulators starting from observed time series [9].

We would like to keep our self-duplicating metabolic P model as simple as
possible - we do not use extra features (such as priorities, polarization, fluxes,
probability) if they are not necessary or biologically motivated.

4.1 A research plan

The point is defining a Metabolic P model, in order to understand which are the
general rules and regulations on which the synchronization of genomic duplication
and membrane reproduction are based.

One cell divides to produce two genetically identical cells. Eukaryotic cells
include a variety of membrane-bound structures, collectively referred to as the
endomembrane system. Nuclear division is often coordinated with cell division. As
a first approximation, we assume to have only two, nested (external and nuclear)
membranes [0[1]1]0.

A possible initial conguration (having all genes in the nucleus) includes a mul-
tiset of objects g representing genes, r objects representing enzymes, one ribozyme
t, and some metabolites (including lipids). Environment is assumed to have “suf-
ficient” resources m.

The goal is to exchange objects with the environment, while metabolites grow-
ing, up to reach an “approximatively” double amount they had initially. The con-
cept of matter duplication should be further defined, for example by asking for
having an amount which is double than it was initially within a certain range of
error, but in this first attempt we leave it undetermined.

Simultaneously, enzymes are produced from genes, for feeding reactions, which
guarantee an internal metabolic dynamics of the system, and generate new mem-
branes. In this respect, let us list in the following paragraph some biologically
motivated guidelines to set up our model.

156 G. Franco, V. Manca

Genes replicate (by polymerase) and produce enzymes (by ribozymes). They
do not move across the (nuclear) membrane. Ribozymes are self-producing (by
means of genes). Enzymes catalyze and allow the application of rewriting rules, in
fact metabolites transform by means of rules. Lipids, produced by the metabolism,
generate membranes, when present in sufficient amount. In order to account for
the size of a membrane, we assume that more external membranes are, and more
lipids are necessary to generate a new copy of them.

The rewriting rules will be meant to realize three main processes: enzyme
production, metabolism, and liposome production.

Enzyme production. Nuclear transcription of the genes is realized by means
of the ribozyme (we can assume to have only one ribozyme, able to perform tran-
scription) and some nucleotides. It produces the enzyme polymerase in the nucleus,
and three enzymes r, r′, r′′ in the region of the external membrane. In the most
internal membrane, polymerase is employed to duplicate the genes by using nu-
cleotides - maybe this could be done more realistically with string rewriting rules.

Metabolism. Matter is taken from outside by both membranes. Enzymes
produced in the nucleus (by means of the ribozyme) catalyze transformation re-
actions: specifically, the rule catalyzed by r increases the quantity of the ribozyme
itself at the expenses of matter arriving from outside; the rule catalyzed by r′

produces lipids able to form the nuclear membrane, and the rule catalyzed by r′′

produces lipids able to form the external membrane. Of course we have also matter
which does not need to be duplicated, just working as fuel (coming from outside)
and as garbage (expelled outside). In a further refinement of the model enzyme
degradation should be also considered.

Liposome production. Lipids transform into membranes (liposome organi-
zation), representing their organization in structures as vesicles.

Once given the rules, the choice of an application strategy needs some dis-
cussion. Even if a non-deterministic or probabilistic evolution of a proto-cellular
system could be interesting to study, here we intend to reproduce the deterministic
behaviour typically observed in cell replication. Presumably we cannot avoid to
use flux functions associated to the rules (as metabolic systems do), for example
to regulate the entrance of objects from outside. Maximal parallelism would imply
that the cell gets in one first step the infinite resources we have in the environment!
Fluxes instead would allow us to modulate any reaction according to the system
state.

As an initial set up, a few equations/constraints need to be given in order
to impose that there exists a moment k, where the genes and the ribozymes are
approximatively double than they were initially, and the lipids are in sufficient
amount to form a second copy of the membranes. We assume that reaching such
a state will be enough to have two copies of the initial cell.

Toward a Self-replicating Metabolic P System 157

5 Future Work

Regarding future activities of this research, it is plenty of ideas and dreams. Once
we will have an MP system self-replicating, while exchanging matter with the
environment to keep its internal metabolic dynamics on, both the role of energy in
such an exchange and a form of adaption to the environment should be studied [14],
by analyzing the consequent reactions of the system to different (even energetic)
stimuli. Receptivity and reactivity should be investigated to better understand the
robustness of the single cell and of cell networks. Communication and interaction
among (synthetic and/or real) cells is a crucial task [4], for example to model
morphogenesis (e.g., embryogenesis) and tissue organization. From the viewpoint
of a tissue system, the process of mitosis of each single cell is limited in time,
single healthy cells do not live forever but tissue do, while new cells rise and
old ones die. Tissues keep alive under certain boundaries (density, dimension)
while single cells produce new cells and eventually die: the cellular and tissue
systems have a quite different dynamics and functioning, even if tightly inter-
related. In [15] simple autopoietic systems are modeled by vesicles populations; it
is shown that simple vesicles may grow and divide according to physical laws, also
revealing an unexpected pattern consisting in the conservation of the average size
in a population of self-reproducing vesicles.

Phenomena such as cell differentiation and speciation are fundamental to un-
derstand and better control many processes of biomedical interest. For example,
embryonic cells are interesting as they have illimitable replicative power and the
ability to generate any type of tissue, a property they have in common with stem
cells. On the other hand, non-controlled proliferation and differentiation of stem
cells often denote presence of cancer. Cell migration can be also involved in such
kinds of processes, and in our research a way to represent both molecular and
cellular migration in the context of P systems should be found. In this framework
we should start by modeling the concept of biological gradient, maybe by means
of nested membrane localization. Finally, cell Darwinian evolution of synthetic
cells could give interesting insights on several controversial issues in population
genetics evolution theories (such as the importance of the chance in evolutionary
transformations, known as genetic drift).

Aknowledgments

We would like to thank Natasha Jonoska for her helpful comments and stimulating
suggestions about the presentation of this work at the Brainstorming on membrane
computing held in Seville in February 2011. On the occasion of the meeting, the
first author gratefully received interesting, specific highlights by many colleagues,
with whom there were fruitful discussions. In particular, she wishes to thank very
much George Păun, Alfonso Rodrigez Paton, Mario Pérez-Jiménez, Marian Ghe-
orghe, and José Maria Sempere.

158 G. Franco, V. Manca

References

1. C. Chiarabelli, P. Stano, P. L. Luisi, Chemical approaches to synthetic biology, Cur-
rent Opinion in Biotechnology 20(4): 492-497, 2009.

2. E. Csuhaj-Varjú, A. Di Nola, Gh. Păun, M. J. Pérez-Jiménez, G. Vaszil, Editing
configurations of P systems, Third Brainstorming Week on Membrane Computing,
pp 131-154, 2004.

3. P. Della Gatta, F. Mavelli, Ribocell modeling, Wivace 2009, pp 55-64.
4. P. M. Gardner, K. Winzer, B. G. Davis, Sugar synthesis in a protocellular model

leads to a cell signaling response in bacteria, Natural Chemistry 1, pp 377–383, 2009.
5. W. Gilbert, Origin of life: The RNA world, Nature 319:618, 1986.
6. G. F. Joyce, L. E. Orgel, The RNA world (Eds R. Gesteland, T. R. Cech, J. F.

Atkins], pp 49-77, Cold Spring Harbor Laboratory Press, New York, 1999.
7. P. L. Luisi, About various definitions of life, Origins of Life and Evolution of the

Biosphere 28, pp 613-622, 1998.
8. V. Manca, Fundamentals of metabolic P systems, In: Gh. Paun, G. Rozenberg, A.

Salomaa (eds.), Handbook of Membrane Computing, Chapter 19, Oxford University
Press, 2009.

9. V. Manca, Metabolic P dynamics, In: Gh. Paun, G. Rozenberg, A. Salomaa (eds.),
Handbook of Membrane Computing, Chapter 20, Oxford University Press, 2009.

10. V. Manca, Metabolic P systems, Scholarpedia, 5(3):9273, 2010.
11. H. R. Maturana, F. J. Varela, Autopoiesis and cognition: the realization of the living.

Reidel, Dordrecht, 1980.
12. J. M. Sempere, “Dogmatic” P systems, Eighth Brainstorming Week on Membrane

Computing, pp 291- 300, 2010.
13. Y. Shimizu, A. Inoue, Y. Tomari, T. Suzuki, T. Yokogawa, K. Nishikawa, T. Ueda,

Cell-free translation reconstituted with purified components, Nature Biotechnology
19, pp 751- 755, 2001.

14. P. Stano, Cellule artificiali: dall’attuale quadro teorico-sperimentale al loro uso come
robot molecolari, Wivace 2009, pp193-198.

15. P. Stano, P. L. Luisi, Chemical approaches to synthetic biology: from vesicles self-
reproduction to semi-synthetic minimal cells, Proc. of the Alife XII Conference,
Odense, Denmark, pp 147-153, 2010.

16. G. Păun, Membrane computing. An introduction. Springer, 2002.
17. J. W. Szostak, D. P. Bartel, P. L. Luisi, Synthesizing life, Nature 409: 387-390, 2001.
18. C. Teuscher, From membranes to systems: Self-configuration and self-replication in

membrane systems, Biosystems 87, pp 101- 110, 2007.
19. C. Venter, Creation of a bacterial cell controlled by a chemically synthesized genome,

Science 329 (5987): 52-56, 2010.
20. J. von Neumann, Theory of self-reproducing automata, University of Illinois Press,

Urbana,, Illinois, 1966.

Implementing Local Search with Membrane
Computing

Miguel A. Gutiérrez-Naranjo, Mario J. Pérez-Jiménez

Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla. Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutier@us.es, marper@us.es

Summary. Local search is currently one of the most used methods for finding solution
in real-life problems. In this paper we present an implementation of local search with
Membrane Computing techniques applied to the N -queens problem as a case study. A
CLIPS program inspired in the Membrane Computing design has been implemented and
several experiments have been performed.

1 Introduction

Searching is on the basis of many processes in Artificial Intelligence. The key
point is that many real-life problems can be settled as a space of states: a state
is the description of the world in a given instant (expressed in some language)
and two states are linked by a transition if the second state can be reached from
the previous one by applying one elementary operation. By using these concepts,
a directed graph where the nodes are the states and the edges are the actions is
considered. Given a starting state, a sequence of transitions to one of the final
states is searched.

By using this abstraction, searching methods have been deeply studied by
themselves, forgetting the real-world problem which they fit. The studies consider
aspects as the completeness (if the searching method is capable of finding a solution
if it exists), complexity in time and space, and optimality (if the found solution
is optimal in some sense). By considering the searching tree, where the nodes are
the states and the arcs are the transitions, classical search has focused on the
order in which the nodes of the tree should be explored. In this classical search
two approaches are possible: the former is blind search, where the search is guided
only by the topology of the tree and no information is available from the states;
the latter is called informed search and some information about the features of the
nodes is used to define a heuristics to decide the next node to explore.

Searching problems have been previously studied in the framework of Mem-
brane Computing. In [4], a first study on depth-first search on the framework of

160 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

Membrane Computing was presented. In this paper we go on with the study of
searching methods in Membrane Computing by exploring local search.

The paper is organized as follows: First we recall some basic definitions on
local search. Then we remember the problem used as a case study: the N -queens
problem, previously studied in the framework of Membrane Computing in [3]. Next
we provide some guidelines of the implementation of local search our case study
and some experimental results. The paper finishes with some final remarks.

2 Local Search

Classical search algorithms explore the space of states systematically. This explo-
ration is made by keeping one or more paths in memory and by recording the
alternatives in each choice point. When a final state is found, the path, that is,
the sequence of transitions, is considered the solution of the problem. Nonethe-
less, in many problems, we are only interested in the found state, not properly
in the path of transitions. For example, in job-shop scheduling, vehicle routing or
telecommunications network optimization, we are only interested in the final state
(a concrete disposition of the objects in the world), not in the way in which this
state is achieved.

If the sequence of elementary transitions is not important, a good alternative
to classical searching algorithms is local search. This type of search operates using
a single state and its set of neighbors. It is not necessary to keep in memory how
the current state has been obtained.

Since these algorithms do not explore systematically the states, they do not
guarantee that a final state can be found, i.e., they are not complete. Nonetheless,
they have two advantages that make them interesting in many situations:

• Only a little piece of information is stored, so a very little memory (usually
constant) is used.

• These algorithms can often find a reasonable solution in extremely large space
of states where classical algorithms are unsuitable.

The basic strategy in local search is considering a current state and, if it is
not a final one, then to move to one of its neighbors. This movement is not made
randomly. In order to decide where to move, in local search a measure of goodness
is introduced. In this way, the movement is performed towards the best neighbor. It
is usual to represent the goodness of a state as its height in some geometrical space.
In this way, we can consider a landscape of states and the target of the searching
method is to arrive to the global maximum. This metaphor is useful to understand
some of the drawbacks of this method. Different situations as flat regions, where the
neighbors are as good as the current state, or local maximum where the neighbors
are worse than the current state, but it is not a global maximum. A deep study of
local search is out of the scope of this paper1.
1 Further information can be obtained in [7].

Implementing Local Search with Membrane Computing 161

In this paper we will only consider its basic algorithm: Given a set of states, a
movement operator and a measure to compare states
0.- We start with a state randomly chosen
1.- We check if the current state is a final one

1.1- If so, we finish. The system outputs the current state.
1.2- If not, we look for a movement which reaches a better state.

1.2.1.- If it exists, we randomly choose one of the possible movements.
The reached state becomes the current state and we back to 1.

1.2.2.- If it does not exist, we go back to 0

3 The N -queens Problem

Along this paper we will consider the N -queens problem as a case study. It is a
generalization of a classic puzzle known as the 8-queens puzzle. The original one is
attributed to the chess player Max Bezzel and it consists on putting eight queens
on an 8× 8 chessboard in such way that none of them is able to capture any other
using the standard movement of the queens in chess, i.e., only one queen can be
placed on each row, column and diagonal line.

In [3], a first solution to the N -queens problem in Membrane Computing was
shown. For that aim, a family of deterministic P systems with active membranes
was presented. In this family, the N -th element of the family solves the N -queens
problem and the last configuration encodes all the solutions of the problem.

In order to solve the N -queens problem, a truth assignment that satisfies a
formula in conjunctive normal form (CNF) is searched. This problem is exactly
SAT, so the solution presented in [3] uses a modified solution for SAT from [6].
Some experiments were presented by running the P systems with an updated
version of the P-lingua simulator [2]. The experiments were performed on a system
with an Intel Core2 Quad CPU (a single processor with 4 cores at 2,83Ghz), 8GB
of RAM and using a C++ simulator under the operating system Ubuntu Server
8.04. According to the representation in [3], the 3-queens problem is expressed by a
formula in CNF with 9 variables and 31 clauses. The input multiset has 65 elements
and the P system has 3185 rules. Along the computation, 29 = 512 elementary
membranes need to be considered in parallel. Since the simulation was carried out
on a uniprocessor system, these membranes were evaluated sequentially. It took 7
seconds to reach the halting configuration. It is the 117-th configuration and in this
configuration one object No appears in the environment. As expected, this means
that we cannot place three queens on a 3×3 chessboard satisfying the restriction
of the problem.

In the 4-queens problem, we try to place four queens on a 4×4 chessboard. Ac-
cording to the representation, the problem can be expressed by a formula in CNF
with 16 variables and 80 clauses. Along the computation, 216 = 65536 elementary
membranes were considered in the same configuration and the P system has 13622
rules. The simulation takes 20583 seconds (> 5 hours) to reach the halting con-
figuration. It is the 256-th configuration and in this configuration one object Yes

162 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

Fig. 1. Five queens on a board

appears in the environment. This configuration has two elementary membranes
encoding the two solutions of the problem (see [3] for details).

In [4], a study of depth-first search in Membrane Computing was presented.
The case study was also the N -queens problem. An ad hoc CLIPS program was
written based on Membrane Computing design. Some experiments were performed
on a system with an Intel Pentium Dual CPU E2200 at 2,20 GHz, 3GB of RAM
and using CLIPS V6.241 under the operating system Windows Vista. Finding one
solution took 0,062 seconds for a 4 × 4 board and 15,944 seconds for a 20 × 20
board.

4 A P system Family for Local Search

In this section we give an sketch of the design of a P system family which solves the
N -queens problem by using local search, Π = {Π(N)}N∈N. Each P systems Π(N)
solves the N -queens problem in a non-deterministic way, according to the searching
method. The membrane structure does not change along the computation and we
use electrical charges on the membranes as in the model of active membranes.

One state is represented by a N × N chess board where N queens have been
placed. In order to limit the number of possible states, we will consider an impor-
tant restriction: we consider that there is only one queen in each column and in
each row. By using this restriction, we only need to check the diagonals in order
to know if a board is a solution to the problem or not.

These boards can be easily represented with P systems. For Π(N), we consider
a membrane structure which contains N elementary membranes and N objects yi,
i ∈ {1, . . . , N} in the skin. By using rules of type yi []j → [yi]j the objects yi are
non-deterministically sent into the membranes and the object yi inside a membrane
with label j will be interpreted as a queen placed on the row i of the column j.
For example, the partial configuration [[y1]1 [y5]2 [y3]3 [y4]4 [y2]5] is a membrane
representation of the board in Figure 1.

In order to know if one state is better than another, we need to consider a
measure. The natural measure is to associate to any board the number of collisions

Implementing Local Search with Membrane Computing 163

[8]: The number of collisions on a diagonal line is one less than the number of
queens on the line, if the line is not empty, and zero if the line is empty. The sum
of collisions on all diagonal lines is the total number of collisions between queens.
For example, if we denote by dp the descendant diagonal for squares (i, j) where
i+j = p and by uq the ascendant diagonal for squares (i, j) where i−j = q, then the
board from the Figure 1 has 3 collisions: 2 in u0 and 1 in d7. This basic definition
of collisions of a state can be refined of a Membrane Computing algorithm. As
we will see below, in order to compare two boards, it is not important the exact
amount of collisions when they are greater than 3.

Other key definitions in the algorithm are the concepts of neighbor and move-
ment. In this paper, a movement is the interchange of columns of two queens by
keeping the rows. In other words, if we have one queen at (i, j) and another in
(k, s), after the movement these queens are placed at (i, s) and (k, j). It is trivial
to check that, for each movement, if the original board does not have two queens
on the same column and row, then the final one does not have it. The definition
of neighbor depends on the definition of movement: the state s2 is a neighbor of
state s1 if it can be reached from s1 with one movement.

According with these definitions, the local search algorithm for the N -queens
problem can be settled as follows:

0.- We start with a state randomly chosen
1.- We check if the number of collisions of the current state is zero

1.1- If so, we finish. The halting configuration codifies the solution board.
1.2- If not, we look for a movement which reaches a state which decrease the

number of collisions.
1.2.1.- If it exists, we randomly choose one of the possible movements.

The reached state becomes the current state and we back to 1.
1.2.2.- If it does not exist, we go back to 0

At this point, three basic question arise from the design of Membrane Com-
puting: (1) how the number of collisions of a board is computed? (2) how a better
state is searched? and (3) how a movement is performed?

4.1 Computing Collisions

The representation of a board N ×N is made by using N elementary membranes
where the objects y1, . . . , yN are placed. These N elementary membranes, with
labels 1, . . . , N are not the unique elementary membranes in the membrane struc-
ture. As pointed above, in an N×N board, there are 2N−1 ascendant and 2N−1
descendant diagonals. We will denote the ascendant diagonals as u−N+1, . . . , uN−1,
where the index p in up denotes that the diagonal corresponds to the squares (i, j)
with i−j = p. Analogously, the descendant diagonals are denoted by d2, . . . , dN+N

where the index q in dq denotes that the diagonal corresponds to the squares (i, j)
with i + j = q.

Besides the N elementary membranes with labels 1, . . . , N for encoding the
board, we will also place 4N − 2 elementary membranes in the structure, with

164 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

labels u−N+1, . . . , uN−1, d2, . . . , dN+N . These membranes will be used to compute
the collisions.

Bearing in mind the current board, encoded by membranes with an object [yi]j ,
we can use rules of type [yi]j → di+jui−j . These rules are triggered in parallel and
they produce as many objects dq (resp. up) as queens are placed on the diagonal
dq (resp. up).

Objects dq and up are sequentially sent into the elementary membranes labelled
by dq and up. In a first approach, one can consider a counter zi which evolves to
zi+1 inside each elementary membrane when an object dq or up is sent in. By
using this strategy, the index of i of zi denotes how may objects have crossed the
membrane, or in other words, how many queens are placed on the corresponding
diagonal.

This strategy has an important drawback. In the worst case, if all the queens
are placed on the same diagonal, at least N steps are necessary in order to count
the number of queens in each diagonal. In our design, this is not necessary. As we
will see, we only need no know if the number of queens in each diagonal is 0,1,2,
or more than 2. Due to the parallelism of the P systems, this can be checked in a
constant number of steps regardless the number of queens.

Technically, after a complex set of rules where the electrical charges are used to
control the flow of objects, each membrane dq sends to the skin a complex object
of type dq(DAq, DBq, DCq, DDq), where DAq, DBq, DCq, DDq ∈ {0, 1} codify on
the number of queens on the diagonal (for up the development is analogous, with
the notation up(UAp, UBp, UCp, UDp)). We consider four possibilities:

• dq(1, 0, 0, 0). The 1 in the first coordinate denotes that there is no queens
placed on the diagonal and the diagonal is ready to receive one queen after a
movement.

• dq(0, 1, 0, 0). The 1 in the second coordinate denotes that there is one queen
placed on the diagonal. This diagonal does not contain collisions but it should
not receive more queens.

• dq(0, 0, 1, 0). The 1 in the third coordinate denotes that there are two queens
placed on the diagonal. This diagonal has one collision which can be solved
with a unique appropriate movement.

• dq(0, 0, 0, 1). The 1 in the fourth diagonal denotes that there are more than
two queens placed on the diagonal. This diagonal has several collisions and it
will have at least one collision even if one movement is performed.

Bearing in mind if a diagonal is ready to receive queens (0 queens) or it needs
to send queens to another diagonal, we can prevent if a movement produces an im-
provement in the whole number of collisions before performing the movement. We
do not need to perform the movement and then to count the number of collisions
in order to know if the movement decreases the number of collisions.

Firstly, let us consider two queens placed on the squares (i, j) and (k, s) on
the same ascendant diagonal, i.e., i − j = k − s. We wonder if the movement of
interchanging the columns of two queens by keeping the rows will improve the

Implementing Local Search with Membrane Computing 165

total number of collisions. In other words, we wonder if removing the queens from
(i, j) and (k, s) putting them in (i, s) and (k, j) improves the board.

In order to answer this question we will consider:

• ui−j(0, 0, UCi−j , UDi−j): The ascendant diagonal ui−j has at least 2 queens,
so the two first coordinates are 0.

• di+j(0, DBi+j , DCi+j , DDi+j) and dk+s(0, DBk+s, DCk+s, DDk+s): The de-
scendent diagonals di+j and dk+s have at least 1 queen, so the we first coordi-
nate is 0.

It is easy to check that the reduction in the whole amount of collisions produced
by the removal of the queens from the squares (i, j) and (k, s) is

(2 · UCi−j) + (3 · UDi−j) + DBi+j + (2 ·DCi+j) + (3 ·DDi+j) + DBk+s +

(2 ·DCk+s) + (3 ·DDk+s) − 3

Analogously, in order to compute the augmentation in the number
of collisions produced by the placement of two queens in the squares
(i, s), (k, j) we will consider the objects di+s(DAi+s, DBi+s, DCi+s, DDi+s),
ui−s(UAi−s, UBi−s, UCi−s, UDi−s) and uk−j(UAk−j , UBk−j , UCk−j , UDk−j).

By using this notation, it is easy to check that the augmentation in the number
of collisions is 4− (DAi+s + UAi−s + UAk−j).

The movement represents an improvement in the general situation of the board
if the reduction in the number of collisions is greater than the augmentation. This
can be easily expressed with a simple formula depending on the parameters.

This is the key point in our Membrane Computing algorithm, since we do not
need to perform the movement and then to check is we have an improvement, we
can evaluate it a priori, by exploring the objects placed in the skin. Obviously, if
the squares share a descendant diagonal, the situation is analogous.

If the queens do not share diagonal, the study is analogous, but the obtained
formula by considering that we get a feasible movement if the reduction is greater
than the augmentation is slightly different.

From a technical point of view, we consider a finite set of rules with the fol-
lowing interpretation: If the corresponding set of objects

ui−j(UAi−j , UBi−j , UCi−j , UDi−j) di+j(DAi+j , DBi+j , DCi+j , DDi+j)
uk−s(UAk−s, UBk−s, UCk−s, UDk−s) dk+s(DAk+s, DBk+s, DCk+s, DDk+s)
ui−s(UAi−s, UBi−s, UCi−s, UDi−s) di+s(DAi+s, DBi+s, DCi+s, DDi+s)
uk−s(UAk−s, UBk−s, UCk−s, UDk−s) dk+j(DAk+j , DBk+j , DCk+j , DDk+j)

is placed in the skin, then the movement of queen from (i, j) and (k, s) to (i, s)
and (k, j) improves the number of collisions.

In the general case, there will be many possible applications of rules of this type.
The P system choose one of them in a non-deterministic way. The application of

166 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

the rule introduces an object changeijks in the skin. After a complex set of rules,
this object produces a new configuration and the cycle starts again.

The design of the P system depends on N , the number of queens and it is full
of technical details. It uses cooperation, inhibitors and electrical charges in order
to control the flow of objects. In particular, a set of rules halts the P system if a
board with zero collisions is reached and another set of rules re-starts the P system
(produces a configuration equivalent to the initial one) if no more improvements
can be achieved from the current configuration.

Fig. 2. Starting from a configuration C0 with 4 collisions (up-left) we can reach C1 with
3 collisions (up-right) and then C2 with 2 collisions (bottom-left) and finally C3 with 0
collisions (bottom-right), which is a solution to the 5-queens problem.

Figure 2 shows a solution found with the corresponding P system for the 5-
queens problem. We start with a board with all the queens in the main ascendant
diagonal (up-left). The collisions in this diagonal (and in the whole board) is 4.
By changing the queens from the columns 2 and 5, we obtain the board shown
in Figure 1 with 3 collisions (up-right in Figure 2). In the next step, the queens
form columns 1 and 5 are changed, and we get a board with 2 collisions, produced
because the two main diagonals have two queens each (bottom-left). Finally, by
changing the queens is the columns 1 and 3, we get a board with no collisions that
represent a solution to the 5-queens problem (bottom-right).

Implementing Local Search with Membrane Computing 167

5 Experimental Results

An ad hoc CLIPS program was written inspired on this Membrane Computing
design. Some experiments were performed on a system with an Intel Pentium
Dual CPU E2200 at 2,20 GHz, 3GB of RAM and using CLIPS V6.241 under the
operating system Windows Vista.

Due to the random choosing of the initial configuration and the non-
determinism of the P system for choosing the movement, 20 experiments have
been performed for each number of queens N for N ∈ {10, 20, . . . , 200} in order to
get an informative parameter. We have considered the average of these 20 experi-
ments on the number of P system steps and the number of seconds. The following
table shows the result of the experiments.

Number of queens Average of steps Average of secs.
10 141.35 0.0171549
20 166.25 0.133275
30 270.9 0.717275
40 272.7 1.71325
50 382.4 4.75144
60 453.85 9.65071
70 495.45 16.9358
80 637.6 33.1815
90 625 47.3944
100 757.6 80.6878
110 745.75 113.635
120 841.75 157.937
130 891.25 216.141
140 983.7 311.71
150 979.75 381.414
160 1093 541.022
170 1145.5 683.763
180 1206.25 872.504
190 1272.256 1089.13
200 1365.25 1423.89

Notice, for example, that in the solution presented in [4], the solution for 20
queens was obtained after 15,944 seconds. The average time obtained with this
approach is 0.133275 seconds.

6 Final Remarks

Due to the high computational cost of classical methods, local search has became
an alternative for searching solution to real-life hard problems [1, 5].

168 M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménez

In this paper we present a first approach to the problem of local search by
using Membrane Computing and we have applied to the N-queens problem as a
case study. As future work, several possibilities arise: One of them is to improve
the design from a P system point of view, maybe considering new ingredients; a
second one is to consider new case studies closer to real-life problems; a third one
is to implement the design in parallel architectures and compare the results with
the obtained ones with an one-processor computer.

Acknowledgements

The authors acknowledge the support of the projects TIN-2009-13192 of the Minis-
terio de Ciencia e Innovación of Spain and the support of the Project of Excellence
of the Junta de Andalućıa, grant P08-TIC-04200.

References

1. Bijarbooneh, F.H., Flener, P., Pearson, J.: Dynamic demand-capacity balancing for
air traffic management using constraint-based local search: First results. In: Deville,
Y., Solnon, C. (eds.) LSCS. EPTCS, vol. 5, pp. 27–40 (2009)

2. Garćıa-Quismondo, M., Gutiérrez-Escudero, R., Pérez-Hurtado, I., Pérez-Jiménez,
M.J., Riscos-Núñez, A.: An overview of P-lingua 2.0. In: Păun, Gh., Pérez-Jiménez,
M.J., Riscos-Núñez, A., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane
Computing. Lecture Notes in Computer Science, vol. 5957, pp. 264–288. Springer
(2009)

3. Gutiérrez-Naranjo, M.A., Mart́ınez-del-Amor, M.A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J.: Solving the N-queens puzzle with P systems. In: Gutiérrez-Escudero,
R., Gutiérrez-Naranjo, M.A., Păun, Gh., Pérez-Hurtado, I., Riscos-Núñez, A. (eds.)
Seventh Brainstorming Week on Membrane Computing. vol. I, pp. 199–210. Fénix
Editora, Sevilla, Spain (2009)

4. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Depth-first search with P systems. In:
Gheorghe, M., Hinze, T., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Int. Conf. on
Membrane Computing. Lecture Notes in Computer Science, vol. 6501, pp. 257–264.
Springer (2010)

5. Hoos, H.H., Stützle, T.: Stochastic Local Search : Foundations & Applications (The
Morgan Kaufmann Series in Artificial Intelligence). Morgan Kaufmann, 1 edn. (Sep
2004)

6. Pérez-Jiménez, M.J., Romero-Jiménez, Á., Sancho-Caparrini, F.: Complexity classes
in models of cellular computing with membranes. Natural Computing 2(3), 265–285
(2003)

7. Russell, S.J., Norvig, P.: Artificial Intelligence: A Modern Approach (2nd Edition).
Prentice Hall (December 2002)

8. Sosic, R., Gu, J.: Efficient local search with conflict minimization: A case study of
the N-queens problem. IEEE Transactions on Knowledge and Data Engineering 6(5),
661–668 (1994)

Notes About Spiking Neural P Systems

Mihai Ionescu1, Gheorghe Păun2,3

1 University of Piteşti
Str. Târgu din Vale, nr. 1, 110040 Piteşti
Romania
mihaiarmand.ionescu@gmail.com

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania

3 Research Group on Natural Computing
Department of Computer Science and AI
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es

Summary. Spiking neural P systems (SN P systems, for short) are much investigated
in the last years in membrane computing, but still many open problems and research
topics are open in this area. Here, we first recall two such problems (both related to
neural biology) from [15]. One of them asks to build an SN P system able to store a
number, and to provide it to a reader without losing it, so that the number is available
for a further reading. We build here such a memory module and we discuss its extension
to model/implement more general operations, specific to (simple) data bases. Then, we
formulate another research issue, concerning pattern recognition in terms of SN P sys-
tems. In the context, we define a recent version of SN P systems, enlarged with rules able
to request spikes from the environment; based on this version, so-called SN dP systems
were recently introduced, extending to neural P systems the idea of a distributed dP
automaton. Some details about such devices are also given, as a further invitation to the
reader to this area of research.

1 Introduction

The present notes are only an invitation to the reader to a recent and vividly
investigated branch of membrane computing, inspired from the way the neurons
cooperate in large nets, communicating (among others) by means of spikes, elec-
trical impulses of identical shapes. In neural computing, this biological reality has
inspired a series of research which are considered “neural computing of the third
generation”, see, e.g., [5], [12]. In terms of membrane computing, the idea was cap-
tured in the form of so-called spiking neural P systems, in short, SN P systems,
introduced in [10] and then investigated in a large number of papers. We refer to
the Handbook [20] and to the membrane computing website [23] for details.

170 M. Ionescu, Gh. Păun

For the reader’s convenience, we shortly recall that an SN P system consists
of a set of neurons placed in the nodes of a graph and sending signals (spikes)
along synapses (edges of the graph), under the control of firing rules. Such a rule
is of the form E/ac → ap; d, where E is a regular expression over the alphabet
{a} (a denotes the spike); such a rule can be used in a neuron if the number of
spikes present in the neuron is described by the regular expression E (if there
are k spikes in the neuron, then ak ∈ L(E), where L(E) is the regular language
identified by E), and using it means consuming c spikes (hence k− c remain) and
producing p spikes, which will be sent to all neurons to which a synapse exists
which leaves the current neuron, after a time delay of d steps (if d = 0, then the
spikes leave immediately). If a neuron can use a rule, then it has to use one, hence
the system is synchronized, in each time unit, all neurons which can spike should do
it. One starts from an initial configuration and one proceed by computation steps
as suggested above. One neuron is designated as the output neuron of the system
and its spikes can exit into the environment, thus producing a spike train. Two
main kinds of outputs can be associated with a computation in an SN P system:
a set of numbers, obtained by considering the number of steps elapsed between
consecutive spikes which exit the output neuron, and the string corresponding to
the sequence of spikes which exit the output neuron. This sequence is a binary
one, with 0 associated with a step when no spike is emitted and 1 associated with
a step when a spike is emitted.

Several variants were considered in the literature. We recall here the most
recent one, SN P systems with request rules, proposed in [9]: also rules of the form
E/λ ← ar are used, with the meaning that r spikes are brought in the neuron,
provided that its content is described by the regular expression E.

Such rules are essentially used in defining SN dP systems, a class of distributed
computing devices bridging the SN P systems area and the dP systems area – this
latter one initiated in [16] and then investigated in [4], [17], [18]. We recall here
the definition of SN dP systems from [9], as well an example from that paper.

Also, two research topics mentioned in the last years (especially in the frame-
work of the Brainstorming Week on Membrane Computing, organized at the begin-
ning of each February in Sevilla, Spain – see [23]) are briefly discussed, for the first
one also providing a preliminary answer (which, in turn, raises further questions).
Namely, the challenge was to define a SN P module which simulate the “memory
function” of the brain: stores a number, which can then be read by another “part of
the brain” without losing the respective number. Such a module is provided here,
but it suggests a series of continuations in terms of (simple) data bases, where
several “memory cells” can be considered, loaded and interrogated, removed and
added. Continuing our construction remains a task for the reader, and similarly
with the second problem: to construct an SN P system able to recognize patterns,
in a precise way which will be defined below.

In short, this is only a quick introduction to the study of SN P systems, by
giving a few basic definitions and a short list of recent notions and research topics.
The interested reader should look for further details in the domain literature.

Notes About SN P Systems 171

2 Formal Language and Automata Theory Prerequisites

We need below only a few basic elements of automata and language theory, and
of computability theory. It would be useful for the reader to have some familiarity
with such notions, e.g., from [21] and [22], but, for the sake of readability we
introduce here the notations and notions used later in the paper.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ; the
empty string is denoted by λ, and the set of all nonempty strings over V is denoted
by V +. When V = {a} is a singleton, then we write simply a∗ and a+ instead of
{a}∗, {a}+. If x = a1a2 . . . an, ai ∈ V, 1 ≤ i ≤ n, then mi(x) = an . . . a2a1.

We denote by REG, RE the families of regular and recursively enumerable
languages. The family of Turing computable sets of numbers is denoted by NRE
(these sets are length sets of RE languages, hence the notation).

In the rules of spiking neural P systems we use the notion of a regular ex-
pression; given an alphabet V , (i) λ and each a ∈ V is a regular expression over
V , (ii) if E1, E2 are regular expressions over V , then (E1)(E2), (E1) ∪ (E2), and
(E1)+ are regular expressions over V , and (iii) nothing else is a regular expres-
sion over V . The non-necessary parentheses can be omitted, while E+

1 ∪ λ can
be written as E∗

1 . With each expression E we associate a language L(E) as fol-
lows: (i) L(λ) = {λ}, L(a) = {a}, for all a ∈ V , (ii) L((E1)(E2)) = L(E1)L(E2),
L((E1)∪ (E2)) = L(E1)∪L(E2), and L((E1)+) = L(E1)+, for any regular expres-
sions E1, E2.

The operations used here are the standard union, concatenation, and Kleene
+. We also need below the operation of the right derivative of a language L ⊆ V ∗

with respect to a string x ∈ V ∗, which is defined by

L/x = {y ∈ V ∗ | yx ∈ L}.

In the following sections, when comparing the power of two language generat-
ing/accepting devices the empty string λ is ignored.

3 Spiking Neural P Systems with Request Rules

We directly introduce the type of SN P systems we investigate in this paper; the
reader can find details about the standard definition in [10], [19], [2], etc.

An (extended) spiking neural P system (abbreviated as SN P system) with
request rules, of degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, i0),

where:

1. O = {a} is the singleton alphabet (a is called spike);

172 M. Ionescu, Gh. Păun

2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the forms

(i) E/ac → ap, where E is a regular expression over a and c ≥ p ≥ 1
(spiking rules);

(ii) E/λ ← ar, where E is a regular expression over a and r ≥ 1 (request
rules);

(iii) as → λ, with s ≥ 1 (forgetting rules) such that there is no rule E/ac →
ap of type (i) or E/λ ← ar of type (ii) with as ∈ L(E);

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . ,m} with i 6= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m
(synapses between neurons);

4. i0 ∈ {1, 2, . . . , m} indicates the output neuron (σi0) of the system.

A rule E/ac → ap is applied as follows. If the neuron σi contains k spikes,
and ak ∈ L(E), k ≥ c, then the rule can fire, and its application means consuming
(removing) c spikes (thus only k − c remain in σi) and producing p spikes, which
will exit immediately the neuron. A rule E/λ ← ar is used if the neuron contains
k spikes and ak ∈ L(E); no spike is consumed, but r spikes are added to the spikes
in σi. In turn, a rule as → λ is used if the neuron contains exactly s spikes, which
are removed (“forgotten”). A global clock is assumed, marking the time for the
whole system, hence the functioning of the system is synchronized.

If a rule E/ac → ap has E = ac, then we will write it in the simplified form
ac → ap.

The spikes emitted by a neuron σi go to all neurons σj such that (i, j) ∈ syn,
i.e., if σi has used a rule E/ac → ap, then each neuron σj receives p spikes. The
spikes produced by a rule E/λ ← ar are added to the spikes in the neuron and to
those received from other neurons, hence they are counted/used in the next step
of the computation.

If several rules can be used at the same time, then the one to be applied is
chosen non-deterministically.

During the computation, a configuration of the system is described by the
number of spikes present in each neuron; thus, the initial configuration is described
by the numbers n1, n2, . . . , nm.

Using the rules as described above, one can define transitions among configu-
rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where no rule can
be used.

There are many possibilities to associate a result with a computation, in the
form of a number (the distance between two input spikes or two output spikes) or
of a string. Like in [3], we associate a symbol bi with a step of a computation when
i spikes exit the system, thus generating strings over an alphabet {b0, b1, . . . , bm},

Notes About SN P Systems 173

for some m ≥ 1. When one neuron is distinguished as an input neuron, then the
sequence of symbols bi associated as above with the spikes taken from the environ-
ment by this input neuron also forms a string. In both cases, we can distinguish
two possibilities: to interpret b0 as a symbol or to simply ignore a step when no
spike is read or sent out. The second case provides a considerable freedom, as the
computation can proceed inside the system without influencing the result, and this
adds power to our devices.

In what follows, we also consider an intermediate case: the system can work in-
side for at most a given number of steps, k, before reading or sending out a symbol.
(Note the important detail that this is a property of the system, not a condition
about the computations: all halting computations observe the restriction to work
inside for at most k steps, this is not a way to select some computations as correct
and to discard the others. This latter possibility is worth investigating, but we do
not examine it here.) The obtained languages, in the accepting and the generating
modes, are denoted La

k(Π), Lg
k(Π), respectively, where k ∈ {0, 1, 2, . . .} ∪ {∞}.

Then, Lg
0 corresponds to the restricted case of [3] and Lg

∞ to the non-restricted
case (denoted Lλ in [3]).

The respective families of languages associated with systems with at most
m neurons are denoted by Lα

k SNPm, where α ∈ {g, a} and k is as above; if k
is arbitrary, but not ∞, then we replace it with ∗; if m is arbitrary, then we
replace it with ∗. (Note that we do not take here into account the descriptional
complexity parameters usually considered in this framework: number of rules per
neuron, numbers of spikes consumed or forgotten, etc.)

The computing power of the previous devices was preliminarily investigated in
[9], with many questions still remaining open. We do not recall them here, but,
instead, we mention the notion of a SN dP system introduced in [9].

4 SN dP Systems

We first recall from [9], without proofs, two basic results, because they provide a
way to find counterexamples in this area. Actually, they are extensions to SN P
systems with request rules of some results already proved in [3].

Lemma 1. The number of configurations reachable after n steps by an extended
SN P system with request rules of degree m is bounded by a polynomial g(n) of
degree m.

Theorem 1. If f : V + −→ V + is an injective function, card(V) ≥ 2, then there
is no extended SN P system Π with request rules such that Lf (V) = {x f(x) | x ∈
V +} = Lg

∗(Π).

Corollary 1. The following two languages are not in Lg
∗SNP∗ (in all cases,

card(V) = k ≥ 2):

L1 = {xmi(x) | x ∈ V +},
L2 = {xx | x ∈ V +}.

174 M. Ionescu, Gh. Păun

Note that language L1 above is a non-regular minimal linear one and L2 is
context-sensitive non-context-free.

We introduce now the mentioned distributed version of SN P systems:
An SN dP system is a construct

∆ = (O,Π1, . . . , Πn, esyn),

where (1) O = {a} (as usual, a represents the spike), (2) Πi =
(O, σi,1, . . . , σi,ki , syn, ini) is an SN P system with request rules present only in
neuron σini

(σi,j = (ni,j , Ri,j), where ni,j is the number of spikes initially present
in the neuron and Ri,j is the finite set of rules of the neuron, 1 ≤ j ≤ ki), and (3)
esyn is a set of external synapses, namely between neurons from different systems
Πi, with the restriction that between two systems Πi,Πj there exist at most one
link from a neuron of Πi to a neuron of Πj and at most one link from a neuron
of Πj to a neuron of Πi. We stress the fact that we allow request rules only in
neurons σini

of each system Πi – although this restriction can be removed; the
study of this extension remains as a task for the reader. The systems Πi, 1 ≤ i ≤ n,
are called components (or modules) of the system ∆.

As usual in dP automata, each component can take an input (by using request
rules), work on it by using the spiking and forgetting rules in the neurons, and
communicate with other components (along the synapses in esyn); the commu-
nication is done as usual inside the components: when a spiking rule produces
a number of spikes, they are sent simultaneously to all neurons, inside the com-
ponent or outside it, in other components, provided that a synapse (internal or
external) exists to the destination.

As above, when r spikes are taken from the environment, a symbol br is as-
sociated with that step, hence the strings we consider introduced in the system
are over an alphabet V = {b0, b1, . . . , bk}, with k being the maximum number of
spikes introduced in a component by a request rule.

A halting computation with respect to ∆ accepts the string x = x1x2 . . . xn

over V if the components Π1, . . . , Πn, starting from their initial configurations,
working in the synchronous (in each time unit, each neuron which can use a rule
should use one) non-deterministic way, bring from the environment the substrings
x1, . . . , xn, respectively, and eventually halts.

Hence, the SN dP systems are synchronized, a universal clock exists for all
components and neurons, marking the time in the same way for the whole system.

In what follows, like in the communication complexity area, see, e.g., [8], we ask
the components to take equal parts of the input string, modulo one symbol. (One
also says that the string is distributed in a balanced way. The study of the unbal-
anced (free) case remains as a research issue.) Specifically, for an SN dP system ∆
of degree n we define the language L(∆), of all strings x ∈ V ∗ such that we can
write x = x1x2 . . . xn, with ||xi|− |xj || ≤ 1 for all 1 ≤ i, j ≤ n, each component Πi

of ∆ takes as input the string xi, 1 ≤ i ≤ n, and the computation halts. Moreover,
we can distinguish between considering b0 as a symbol or not, like in the previous
sections, thus obtaining the languages Lα(∆), with α ∈ {0, 1, 2, . . .} ∪ {∞, ∗}.

Notes About SN P Systems 175

Let us denote by LαSNdPn the family of languages Lα(∆), for ∆ of degree
at most n and α ∈ {0, 1, 2, . . .} ∪ {∞, ∗}. An SN dP system of degree 1 is a usual
SN P system with request rules working in the accepting mode (with only one
input neuron). Thus, the universality of SN dP systems is ensured, for the case of
languages L∞(∆).

In what follows, we prove the usefulness of distribution, in the form of SN dP
systems, by proving that one of the languages in Corollary 1, can be recognized
by a simple SN dP system (with two components), even working in the Lk mode.

Proposition 1. {ww | w ∈ {b1, b2, . . . , bk}∗} ∈ Lk+2SNdP2.

Proof. The SN dP system which recognizes the language in the proposition is the
following:

∆ = ({a},Π1,Π2, {((2, 1), (1, 3)), ((1, 5), (2, 1))}), with the components
Π1 = ({a}, σ(1,1), . . . , σ(1,7), syn1, (1, 1)),

σ(1,1) = (3, {a3/λ ← ar | 1 ≤ r ≤ k} ∪ {a4a+/a → a, a4 → a3}),
σ(1,2) = (0, {a → a, a3 → a3}),
σ(1,3) = (0, {a → a, a3 → a3}),
σ(1,4) = (0, {a2 → λ, a6 → λ, a → a, a4 → a}),
σ(1,5) = (0, {a2 → λ, a6 → a, a6 → a3}),
σ(1,6) = (0, {a+/a → a}),
σ(1,7) = (0, {a+/a → a}),
syn1 = {((1, 1), (1, 2)), ((1, 5), (1, 1)), ((1, 2), (1, 4)), ((1, 4), (1, 6)),

((1, 4), (1, 7)), ((1, 6), (1, 7)), ((1, 7), (1, 6)), ((1, 2), (1, 5)),
((1, 3), (1, 4)), ((1, 3), (1, 5))},

Π2 = ({a}, σ(2,1), ∅, (2, 1)),

σ(2,1) = (3, {a3/λ ← ar | 1 ≤ r ≤ k} ∪ {a4a+/a → a, a4 → a3}).

The proof that this system works properly, recognizing indeed the language in
the statement of the proposition, can be found in [9].

Many problems can be formulated for SN P systems with request rules and for
SN dP systems. Several were formulated in [9], from where we recall the following
two general ones. :esides the synchronized (sequential in each neuron) mode of
evolution, there were also introduced other modes, such as the exhaustive one,
[11], and the non-synchronized one, [1]. Universality was proved for these types
of SN P systems, but only for the extended case. Can universality be proved for
non-extended SN P systems also using request rules?

176 M. Ionescu, Gh. Păun

5 Two Research Topics About SN P Systems

Many research topics and open problems about SN P systems can be found in the
literature. We mention here only the collection from [14], and we recall two of the
problems formulated in [15].

G. Continuing with SN P systems, a problem which was vaguely formulate
from time to time, but only orally, refers to a basic feature of the brain, the
memory. How can this be captured in terms of SN P systems is an intriguing
question. First, what means “memory”? In principle, the possibility to store some
information for a certain time (remember that there is a short term and also a
long term memory), and to use this information without losing it. For our systems,
let us take the case of storing a number; we need a module of an SN P system
where this number is “memorized” in such a way that in precise circumstances
(e.g., at request, when a signal comes from outside the module), the number is
“communicated” without “forgetting” it. In turn, the communication can be to
only one destination or to several destinations. There are probably several ways
to build such a module. The difficulty comes from the fact that if the number
n is stored in the form of n spikes, “reading” these spikes would consume them,
hence it is necessary to produce copies which in the end of the process reset the
module. This is clearly possible in terms of SN P systems, what remains to do
is to explicitly write the system. However, new questions appear related to the
efficiency of the construction, in terms of time (after getting the request for the
number n, how many steps are necessary in order to provide the information and
to reset the module?), and also in terms of descriptional complexity (how many
neurons and rules, how many spikes, how complex rules?). It is possible that a sort
of “orthogonal” pair of ideas are useful: many spikes in a few neurons (n spikes
in one neuron already is a way to store the number, what remains is to read and
reset), or a few spikes in many neurons (a cycle of n neurons among which a single
spike circulates, completing the cycle in n steps, is another “memory cell” which
stores the number n; again, we need to read and reset, if possible, using only a
few spikes). Another possible question is to build a reusable module, able to store
several numbers: for a while (e.g., until a special signal) a number n1 is stored,
after that another number n2, and so on.

H. The previous problem can be placed in a more general set-up, that of mod-
eling other neurobiological issues in terms of SN P systems. A contribution in
this respect is already included in the present volume, [13], where the sleep-awake
passage is considered. Of course, the approach is somewhat metaphorical, as the
distance between the physiological functioning of the brain and the formal struc-
ture and functioning of an SN P system is obvious, but still this illustrates the
versatility and modeling power of SN P systems. Further biological details should
be considered in order to have a model with some significance for the brain study
(computer simulations will then be necessary, like in the case of other applications
of P systems in modeling biological processes). However, also at this formal level
there are several problems to consider. For instance, what happens if the sleeping

Notes About SN P Systems 177

period is shortened, e.g., because a signal comes from the environment? Can this
lead to a “damage” of the system? In general, what about taking the environment
into account? For instance, we can consider a larger system, where some modules
sleep while other modules not; during the awake period it is natural to assume
that the modules interact, but not when one of them is sleeping, excepting the
case of an “emergency”, when a sleeping module can be awakened at the request
of a neighboring module. Several similar scenarios can be imagined, maybe also
coupling the sleep-awake issue with the memory issue.

The first of these problems will be answered below.

6 A Memory Module

We start by directly given the memory module which answers the requests of
problem G from [15]; we present it in a graphical form, in Figure 1, using the
standard way of representing SN P systems (neurons as nodes of a graph, linked
by arrows which represent synapses, with the rules of each neuron written in the
respective nodes, together with the spikes initially present there; input and output
neurons have incoming or outgoing arrows, respectively).

The system in Figure 1 works as follows. The number n is introduced in the
memory module, in the form of a spike train containing n occurrences of 1, one
after the other. The computation starts when the first spike enters the system – at
that moment, rule a5/a3 → a is enabled. For the other spikes, the rule a3/a → a is
used, always two spikes remaining inside neuron σ1. If no spike enters the system,
then the two existing spikes are removed. If, at a subsequent step, any spike enters
neuron σ1, then it is forgotten, too, by means of the rule a → λ. Thus, the number
to be stored should be introduced as a compact sequence of spikes.

Each input spike is doubled by neurons σ2, σ3, and in this way 2n spikes are
accumulated in neuron σ4. They can stay here forever, unchanged. If the trigger
neuron, σ9, receives a spike (we assume that this happens after completing the
introduction of the n spikes in neuron σ1), then a further spike is sent to neuron
σ4. With an odd number of spikes inside, neuron σ4 consumes two by two the
spikes, moving in this way n spikes in the “beneficiary” neuron σ10, at the same
time moving 2n spikes to neuron σ8. Note that after exhausting the spikes of
neuron σ4, one further spike is produced by σ7, hence in the end neuron σ8 gets
an odd number of spikes. In the same way as σ4 has moved its contents to σ8,
now the reverse operation takes place, hence σ4 will end with 2n spikes inside
(and σ8 is empty). Therefore, the “cell memory” is restored, the number n can be
read again, when the trigger gets one further spike. Always, the number n is made
available outside the memory module, but the module “remembers” the number,
for a further usage.

Now, may extensions can be imagined, for instance, towards data bases. A
table in a data base can be imagined as a sequence of “memory cells” (modules),
each one with its own label and value (number stored) and subject to updating

178 M. Ionescu, Gh. Păun

#

"

Ã

!

º

¹

·

¸

'

&

$

%

'

&

$

%

º

¹

·

¸

º

¹

·

¸

º

¹

·

¸

'

&

$

%

'

&

$

%

'

&

$

%

º

¹

·

¸

?

´
´

´
´

´
´

´
´

´
´

´
´́+

¶
¶

¶
¶

¶
¶¶/

¢
¢

¢
¢

¢®
@

@R

XXXXXXXXXXXXz¤
¤
¤
¤¤²

A
AAU

£
£°C

C
C
C
C
C
C
C
CO

A
AU

¢
¢®

¡
¡ª

S
Sw

?

0x1n0y

1

a4

a5/a3 → a

a3/a → a

a2 → λ

a → λ

2

a → a

3

a → a

4

(aa)∗a/a2 → a

a3 → a

5

a → a

6

a → a

7

a2/a → a

a → a

8

(aa)∗a/a2 → a

a3 → a

10

9

a → a

0x+n+y1

memory module

trigger reading

beneficiary
store (2n)

restore

Fig. 1. A memory module

and interrogating operations. Modules can also be inserted and removed. Each of
these operations are done by means of a specialized module, one for updating,
one for interrogating, and so on, always specifying first the “address” (the label,
the ID) of the cell which is operated. The construction becomes complex (only
the indicated modules should be modified, although the trigger for the respective
operation can do the same with all other modules), but presumably feasible; we
leave this task to the reader.

Another direction of research is to consider other “brain modules” or functions
and implement them in terms of SN P systems. An example is that from [13], where

Notes About SN P Systems 179

the sleeping activity of the brain is modeled, but many others can be addressed:
learning, getting tired, taking the task of another part of the brain.

7 Pattern Recognition

One function of the brain which we have not mentioned above is pattern recogni-
tion. Neural computing is especially concerned with this task, and learning (train-
ing the net) is an essential step of pattern recognition. Although the problem is
so natural, only a few efforts were paid in SN P systems area to incorporating
the learning feature, see, e.g., [7]. In turn, nothing was done in what concerns the
patterns recognition, that it why we call here the attention about this problem.

A simple framework for that concerns handling – generating or recognizing
– arrays, pictures realized by marking the positions of a grid with symbols of a
given alphabet, in the sense of array grammars and languages. For instance, we
can imagine the following task. Consider a language of arrays, for instance, the
letters of the Latin alphabet, each one written in a rectangle with black and white
lattice positions. We can interpret a marked spot (black) as a spike and a non-
marked one (white) as no spike. Let us construct an SN P system having certain
input neurons aligned, able to read one by one the rows of the array picture. The
reading can be done in consecutive steps or internal computations are allowed
between reading two neighboring rows. After reading the whole array, the system
can continue working and, if the computation halts, the input array is recognized.

The difficulty of constructing such an SN P system lies in the fact that we
have to recognize several different letters. A variant is to construct a system which
recognizes only one of the letters, say A, but of different sized. In this latter case,
the number of input neurons should be large enough for reading all possible sizes
of the letter, and the difficulty lies again in the fact that the same neurons can
behave differently for letters of different sizes.

Anyway, we find the construction of such patter recognition SN P systems
interesting, non-trivial and rather instructive, a good exercise for understanding
the functioning of SN P systems, and, hopefully, a way to find applications for
them.

8 Final Remarks

We insist about the fact that this is only an invitation to a dynamical research area
of membrane computing, trying to convince the reader that there are interesting
problems to address and providing a few bibliographical hints. For comprehen-
sive presentations and references, the reader should consult the domain literature,
available at [23] (for instance, all brainstorming volumes can be found there, in a
downloadable form).

180 M. Ionescu, Gh. Păun

Acknowledgements

The work of M. Ionescu was possible due to CNCSIS grant RP-4 12/01.07.2009.
The work of Gh. Păun was supported by Proyecto de Excelencia con Investigador
de Reconocida Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. M. Cavaliere, E. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Păun, S. Woodworth: Asyn-
chronous spiking neural P systems. Theoretical Computer Science, 410, 24-25 (2009),
2352–2364.

2. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. Fundamenta Informaticae, 75, 1-4 (2007),
141–162

3. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In Proc. Fourth Brainstorming Week on Membrane Computing,
Sevilla, 2006, RGNC Report 02/2006, 241–265.

4. R. Freund, M. Kogler, Gh. Păun, M.J. Pérez-Jiménez: On the power of P and dP au-
tomata. Annals of Bucharest University. Mathematics-Informatics Series, 63 (2009),
5–22.

5. W. Gerstner, W Kistler: Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge Univ. Press, 2002.

6. R. Gutierrez-Escudero et al.: Proceedings of the Seventh Brainstorming Week on
Membrane Computing. Sevilla, 2009, 2 volume, Fenix Editora, Sevilla, 2009.

7. M.A. Gutierrez-Naranjo, M.J. Pérez-Jiménez: A first model for Hebbian learning with
spiking neural P systems. In Proc. 6th Brainstorming Week on Membrane Computing,
Sevilla, 2008.

8. J. Hromkovic: Communication Complexity and Parallel Computing: The Application
of Communication Complexity in Parallel Computing. Springer, Berlin, 1997.

9. M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez T. Yokomori: Spiking neural dP systems.
In Proc. 9th Brainstorming Week on Membrane Computing, Sevilla, January 31–
February 4, 2011.

10. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

11. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems with exhaustive use
of rules. Intern. J. Unconventional Computing, 3, 2 (2007), 135–154.

12. W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, 1999.
13. J.M. Mingo: Sleep-awake switch with spiking neural P systems: A basic proposal and

new issues. In [6], vol. 2, 59–72.
14. Gh. Păun: Twenty six research topics about spiking neural P systems. In Proceedings

of the Fifth Brainstorming Week on Membrane Computing, Fenix Editora, Sevilla,
2007, 263–280

15. Gh. Păun: Some open problems collected during 7th BWMC. In [6], vol. 2, 197–206.
16. Gh. Păun, M.J. Pérez-Jiménez: Solving problems in a distributed way in membrane

computing: dP systems. Int. J. of Computers, Communication and Control, 5, 2
(2010), 238–252.

Notes About SN P Systems 181

17. Gh. Păun, M.J. Pérez-Jiménez: P and dP automata: A survey. Lecture Notes in
Computer Science, 6570, in press.

18. Gh. Păun, M.J. Pérez-Jiménez: An infinite hierarchy of languages defined by dP
systems. Theoretical Computer Sci., in press.

19. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-
tems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975–1002.

20. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-
ford University Press, 2010.

21. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes, Springer,
Berlin, 1998.

22. A. Salomaa: Formal Languages. Academic Press, New York, 1973.
23. The P Systems Website: http://ppage.psystems.eu.

Spiking Neural P Systems
with Several Types of Spikes

Mihai Ionescu1, Gheorghe Păun2,3,
Mario J. Pérez-Jiménez3, Alfonso Rodŕıguez-Patón4

1 University of Piteşti
Str. Târgu din Vale, nr. 1, 110040 Piteşti, Romania
armandmihai.ionescu@gmail.com

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania

3 Research Group on Natural Computing
Department of Computer Science and AI
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, marper@us.es

4 Department of Artificial Intelligence, Faculty of Computer Science
Polytechnical University of Madrid, Campus de Montegancedo
Boadilla del Monte 28660, Madrid, Spain
arpaton@fi.upm.es

Summary. With a motivation related to gene expression, where enzymes act in series,
somewhat similar to the train spikes traveling along the axons of neurons, we consider
an extension of spiking neural P systems, where several types of “spikes” are allowed.
The power of the obtained spiking neural P systems is investigated and the modeling of
gene expression in these terms is discussed. Some further extensions are mentioned, such
as considering a process of decay in time of the spikes.

1 Introduction

The present note lies at the intersection of two active research branches of bio-
informatics/natural computing, namely, gene expression and membrane comput-
ing. Specifically, an extension of so-called spiking neural P systems (in short, SN
P systems) is considered, with motivations related to gene expression processes.

For the reader’s convenience, we shortly recall that an SN P system consists of
a set of neurons placed in the nodes of a graph and sending signals (spikes) along
synapses (edges of the graph), under the control of firing rules. Such a rule is
has the general form E/ac → ap; d, where E is a regular expression (equivalently,
we can consider it a regular language) and a denotes the spike; if the contents
of the neuron is described by an element of the regular language (identified by)

184 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón

E, then the rule is enabled, c spikes are consumed and p are produced, and sent,
after a time delay of d steps, along the synapses leaving the neuron. There also
are forgetting rules of the form ac → λ, with the meaning that, if the neuron
contains exactly c spikes, then they can be removed (forgotten). One neuron is
designated as the output neuron of the system and its spikes can exit into the
environment, thus producing a spike train. Two main kinds of outputs can be
associated with a computation in an SN P system: a set of numbers, obtained by
considering the number of steps elapsed between consecutive spikes which exit the
output neuron, and the string corresponding to the sequence of spikes which exit
the output neuron.

These computing devices were introduced in [7] and then investigated in a
large number of papers; we refer to the corresponding chapter from [13] and to the
membrane computing website [16] for details.

In turn, gene expression is an important research area where various transcrip-
tion factors appears and, important for their activity, their frequency matters –
see, for instance, [1], [10], [12]. This means that a spiking like process is encoun-
tered, but with several “spikes”, the regulator proteins which bind to a promotor
depending on their concentration. In some sense we have here a communication
process in which a signal encoded in a concentration (the transcription factor) is
transduced to a frequency signal (the bursts of mRNA associated to the bindings
of the transcription factor with the promotor) and again transduced back to a con-
centration (the level of protein produced). Thus, conceptually, we can approach
this process in terms of theoretical machineries developed for spiking neurons –
with the necessity of considering a variety of spikes, not only one as in the neural
case. This is also suggested in [1]: ”...we anticipate that frequency-modulated reg-
ulation may represent a general principle by which cells coordinate their response
to signals.”

Starting from these observations, we relate here the two research areas, intro-
ducing SN P systems with several types of spikes. Such a possibility was somehow
forecasted already from the way the definition in [7] is given, with an alphabet,
O, for the set of spikes, but with only one symbol in O; up to now, only a second
type of spikes was considered, in [11], namely anti-spikes, which, when introduced,
are immediately annihilated, in pairs with usual spikes. This extension to several
types of spikes is natural also in view of the fact that all classes of P systems
investigated in membrane computing work with arbitrary alphabets of objects.

As expected, having several types of spikes helps in proofs; in particular, we
obtain the universality of the SN P systems with several types of spikes for systems
with a very reduced number of neurons – remember that for systems with only
one type of spikes the proofs do not bound the number of neurons (but such a
bound can be found due to the existence of universal SN P systems, hence with a
fixed number of neurons, but used in the computing mode, having both an input
and an output). Three ways to define the result of a computation are considered:
as the number of objects inside a specified neuron, as the number of objects sent

SN P Systems with Several Types of Spikes 185

out by the output neuron, and as the distance in time between the first two spikes
sent out during the computation.

What is not investigated is the case of generating strings, in the sense of [3],
[4], or even in the distributed case of [8]. Other open problems are mentioned in
the rest of the paper and in the final section of it.

2 Formal Language Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory,
e.g., from [14] and [15], so that we introduce here only some notations and notions
used later in the paper.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from
V ; the empty string is denoted by λ, and the set of all nonempty strings over V
is denoted by V +. When V = {a} is a singleton, then we write simply a∗ and
a+ instead of {a}∗, {a}+. For a language L, we denote by sub(L) the set of all
substrings of strings in L.

As usual in membrane computing, the multisets over a finite universe set U are
represented by strings in U∗ (two strings equal modulo a permutation represent
the same multiset). If u, v ∈ U∗, we write the fact that u is a submultiset of v in
the form u ⊆ v, with the understanding that there is a permutation of v having u
as a substring (this can be formally formulated also in terms of Parikh mapping,
but we do not enter into details). Similarly, we write u ∈ sub(L) for a multiset u
and a set L of multisets, meaning that u is a submultiset of a multiset in L.

A register machine (in the non-deterministic version) is a construct M =
(m,H, l0, lh, I), where m is the number of registers, H is the set of instruction
labels, l0 is the start label (labeling an ADD instruction), lh is the halt label (as-
signed to instruction HALT), and I is the set of instructions; each label from H
labels only one instruction from I, thus precisely identifying it. The instructions
are of the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk non-deterministically chosen),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M generates a set N(M) of numbers in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we continue to apply instructions as indicated by
the labels (and made possible by the contents of registers); if we reach the halt
instruction, then the number n present in register 1 at that time is said to be
generated by M . Without loss of generality we may assume that in the halting
configuration all other registers are empty. It is known that register machines
generate all sets of numbers which are Turing computable – we denote this family

186 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón

with NRE (RE stands for “recursively enumerable”). By NFIN we denote the
family of finite sets of natural numbers.

In the following sections, when comparing the power of two computing devices,
number 0 is ignored (this corresponds to the fact that when comparing the power
of language generating or accepting devices, the empty string λ is ignored).

3 Spiking Neural P Systems with Several Types of Spikes

We directly introduce the type of SN P systems we investigate in this paper;
although somewhat far from the idea of a spike from the neural area, we still call
the objects processed in our devices spikes.

A spiking neural P system with several types of spikes (abbreviated as SN+ P
system, of degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, i0), where:

1. O is the alphabet of spikes (we also say objects);
2. σ1, . . . , σm are neurons, of the form σi = (wi, Ri), 1 ≤ i ≤ m, where:

a) wi ∈ O∗ is the initial multiset of spikes contained in σi;
b) Ri is a finite set of rules of the forms

(i) E/u → a, where E is a regular language over O, u ∈ O+, and a ∈ O
(spiking rules);

(ii) v → λ, with v ∈ O+ (forgetting rules) such that there is no rule
E/u → a of type (i) with v ∈ E;

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . ,m} with i 6= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m
(synapses between neurons);

4. i0 ∈ {1, 2, . . . , m} indicates the output neuron (σi0) of the system.

A rule E/u → a is applied as follows. If the neuron σi contains a multiset
w of spikes such that w ∈ L(E) and u ∈ sub(w), then the rule can fire, and its
application means consuming (removing) the spikes identified by u and producing
the spike a, which will exit immediately the neuron. In turn, a rule v → λ is
used if the neuron contains exactly the spikes identified by v, which are removed
(“forgotten”). A global clock is assumed, marking the time for the whole system,
hence the functioning of the system is synchronized.

If a rule E/u → a has E = {u}, then we will write it in the simplified form
u → a.

The spike emitted by a neuron σi go to all neurons σj such that (i, j) ∈ syn.
If several rules can be used at the same time in a neuron, then the one to be

applied is chosen non-deterministically.
Using the rules as described above, one can define transitions among configu-

rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where no rule can
be used.

SN P Systems with Several Types of Spikes 187

There are many possibilities to associate a result with a computation, in the
form of a number. Three possibilities are considered here: the number of objects
in the output neuron in the halting configuration, the number of spikes sent to
the environment by the output neuron, and the number of steps elapsed between
the first two steps when the output neuron spikes. In the first two cases only
halting computations provide an output, in the last case we can define the output
also for ever going computations – but in what follows we only work with halting
computations also for this case.

We denote by Nα(Π) the set of numbers generated as above by an SN+ P
system Π with the result defined in the mode α ∈ {i, o, d}, where i indicate the
internal output, o the external one (as the number of spikes), and d the fact that
we count the distance between the first two spikes which exit the system. Then,
NαSN+Pm is the family of sets of numbers Nα(Π), for SN+ P systems with at
most m ≥ 1 neurons. As usual, the subscript m is replaced by ∗ if the number of
neurons does not matter.

Before passing to investigate the size of the previously defined families, let us
mention that we have introduced here SN P systems of the standard type in what
concerns the rules, i.e., producing only one spike, and without delay; extended rules
are natural (E/u → v, with both u and v multisets), but this is a too general case
from a computability point of view, corresponding to cooperating P systems. It is
important also to note that the rules we use have both additional powerful features
– context sensitivity induced by the existence of the control regular language E,
and strong restrictions – the produced spike (only one) should leave immediately
the neuron, it cannot be further used in the same place without being sent back
by the neighboring neurons. These features are essentially present in the proofs
from the next section.

4 The Power of SN+ P Systems

We start by considering the case when the result is counted inside the system (like
in general P systems, hence somewhat far from the style of SN P systems).

Lemma 1. NRE ⊆ NiSN+P3.

Proof. Let us consider a register machine M = (n,H, l0, lh, I). We construct the
following SN+ P system

Π = (O, σ1, σ2, σ3, syn, 1), with:
O = {ai | 1 ≤ i ≤ n} ∪ {l, l′, l′′ | l ∈ H},
σ1 = (l0, R1),
R1 = {O∗/li → l′i | (li : ADD(r), lj , lk) ∈ I}

∪ {O∗arO∗/liar → l′′j , (O∗ −O∗arO∗)/li → l′′k | (li : SUB(r), lj , lk) ∈ I}
∪ {lh → λ},

188 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón

σ2 = (λ,R2),
R2 = {l′i → lj , l′i → lk | (li : ADD(r), lj , lk) ∈ I} ∪ {l′′ → l | l ∈ H},
σ3 = (λ,R3),
R3 = {l′i → ar | (li : ADD(r), lj , lk) ∈ I} ∪ {l′′ → λ | l ∈ H},

syn = {(1, 2), (1, 3), (2, 1), (3, 1)}.

The functioning of this system can be easily followed. The contents of register r is
represented by the number of copies of object ar present in the system. There are
also objects associated with the labels of M .

Initially, we have only the object l0 in neuron σ1. In general, in the presence of
a label li of an instruction in I, the instruction is simulated by the system Π. For
the ADD instructions, the change of labels is done with the help of neuron σ2 and
the addition of a further object ar is done in neuron σ3. For the SUB instructions,
the check for zero is performed by means of the regular language associated with
the rules in R1. The computation continues as long as the work of the machine M
continues. When the label lh is introduced – by the neuron σ2 – the computation
stops after one further step, when this object is removed from the output neuron,
σ1. Thus, in the end, this neuron only contains copies of object a1, hence their
number represents the value present in the first register of M in the end of the
computation. Thus, N(M) = Li(Π). ut
Theorem 1. NFIN = NiSN+P1 = NiSN+P2 ⊂ NiSN+P3 = NRE.

Proof. The inclusions NiSN+P1 ⊆ NiSN+P2 ⊆ NiSN+P3 are obvious from the
definitions. The inclusion NiSN+P3 ⊆ NRE is straightforward (we can also invoke
for it the Turing-Church thesis).

In an SN+ P system with two components, the number of spikes present inside
the two neurons cannot be increased (each spiking rule consumes at least one
spike and produces only one spike, while there is no duplication of spikes because
of multiple synapses which exit a neuron), hence we have NiSN+P2 ⊆ NFIN .

On the other hand, NFIN ⊆ NiSN+P1. Indeed, consider a finite set of num-
bers, F = {n1, n2, . . . , nk}; assume that 1 ≤ n1 < n2 < . . . < nk (remember that
we ignore the number 0). We construct the system

Π = ({a}, (ank+1, {ank+1/ank+1−ni → a | 1 ≤ i ≤ k}), ∅, 1).

We have Li(Π) = F : each computation has only one step, which non-
deterministically uses one of the rules in R1. Each such rule just consumes a
number of spikes, passing from the initial nk + 1 spikes to any number ni ∈ F ,
which cannot be further processed.

Together with Lemma 1, this concludes the proof of the theorem. ut
Let us note in the construction from the proof of Lemma 1 that all neurons

spike a large number of times (related to the length of the computation), not
directly related to the number computed in the first register of M . This makes

SN P Systems with Several Types of Spikes 189

difficult to imagine a system with only three neurons which is universal when the
result is defined as the number of spikes sent out. However, one additional neuron
suffices in such a case.

Theorem 2. NFIN = NoSN+P1 ⊂ NoSN+P2 ⊆ NoSN+P3 ⊆ NoSN+P4 =
NRE.

Proof. Again, the inclusions NoSN+P1 ⊆ NoSN+P2 ⊆ NoSN+P3 ⊆
NoSN+P4 ⊆ NRE are obvious from the definitions.

The inclusion NRE ⊆ NoSN+P4 can be obtained by a slight extension of the
construction in the proof of Lemma 1: we replace the rule lh → λ from R1 with
the rule

a+
1 lh/lha1 → lh.

We also add a neuron σ4, considered as output neuron, linked by synapses (1, 4),
(4, 1) to the neuron σ1 and containing the unique rule

lh → lh.

When the computation of M stops, hence lh is introduced in σ1, this object
remove one by one the objects a1 and moves to the output neuron. This neuron
both sends lh out and back to σ1, hence the number of copies of lh sent out is
equal with the number stored in the first register of M .

This time, an SN+ P system with two components can compute an arbitrarily
large number, by sending out an arbitrarily large number of spikes. For instance,

Π = ({a}, (a, {a → a}), (aa, {aa/a → a, aa → a}), {(1, 2), (2, 1)}, 2),

has Lo(Π) = {1, 2, . . .} (neuron σ2 spikes step by step, until using the rule aa →,
when only one spike remains in the system and the computation halts).

If we have only one neuron, the computation can last as may steps as many
spikes are initially inside, hence NoSN+P1 ⊆ NFIN .

On the other hand, NFIN ⊆ NiSN+P1. Indeed, consider again a finite set of
numbers, F = {n1, n2, . . . , nk} such that 1 ≤ n1 < n2 < . . . < nk and construct
the system

Π = ({a}, σ1, ∅, 1), with
σ1 = (ank+1, R1),
R1 = {ank+1/ank+1−ni+1 → a | 1 ≤ i ≤ k}

∪ {ar/a → a | 1 ≤ r ≤ nk − 1}.
We have Li(Π) = F : each computation starts with a step which uses non-
deterministically a rule ank+1/ank+1−ni+1 → a, which decreases the number of
spikes from the initial nk + 1 to some ni − 1; at this time, one spike was sent
out. From now on, we use deterministically rules of the form ar/a → a, for all
r = 1, 2, . . . , ni − 1, hence for ni − 1 steps, always sending out one spike. Thus, in
total, we send out ni spikes, for each ni ∈ F .

Combining all these remarks, we have the theorem. ut

190 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón

It is an open problem whether or not the inclusions NoSN+P2 ⊆ NoSN+P3 ⊆
NoSN+P4 are proper.

Theorem 3. NFIN = NdSN+P1 = NdSN+P2 ⊂ NdSN+P3 ⊆ NdSN+P4 =
NRE.

Proof. As above, the inclusions NdSN+P1 ⊆ NdSN+P2 ⊆ NdSN+P3 ⊆
NdSN+P4 ⊆ NRE are obvious from the definitions.

The inclusion NFIN ⊆ NdSN+P1 is already proved for SN P systems with
only one type of spikes. Like in that case, we also obtain the inclusion NdSN+P2 ⊆
NFIN : in order to generate an arbitrarily large number, the output neuron should
not spike for an arbitrarily large number of steps, but this is not possible in a
system with only two neurons, because if only one neuron is working, it can perform
only a number of steps bounded by the number of spikes initially present in it.

The fact that NdSN+P3 contains infinite sets of numbers is also known for
standard SN P systems.

What remains to prove is the inclusion NRE ⊆ NdSN+P4 and this can again
be obtained by an extension of the construction in the proof of Lemma 1; because
this extension is not immediate, we give the construction in full details.

We consider a register machine M = (n,H, l0, lh, I) and construct the SN+ P
system Π as indicated in Figure 1 – this time we do not give the system formally,
but we represent it graphically, in the way usual in the SN P systems area.

The work of this system is identical to that in the proof of Lemma 1, until
producing the object lh (the objects which arrive in the output neuron σ4 from all
other neurons remain here unused).

When σ2 introduces the object lh, it is sent to all other neurons. It waits
unused in σ4, but in σ1 and σ3 it is reproduced in each step, hence these two
neurons feed repeatedly each other with one copy of lh. In σ1, each use of the
rule a+

1 lh/a1lh → lh removes one copy of a1. In the end of step 1 (we count here
only the steps after having lh in the system, hence for the phase when the output
is produced), neuron σ4 contains three copies of lh. Thus, in step 2, this neuron
spikes.

From now on, neurons σ1, σ3 spike repeatedly, exchanging copies of lh, σ4 al-
ways forgets the two copies of lh received from σ1, σ3 (while σ2 just accumulates
copies of lh, which cannot be processed here). When the last copy of a1 is removed
from σ1 (if m copies of a1 were present here when lh was introduced, then this
happens in step m, after having lh in the system), this is the last step when σ4

receives two spikes. In the next step (m + 1) it receives only the spike produced
by σ3, which is used (in step m + 2) by the rule lh → lh in σ4. The computation
stops. The number of steps between the two spikes sent out by the output neuron
is (m + 2) − 2 = m, hence the number computed by the register machine in its
first register.

The proof of the theorem is now complete. ut
It is an open problem whether or not the inclusion NgSN+P3 ⊆ NgSN+P4 is

proper.

SN P Systems with Several Types of Spikes 191

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

-

6

?

6

?

6

¢
¢
¢
¢
¢¢̧ 6

-

1

l0

O∗/li → l′i,

for (li : ADD(r), lj , lk) ∈ I

O∗arO∗/liar → l′′j ,

(O∗ −O∗arO∗)/li → l′′k ,

for (li : SUB(r), lj , lk) ∈ I)

a+
1 lh/a1lh → lh

2

l′i → lj ,

l′i → lk,

for (li : ADD(r), lj , lk) ∈ I

l′′ → l, for l ∈ H
3

l′i → ar,

for (li : ADD(r), lj , lk) ∈ I)

l′′ → λ, for l ∈ H

lh → lh

4

c

cl3h → lh

l2h → λ

lh → lh

Fig. 1. The SN+ P system from the proof of Theorem 3

5 Final Remarks

In gene expression it is also the case that the enzymes have a time dependency of
their reactivity, which can be captured in terms of SN P systems by considering
decaying spikes, in the sense of [6]. For instance, we can associate an age with
each produced spike, by using rules of the form E/u → (a, t), where t ≥ 1 is the
“duration of life” of this spike. If the spike is not used in a step, then its life is
decreased by one unit (this is like having rewriting rules (a, s) → (a, s − 1), used
in parallel for all spikes not used in spiking or forgetting rules), until reaching the
state (a, 0), when a rule (a, 0) → λ is assumed to be applied. This feature remains
to be further investigated.

Let us close by recalling the fact that besides the synchronized (sequential in
each neuron) mode of evolution, there were also introduced other modes, such as
the exhaustive one, [9], and the non-synchronized one, [2], which also deserve to
be considered for SN P systems with several types of spikes.

192 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, A. Rodŕıguez-Patón

Acknowledgements

The work of M. Ionescu was possible due to CNCSIS grant RP-4 12/01.07.2009.
The work of Gh. Păun was supported by Proyecto de Excelencia con Investigador
de Reconocida Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. L. Cai, C.K. Dalal, M.B. Elowitz: Frequency-modulated nuclear localization bursts
coordinate gene regulation. Nature, 455 (25 September 2008).

2. M. Cavaliere, E. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Păun, S. Woodworth: Asyn-
chronous spiking neural P systems. Theoretical Computer Science, 410, 24-25 (2009),
2352–2364.

3. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. Fundamenta Informaticae, 75, 1-4 (2007),
141–162.

4. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In Proc. Fourth Brainstorming Week on Membrane Computing,
Sevilla, 2006, RGNC Report 02/2006, 241–265.

5. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Handling languages with
spiking neural P systems with extended rules. Romanian J. Information Sci. and
Technology, 9, 3 (2006), 151–162.

6. R. Freund, M. Ionescu, M. Oswald: Extended spiking neural P systems with decaying
spikes and/or total spiking. Intern. J. Found. Computer Sci., 19 (2008), 1223–1234.

7. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

8. M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: T. Yokomori: Spiking neural dP systems.
Proc. Ninth Brainstorming Week on Membrane Computing, Sevilla, 2011, RGNC
Report 01/2011.

9. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems with exhaustive use
of rules. Intern. J. Unconventional Computing, 3, 2 (2007), 135–154.

10. E.M. Ozbudak, M. Thattai, I. Kurtser, A.D. Grossman, A. van Oudenaarden: Reg-
ulation of noise in the expression of a single gene. Nature Genetics, 31 (May 2002).

11. L. Pan, Gh. Păun: Spiking neural P systems with anti-spikes. Intern. J. Computers,
Comm. Control, 4, 3 (2009), 273–282.

12. J. Paulsson: Models of stochastic gene expression. Physics of Life Reviews, 2 (2005),
157-175.

13. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-
ford University Press, 2010.

14. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes, Springer,
Berlin, 1998.

15. A. Salomaa: Formal Languages. Academic Press, New York, 1973.
16. The P Systems Website: http://ppage.psystems.eu.

Spiking Neural dP Systems

Mihai Ionescu1, Gheorghe Păun2,3,
Mario J. Pérez-Jiménez3, Takashi Yokomori4

1 University of Piteşti
Str. Târgu din Vale, nr. 1, 110040 Piteşti
Romania
armandmihai.ionescu@gmail.com

2 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucharest, Romania

3 Research Group on Natural Computing
Department of Computer Science and AI
University of Sevilla
Avda Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, marper@us.es

4 Department of Mathematics, School of Education
Waseda University, 1-6-1 Nishi-waseda, Shinjuku-ku
Tokyo 169-8050, Japan
yokomori@waseda.jp

Summary. We bring together two topics recently introduced in membrane computing,
the much investigated spiking neural P systems (in short, SN P systems), inspired from
the way the neurons communicate through spikes, and the dP systems (distributed P
systems, with components which “read” strings from the environment and then cooperate
in accepting their concatenation). The goal is to introduce SN dP systems, and to this
aim we first introduce SN P systems with the possibility to input, at their request, spikes
from the environment; this is done by so-called request rules. A preliminary investigation
of the obtained SN dP systems (they can also be called automata) is carried out. As
expected, request rules are useful, while the distribution in terms of dP systems can
handle languages which cannot be generated by usual SN P systems. We always work
with extended SN P systems; the non-extended case, as well as several other natural
questions remain open.

1 Introduction

We combine here two ideas recently considered in membrane computing, the spik-
ing neural P systems (in short, SN P systems) introduced in [9], and the dP systems
introduced in [13].

For the reader’s convenience, we shortly recall that an SN P system consists
of a set of neurons placed in the nodes of a graph and sending signals (spikes)

194 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori

along synapses (edges of the graph), under the control of firing rules. One neuron
is designated as the output neuron of the system and its spikes can exit into the
environment, thus producing a spike train. Two main kinds of outputs can be
associated with a computation in an SN P system: a set of numbers, obtained by
considering the number of steps elapsed between consecutive spikes which exit the
output neuron, and the string corresponding to the sequence of spikes which exit
the output neuron. This sequence is a binary one, with 0 associated with a step
when no spike is emitted and 1 associated with a step when a spike is emitted.

Actually, we use extended SN P systems, that is, we allow rules of the form
E/ac → ap, with the following meaning: if the content of the neuron is described
by the regular expression E, then c spikes are consumed and p are produced and
sent to the neurons to which there exist synapses leaving the neuron where the rule
is applied (more precise definitions will be given in Section 3). In this way, strings
over arbitrary alphabets can be obtained: if i spikes are sent out at the same time,
then we say that the symbol bi was generated. The languages generated by SN P
systems in this way were investigated in [2] and [3]; see also [4].

In turn, a dP systems consists of several “modules” (usual P systems), which
communicate among them by means of antiport rules like in tissue P systems.
When only symport/antiport rules are used inside modules, then we can define a
language accepted by such a system: each component takes from the environment
sequences of symbols, they work separately and communicate through antiport
rules and, if the computation halts, then the concatenation of the input strings
is accepted. See [6], [13], [15], [16] for a series of results about such machineries;
in particular, [6] investigates the language families characterized by P and dP
automata, their relationships and place in Chomsky hierarchy.

There is an apparent difference between the two classes of P systems: SN P
systems generate strings, while dP systems accept them. There were considered
SN P systems also working in the accepting mode, with a spike train (a number is
encoded as the distance between two consecutive spikes) introduced in a specified
neuron of the system in the first steps of the computation. However, a more natural
way to proceed, more similar to the way the P automata take symbols from the
environment, is to consider a new type of rules in SN P systems, able to take spikes
from the environment. We consider such rules of a form rather similar to spiking
rules, namely, of the form E/λ ← ar: if the contents of the neuron is described by
the regular expression E, then r spikes are brought from the environment. Such a
rule can be applied as a usual spiking rule (its use lasts one time unit, with the
spikes brought from the environment being added to the contents of the neuron
and ready to be used in the next step).

Now, the definition of an SN P system with request rules is rather natural: the
neurons which contain request rules are supposed as having a “synapse” also with
the environment such that they can take spikes from the environment, depending
on the number of spikes they contain. The computation proceeds as usual, starting
from the initial configuration. Both input and output spike trains can be associated
with the neurons linked with the environment. Also the step to SN dP systems

Spiking Neural dP Systems 195

(we can call them automata) is natural: take “modules” (or components) consisting
of neurons, with only one neuron of each component also having a synapse with
the environment (hence able to take an input); each component can be linked
with another component through synapses among their neurons (for simplicity, we
consider only the case when at most one synapse is available in each direction).
The components take strings from the environment and the concatenation of these
strings is accepted if the computation of the system halts.

Many questions arise in this framework. Compare usual SN P systems with SN
P systems having request rules, both in the generative and the accepting mode.
Do the additional facilities provided by the request rules help, e.g., from the point
of view of the descriptional complexity? What about imposing a bound on the
environment (considering that in the beginning it only contains a given number of
spikes, and further spikes can be there only if the system sends spikes out)? More
interesting: which is the power of SN dP systems? As expected, it is larger than
that of SN P systems (with the mentioning that we compare languages accepted
by SN dP systems with languages generated by SN P systems).

In this context, we introduce a refinement in the way of defining languages
associated with (extended) SN P systems. In between the restricted (in each step,
one symbol is produced) and the non-restricted case we can consider the languages
generated/accepted in the k-restricted way: between reading or producing two
symbols which are considered in the string, the system can work at most k steps
without reading or sending symbols out.

2 Formal Language and Automata Theory Prerequisites

We assume the reader to be familiar with basic language and automata theory,
e.g., from [18] and [19], so that we introduce here only some notations and notions
used later in the paper.

For an alphabet V , V ∗ denotes the set of all finite strings of symbols from V ; the
empty string is denoted by λ, and the set of all nonempty strings over V is denoted
by V +. When V = {a} is a singleton, then we write simply a∗ and a+ instead of
{a}∗, {a}+. If x = a1a2 . . . an, ai ∈ V, 1 ≤ i ≤ n, then mi(x) = an . . . a2a1.

We denote by REG, RE the families of regular and recursively enumerable
languages. The family of Turing computable sets of numbers is denoted by NRE
(these sets are length sets of RE languages, hence the notation).

In most universality proofs in membrane computing, in particular, in the SN
P systems area, one uses register machines (several registers can contain natural
numbers; they are increased by one or decreased by one – the latter operation only
after checking whether the number stored in the register is different from zero –, by
means of labeled instructions; if the computation starting in an initial label with
all registers empty halts by reaching a special halting label, then the number stored
in the halting configuration by the first register is said to be computed/generated
by that computation.

196 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori

Because our SN P systems can read at the same time several spikes, an op-
eration which corresponds to reading a symbol from an alphabet with several
elements, we will use in the universality proof a device more adequate to this
case: counter automata with an input tape. The version we choose is one with as
simple as possible instructions: check for zero, increment, decrement (by one in
both cases), read a symbol from the input tape, halt. Formally, such a device is a
construct M = (n, V, H, l0, lh, I), where n is the number of registers/counters, V is
the alphabet of the input tape, H is the set of labels, each one uniquely associated
with an instruction, l0 is the initial label, lh is the halt label, and I is the set of
instructions of the following forms:

1. (li : check(r), lj , lk): when label li is reached, the contents of register r is
compared to zero; if the register is empty, then the next label is lj , if the
contents of the register is strictly positive, then the next label is lk;

2. (li : add(r), lj): add 1 to the contents of register r and pass from label li to
label lj ;

3. (li : sub(r), lj): subtract 1 from the contents of register r and pass from label li
to label lj (the operation is supposed to be possible, meaning that previously
the register was checked for zero by an instruction of the first type);

4. (li : read(b), lj): read the symbols b ∈ V from the tape and pass from label li
to label lj ;

5. lh : halt: when reaching lh, the computation halts; this is the only instruction
labeled by lh.

Without loss of the generality, we may assume that in all instructions the in-
volved labels are mutually different (this can be easily achieved by introducing
intermediate labels, involved in additional instructions performing “dummy” op-
erations, of the form “add 1 to register r, then subtract 1 from register r”.

We start with label l0 (by applying the instruction with label l0), with all
counters empty (storing the number 0), with the “reading head” in front of the
first symbol of the input tape, where a string is written. We proceed as specified
by the instructions, under the control of labels. The process is deterministic and
the only branching is based on the check for zero of the registers. When the label
lh (hence the instruction lh : halt) is reached, the computation stops and the
sequence of symbols read from the input tape is the string accepted by the counter
machine. The language of all such strings is denoted by L(M).

It is known that counter machines (with a small number of counters, but this is
not of interest below) with an input tape can recognize all recursively enumerable
languages. Details (variants and proofs) can be found in several places: [11], [5],
[7].

In the following sections, when comparing the power of two language generat-
ing/accepting devices the empty string λ is ignored.

Spiking Neural dP Systems 197

3 Spiking Neural P Systems with Request Rules

We directly introduce the type of SN P systems we investigate in this paper; the
reader can find details about the standard definition in [9], [14], [2], etc.

An (extended) spiking neural P system (abbreviated as SN P system) with
request rules, of degree m ≥ 1, is a construct of the form

Π = (O, σ1, . . . , σm, syn, i0),

where:

1. O = {a} is the singleton alphabet (a is called spike);
2. σ1, . . . , σm are neurons, of the form

σi = (ni, Ri), 1 ≤ i ≤ m,

where:
a) ni ≥ 0 is the initial number of spikes contained in σi;
b) Ri is a finite set of rules of the forms

(i) E/ac → ap, where E is a regular expression over a and c ≥ p ≥ 1
(spiking rules);

(ii) E/λ ← ar, where E is a regular expression over a and r ≥ 1 (request
rules);

(iii) as → λ, with s ≥ 1 (forgetting rules) such that there is no rule E/ac →
ap of type (i) or E/λ ← ar of type (ii) with as ∈ L(E);

3. syn ⊆ {1, 2, . . . , m}×{1, 2, . . . ,m} with i 6= j for each (i, j) ∈ syn, 1 ≤ i, j ≤ m
(synapses between neurons);

4. i0 ∈ {1, 2, . . . , m} indicates the output neuron (σi0) of the system.

A rule E/ac → ap is applied as follows. If the neuron σi contains k spikes,
and ak ∈ L(E), k ≥ c, then the rule can fire, and its application means consuming
(removing) c spikes (thus only k − c remain in σi) and producing p spikes, which
will exit immediately the neuron. A rule E/λ ← ar is used if the neuron contains
k spikes and ak ∈ L(E); no spike is consumed, but r spikes are added to the spikes
in σi. In turn, a rule as → λ is used if the neuron contains exactly s spikes, which
are removed (“forgotten”). A global clock is assumed, marking the time for the
whole system, hence the functioning of the system is synchronized.

If a rule E/ac → ap has E = ac, then we will write it in the simplified form
ac → ap.

The spikes emitted by a neuron σi go to all neurons σj such that (i, j) ∈ syn,
i.e., if σi has used a rule E/ac → ap, then each neuron σj receives p spikes. The
spikes produced by a rule E/λ ← ar are added to the spikes in the neuron and to
those received from other neurons, hence they are counted/used in the next step
of the computation.

If several rules can be used at the same time, then the one to be applied is
chosen non-deterministically.

198 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori

During the computation, a configuration of the system is described by the
number of spikes present in each neuron; thus, the initial configuration is described
by the numbers n1, n2, . . . , nm.

Using the rules as described above, one can define transitions among configu-
rations. Any sequence of transitions starting in the initial configuration is called a
computation. A computation halts if it reaches a configuration where no rule can
be used.

There are many possibilities to associate a result with a computation, in the
form of a number (the distance between two input spikes or two output spikes) or
of a string. Like in [3], we associate a symbol bi with a step of a computation when
i spikes exit the system, thus generating strings over an alphabet {b0, b1, . . . , bm},
for some m ≥ 1. When one neuron is distinguished as an input neuron, then the
sequence of symbols bi associated as above with the spikes taken from the environ-
ment by this input neuron also forms a string. In both cases, we can distinguish
two possibilities: to interpret b0 as a symbol or to simply ignore a step when no
spike is read or sent out. The second case provides a considerable freedom, as the
computation can proceed inside the system without influencing the result, and this
adds power to our devices.

In what follows, we also consider an intermediate case: the system can work in-
side for at most a given number of steps, k, before reading or sending out a symbol.
(Note the important detail that this is a property of the system, not a condition
about the computations: all halting computations observe the restriction to work
inside for at most k steps, this is not a way to select some computations as correct
and to discard the others. This latter possibility is worth investigating, but we do
not examine it here.) The obtained languages, in the accepting and the generating
modes, are denoted La

k(Π), Lg
k(Π), respectively, where k ∈ {0, 1, 2, . . .} ∪ {∞}.

Then, Lg
0 corresponds to the restricted case of [3] and Lg

∞ to the non-restricted
case (denoted Lλ in [3]).

The respective families of languages associated with systems with at most
m neurons are denoted by Lα

k SNPm, where α ∈ {g, a} and k is as above; if k
is arbitrary, but not ∞, then we replace it with ∗; if m is arbitrary, then we
replace it with ∗. (Note that we do not take here into account the descriptional
complexity parameters usually considered in this framework: number of rules per
neuron, numbers of spikes consumed or forgotten, etc.)

By the definitions, we have the following inclusions for all β ∈ {1, 2, . . .}∪ {∗}:

Lα
0 SNPβ ⊆ Lα

1 SNPβ ⊆ Lα
2 SNPβ ⊆ . . . Lα

∗SNPβ ⊆ Lα
∞SNPβ ⊆ RE.

4 Some Preliminary Results for the Generating Case

In general, the results which were obtained for SN P systems without request
rules are expected to hold – maybe with simplified proofs – also for SN P systems
with request rules. However, some differences exist. For instance, it is observed in

Spiking Neural dP Systems 199

[2] that the language {0, 1} cannot be generated by an SN P system (the output
neuron cannot choose between spiking or not spiking in the first step), but this
language can be generated by the system

({a}, (1, {a → a, a/λ ← a}), ∅, 1),

because of the possibility of choosing between spiking or bringing a spike inside
(the system halts after the first step). However, this is mainly due to the definition
– allowing a nondeterministic choice between spiking and forgetting rules will lead
to a similar result also for SN P systems without request rules.

Returning to the extension of results to the new class of SN P systems, we
consider here three results from [3], as they are significant below.

Lemma 1. The number of configurations reachable after n steps by an extended
SN P system with request rules of degree m is bounded by a polynomial g(n) of
degree m.

Proof. The same as in [3], with the observation that the number of spikes in the
system is increased in two cases: when a neuron spikes, hence it introduces a well
defined number of spikes in all neurons with which it has synapses, or when it
brings spikes from the environment; in this case, the spikes, again a well defined
number, are introduced in the neuron which has used the request rule. The rest of
the argument remains the same as in [3]. ut
Theorem 1. If f : V + −→ V + is an injective function, card(V) ≥ 2, then there
is no extended SN P system Π with request rules such that Lf (V) = {x f(x) | x ∈
V +} = Lg

∗(Π).

Proof. Assume that there is an extended SN P system Π of degree m, with re-
quest rules, such that Lg

k(Π) = Lf (V) for some f and V as in the statement of
the theorem and some k ≥ 1. According to the previous lemma, there are only
polynomially many configurations of Π which can be reached after n steps. Take
some n of the form n = km. The string generated after n steps is of length at
least m. However, there are card(V)m ≥ 2m = 2n/k strings of length m in V +.
Therefore, for large enough m there are two strings w1, w2 ∈ V +, w1 6= w2, such
that after n steps the system Π reaches the same configuration when generating
the strings w1 f(w1) and w2 f(w2), hence after step n the system can continue any
of the two computations. This means that also the strings w1 f(w2) and w2 f(w1)
are in Lg

k(Π). Due to the injectivity of f and the definition of Lf (V) such strings
are not in Lf (V), hence the equality Lf (V) = Lg

k(Π) is contradictory. ut
Corollary 1. The following two languages are not in Lg

∗SNP∗ (in all cases,
card(V) = k ≥ 2):

L1 = {xmi(x) | x ∈ V +},
L2 = {xx | x ∈ V +}.

200 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori

Note that language L1 above is a non-regular minimal linear one and L2 is
context-sensitive non-context-free.

Theorems 3 and 4 from [3] (characterizing regular languages, modulo a symbol
added to their strings), and Theorem 5 (generating non-semilinear languages),
always in the restricted mode, can now be written in the form:

Theorem 2. Lg
∞SNP2 ⊆ REG ⊂ Lg

1SNP3.

5 The Accepting Case

In order to have a definition of the language accepted by a given SN P system
with request rules, we have to distinguish a neuron as the input one, and only the
sequence of symbols taken from the environment by that neuron is introduced in
the language. The other neurons are allowed to bring spikes from the environment,
but those spikes are not defining symbols for the processed string.

First, let us notice that Lemma 1 and Theorem 1 remains true also in the
accepting case, hence the languages in Corollary 1 cannot be recognized.

Also the characterization of RE from [3] remains true. However, this proof is
rather complex: one takes symbols from the environment, in the form of packages of
spikes, but for a string w over an alphabet with k symbols, one passes to valk+1(w),
the numerical value of w when considered as a number written in base k + 1, and
one accepts w if and only if valk+1(w) is accepted (a language L is in RE if and
only if valk+1(L) is in NRE). Then, handling numbers is reduced to simulating
register machines (basically, counter machines without an input tape). Here we
will proceed in a direct way, proving that SN P systems with request rules can
recognize all RE languages by starting from counter automata with input tape.

Theorem 3. La
∞SNP∗ = RE.

Proof. Let us consider a counter automaton M = (n, V, H, lo, lh, I) as introduced
in Section 2, with V = {b1, . . . , bk}. We construct modules simulating instruction
of the first four types mentioned in Section 2 – no halting module is necessary,
we just ignore the halting instruction. Let us denote by Π the SN P system we
construct.

For each counter r of M , Π contains a neuron σr, 1 ≤ r ≤ n; if the value of the
counter will be at some moment m, then the associated neuron will contain 2m
spikes. For each label l ∈ H, we also introduce in Π a neuron σl. All neurons of the
system are empty in the beginning of the computation, except neuron σl0 , which
contains one spike. Having a spike inside, this neuron is active; in general, when a
neuron σl, l ∈ H, receives one spike, then it is active, the associated module will
start working, simulating the instruction identified by the label l. There is a unique
input neuron, with the label in, and σin is the only neuron of Π which contains
request rules. Several other auxiliary neurons are involved in the modules. They
and the synapses among all these neurons are specified below.

Spiking Neural dP Systems 201

We do not give formally the modules, but in a graphical form.

Let us start with a CHECK instruction, (li : check(r), lj , lk). We construct the
module shown in Figure 1.

¶

µ

³

´

¶

µ

³

´

'

&

$

%

'

&

$

%

¶

µ

³

´

¶

µ

³

´

¶

µ

³

´

¶

µ

³

´

¶

µ

³

´

¶

µ

³

´

'

&

$

%

º

¹

·

¸
¡

¡
¡ª

HHHHj

¶
¶¶/

J
JĴ

@
@

@
@R ?

­
­­À

¶
¶

¶
¶¶/

@
@

@
@R

HHHHHHHHHHj
C
C
CCO

¡
¡

¡¡µ

6
Q

Q
QQk

? ?

li
a → a

a1

a → a
r

a(aa)+/a3 → a

a → λ

a2

a → a

a3

a → a

a4

a → a

a5

a → a

a6

a → a

a7

a → λ

a2 → a

a3 → λ
a8

a → λ

a2 → a

lj lk

Fig. 1. The CHECK module

As long as the contents of a neuron σr is an even number, no rule can be
applied in it. If σli becomes active, it sends a spike to σr, hence the number of
spikes becomes odd. If this number is 1, hence the counter was empty, then a
spike will eventually arrive in σlj . If the counter was non-zero, then only σa8 will
spike. In this way, it activates the neuron σlk and also restores the contents of
counter r, putting back the two spikes consumed by the rule a(aa)+/a3 → a. The
continuation is correct in both cases.

The new neurons, σas , 1 ≤ s ≤ 8, are uniquely associated with this module (it
would be more rigorous to label them, say, by (li, s), 1 ≤ s ≤ 8, but we prefer the
simple writing). All the three label neurons in Figure 1 can have incoming synapses
from various other neurons, but each such neuron has only one associated module
which is triggered by it. These remarks are valid for all modules constructed below.

Because several CHECK instructions (also several SUB instructions – see be-
low) can act on the same counter r, it means that σr can have synapses to several

202 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori

neurons of type σa4 , in various modules. However, this entails nothing wrong,
because the spike produced by σa4 will be erased in both neurons σa7 , σa8 .

The modules for the ADD and SUB instructions are rather simple – they are
given in Figure 2 (for (li : add(r), lj)) and Figure 3 (for (li : sub(r), lj); remember
that, before activating a SUB instruction, we assume that we have checked whether
the operation can be done, that is, whether the counter is non-zero, hence we can
assume that always the operation asked for by the instruction (li : sub(r), lj) is
possible).

¶

µ

³

´

'

&

$

%

¶

µ

³

´

¶

µ

³

´

¶

µ

³

´
¢

¢¢®
J

JĴ

?
Q

QQs
¢

¢
¢

¢®

li
a → a

a1

a → a
a2

a → a

rlj

Fig. 2. The ADD module

In the SUB case, we have reproduced both rules of σr used in the CHECK
module, as the first one is also used in the SUB case (but the produced spike is
“lost”, as explained before when discussing the CHECK module); the second rule,
a → λ, cannot be used, as we know in advance that the substraction is possible,
hence the neuron is not empty.

º

¹

·

¸

'

&

$

%

¶

µ

³

´
£

£
£

££°

@
@R

li

a → a

lj r

a(aa)+/a3 → a

a → λ

Fig. 3. The SUB module

Spiking Neural dP Systems 203

Only the READ instructions (li : read(bs), lj), 1 ≤ s ≤ k, remains to be
considered. For such an instruction, we build a module like in Figure 4. Note that
the module contains several neurons, depending on s, and that the input neuron,
labeled with in, is unique for the whole system.

'

&

$

%

¶

µ

³

´

¶

µ

³

´

¶

µ

³

´

¶

µ

³

´

¶

µ

³

´

¶

µ

³

´

¶

µ

³

´©©©©©©©¼

¢
¢

¢¢®

J
J

JĴ

HHHHHHHj

? ?
S

S
S

S
S

S
SSw ?

¡
¡

¡ª

³³³³³³³³³)

li
a → a

a1

a → a . . .

as

a → a

c1

a → a . . .

c2k+1−2s

a → a

d1

a → a . . .

d2k+1−2s

a → a

in

as/λ ← as,

1 ≤ s ≤ k

a2k+1 → λ

º

¹

·

¸

?

lj

Fig. 4. The READ module

After activating σli , s spikes reach σin, and in this way the input neuron can
take from the environment the correct number of spikes (reading in this way the
symbol bs). Because the input neuron can be used in any further step, it should be
left empty after simulating the instruction (li : read(bs), lj), and to this aim the
use of the forgetting rule a2k+1 → λ is made possible, after receiving from neurons
σdt , 1 ≤ t ≤ 2k+1−2s, the corresponding number of spikes. One of these neurons,
the last one, also sends a spike to σlj , in order to continue the computation as
requested by the READ instruction.

By repeatedly using these modules, the computation in M is correctly simu-
lated; as pointed out above, there is no misleading interaction between modules.
When the label lh is reached in M , the unique neuron associated with a label
which has a spike inside is σlh , where we provide no rule, hence the computation
halts also in Π. Consequently, the recognized string is the same, L(M) = La

∞(Π),
and this completes the proof. ut

Note the interesting fact that in the previous construction we only use non-
extended spiking rules, always producing only one spike. If we allow the use of

204 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori

extended rules, then some of the constructions can be slightly simplified (this is
the case, for instance, with the modules CHECK).

6 SN dP Systems

We pass now to the main goal of our paper, introducing the SN P systems counter-
part of dP systems from [13]. We directly introduce the definition of the systems
we investigate.

An SN dP system is a construct

∆ = (O,Π1, . . . , Πn, esyn),

where (1) O = {a} (as usual, a represents the spike), (2) Πi =
(O, σi,1, . . . , σi,ki , syn, ini) is an SN P system with request rules present only in
neuron σini

(σi,j = (ni,j , Ri,j), where ni,j is the number of spikes initially present
in the neuron and Ri,j is the finite set of rules of the neuron, 1 ≤ j ≤ ki), and (3)
esyn is a set of external synapses, namely between neurons from different systems
Πi, with the restriction that between two systems Πi,Πj there exist at most one
link from a neuron of Πi to a neuron of Πj and at most one link from a neuron
of Πj to a neuron of Πi. We stress the fact that we allow request rules only in
neurons σini of each system Πi – although this restriction can be removed; the
study of this extension remains as a task for the reader. The systems Πi, 1 ≤ i ≤ n,
are called components (or modules) of the system ∆.

As usual in dP automata, each component can take an input (by using request
rules), work on it by using the spiking and forgetting rules in the neurons, and
communicate with other components (along the synapses in esyn); the commu-
nication is done as usual inside the components: when a spiking rule produces
a number of spikes, they are sent simultaneously to all neurons, inside the com-
ponent or outside it, in other components, provided that a synapse (internal or
external) exists to the destination.

As above, when r spikes are taken from the environment, a symbol br is as-
sociated with that step, hence the strings we consider introduced in the system
are over an alphabet V = {b0, b1, . . . , bk}, with k being the maximum number of
spikes introduced in a component by a request rule.

A halting computation with respect to ∆ accepts the string x = x1x2 . . . xn

over V if the components Π1, . . . , Πn, starting from their initial configurations,
working in the synchronous (in each time unit, each neuron which can use a rule
should use one) non-deterministic way, bring from the environment the substrings
x1, . . . , xn, respectively, and eventually halts.

Hence, the SN dP systems are synchronized, a universal clock exists for all
components and neurons, marking the time in the same way for the whole system.

In what follows, like in the communication complexity area, see, e.g., [8], we ask
the components to take equal parts of the input string, modulo one symbol. (One

Spiking Neural dP Systems 205

also says that the string is distributed in a balanced way. The study of the unbal-
anced (free) case remains as a research issue.) Specifically, for an SN dP system ∆
of degree n we define the language L(∆), of all strings x ∈ V ∗ such that we can
write x = x1x2 . . . xn, with ||xi|− |xj || ≤ 1 for all 1 ≤ i, j ≤ n, each component Πi

of ∆ takes as input the string xi, 1 ≤ i ≤ n, and the computation halts. Moreover,
we can distinguish between considering b0 as a symbol or not, like in the previous
sections, thus obtaining the languages Lα(∆), with α ∈ {0, 1, 2, . . .} ∪ {∞, ∗}.

Let us denote by LαSNdPn the family of languages Lα(∆), for ∆ of degree at
most n and α ∈ {0, 1, 2, . . .} ∪ {∞, ∗}. An SN dP system of degree 1 is a usual SN
P system with request rules working in the accepting mode (with only one input
neuron), as considered in Section 5. Thus, the universality of SN dP systems is
ensured, for the case of languages L∞(∆).

In what follows, we prove the usefulness of distribution, in the form of SN dP
systems, by proving that one of the languages in Corollary 1, can be recognized
by a simple SN dP system (with two components), even working in the Lk mode.

Proposition 1. {ww | w ∈ {b1, b2, . . . , bk}∗} ∈ Lk+2SNdP2.

Proof. The SN dP system which recognizes the language in the proposition is the
following:

∆ = ({a},Π1,Π2, {((2, 1), (1, 3)), ((1, 5), (2, 1))}), with the components
Π1 = ({a}, σ(1,1), . . . , σ(1,7), syn1, (1, 1)),

σ(1,1) = (3, {a3/λ ← ar | 1 ≤ r ≤ k} ∪ {a4a+/a → a, a4 → a3}),
σ(1,2) = (0, {a → a, a3 → a3}),
σ(1,3) = (0, {a → a, a3 → a3}),
σ(1,4) = (0, {a2 → λ, a6 → λ, a → a, a4 → a}),
σ(1,5) = (0, {a2 → λ, a6 → a, a6 → a3}),
σ(1,6) = (0, {a+/a → a}),
σ(1,7) = (0, {a+/a → a}),
syn1 = {((1, 1), (1, 2)), ((1, 5), (1, 1)), ((1, 2), (1, 4)), ((1, 4), (1, 6)),

((1, 4), (1, 7)), ((1, 6), (1, 7)), ((1, 7), (1, 6)), ((1, 2), (1, 5)),
((1, 3), (1, 4)), ((1, 3), (1, 5))},

Π2 = ({a}, σ(2,1), ∅, (2, 1)),

σ(2,1) = (3, {a3/λ ← ar | 1 ≤ r ≤ k} ∪ {a4a+/a → a, a4 → a3}).
For an easier reference, the system is also presented graphically, in Figure 5.
Assume that we are in a configuration where both neurons σ(1,1) and σ(2,1)

contain three spikes, as in the beginning of the computation. Each neuron can
bring spikes inside, by using the rules a3/λ ← ar; if they bring the same number
of spikes, then the system will return to a configuration as the one we started with,
hence the computation can continue, otherwise the system will never halt.

206 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori

¶

µ

³

´

¶

µ

³

´

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

?

?

A
A
AU

@
@

@
@

@R
A

A
A

A
A

A
A

A
A

AK

?

¶
¶

¶
¶

¶¶/

¡
¡ª

@
@R-

¾

?

¾

-

Π1

(1,1)

a3

a3/λ ← ar, 1 ≤ r ≤ k

a4a+/a → a

a4 → a3

(1,2)

a → a

a3 → a3

(1,3)

a → a

a3 → a3

(1,5)

a2 → λ

a6 → a3

a6 → a

(1,4)

a2 → λ

a6 → λ

a4 → a

(1,6)

a+/a → a

(1,7)

a+/a → a

Π2

(2,1)

a3

a3/λ ← ar,

1 ≤ r ≤ k

a4a+/a → a

a4 → a3

Fig. 5. The SN dP system from the proof of Proposition 1

For instance, assume that σ(1,1) brings inside r1 spikes and σ(2,1) brings r2

spikes. These spikes are moved one by one (at most k steps in total, where k is
the cardinality of the alphabet) to neurons σ(1,2) and σ(1,3), respectively, by using
the rules a4a+/a → a, and from here, duplicated, in neurons σ(1,4), σ(1,5), where
they are removed by the forgetting rules a2 → λ. If r1 = r2, then the neurons
σ(1,1), σ(2,1) use at the same time the rules a4 → a3, and after one further step six
spikes reach both σ(1,4) and σ(1,5); in the former neuron the spikes are forgotten, in
the latter one can use the rule a6 → a3, which will send three spikes to σ(1,1), σ(2,1).
The process can continue, one reads one further symbol of the string. If r1 6= r2,
then one of σ(1,1), σ(2,1) produces one spike and the other three, hence four spikes
arrive in neuron σ(1,4); this neuron sends a spike to σ(1,6) and σ(1,7), and these
neurons will exchange forever spikes, hence the computation never halts.

Spiking Neural dP Systems 207

If, instead of the rule a6 → a3, neuron σ(1,5) uses the rule a6 → a, then the
computation stops, because the input neurons cannot fire having inside only one
spike. This is the only way to stop the computation, hence the strings read by the
two components are equal.

Note that after introducing some r spikes in each component of the system, we
need r− 1 steps for using the rules a4a+/a → a, one step for the rule a4 → a3 (at
most k steps in total), then two more steps for sending three spikes (one in the end)
to neurons σ(1,1) and σ(2,1). Therefore, {ww | w ∈ {b1, b2, . . . , bk}∗} ∈ Lk+2SNdP2,
and the proposition is proved. ut

7 Final Remarks

Many problems can be formulated for SN P systems with request rules and for SN
dP systems. Several were already mentioned in the previous sections. Let us close
by recalling the fact that besides the synchronized (sequential in each neuron)
mode of evolution, there were also introduced other modes, such as the exhaustive
one, [10], and the non-synchronized one, [1]. Universality was proved for these
types of SN P systems, but only for the extended case. Can universality be proved
for non-extended SN P systems also using request rules?

Acknowledgements

The work of M. Ionescu was possible due to CNCSIS grant RP-4 12/01.07.2009.
The work of Gh. Păun was supported by Proyecto de Excelencia con Investigador
de Reconocida Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. M. Cavaliere, E. Egecioglu, O.H. Ibarra, M. Ionescu, Gh. Păun, S. Woodworth: Asyn-
chronous spiking neural P systems. Theoretical Computer Science, 410, 24-25 (2009),
2352–2364.

2. H. Chen, R. Freund, M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez: On string languages
generated by spiking neural P systems. Fundamenta Informaticae, 75, 1-4 (2007),
141–162.

3. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Spiking neural P systems
with extended rules. In Proc. Fourth Brainstorming Week on Membrane Computing,
Sevilla, 2006, RGNC Report 02/2006, 241–265.

4. H. Chen, T.-O. Ishdorj, Gh. Păun, M.J. Pérez-Jiménez: Handling languages with
spiking neural P systems with extended rules. Romanian J. Information Sci. and
Technology, 9, 3 (2006), 151–162.

5. P.C. Fischer: Turing machines with restricted memory access. Information and Con-
trol, 9 (1966), 364–379.

208 M. Ionescu, Gh. Păun, M.J. Pérez-Jiménez, T. Yokomori

6. R. Freund, M. Kogler, Gh. Păun, M.J. Pérez-Jiménez: On the power of P and dP au-
tomata. Annals of Bucharest University. Mathematics-Informatics Series, 63 (2009),
5–22.

7. J.E. Hopcroft, J.D. Ullman. Introduction to Automata Theory, Languages and Com-
putation. Addison-Wesley, Reading, Mass., 1979.

8. J. Hromkovic: Communication Complexity and Parallel Computing: The Application
of Communication Complexity in Parallel Computing. Springer, Berlin, 1997.

9. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308.

10. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems with exhaustive use
of rules. Intern. J. Unconventional Computing, 3, 2 (2007), 135–154.

11. M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood
Cliffs, NJ, 1967.

12. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
13. Gh. Păun, M.J. Pérez-Jiménez: Solving problems in a distributed way in membrane

computing: dP systems. Int. J. of Computers, Communication and Control, 5, 2
(2010), 238–252.

14. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P sys-
tems. Intern. J. Found. Computer Sci., 17, 4 (2006), 975–1002.

15. Gh. Păun, M.J. Pérez-Jiménez: P and dP automata: A survey. Lecture Notes in
Computer Science, 6570, in press.

16. Gh. Păun, M.J. Pérez-Jiménez: An infinite hierarchy of languages defined by dP
systems. Theoretical Computer Sci., in press.

17. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-
ford University Press, 2010.

18. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes, Springer,
Berlin, 1998.

19. A. Salomaa: Formal Languages. Academic Press, New York, 1973.
20. The P Systems Website: http://ppage.psystems.eu.

Modeling, Verification and Testing of P Systems
Using Rodin and ProB

Florentin Ipate, Adrian Ţurcanu

Department of Computer Science, University of Pitesti, Romania

Summary. In this paper we present an approach to modelling, verification and testing
for cell-like P-systems based on Event-B and the Rodin platform. We present a general
framework for modelling P systems using Event-B, which we then use to implement two
P-system models in the Rodin platform. For each of the two models, we use the associated
Pro-B model checker to verify properties and we present some of the results obtained.

1 Introduction

Membrane computing, the field initiated by Gheorghe Păun [14], studies comput-
ing devices, called P systems, inspired by the functioning and structure of the
living cell.

In the last years, the research on various programming approaches related to
P systems ([6], [16]) and formal semantics ([4], [2], [7]), or with respect to decid-
ability of some model checking properties [5], has created the need for methods
for formally verifying and testing such systems.

Formal verification has been studied for different variants of P systems by using
rewriting logic and the Maude tool [2] or, for stochastic systems [3], PRISM and
associated probabilistic temporal logic [10]. More recently, NuSMV [9] and Spin
[13] have been used to verify various properties of transition P systems. Various
approaches to building test cases for such P systems have also been proposed [8],
[11], [12].

Event-B is a formal modeling language introduced about 10 years ago by J.R.
Abrial [1], used for developing mathematical models of complex systems which
behave in a discrete fashion. Event-B is an evolution of the B language, one of the
most used modeling language in industry since its introduction in the 90s. The
efforts for developing Event-B have been supported by two European research
projects: RODIN1, which produced a first platform for Event-B called Rodin, and
DEPLOY2, which is currently enhancing this platform based on feedback from
1 http://rodin.cs.ncl.ac.uk - Project running between 2004-2007
2 http://deploy-project.eu - Project running between 2008-2012

210 F. Ipate, A. Ţurcanu

its industrial partners (Bosch, SAP, Siemens and Space Systems Finland), which
experiment with the latest development of the platform.

The core technology behind Rodin platform is theorem-proving, but also model-
checking (ProB) or animation tools (Anim-B) have been integrated as plug-ins.

In this paper we propose a new approach for verifying and testing transition P
systems, based on Event-B and its associated model-checker, ProB. Given the in-
dustrial support for Event-B and the strength of the Rodin platform, this approach
will have an important impact on the practical use of P systems.

The paper is structured as follows. The next section presents general notions
about P systems, the Event-B language, the Rodin platform and the model checker
Pro-B. In Section 3 we present a general framework for modeling P systems using
Event-B. This is then used to implement two P-system models in the Rodin plat-
form: a simple example in Section 4 and a tritrophic ecosystem in Section 5. For
each of the two models, we use the associated Pro-B model checker to verify prop-
erties and we present the results obtained. Finally, some conclusions and future
work are given in Section 6.

2 Background

2.1 P systems

A basic cell-like P system is defined as a hierarchical arrangement of membranes
identifying corresponding regions of the system. With each region there are asso-
ciated a finite multiset of objects and a finite set of rules; both may be empty. A
multiset is either denoted by a string u ∈ V ∗, where the order is not considered, or
by ΨV (u). The following definition refers to one of the many variants of P systems,
namely cell-like P systems, which use transformation and communication rules
[15]. We will call these processing rules. From now onwards we will refer to this
model as simply a P system.

Definition. A P system is a tuple Π = (V, µ, w1, ..., wn, R1, ..., Rn), where V is a
finite set, called alphabet ; µ defines the membrane structure, which is a hierarchical
arrangement of n compartments called regions delimited by membranes - these
membranes and regions are identified by integers 1 to n; wi, 1 ≤ i ≤ n, represents
the initial multiset occurring in region i; Ri, 1 ≤ i ≤ n, denotes the set of processing
rules applied in region i.

The membrane structure, µ, is denoted by a string of left and right brackets
([, and]), each with the label of the membrane it points to; µ also describes the
position of each membrane in the hierarchy.

The rules in each region have the form u → (a1, t1)...(am, tm), where u is a
multiset of symbols from V , ai ∈ V , ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a
rule is applied to a multiset u in the current region, u is replaced by the symbols ai

with ti = here; symbols ai with ti = out are sent to the outer region or outside the
system when the current region is the external compartment and symbols ai with
ti = in are sent into one of the regions contained in the current one, arbitrarily

Modeling, Verification and Testing of P Systems Using Rodin and ProB 211

chosen. In the following definitions and examples all the symbols (ai, here) are
used as ai. The rules are applied in maximally parallel mode which means that
they are used in all the regions at the same time and in each region all the objects
to which a rule can be applied must be the subject of a rule application [14].

Electrical charges from the set {+,−, 0} can be also associated with mem-
branes, obtaining P systems with polarizations. In this case, with the same nota-
tions from the above definition, we can have many types of rules:

• evolution rules, associated with membranes and depending on the label and
the charge of the membranes:
[u → v]pi , p ∈ {+,−, 0}, u ∈ V, v ∈ V ∗;

• communication rules, sending an object into a membrane and possibly changing
its polarization:
u[]pi → [v]fp

i , p, fp ∈ {+,−, 0}, u, v ∈ V ;
• communication rules, sending an object out of a membrane and possibly chang-

ing the polarization of the membrane:
[u]pi → []fp

i v, p, fp ∈ {+,−, 0}, u ∈ V , v ∈ V ∪ {λ}
A configuration of the P system Π, is a tuple c = (u1, ..., un), where ui ∈ V ∗, is

the multiset associated with region i, 1 ≤ i ≤ n. A derivation of a configuration c1

to c2 using the maximal parallelism mode is denoted by c1 =⇒ c2. Within the set
of all configurations we will distinguish terminal configurations: c = (u1, ..., un) is
a terminal configuration if there is no region i such that ui can be further derived.

2.2 Event-B and Rodin

Event-B is based on set theory as its mathematical foundation. The Event-B mod-
els are abstract state machines in which transitions between states are implemented
as events.

An Event-B model is made of several components. Each component can be
either a machine or a context. Contexts contain the static structure of the system:
sets, constants and axioms. Axioms define the main properties of sets and con-
stants. On the other hand, machines contain the dynamic structure of the system:
variables, invariants, and events. Invariants state the properties of variables and
events defines the dynamic of the transition system.

An event is a state transition with the following simplified structure:

Event eventName
refines <list of refined events (if any) >

when
grd1 :

...
grdn :

then

212 F. Ipate, A. Ţurcanu

act1 :
...

actn :
end

Guards (grd1, . . . , grdn) are necessary conditions for an event to be enabled.
They are theorems derivable from invariants, axioms and previously declared
guards. An event may have no guards; in this case it is permanently enabled.

Actions (act1, . . . , actn) describe how the occurrence of an event will modify
some of the variables of the machine. All actions of an event are performed at the
same time. An action might be either deterministic (using the normal assignment
operator :=) or non-deterministic. Non-deterministic actions use the :∈ operator;
they have the form x :∈ { set of possible values }, in which case an arbitrarily
chosen value from the set of possible values is assigned to the variable x.

A very important Event-B concept is refinement, which allows a model to be
developed gradually. When the model is finished, a Rodin Platform tool, called
Proof Obligation Generator, decides what is to be proved in order to ensure the
correctness of the model (e.g. invariant preservation, consistency between original
and refined models). Therefore, the proving mechanism provides the guarantee of
a formally correct model before the model checker is actually used. This is a big
strength of the Rodin platform

2.3 ProB - more than just another model checker

ProB is an animation and model checking tool which accepts B-models, but is also
integrated within the Rodin platform. Unlike, most model checking tools, ProB
works on higher-level formalisms and so it enables a more convenient modeling.

Properties of an Event-B model can be verified using either the ProB version
within the Rodin platform or the standalone version, which offers a greater range
of facilities, such as computation of operation coverage or the possibility to find
states satisfying a predicate or enabling an operation. When the standalone version
is used, the model can be automatically translated in the B language and imported
into ProB.

ProB supports automated consistency checking, which can be used to detect
various errors in B specifications. The animation facilities allow: to visualize, at
any moment, the state space, to execute a given number of operations, to see the
shortest trace to current state. Properties that are intended to be verified can be
formulated using the LTL or the CTL formalism.

3 The Event-B model of a P system

In this section we present the main ideas about how to build the Event-B model
of a P system.

Modeling, Verification and Testing of P Systems Using Rodin and ProB 213

For each object x that appears on the left side of a rule, we introduce a variable
xc, representing the number of objects of that type that can be consumed. When
the rule is applied, this variable is decreased accordingly. For each object x that
appears on the right side of a rule, we introduce a variable xp representing the
number of produced objects of that type. When the rule is applied, the variable is
incremented. Furthermore, in multi-membrane systems, variables are indexed by
membrane numbers.

For each rule we introduce an event. The event is enabled if the rule can be
applied and its application modify the state of the system accordingly. A special
event, called actualization, that is enabled after each step of maximal parallelism,
is also needed in order to update the variables before the next computation step.

The initial model can then be refined by adding details about the state of the
computation. At the beginning of every step of maximal parallelism, the system
is considered to be in state Running. Another state, Other, is considered as an
intermediate state between two such steps. A halting configuration is marked by a
transition from state Running to another state, Halt. Finally, in order to keep the
number of configurations under control, we can assume that each component of a
configuration cannot exceed an established upper bound (denoted MAX) and also
that each rule can only be applied for at most a given number of times (denoted
SUP). When either of these conditions is violated, we consider that the system
performs a transition from Running to a fourth state Crash. All these states are
implemented using a variable, called state, with four possible values: Running,
Other, Halt and Crash. Obviously, all the events in the original model have to
be refined - these now become transitions between states Running, and Other.
Furthermore, new events have to be introduced for transitions from Running to
Halt, Running to Crash, Halt to Halt and Crash to Crash. Obviously, the
state variable and the extra transitions could have been introduced directly in the
original model. However, the use of refinement allows a gradual, more manageable
and natural, construction of the model.

4 A simple example

We consider as first example a P system with one membrane and four rules: Π1 =
{V = {s, a, b, c}, []1, w1 = s,R = {r1 : s → ab, r2 : a → c, r3 : b → bc, r4 : b → c}}.

We build the corresponding Event-B model in two steps: first, we are interested
only of its evolution, then we refine it by introducing the variable state presented
before.

The first model is just a machine with six variables, all natural numbers
(sc, ac, ap, bc, bp, cp) and six events: the initialization event, four events (each of
them corresponding to a rule) and the actualization event.

For example, the event corresponding to the first rule and the actualization
event are as follows:

Event rule1

214 F. Ipate, A. Ţurcanu

when
grd1 : sc > 0

then
act1 : sc := sc − 1
act2 : ap := ap + 1
act3 : bp := bp + 1

end

and respectively,

Event actualization

when
grd1 : sc + ac + bc = 0
grd2 : ap + bp + cp > 0

then
act1 : ac := ap
act2 : bc := bp
act3 : ap := 0
act4 : bp := 0

end

For this model, 20 proof obligations are generated and automatically checked.
Using the associated model checker ProB, we verify our formally correct model
and we discover that, the sequence of events rule1, rule2, rule4 leads to the per-
manent enabling of the actualization event. In order to fix this problem, we refine
our model by introducing the variable state. Obviously, all events in the original
model need to be refined. For example, the refinement of the event rule1 is as
follows:

Event rule1
refines rule1

when
grd1 : n1 < SUP
grd2 : sc > 0
grd3 : ac + ap < MAX
grd4 : bc + bp < MAX

then
act1 : n1 := n1 + 1
act2 : sc := sc − 1
act3 : ap := ap + 1
act4 : bp := bp + 1
act5 : state := Other

end

We also introduce new events, corresponding to the transitions between the
states of the computation, such as:

Event RunToCrash

Modeling, Verification and Testing of P Systems Using Rodin and ProB 215

when
grd1 : state = Running
grd2 : (s > 0 ∧ n1 = SUP) ∨ (ac > 0 ∧ n2 = SUP) ∨ (bc > 0 ∧ (n3 =

SUP ∨ n4 = SUP)) ∨ (ac = MAX) ∨ (bc = MAX) ∨ (cp = MAX)
then

act1 : state := Crash
end

and

Event RunToHalt

when
grd1 : state = Running
grd2 : sc + ac + bc = 0

then
act1 : state := Halt

end

In this case, there are 60 proof obligations generated, all automatically proven.
Using the model checking facilities available in the Rodin platform, we verify the
consistency of our model and we find no deadlocks or invariant violation.

Once a formally proven model of the P system is in place, we can use the
formalism to verify its properties or to generate tests for certain coverage criteria
[12]. The underlying idea of testing using model checkers is to formulate the cover-
age criterion as a temporal logic formula, negate it and interpret counterexamples
(returned by ProB) as test cases. For example, a counterexample for the (negated)
LTL formula G{not(n4 > 0) or state = Other} is a test case which covers rule4.

Some examples of properties, their truth values and counterexample returned
(for false properties) are given in Table 1.

Note that, in this table, the symbol “/ =” means “ 6=” and the values for the
two constants MAX and SUP were both considered to be 10.

5 Modeling an Ecosystem

We consider now a more complex example: a P system Π2 with two membranes
and electrical charges, which models a tritrophic ecosystem. Its alphabet is V =
{C, H,P, b, cycle1, cycle2, cycle3, cycle4, g, s}, where C stands for carnivores, H for
herbivores, P for plants, b for bones, g for garbage and s for volatile substances
that attracts carnivores. The initial multiset is P 100 in the first membrane and
H300, C10 and cycle1 in the second one.

The ecosystem evolves in four cycles:

• Cycle1: Reproduction of plants
– rule14: P 2[]2 → [P 3] some plants reproduce
– rule15: P 2[]2 → [P 2] other plants do not reproduce

216 F. Ipate, A. Ţurcanu

LTL Property Truth Value

G{ac ∈ {0, 1} or state = Other} True

F{cp > 2 & state/ = Other} False
rule1 rule2 rule4 RunToHalt

{cp = 0 or state = Other} True
U {cp = 2 & state/ = Other}

G{(state = Running ⇒ cp <= MAX) True
or (state = Other)}

G{not(n4 > 0) or state = Other} False
rule1 rule2 (rule3)8 rule4

F{state = Halt} False
rule1 rule2 (rule3)9 RunToCrash

G{((n2 > 0 & n3 > 0) => cp >= bc) True
or (state = Other)}

Table 1. Properties checked for Π1

– rule7: [cycle1 → cycle2]2 transition to cycle2
• Cycle2: Herbivores alimentation

– rule8: [HP]2 → +[H2s]g some herbivores feed themselves and produce
other herbivores, a volatile substance that attract carnivore and some
garbage

– rule9: [HP]2 → +[HP]g other herbivores do not feed
– rule10: [cycle2]2 → +[cycle3]g transition to cycle3

• Cycle3: Carnivores alimentation
– rule11: +[CHs]2 → −[C2]g some carnivores feed themselves and produce

other carnivores and some garbage
– rule12: +[CHs]2 → −[CHs]g other carnivores do not feed
– rule13: +[cycle3]2 → [cycle4]g transition to cycle4

• Cycle4: Mortality and reinitialization
– rule1: −[P]2 → []P all the plants survive to the next cycle
– rule2: −[H]2 → [b]g some herbivores die
– rule3: −[H]2 → [H]g others survive to the next cycle
– rule4: −[C]2 → [b]g some carnivores die
– rule5: −[C]2 → [C]g others survive to the next cycle
– rule6: −[cycle4]2 → [cycle1]g reinitialization
– rule16: [g → λ]1 elimination of garbage

For clarity of presentation, in this case we build the model in one step, intro-
ducing from the beginning the variable state, but without the “crash” situation.
When a P system uses electrical charges, at each step of maximal parallelism, only
rules that have the same initial and final polarization can be applied. In order
to implement this requirement, we use two variables polarization2 and fp2 for
the initial, and, respectively, for the final polarization of the second membrane.
Besides the usual polarization values (plus, minus and zero), we introduce an in-

Modeling, Verification and Testing of P Systems Using Rodin and ProB 217

termediate value, all, that we use as an initial value for fp2. In the actualization
event, fp2 is reset to the value all and polarization2 receives the value of fp2.

As an example, the event corresponding to rule 1 is presented below.

Event rule1

when
grd1 : p2c ≥ 1
grd2 : polarization2 = minus
grd3 : fp2 = all ∨ fp2 = zero

then
act1 : p2c := p2c − 1
act2 : p1p := p1p + 1
act3 : n1 := n1 + 1
act4 : fp2 := zero
act5 : state := Other

end

The model checker ProB can then be used to verify ecosystem properties.
Table 2 summarizes some of these properties, along with the result produced by
the model checker. For all the properties, we considered 5000 as the maximum
number of new states.

LTL property Truth Value

G{p2c > 10 or state = Other} False

F{c2c = 0 & state/ = Other} True

F{p2c = 0 & state/ = Other} True

F{p2c = 100 & state/ = Other} False

F{(cycle12c = 1 & state/ = Other) => g1c = 0} True

Table 2. Properties checked for the ecosystem Π2

If we manually execute the initialization event and we choose to see the state
space then the result obtained is as shown in Figure 1. Therefore, we have three
enabled events - rule14, rule15 and rule7 - and we can see what it happens if we
choose each of them.

Another option allows us to verify if the model contains deadlocks or invariant
violations. After 20136 new states explored in 93 seconds the coverage analysis
shows that the events RunToHalt and HaltToHalt are not covered.

6 Conclusions and future work

Event-B, Rodin and ProB are not just another modeling language, platform and
model checker. Based on rigorous mathematical foundation and allowing high-level
modeling, they are strongly supported by the industry.

218 F. Ipate, A. Ţurcanu

Fig. 1. The state space shown by ProB

In this paper we have presented a general framework for modeling P systems
using Event-B and applied the proposed approach on two examples.

Our future work will concentrate on modeling other types of P systems, refine-
ment, simplification, decomposition of models, as well as applying search based
techniques for test generation.

Acknowledgement

Adrian Ţurcanu was supported by project POSDRU -“Dezvoltarea scolilor doctor-
ale prin acordarea de burse tinerilor doctoranzi cu frecventa”- 88/1.5/S/52826 and
Florentin Ipate was partially supported by project Deploy, EC-grant no. 214158,
and Romanian Research Grant CNCSIS-UEFISCDI no. 7/05.08.2010 at the Uni-
versity of Pitesti.

Modeling, Verification and Testing of P Systems Using Rodin and ProB 219

References

1. Abrial, J.R., Modeling in Event-B. System and software engineering, Cambridge
University Press, (2010).

2. Andrei, O., Ciobanu, G., Lucanu, D.: A rewriting logic framework for operational
semantics of membrane systems. Theor. Comput. Sci. 373(3), 163–181 (2007)

3. Bernardini, F., Gheorghe, M., Romero-Campero, F.J., Walkinshaw, N.: A hybrid
approach to modeling biological systems. In: Eleftherakis, G., Kefalas, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing - 8th International
Workshop, WMC 2007, Revised Selected and Invited Papers. LNCS, vol. 4860, pp.
138–159. Springer (2007)

4. Ciobanu, G.: Semantics of P systems. In: Păun, G., Rozenberg, G., Salomaa, A.
(eds.) Handbook of membrane computing, chap. 16, pp. 413–436. Oxford University
Press (2010)

5. Dang, Z., Ibarra, O.H., Li, C., Xie, G.: On the decidability of model-checking for P
systems. Journal of Automata, Languages and Combinatorics 11(3), 279–298 (2006)

6. Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Pérez-Hurtado, I., Pérez-
Jiménez, M.J.: Software for P systems. In: Păun, G., Rozenberg, G., Salomaa, A.
(eds.) Handbook of membrane computing, chap. 17, pp. 437–454. Oxford University
Press (2010)

7. Kleijn, J., Koutny, M.: Petri nets and membrane computing. In: Păun, G., Rozenberg,
G., Salomaa, A. (eds.) Handbook of membrane computing, chap. 15, pp. 389–412.
Oxford University Press (2010)

8. Gheorghe, M., Ipate, F.: On testing P systems. In: Corne, D.W., Frisco, P., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing - 9th International
Workshop, WMC 2008, Revised Selected and Invited Papers. LNCS, vol. 5391, pp.
204–216. Springer (2009)

9. Gheorghe, M., Ipate, F., Lefticaru, R., Dragomir, C. , An integrated approach to P
systems formal verification, in Proc. 11th Int. Conf. on Membrane Computing, eds.
M. Gheorghe, T. Hinze and Gh. Păun, 225–238, ProBusiness Verlag, Berlin (2010)

10. Hinton, A., Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM: A tool for auto-
matic verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) 12th
International Conference on Tools and Algorithms for the Construction and Analysis
of Systems, TACAS 2006. LNCS, vol. 3920, pp. 441–444. Springer (2006)

11. Ipate, F., Gheorghe, M.: Testing non-deterministic stream X-machine models and P
systems. Electronic Notes in Theoretical Computer Science 227, 113–126 (2009)

12. Ipate, F., Gheorghe, M., Lefticaru, R., Test generation from P systems using model
checking, J. Logic Algebr. Program. 79(6), 350–362 (2010)

13. Ipate, F., Lefticaru, R., Tudose, C., Formal Verification of P Systems Using SPIN,
Int. J. Found. Comput. Sci. 22(1): 133-142 (2011)

14. Păun, G.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000)

15. Păun, G.: Membrane Computing: An Introduction. Springer-Verlag (2002)
16. Serbanuta, T., Stefanescu, G., Rosu, G.: Defining and executing P systems with

structured data in K. In: Corne, D.W., Frisco, P., Păun, G., Rozenberg, G., Salomaa,
A. (eds.) Membrane Computing - 9th International Workshop, WMC 2008, Revised
Selected and Invited Papers. LNCS, vol. 5391, pp. 374–393. Springer (2009)

Forward and Backward Chaining with P Systems

Sergiu Ivanov1,2, Artiom Alhazov1,3, Vladimir Rogojin1,4,
Miguel A. Gutiérrez-Naranjo5

1 Institute of Mathematics and Computer Science
Academy of Sciences of Moldova
Academiei 5, Chişinău MD-2028 Moldova
E-mail: {sivanov,artiom}@math.md

2 Technical University of Moldova, Faculty of Computers,
Informatics and Microelectronics,
Ştefan cel Mare 168, Chişinău MD-2004 Moldova

3 Università degli Studi di Milano-Bicocca
Dipartimento di Informatica, Sistemistica e Comunicazione
Viale Sarca 336, 20126 Milano, Italy

4 Research Programs Unit, Genome-Scale Biology,
Faculty of Medicine, Helsinki University,
Biomedicum, Haartmaninkatu 8, Helsinki 00014, Finland
E-mail: vladimir.rogojin@helsinki.fi

5 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
E-mail: magutier@us.es

Summary. On the one hand, one of the concepts which lies at the basis of membrane
computing is the multiset rewriting rule. On the other hand, the paradigm of rules is
profusely used in computer science for representing and dealing with knowledge. There-
fore, it makes much scene to establish a ”bridge” between these domains, for instance,
by designing P systems reproducing forward and backward chaining which can be used
as tools for reasoning in propositional logic. Our work shows again, how powerful and
intuitive the formalism of membrane computing is and how it can be used to represent
concepts and notions from totally unrelated areas.

1 Introduction

The use of rules is one of the most common paradigms in computer science for
dealing with knowledge. Given two pieces of knowledge V and W , expressed in
some language, the rule V → W is usually considered as a causal relation between
V and W . This representation is universal in science. For example, in chemistry,
V and W can be metabolites and V → W a chemical reaction. In this case,

222 S. Ivanov et al.

V represents the reactants which are consumed in the reaction and W is the
obtained product. In ecology, W may represent the population obtained from the
set of individuals V after a time unit. In computer science, V and W are pieces of
information (usually split into unit pieces v1, v2, . . . , vn and w1, w2, . . . , wm) and
the rule V → W is the representation of the precedence relation between V and
W . In propositional logic, V → W is a representation of the clause ¬v1¬v2 ∨ · · · ∨
¬vn ∨ w1 ∨ w2 ∨ · · · ∨ wm.

Besides representing knowledge using this paradigm, scientists are interested
in the derivation of new knowledge from a known piece of information: given a
knowledge base KB = (A,R), where A is a set of known atoms and a set R of
rules of type V → W , the problem is to know if a new atom g can be obtained
from the known atoms and rules. We will call this problem a reasoning problem
and it will be denoted by 〈A,R, g〉.

In computer science, there are two basic method for seeking a solution of a
reasoning problem, both of them based on the inference rule know as Generalized
Modus Ponens: the former is data-driven and it is known as forward chaining, the
latter is query-driven and it is called backward chaining.

In this paper we will consider knowledge bases on propositional logic and prove
that both types of chaining can be simulated by P systems. In this way, given a
reasoning problem we present several methods for building P systems Πb and Πf

which produce the objects YES or NO if and only if the corresponding chaining
method gives a positive or negative answer.

As one should observe, even though logic inference rules and multiset rewriting
rules originate from totaly different areas of mathematics and computer science and
represent unrelated notions, their concepts have some similarities. In particular, no
information about the ordering of elements in both left and right sides of the rules
of both types is used. On the other hand, the inference rules could be thought of
as set rewriting rules, while multiset rewriting rules operate at multisets. However,
multiset rewriting rules could be interpreted as set rewriting rules if one ignores
the multiplicity of elements of the multiset. Therefore we could represent sets of
facts in P systems as multisets of objects and inference rules as multiset rewriting
rules. When one considers the set of facts represented in a region of a P systems,
one only considers the underlying set of the region’s multiset.

The paper is organized as follows. First we recall some basic definitions re-
lated to the reasoning problem. Then we present our constructions and prove that
the obtained P systems produce the same answer as the corresponding chainings.
Finally, some conclusions and open research directions are proposed.

2 Definitions

2.1 Transitional P Systems

A transitional membrane system is defined by a tuple

Forward and Backward Chaining with P Systems 223

Π = (O, µ, w1, w2, · · · , wm, R1, R2, . . . , Rm, i0), where
O is a finite set of objects,
µ is a hierarchical structure of m membranes, bijectively labeled

by 1, . . . , m; the interior of each membrane defines a region;
the environment is referred to as region 0,

wi is the initial multiset in region i, 1 ≤ i ≤ m,

Ri is the set of rules of region i, 1 ≤ i ≤ m,

i0 is the output region; in this paper i0 is the skin and could be omitted.

The rules of a membrane systems have the form u → v, where u ∈ O+, v ∈
(O × Tar)∗. The target indications from Tar = {here, out} ∪ {inj | 1 ≤ j ≤ m}
are written as a subscript, and target here is typically omitted. In case of non-
cooperative rules, u ∈ O. In this paper we will not consider target indications.

The rules are applied in a maximally parallel way: no further rule should be
applicable to the idle objects. In case of non-cooperative systems, the concept of
maximal parallelism is the same as evolution in L systems: all objects evolve by
the associated rules in the corresponding regions (except objects a in regions i
such that Ri does not contain any rule a → u, but these objects do not contribute
to the result). The choice of rules is non-deterministic.

A sequence of transitions is called a computation. The computation halts when
such a configuration is reached that no rules are applicable. Since in this paper we
will focus on deciding P systems, we are only interested in the presence of one of
the special symbols {YES, NO} in the halting configuration of a computation.

In transitional P systems with promoters/inhibitors we consider rules of the
following forms:

• u → v|a, a ∈ O – this rule is only allowed to be applied when the membrane
it is associated with contains at least an instance of a; a is called the promoter
of this rule;

• u → v|¬a, a ∈ O – this rule is only allowed to be applied when the membrane
it is associated with contains no instances of a; a is called the inhibitor of this
rule.

Rules do not consume the corresponding promoters/inhibitors. A rule may have
both a promoter and an inhibitor at the same time, in which case it can only be
applied when there is at least one instance of the promoter and no instances of the
inhibitor in the region. Note also, that a single instance of an object may act as a
promoter for more than one instance of rewriting rules during the same transition.

2.2 P Systems with Active Membranes

A P system with active membranes is defined by a tuple

224 S. Ivanov et al.

Π = (O,H, µ,w1, w2, . . . , wm, R, i0), where
O is a finite set of objects,
H is the alphabet of names of membranes,
µ is the initial hierarchical structure of m membranes, bijectively labeled

by 1, . . . ,m;
wi is the initial multiset in region i, 1 ≤ i ≤ m,

R is the set of rules,
i0 is the output region; in this paper i0 is the skin and could be omitted.

The rules in P systems with active membranes can be of the following five basic
types:

(a) [a → v]eh, h ∈ H, e ∈ {+,−, 0}, a ∈ O, v ∈ O∗; in this paper we consider the
extension a ∈ O∗;

(b) a[]e1
h → [b]e2

h , h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O;
(c) [a]e1

h → []e2
h b, h ∈ H, e1, e2 ∈ {+,−, 0}, a, b ∈ O;

(d) [a]eh → b, h ∈ H\{s}, e ∈ {+,−, 0}, a, b ∈ O;
(e) [a]e1

h → [b]e2
h [c]e3

h , h ∈ H\{s}, e1, e2, e3 ∈ {+,−, 0}, a, b, c ∈ O.

The rules apply to elementary membranes, i.e. membranes which do not contain
other membranes inside.

The rules are applied in the usual non-deterministic maximally parallel manner,
with the following details: any object can be subject of only one rule of any type
and any membrane can be subject of only one rule of types (b)–(e). Rules of type
(a) are not counted as applied to membranes, but only to objects. This means that
when a rule of type (a) is applied, the membrane can also evolve by means of a
rule of another type. If a rule of type (e) is applied to a membrane, and its inner
objects evolve at the same step, it is assumed that first the inner objects evolve
and then the division takes place, so that the result of applying rules inside the
original membrane is replicated in the two new membranes.

2.3 Formal Logic Preliminaries

Definition 1. An atomic formula (also called an atom) is a formula with no deeper
structure.

An atomic formula is used to express some fact in the context of a given problem.
The universal set of atoms is denoted with U . For a set A, |A| is the number of
elements in this set (cardinality).

Definition 2. A knowledge base is a construct KB = (A,R) where A =
{a1, a2, . . . , an} ⊆ U is the set of known atoms and R is the set of rules of the
form V → W , with V, W ⊆ U .

Forward and Backward Chaining with P Systems 225

In propositional logic, the derivation of a proposition is done via the inference
rule known as Generalized Modus Ponens:

P1, P2, . . . , Pn , P1 ∧ P2 ∧ · · · ∧ Pn → Q

Q

The meaning of this rule is as follows: if P1 ∧ P2 ∧ · · · ∧ Pn → Q is a known
rule and P1, P2, . . . , Pn ⊆ A then, Q can be derived from this knowledge. Given
a knowledge base KB = (A,R) and an atomic formula g ∈ U , we say that g
can be derived from KB, denoted by KB ` g, if there exists a finite sequence of
atomic formulas F1, . . . Fk such that Fk = g and for each i ∈ {1, . . . , k} one of the
following claims holds:

• Fi ∈ A.
• Fi can be derived via Generalized Modus Ponens from R and the set of atoms

{F1, F2, . . . , Fi−1}
It is important to remark that for rules V → W we can require |W | = 1 without

losing generality. Indeed, V → W = ¬V ∨W . If W = w1 ∧ w2 ∧ ... ∧ wn,

V → W = ¬V ∨
n∧

i=1

wi =
n∧

i=1

¬V ∨ wi =
n∧

i=1

V → wi

This conclusion also makes it clear how to transform set of rules R to R′ with
the property that all right-hand sides contain no more than one symbol.

This definition of derivation provides two algorithms to answer the question of
knowing if an atom g can be derived from a knowledge base KB. The first one
is known as forward chaining and it is an example of data-driven reasoning, i.e.,
the starting point is the known data. The dual situation is the backward chaining,
where the reasoning is query-driven.

Definition 3. Forward chaining decides KB ` g by constructing the closure K
of the set of known facts A under the operation of adding new facts to the set by
applying Generalized Modus Ponens and checking g ∈ K.

Definition 4. Backward chaining decides KB ` g by attempting to find some
resolution of the goal fact g to the set of known facts A by substituting the right-
hand sides of the rules with their corresponding left-hand sides.

We will call reduction the substitution of the right-hand side of a rule with the
corresponding left-hand side in the process of backward chaining.

A deep study of both algorithms is out of the scope of this paper. We briefly
recall their basic forms.

Forward chaining
Input: A reasoning problem 〈A,R, g〉
Initialize: Deduced = A,Deduced′ = ∅

while Deduced 6= Deduced′ do

226 S. Ivanov et al.

Deduced′ ← Deduced
for all (P1P2 . . . Pn → Q) ∈ R such that {P1, P2, . . . , Pn} ⊆ Deduced′ do

if Q = g then
return true

else
Deduced ← Deduced ∪ {Q}

end if
end for

end while
if g 6∈ Deduced then

return false
end if

Backward chaining
Input: A reasoning problem 〈A,R, Targets〉

if Targets = ∅ then
return true

else
Found ← false
Actual ← SelectOne(Targets)
for all (P1P2 . . . Pn → Actual) ∈ R do

NewTargets ← ({P1, P2, . . . , Pn}\A) ∪ (Targets\{Actual})
Found ← Found ∨ (Backward Chaining〈A ∪ {Actual}, R,NewTargets〉)

end for
return Found

end if

Instead of only having one goal in the input of the backward chaining algorithm,
we consider a set of goal facts Targets. In the case of only one goal fact, this set is
initially {g}. Note that this algorithm does not always produce a correct result in
the cases when the inference rules form cycles like, for example, {a → b, b → a}.

In this paper we present several different transformations of a tuple 〈A,R, g〉
into P systems and prove than forward chaining and backward chaining can be
represented and performed in the usual semantics of membrane computing. We will
write multisets in string notation. We will use the symbol (·) to denote multiset
union.

The problem of deriving a new piece of knowledge from given ones and how such
derivation can be made automatically has been studied for centuries. In this paper
we explore a small part of this problem. In other logic systems, as relational logic,
clausal logic, first or higher order logic, many other problems as the unification of
terms must be considered. We refer the interested reader to [1].

In the paper, v1v2 . . . vn may mean either a conjunction of atoms in an inference
rule or a multiset of objects representing such a conjunction. Which of these is
actually meant should be clear from the context.

Forward and Backward Chaining with P Systems 227

3 Forward Chaining

Let us consider the reasoning problem 〈A,R, g〉. Forward chaining basically con-
sists in finding all facts that can be derived from A according to R and checking
whether g is among these facts.

We will now try to design a transitional P system which will implement forward
chaining. We will focus on constructing a non-uniform solution, because in this
way we will be able to map inference rules directly to multiset rewriting rules in
P systems.

Intuitively, the forward chaining algorithm consists of successive application of
rules. All rules can be applied in any order and produce the same result. This leads
us to the conclusion that the standard maximally parallel strategy of applying rules
in P systems is suitable for carrying out forward chaining.

In this first approach we will look at the propositional rule V → W from our
knowledge base as an evolution rule of a P system where all the objects in both
sides of the rule have multiplicity one. Before we start, we need to introduce some
considerations.

• First of all, in P systems the objects in the LHS of the rule are consumed
when the rule is applied. This is a serious drawback for a direct translation
of propositional logic into P systems. This limitation can be avoided if we
introduce a copy of the LHS into the RHS of the rule, thus considering a
multiset rewriting rule V → V W for each propositional rule V → W .

• Copying the LHS into the RHS introduces new undesirable effects. One of them
is that a rule can be applied indefinitely many times, since the objects which
trigger the rule will be in the membrane forever. This can be also avoided by
introducing a new object γi for each propositional rule ri ≡ V → W and adding
it to the LHS of the membrane computing rule γiV → V W . This object γi is
consumed and allows the rule to be applied at most once.

• The answer YES can be easily produced by using a rule g → Y ES. As soon
as g is generated, the object Y ES is produced. The answer NO should be
obtained if new atoms can be deduced. From a membrane computing point of
view, it is not so easy to check if a membrane has a new object different from
the previous configuration, but we can consider an upper bound on the number
of steps in order to check if g has been produced or not. This upper bound is
related to the number of rules, since each rule can be only applied once.

We construct a P system implementing chaining according to the remarks given
above:

Π0 = (U0, []s, w
(0)
s , R0, s), where

U0 = U ∪ {YES} ∪ {γi | 1 ≤ i ≤ n},
w(0)

s = γ1γ2 . . . γn,

R0 = {γiV → V W | (ri : V → W) ∈ R, 1 ≤ i ≤, n} ∪ {g → YES},
n = |R|.

228 S. Ivanov et al.

Note that labeling the inference rules in R is done injectively.
We placed the initial set of facts A into the skin membrane and let some

multiset rewriting rules easily obtained from R to simulate the forward-chaining
inference process according the set of inference rules R. The rule g → YES is
waiting for the goal to appear in the region. As soon as the goal appears, the rule
produces a YES-object.

Π0 is very simple and illustrates vividly how easily very basic forward chaining
can be done in P systems. Π0 always stops, and there is a YES in ws when g can
be derived from the facts in A.

To place a NO into the skin at proper times requires a further observation that
the upper bound on the number of steps Π0 makes is n + 1. Indeed, all rules in
R0 may be applied only once and |R0| = |R|+ 1 = n + 1. Thus, we may wait until
all the rules in the system are exhausted. If after n + 1 steps the symbol YES has
not been produced, the system should produce a NO. In the following P system
Π1 we have implemented the timer:

Π1 = (U1, []
s
, w(1)

s , R1, s), where

U1 = U0 ∪ {ti | 0 ≤ i ≤ n + 1} ∪ {NO},
w(1)

s = w(0)
s · t0,

R1 = R0 ∪ {ti → ti+1 | 0 ≤ i ≤, n} ∪ {tn+1 → NO,YES NO → YES}.
Π1 will always stop in either n+1 steps if a NO has been produced, or in n+2

steps it a YES has been produced. To nondeterministically minimize the number
of steps, one may consider R′1 = R1 ∪ {tiYES → YES | 1 ≤ i ≤ n}. This, however,
does not guarantee that the system will stop in a small (constant) number of steps
after a YES has been produced and, in the worst case, it possible that the whole
chain of transformations of ti will take place.

To assure that the system always stops when no rules are being applied, we
can use rules with inhibitors. Consider the following P system:

Π2 = (U2, []s, w
(2)
s , R2, s), where

U2 = U0 ∪ {t, p, NO},
w(2)

s = w(0)
s · tp,

R2 = {γiV → V Wp|¬YES | (ri : V → W) ∈ R, 1 ≤ i ≤ n} ∪
∪{p → λ, t → NO|¬p, gt → YES}.

Any rule application produces an instance of p, which is immediately erased. While
rules are still being applied, p is always present in the system and thus t cannot
change into NO. When rules are not being applied any more, p is erased from
the system and t evolves into NO. If a rule application adds the goal symbol g to
the system, g consumes t and produces YES. Thus, when no more rules can be
applied, the system always needs two more steps to produce a NO. When the goal
fact is produced, the system always needs one more step to produce a YES.

Forward and Backward Chaining with P Systems 229

The inhibitors are required when, for the problem 〈A,R, g〉, ∃(V → W) ∈ R
such that g ∈ V . Once YES is present in the system, computations should stop.

The last problem to solve is cleaning up. This is pretty obvious:

Π
(1)
f = Π3 = (U2, []s, w

(2)
s , R3, s), where

R3 = R2 ∪ {a → λ|¬p | a ∈ U ∪ {γi | 1 ≤ i ≤ n}}.
When the system produces a YES, the application of rules derived from R stops
and p is not produced any more. This allows the rules a → λ|¬p to clean everything
in one extra step. When there are no more rules derived from R to apply, p is not
produced as well, which triggers the clean-up. Note that the clean-up procedure
does not considerably alter the number of steps Π3 needs to solve the problem.

Π3 takes advantage of the maximal parallelism and always applies as many
rules as possible at the same time. However, if there are several ways to derive g
from A, Π3 may not always follow the most efficient strategy.

4 A Different Approach to Forward Chaining

We will now try to go beyond the most trivial translation of a decision problem
to a P system. We will consider a P system Π

(2)
f with a single membrane, and a

set of rules of type v → w|¬i;p where i, p, v, w are objects of the alphabet.
We will translate a rule ri ≡ u1u2 . . . un → v from R into n rules: ρij ≡

rij → rij+1|¬v;uj for j ∈ {1, . . . , n − 1} and ρin ≡ rin → v|¬v;uj . Note that we
require that the right-hand side of every rule in R should contain exactly one fact.
We will also add the following rules to implement the timer:

{tk → tk+1|¬g;tk
| 1 ≤ k ≤ l − 1} ∪ {tk → YES|¬NO;g | 0 ≤ k ≤ l}

∪{tl → NO|¬g;tl
}

The following rules will clean up the regions of the system:

{a → λ|¬NO;YES | a ∈ Γ\{YES}} ∪ {b → λ|¬YES;NO | b ∈ Γ\{NO}}

Here g is the goal fact and Γ is the alphabet of the P system. l is the sum of the
lengths of the left-hand sides of all rules in R. In other words, l is the maximal
number of steps Π

(2)
f has to go through to try all rules from R.

The alphabet contains all the atoms from U , the symbols {YES, NO}, all tk,
1 ≤ k ≤ l, and all the rij where i is the index of the corresponding rule from R
and j is the index of an atom in the LHS of the rule ri.

In the initial configuration the skin membrane contains all objects from A, an
object t0, and all objects ri1, 1 ≤ i ≤ |R|.

The rules ρij are meant to check whether all left-hand-side symbols of the rule
ri are present in the system. If this condition is satisfied, the right-hand side of
the rule ri is added. In parallel with the application of rules ρij the timer symbols

230 S. Ivanov et al.

tk evolve from t1 to tl. If the goal symbol g is produced, the rule tk → YES|¬NO;g
produces YES. This will lead to the eventual erasure of all other symbols. If,
however, the goal symbol is not produced before tl appears in the system, a NO
is produced and forces the erasure of all other symbols.

Example 1. Consider the tuple 〈A,R, d〉 with A = {a, b} and R = {r1 ≡
ab → c, r2 ≡ bc → d}. From this deduction problem we can construct the P
system Π = (Γ,w, Rf) where

• the alphabet is Γ = {a, b, c, d, r11, r12, r21, r22, t1, t2, t3, t4, YES, NO};
• the initial multiset in the unique membrane is w = abr11r21t0;
• the rules ρij are:

ρ11 ≡ r11 → r12|¬c;a ρ21 ≡ r21 → r22|¬d;b

ρ12 ≡ r12 → c|¬c;b ρ22 ≡ r22 → d|¬d;c

In the initial configuration C0 = [abr11r21t0] rules ρ11 and ρ21 can be applied,
which yields the configuration C1 = [abr12r22t1]. In C1 the rule ρ12 can be applied
and we obtain C2 = [abcr22t2]. Now, by applying ρ22 we obtain C3 = [abcdt3]. Since
the goal fact has appeared in the system, t3 will evolve into a YES: C4 = [abcdYES].
In the next step all symbols but YES will be erased: C5 = [YES].

One of the main differences between the usual semantics in P systems and
the semantics in propositional logic is that the application of a rule in membrane
computing consumes the objects in the LHS of the rule. This is undesirable from
the point of view of propositional logic, since the validity of an atom does not
change if the atom is used in a derivation. This drawback is avoided by using new
auxiliary objects rij which are consumed instead of atoms.

Using these auxiliary objects has other positive effects as well. In propositional
logic, once the rule a → b has been used to derive b, the rule will not be used
any more. Or rather, further applications of this rule make no difference, since
in propositional logic rules operate on sets of facts. This property needs to be
treated specially in P systems since we use maximal parallelism and if a rule can
be applied multiple times it will be applied so. By consuming the objects rij we
avoid multiple applications of rules.

Finally, the use of inhibitors stops the production of an object (the derivation
of an atom) if this object has been previously produced by another rule.

Theorem 1. Π
(2)
f solves the reasoning problem it was designed for using forward

chaining.

Proof. Π
(2)
f works by transforming the symbols ri1 into the corresponding right-

hand sides of rules (ri ≡ Vi → ai) ∈ R, ai ∈ U if all the symbols in the left-hand
side of rule ri are present in the skin region. Thus the system never produces the
right-hand side of a rule if not all of the symbols in the left-hand side of the rule
are present in the skin region. This means that the set of facts the system derives

Forward and Backward Chaining with P Systems 231

is always a subset of the set of facts that can be derived from A by Generalized
Modus Ponens.

On the other hand, independently of the order in which the symbols in the
left-hand side of the rule appear in the system, if all of the symbols in the left-
hand side of the rule ri are present in the skin region, the promoters of the rules
ρij , 1 ≤ j ≤ |V | guarantee that ri1 is transformed into ai. This means that the
system produces at least all facts that can be derived from A by Generalized
Modus Ponens.

The conclusion is that the system always properly constructs the set of facts
which can be derived from A by R.

If g can at all be derived from A, it is guaranteed to be produced at at most
l-th step. At this point there will be tl and g in the skin region and tl will deter-
ministically evolve into a YES. If, however, the symbol g is never produced, tl will
(correctly) evolve into a NO.

5 Backward Chaining

Backward chaining, along with forward chaining, is one of the two most commonly
used methods of reasoning with inference rules. Backward chaining is also based
on the modus ponens inference rule and is usually implemented by SLD resolution.
Given a goal clause:

¬L1 ∨ ¬L2 ∨ · · · ∨ ¬Li ∨ · · · ∨ ¬Ln

with selected literal ¬Li and an input definite clause

L ∨ (¬K1 ∨ ¬K2 ∨ · · · ∨ ¬K3)

in which the atom L unifies with the atom Li, SLD resolution derives another goal
clause, in which the selected literal is replaced by the negative literals of the input
clause and the unifying substitution θ is applied:

SUBST(θ,¬L1 ∨ ¬L2 ∨ · · · ∨ (¬K1 ∨ ¬K2 ∨ · · · ∨Kn) ∨ · · · ∨ ¬Ln)

As in the previous section, we will only consider zero-order logic in this section.
In this case we may treat unification as equality. In this section we will take
advantage of the possibility to only allow rules with exactly one symbol in the
right-hand side.

In the case of zero-order logic, backward chaining is more complex than forward
chaining, as are P systems doing backward chaining.

The description of the backward chaining algorithm is similar to depth-first
search in a state space. In artificial intelligence backward chaining is often perceived
in this way and a lot of considerations are built on top of this representation.

As usual, when implementing backward chaining in P systems, we would like
to take as much advantage as possible of the parallelism offered by these devices.

232 S. Ivanov et al.

The obvious way to exploit parallelism is exploring the branches of the deduction
tree in parallel. More concretely, if, for a certain value of Targets, several rules
(V → w) ∈ R, w ∈ Targets are found, the system should start investigating each
of these branches in parallel. This approach is not equivalent to investigating all
possible deduction branches in parallel.

Since we would like to explore a number of branches in parallel and since
these branches are completely independent of one another, it would be natural to
investigate each branch in a separate region. Because we would like to decide at
each certain state how many new parallel explorations to start, membrane division
would suit us greatly. This brings us to the conclusion that P systems with active
membranes is what we need.

However, in P systems with active membranes one can only divide a membrane
into two children membranes. A way to avoid this limitation would be to demand
the set Rw = {V → w | (V → w) ∈ R} to have no more than two elements. Any
set of rules R can be transformed to satisfy this constraint by substituting every
set of rules Rw = {V1 → w, V2 → w, . . . , Vn → w}, n > 2 with

{V1 → z1, V2 → z1}∪{zi−1 → zi, Vi+1 → zi | 2 ≤ i ≤ n−2}∪{zn−2 → w, Vn → w}

The corresponding symbols zi, 1 ≤ i ≤ n − 2 should be added to the new set of
facts U ′.

Note that this is not the most efficient transformation.
We introduce two morphisms (′) and (′′) on a multiset W = w1w2 . . . wn,

W ∈ U+:

W ′ = w′1w
′
2 . . . w′n

W ′′ = w′′1w′′2 . . . w′′n

We also consider the corresponding specialization of these morphisms for sets.
Given that R satisfies the constraint specified above, consider the following P

system with active membranes:

Forward and Backward Chaining with P Systems 233

Πb = (Ub, {k, s}, [[]
k

]
s
, wk, ws, Rb, s), where

Ub = U ∪ U ′ ∪ U ′′ ∪ {ρi | (ri : Vi → wi) ∈ R} ∪
{f0, f1, f, c0, c1, c2, c3, c, l, p, q, $1, $2, #} ∪
∪{ti|0 ≤ i ≤ 7} ∪ {YES, NO},

Rb = {[w′′]0k → [ρi]+k [ρj]+k | ∃{Vi → w, Vj → w} ⊆ R, Vi 6= Vj} ∪
∪{[w′′]0k → [ρi]+k [#]+k | ∃(Vi → w) ∈ R, 6 ∃(α → w) ∈ R, α 6= Vi} ∪
∪{[qa → a′a′′]0k, [aa′ → a′]+k , [aa → a]+k | a ∈ U} ∪

∪{[ρi → qc0f0Vi]+k | ∃(Vi → α) ∈ R, α ⊆ U} ∪
∪{[f0 → f1]+k , [l]+k → []0kl, [l]0s → []+s l, [l → λ]+s } ∪
∪{[f1a → al]+k | a ∈ U} ∪
∪{[ci−1 → ci]+k | 1 ≤ i ≤ 3} ∪ {[c3 → λ]0k, [c3]+k → []+k $0} ∪

∪{[$0 → $1YES]+s , [$0 → YES]0s, [YESNO → YES]+s , [$1]0s → []+s $1} ∪
∪{[ti−1 → ti]0s | 1 ≤ i ≤ 6} ∪
∪{[t6 → pt7]0s, [t7 → t2]+s , [t7 → λ]0s, [p → NO]0s, [p]+s → []0sp},

wk = qgA′,
ws = t0.
This system decides, using backward chaining, whether g can be derived from

A according to the rules in R. Handling cycles in inference rules ({a → b, b → a})
is a matter of further research.

Πb works as follows. It starts with a single worker membrane with the label
k, which contains the goal symbol g and A′. All primed symbols in the worker
membrane are the symbols which have already been reduced once. The system will
never reduce the same symbol twice in a worker membrane. The rule [qa → a′a′′]0k
marks g as reduced and creates a double primed copy of it. Double primed symbols
are the symbols which are meant to be reduced.

The system includes two types of operations for reducing symbols: [w′′]0k →
[ρi]+k [ρj]+k and [w′′]0k → [ρi]+k [#]+k . The first operation is done in the cases when
|Rw| = 2. It creates two new worker membranes with polarization + for each of
the two left-hand sides of the rules used for reduction. The second operation is
performed when |Rw| = 1. This operation creates two worker membranes, but one
of them contains # which will not allow the membrane to evolve further. It is
important to realize that, even if |Rw| = 1, the corresponding P system rule need
employ a membrane to avoid attempts to multiply apply rules.

In any of the newly created membranes the rule [ρi → qc0f0Vi]+k introduces
the actual left-hand side of the corresponding inference rule, as well as several
service symbols. In the next step the rule [aa′ → a′]+k removes any of the new
symbols which have already been reduced. At the same time f0 evolves into f1

and c0 into c1. In the next step f1 verifies whether not primed symbols are still
present in the membrane. If there indeed are such symbols, an l is produced,
which eventually re-polarizes the worker membrane to 0 and thus re-launching the

234 S. Ivanov et al.

process of application of inference rules. The role of the symbol q is to assure that
only one not yet reduced symbol is reduced.

In parallel with the rule [aa′ → a′]+k , the rule [aa → a]+k is applied. It removes
the duplicates which appear in situations when the worker membrane contains a
and b and reduces b by the rule V → b, a ∈ V . Note that the rule removing the
already reduced symbols and the rule cannot be applicable to the same symbol at
the same time, which removes concurrency effects.

If the worker membrane contains no more symbols which have not yet been
reduced, Πb concludes that we have discovered a resolution of g to the set of know
atoms A. Since the rule [f1a → al]+k does not produce the symbol l, the symbols ci

evolve until c3 ejects a $0 in the skin region. This symbol will eventually produce
YES.

The skin membrane contains symbols ti which check whether there still is some
activity in the system. Each application of an inference rule (or two inference rules,
when |Rw| = 2) takes 6 steps. At the very beginning, the symbol t0 evolves into
t6. If ∃(V → g) ∈ R, when t6 is produced in the skin region, the skin region will
also contain an l. t6 evolves into pt7 and, at the same time, l polarizes the skin
membrane to +. This makes t7 evolve into t2, thus restarting the ti loop, while p
resets the skin polarization to 0.

If, however, no worker membrane produces an l any more, when p is produced
in the skin, the skin polarization stays at 0. This forces p to produce a NO and
erases t7, thus breaking the ti loop.

The symbol $0 will always appear in the skin region at the same time as pt7.
Two situations are possible: if there has just been at least one l in the skin, the
skin will have polarization +. In this case t2 is produced and p is erased. At the
same time, $0 produces a $1 and YES. $1 polarizes the skin to +, thus stopping
the ti loop. In the other situation no instances of l are produced and, when pt7 is
produced in the skin, the polarization of this membrane is 0. In this case p will
produce a NO, while t7 will be erased, thus breaking the ti loop. At the same time
$0 will produce a YES, which will erase NO in the next step.

We remark that Πb always stops, because any application of an inference rule
necessarily leads to an eventual extension of the set of primed symbols within a
worker membrane. This means that the time Πb works in can be estimated as
O(|U |).

Πb is a P system with active membranes with two polarizations and cooperative
rules of type (a). It is unfourtunately necessary to use cooperation, too, in this
context because we need to apply every rule only once. While it should be possible
to implement backward chaining using purely non-cooperative rules, such approach
would hurt the clarity of the solution and it is highly possible that the parallelism
of P systems would not be fully used.

Πb is notably more complicated than any of the P systems doing forward chain-
ing. The reason for this situation is that we have only focused on zero-order logic
so far, in which unification degenerates into equality and forward chaining becomes
very straightforward to implement. In conventional programming, however, back-

Forward and Backward Chaining with P Systems 235

ward chaining is sometimes preferred due to the fact that it is easier to satisfy
memory restrictions.

6 Conclusion

In this paper we continued exploring the possibilities of solving reasoning prob-
lems with P systems, a topic which was started in [2]. The computing devices of
P systems look appealing in this context due to two main reasons: the similarity
of inference rules and multiset rewriting rules and the maximal parallelism. The
similarity of the two types of rules allows a relatively natural transformation of rea-
soning problems into P systems and a rather efficient exploitation of the maximal
parallelism.

We have only focused on zero-order logic in this paper, which resulted in quite
simple P systems for forward chaining problems and more complicated devices for
backward chaining. The difference in complexity appears because of the inherently
recursive nature of backward chaining; and since one of our goals was to exploit
the maximal parallelism, in the case of backward chaining we needed to branch off
parallel explorations for each of the possibilities arousing at every reasoning step
(after every SLD resolution).

This paper does not attempt to be exhaustive. One of the most evident ques-
tions is whether the P systems suggested in this paper can be optimized in the
number of rules or control symbols. Another optimization criterion is the speed
of the system. Although it is remarked in the paper that all P systems have the
time complexity O(|R|), Πb is about five times slower on average than Π

(1)
f . In

designing the P systems in this paper we tried to translate the reasoning tuple
as intuitively as possible; maybe less intuitive transformations would operate in
better time. A concrete question in this domain is whether it possible to design a
general algorithm for constructing P systems which would solve reasoning prob-
lems in sublinear time (no matter which chaining algorithm is used).

A very important research question is how to handle the situations when R
includes rules which form cycles. The presence of such cycles does not necessarily
disrupt the functionality of the system, but may make it produce a falsely positive
result.

Another relevant direction to explore is first-order logic. In zero-order logic we
could comfortably translate facts to symbols and build relatively simple P systems.
First-order logic poses serious questions, however, among which one of the most
important ones is how to encode predicates in P systems and how to implement
unification.

A problem we have only superficially talked of is universality. Because our focus
was on intuitive transformations from a reasoning tuple to a P system, we didn’t
pay much attention to designing a P system which would solve all or a subset
of reasoning problems using either chaining algorithm. This should be a relevant
topic of theoretical research and could reveal further similarities between reasoning
problems and certain kinds of P systems.

236 S. Ivanov et al.

Acknowledgements

AA gratefully acknowledges the project RetroNet by the Lombardy Region of Italy
under the ASTIL Program (regional decree 6119, 20100618).

MAGN acknowledges the support of the projects TIN-2009-13192 of the Minis-
terio de Ciencia e Innovación of Spain and the support of the Project of Excellence
of the Junta de Andalućıa, grant P08-TIC-04200.

References

1. Jago, M.: Formal Logic, Humanities-Ebooks LLP, 2007, ISBN 978-1-84760-041-7.
2. Gutiérrez-Naranjo, M. A., Rogozhin, V., Deductive databases and P systems, Com-

puter Science Journal of Moldova, vol. 12, no. 1(34), 2004.
3. Apt, K. R.: Logic Programming, Handbook of Theoretical Computer Science. Elsevier

Science Publishers B.V., 1990.
4. Bratko, I.: PROLOG Programming for Artificial Intelligence, Third Edition. Addison-

Wesley, 2001.
5. Krishna S. N., Rama R.: A Variant of P Systems with Active Membranes: Solving

NP-Complete Problems. Romanian Journal of Information Science and Technology,
2, 4 (1999), pp. 357-367.

6. Lloyd, J. W.: Foundations of Logic Programming, (2nd ed.) Springer, Berlin, 1987.
7. Păun, Gh., Membrane Computing. An Introduction. Springer-Verlag, 2002.
8. Păun, Gh., Rosenberg, G., Salomaa, A., Eds: The Oxford Handbook of Membrane

Computing. Oxford University Press, 2009.
9. The P systems web page. http://ppage.psystems.eu/

Towards Automated Verification of P Systems
Using Spin

Raluca Lefticaru, Cristina Tudose, and Florentin Ipate

University of Pitesti, Department of Computer Science
Str. Targu din Vale 1, 110040, Pitesti, Romania
name.surname@upit.ro

Summary. This paper presents an approach to P systems verification using the Spin
model checker. A tool which implements the proposed approach has been developed and
can automatically transform P system specifications from P-Lingua into Promela, the
language accepted by the well known model checker Spin. The properties expected for
the P system are specified using some patterns, representing high level descriptions of
frequently asked questions, formulated in natural language. These properties are auto-
matically translated into LTL specifications for the Promela model and the Spin model
checker is run against them. In case a counterexample is received, the Spin trace is de-
coded and expressed as a P system computation. The tool has been tested on a number
of examples and the results obtained are presented in the paper.

1 Introduction

Membrane computing is a branch of natural computing, inspired from the structure
and functioning of the living cell. Its models, called P systems, aim to simulate the
evolution of a living cell, as well as the interaction or cooperation of cells in tissues,
organs, or other types of populations of cells [16, 17]. P systems were introduced
in 1998, in a seminal research report of Gheorghe Păun, further published as a
journal paper [15].

The new field of membrane computing has known a fast development and
many applications have been reported [2], especially in biology and bio-medicine,
but also in unexpected directions, such as economics, approximate optimization
and computer graphics [17]. Also, a large number of software tools for simulating P
systems have been developed, many of them with the purpose of dealing with real
world problems, such as those arisen from biology. An overview of the state of the
art in P system software can be found in [17], chapter 17. The P-Lingua framework
[9], one of the most promising software projects in membrane computing, proposes
a new programming language, aiming to become a standard for the representation
and simulation of P systems.

238 R. Lefticaru, C. Tudose, F. Ipate

Designing a P system to solve a certain real world problem is a difficult task
and many simulations are needed to check whether the proposed model behaves
as expected. After designing a P system that aims to solve a given problem, a
validation is needed, to ensure that the proposed model corresponds to what it
is expected. One way to achieve this validation is to formally prove that the P
system computations realize the given task. However, the formal proof is somehow
hindered by the parallel and non-deterministic nature of the P systems. Conse-
quently, automated tools, such as model checkers, would be very useful to prove or
disprove ‘on-the-fly’ that the P system meets the expected specifications, expressed
as temporal logic formulas.

Model checking is an automated technique for verifying if a model meets a
given specification [4]. It has been applied for verifying models of hardware and
software designs, such as sequential circuits designs, communication protocols,
concurrent systems etc. A model checker is a tool that receives as input a property
expressed as a temporal logic formula and a model of the system, given as an
operational specification, and verifies, through the entire state space, whether the
property holds or not. If a property violation is discovered then a counterexample
is returned, that details why the model does not satisfy the property specified.
Two widely used temporal specification languages in model checking are Linear
Temporal Logic (LTL) and Computation Tree Logic (CTL) [3].

Spin is probably the most well-known LTL model checker [8]. It was written
by Gerard Holzmann in the ’80, developed over three decades at Bell Laboratories
and it received in 2001 the prestigious ACM System Software Award. The tran-
sition systems accepted by SPIN (Simple Promela Interpreter) are described in
the modelling language Promela (Process Meta Language) and the LTL formulas
are checked using the algorithm advocated by Gerth et al. [7]. Spin can also oper-
ate as a simulator, following one possible execution path through the system and
presenting the resulting execution trace to the user.

In this paper we present an approach to automatic translation of P systems
into executable specifications in Promela, the language accepted by the Spin model
checker, and its further verification using Spin. The paper intends to realize a
bridge between P-Lingua, a very promising framework for defining and simulating
P systems, and Spin, one of the most successful model checkers. The tool presented
in the paper assists in designing and verifying P systems by automatically trans-
forming the P-Lingua specifications into Promela. The properties expected for the
P system are specified in a ‘natural language’, using an user-friendly interface,
then they are automatically translated into LTL specifications for the Promela
model; furthermore, the Spin model checker is run against them. In case a coun-
terexample is received, the Spin trace is decoded and expressed in terms of a P
system derivation.

Model checking based verification of P systems is a topic which has attracted
a significant amount of research in the last years; the main tools used so far are
Maude [1], Prism [18], NuSMV [13], Spin [12] and ProB [10]. This paper makes
further advances in this area. Firstly, each model checker uses a particular language

Towards Automated Verification of P Systems Using Spin 239

for describing the models accepted. The activity of specifying a P system in a
certain language, such as Promela for Spin, or SMV for NuSMV, can be tedious and
error-prone. Many model checking tools cannot directly implement the transitions
of a P system working in maximally parallel mode and consequently, the models
obtained are complex, because they are simulating the parallelism using many
sequential operations. With this respect, the tool presented here automatically
transforms a P system definition file into an executable specification for the Spin
model checker. The input file is the P-Lingua specification of a P system, which is
an easy way of expressing the P systems and can also be used for simulation with
the P-Lingua framework.

Secondly, the executable specifications written for different model checkers are
not functionally equivalent with the P systems, for example they can contain
extra states and variables corresponding to intermediate steps, which have no
correspondence in the P system configurations [12]. For this reason, the P system
properties that need to be verified, should be reformulated as properties of the
executable implementation. The tool described in this paper takes the properties
expressed in a natural language and transforms them into LTL formulas for the
Promela model. It hides all the specialized information of the Spin model checker
and provides the answer (true or false); in case a counterexample is found, this is
decoded and expressed as a P system computation.

The paper is structured as follows. We start by describing the theoretical foun-
dations of this approach in Section 2; the proposed framework is presented in
Section 3. Some examples are explained in Section 4, the related work is presented
in Section 5 and finally the conclusions are drawn in Section 6.

2 Background

2.1 P Systems

Before presenting our approach to P system verification, let us establish the no-
tation used and define the class of cell-like P systems addressed in the paper.
Basically, a P system is defined as a hierarchical arrangement of membranes, iden-
tifying corresponding regions of the system. Each region has an associated finite
multiset of objects and a finite set of rules; both may be empty. A multiset is either
denoted by a string u ∈ V ∗, where the order is not considered, or by ΨV (u). The
following definition refers to cell-like P systems, with transformation and commu-
nication rules [16].

Definition 1. A P system is a tuple Π = (V, µ,w1, . . . , wn, R1, . . . , Rn), where V
is a finite set, called alphabet; µ defines the membrane structure, which is a hi-
erarchical arrangement of n compartments called regions delimited by membranes
- these membranes and regions are identified by integers 1 to n; wi, 1 ≤ i ≤ n,
represents the initial multiset occurring in region i; Ri, 1 ≤ i ≤ n, denotes the set
of processing rules applied in region i.

240 R. Lefticaru, C. Tudose, F. Ipate

The membrane structure, µ, is denoted by a string of left and right brackets
([i, and]i), each with the label of the membrane i, it points to; µ also describes
the position of each membrane in the hierarchy. The rules in each region have the
form u → (a1, t1) . . . (am, tm), where u is a multiset of symbols from V , ai ∈ V ,
ti ∈ {in, out, here}, 1 ≤ i ≤ m. When such a rule is applied to a multiset u in
the current region, u is replaced by the symbols ai with ti = here; symbols ai

with ti = out are sent to the outer region or outside the system when the current
region is the external compartment and symbols ai with ti = in are sent into one
of the regions contained in the current one, arbitrarily chosen. In the following
definitions and examples when the target indication is here, the pair (ai, here)
will be replaced by ai. The rules are applied in maximally parallel mode which
means that they are used in all the regions at the same time and in each region all
the objects to which a rule can be applied must be the subject of a rule application
[15].

A configuration of the P system Π, is a tuple c = (u1, . . . , un), where ui ∈ V ∗, is
the multiset associated with region i, 1 ≤ i ≤ n. A computation of a configuration
c2 from c1 using the maximal parallelism mode is denoted by c1 =⇒ c2. In the set
of all configurations we will distinguish terminal configurations; c = (u1, . . . , un)
is a terminal configuration if there is no region i such that ui can be further
developed.

We say that a rule is cooperative if it has at least two objects in its left hand
side, e.g. ab → (c, in)(d, out). Otherwise, the rule is non-cooperative, e.g. a →
(c, in)(d, out). Electrical charges, from the set {+;−; 0}, can be associated with
membranes, as described in [16].

2.2 Linear Temporal Logic

The Linear Temporal Logic (LTL) was introduced by Amir Pnueli in 1977 [14] for
the verification of computer programs. Compared to the branching time logic CTL
(Computation Tree Logic) [4], LTL does not have an existential path quantifier
(the E of CTL). An LTL formula has to be true over all paths, having the form
Af , where f is a path formula in which the only state subformulas permitted are
atomic propositions. Given a set of atomic propositions AP , an LTL path formula
[4] is either:

• If p ∈ AP , then p is a path formula.
• If f and g are path formulas, then ¬f , f ∨ g, f ∧ g, Xf , Ff , Gf , f U g and

f R g are path formulas, where:
– The X operator (”neXt time”, also written ©) requires that a property

holds in the next state of the path.
– The F operator (”eventually” or ”in the future”, also written ♦) is used to

assert that a property will hold at some state on the path.
– Gf (”always” or ”globally”, also written ¤) specifies that a property, f ,

holds at every state on the path.

Towards Automated Verification of P Systems Using Spin 241

– f U g operator (U means ”until”) holds if there is a state on the path where
g holds, and at every preceding state on the path, f holds. This operator
requires that f has to hold at least until g, which holds at the current or a
future position.

– f R g (”release”) is the logical dual of the U operator. It requires that the
second property holds along the path up to and including the first state
where the first property holds. However, the first property is not required
to hold eventually: if f never becomes true, g must remain true forever.

2.3 P System Specification in Promela

In this section we will present the theoretical background for verifying P systems
using the Spin model checker, as proposed in [12].

Definition 2. A Kripke structure over a set of atomic propositions AP is a four
tuple M = (S,H, I, L), where S is a finite set of states; I ⊆ S is a set of initial
states; H ⊆ S × S is a transition relation that must be left-total, that is, for every
state s ∈ S there is a state s′ ∈ S such that (s, s′) ∈ H; L : S −→ 2AP is an
interpretation function, that labels each state with the set of atomic propositions
true in that state.

In [11] it is explained how an associated Kripke structure can be built for a
given P system. For this, the object multiplicities in the P systems membranes have
to be restricted to a finite domain and so additional state variables and predicates
are defined, following the guidelines from [6]. However, the Spin model checker
cannot directly implement this kind of model and a Promela implementation is
not functionally equivalent to the P system.

In the following we will present the transformation of a simple P system into a
Promela model. For more details, [12] can be consulted and some examples can be
downloaded from http://fmi.upit.ro/evomt/psys/psys_spin.html. Consider
the one-membrane P system Π = (V, µ,w, R), with the alphabet V = {a1, . . . , ak}
and the set of rules R = {r1, . . . rm} (each rule ri has the form ui → vi, ui, vi ∈ V ∗).
The Promela implementation of the P system will contain:

• k variables, labeled exactly like the objects from V , each one showing the
number of occurrences of each object in the membrane, ai ∈ V , 1 ≤ i ≤ k;

• at most k auxiliary variables, labeled like the objects from the alphabet V
plus a suffix p, each one showing the number of occurrences of each object ai,
produced in the current computation step;

• m variables ni, 1 ≤ i ≤ m, each one showing the number of applications of
each rule ri ∈ R, 1 ≤ i ≤ m;

• one variable state showing the current state of the model, state ∈ {running,
halt, crash};

• one boolean variable bStateInS expressing if the current configuration in the
Promela model represents a state in the P system; bStateInS is false when

242 R. Lefticaru, C. Tudose, F. Ipate

intermediary steps are executed and true when the computation is over (a step
in the P system derivation is completed); a corresponding atomic proposition
pInS will evaluate whether bStateInS holds;

• two constants, Max, the upper bound for the number of occurrences of each
object ai ∈ V, 1 ≤ i ≤ k, and Sup, the upper bound for the number of applica-
tions of each rule ri, 1 ≤ i ≤ m;

• a set of propositions, which will be used in LTL formulas; they are introduced by
#define and named suggestively. For example, #define pn1 (n1>0) is used
to check if the rule r1 has been applied at least once, #define pa1 (a==1)
checks if the number of objects of type a is exactly 1.

In order to describe in Promela one computation step of a P system, a set of
operations, additional variables and intermediary states are needed. For example,
consider Π1 = (V1, µ1, w1, R1), a simple one-membrane P system having V1 =
{s, a, b, c}, µ1 = [1]1, w1 = s, R1 = {r1 : s → ab; r2 : a → c; r3 : b → bc; r4 : b → c}.
The following code excerpt corresponds to Π1, when the current state is running:

bStateInS = false;

n1 = 0; n2 = 0; n3 = 0; n4 = 0;

ap = 0; bp = 0; cp = 0;

do

:: s > 0 -> s = s - 1; n1 = n1 + 1; ap = ap + 1; bp = bp + 1

:: a > 0 -> a = a - 1; n2 = n2 + 1; cp = cp + 1

:: b > 0 -> b = b - 1; n3 = n3 + 1; bp = bp + 1; cp = cp + 1

:: b > 0 -> b = b - 1; n4 = n4 + 1; cp = cp + 1

:: else -> break

od;

a = a + ap; b = b + bp; c = c + cp;

if

:: (a > Max || b > Max || c > Max || s > Max ||

n1 > Sup || n2 > Sup || n3 > Sup || n4 > Sup) ->

state = crash; bStateInS = true

:: else ->

if

:: s == 0 && a == 0 && b == 0 ->

state = halt; bStateInS = true

:: else ->

state = running; bStateInS = true

fi

fi

The do-od loop realizes the non-deterministic application of the rules. It is fol-
lowed next by an if statement deciding the next state from the set {halt, crash,
running}. The code is self-explanatory, for more details [12] can be consulted, so
we will focus next on the properties to be checked.

Towards Automated Verification of P Systems Using Spin 243

Property LTL specification

G p [] (p || !pInS)

F p < > (p && pInS)

pU q (p || !pInS) U (q && pInS)

X p X (!pInS U (p && pInS))

pR q (p && pInS) V (q || !pInS)

G (p → q) [] (!p || q || !pInS)

G (p → F q) [] ((p -> < >(q && pInS)) || !pInS)

Table 1. Reformulating the P system properties for the Promela implementation

2.4 LTL Properties Transformation

The P system semantics is implemented for Spin as a sequence of transitions
(or operations) and, consequently, additional intermediary states are introduced
into the model. Furthermore, we consider that in the Promela executable model
every possible path will contain infinitely often states corresponding to the P
system configurations (i.e. the intermediary states do not form infinite loops).
From these assumptions, it follows that every path in the P system has at least one
corresponding path in the Promela model and vice versa. Furthermore, restrictions
on the multiplicity of objects and rules applied are imposed.

The next step needed for model checking P systems with Spin is reformulating
the properties to be verified in equivalent formulas for the associated Promela
model. For example, a property like ‘always b > 0’ (the number of occurrences of b
objects is always greater than 0) should become for the Promela model ‘Globally
b > 0 or not pInS’ (we expect b > 0 only for configurations corresponding to the
P system, but not for the intermediary steps).

In Table 1 we summarize the transformations of all LTL formulas for the
Promela specification, as they are formally proved in [12].

3 Tool Description

The P system model-checking approach presented has been implemented in
a software tool, which can perform ‘on-the-fly’ verification of properties ex-
pressed in a natural language. The tool, as well as the specifications of the
P systems used in our tests, can be downloaded from the following web page:
http://fmi.upit.ro/evomt/psys/psys_spin.html. An advantage of this tool is
that the users do not need to be experts in formal verification or to write com-
plex, specialized LTL formulas, in order to apply the model checking verification
technique. They only need to specify the P-system, using P-Lingua, to choose the
type of property to be checked and the conversion to Promela is performed auto-
matically. If the property is false, the counterexample returned by Spin is parsed

244 R. Lefticaru, C. Tudose, F. Ipate

by the tool and represented as a P system computation. A high-level overview of
the process is presented in Fig. 1.

Answer

True, if the LTL

formula is satisfied or

False + counterexample

P system computation

Decoded counterexample

Promela file

Executable

model of the P

system

SPIN
model

checker

P system property

natural language

LTL formula

for the Promela model

P-lingua file

P system

definition file

Fig. 1. Tool overview

In order to use the tool, the next steps are required:

• The user specifies the P-system in P-Lingua. He/she can also check, using the
P-Lingua parsers, if the P system definition file is syntactically correct.

• The P-system is automatically transformed into a Promela specification.
• The user specifies some basic configuration properties over the system variables.
• The user selects a type of property to be verified, given in natural language,

and the basic propositions involved in that property.
• The property is then automatically translated into an LTL formula suitable for

the generated Promela model.
• The verification of the P system is performed automatically and if the answer

returned by Spin is false, the tool will provide a counterexample expressed as
a P system computation (with the configurations and set of rules applied at
each step).

The main drawback of the application of previous model checking approaches
to formal verification of P systems is the difficulty for non-expert users (P systems
users) to formulate the appropriate properties in temporal logic. In our case, this
could be further amplified by the fact that the LTL formulas would have to be
transformed as described earlier. To alleviate this problem, we define some patterns,
representing high level descriptions of frequently asked questions, formulated in
natural language. This patterns, which simplify the specification of properties to
be verified, are employed in our tool.

Let AP be a set of atomic propositions. An example of such proposition could
be: the number of b objects from a membrane m is greater than 0. Let p ∈ AP . A
basic configuration property φ over AP is defined as:

φ ::= p | φ ∨ φ | φ ∧ φ.

Each pattern is given as a natural language phrase that contains one or more
basic configuration properties. The patterns considered so far are (in what follows

Towards Automated Verification of P Systems Using Spin 245

φ and ψ are basic configuration properties, the statement must hold on every
computation):

• Invariance (G φ): a configuration in which φ is true must persist indefinitely.
• Occurrence (F φ): a configuration where φ is true will eventually occur.
• Next occurrence (X φ): a configuration where φ is true will occur after

initial configuration.
• Sequence (φ U ψ): a configuration where φ is true is reachable and is neces-

sarily preceded all the time by a configuration in which ψ is true.
• Dual of sequence (φ R ψ): on every computation, along the computation

up to and including the first configuration where φ is true, in all the configura-
tions ψ holds. However, a configuration where φ is true is not required to hold
eventually.

• Consequence (G (φ → F ψ)): if a configuration where φ is true occurs, then
a configuration where ψ is true will eventually occur.

• Instantly consequence (G (φ → ψ)): if a configuration where φ is true
occurs, then ψ holds also in that configuration.

These patterns can be used to formulate frequently asked questions, without
worrying about their transformation into a temporal logic formula suited for our
model. The transformation is performed automatically, employing the formulas
from Table 1.

4 Case Studies

In this section, we present some examples of P system properties we have verified
using the framework introduces previously. In order to simplify the presentation,
we consider only one-membrane P systems. The first example is Π1, the P system
defined in Section 2. This is a simple P system, that has been used in several papers.
In order to facilitate the comparison with other representations, such as SMV [11]
or Event-B [10], Π1 is presented among the examples on which we illustrate our
approach. The other P systems have different properties, that can be verified (e.g.
the number of c objects is always the square of b objects), or present polarizations.

4.1 Simple P Systems

Consider the following one-membrane P system: Π1 = (V1, µ1, w1, R1), having
V1 = {s, a, b, c}, µ1 = [1]1, w1 = s, R1 = {r1 : s → ab; r2 : a → c; r3 : b → bc; r4 :
b → c}. Its corresponding derivation tree is given in Fig. 4.1.

In order to realize the verification of the desired properties, the basic config-
uration propositions, which are part of the formulas must be specified first, for
example:

246 R. Lefticaru, C. Tudose, F. Ipate

s

abr1

bc2r2r3

bc3r3

bc4r3 c4r4

c3r4

c2r2r4

Fig. 2. Derivation tree for Π1

Prop. ID Property Promela proposition

pab1 a==1 && b==1 #define pab1 (a==1 && b==1)

pab0 a==0 || b==0 #define pab0 (a==0 || b==0)

pc0 c==0 #define pc0 (c==0)

pa0c2 a==0 && c==2 #define pa0c2 (a==0 && c==2)

ps0 s==0 #define ps0 (s==0)

pa0 a==0 #define pa0 (a==0)

pa1 a==1 #define pa1 (a==1)

pc2 c==2 #define pc2 (c==2)

p1 s>0 #define p1 (s>0)

p2 c>1 #define p2 (c>1)

The first two columns are introduced by the user and they represent the basic
configuration property and its name (or ID). The third column is based on the
previous two and it is inserted automatically in the Promela specification. Having
the basic proposition defined, more complex properties can be translated from a
natural language into LTL formulas and verified using Spin. A set of properties
checked for Π1 is presented in Table 2.

A counterexample is received for every false property, e.g. s =⇒ ab corresponds
to the second verified property from Table 2, which states that in the next config-
uration a = 0 ∧ b = 0. Similarly, the third property, expressing the invariance of c
objects, c = 0, is falsified by s =⇒ ab =⇒ bc2.

Consider the following one-membrane P system: Π2 = (V2, µ2, w2, R2), having
V2 = {s, a, b, c, x}, µ2 = [1]1, w2 = s, R2 = {r1 : s → abcx; r2 : a → ab; r3 : b →
bc2; r4 : x → xc}. The computation of this P system is s =⇒ abcx =⇒ ab2c4x =⇒
ab3c9x =⇒ ab4c16x =⇒ . . . and it does not halt. It can be easily observed that
in every configuration the number of occurrences of c objects is the square of the

Towards Automated Verification of P Systems Using Spin 247

Properties LTL specifications for Spin Truth

Next occurrence: pab1 X (!pInS U (pab1 && pInS)) true
Next occurrence: pab0 X (!pInS U (pab0 && pInS)) false
Invariance: pc0 [] (pc0 || !pInS) false
Occurrence: pa0c2 <> (pa0c2 && pInS) true
Dual of sequence: ps0, pc0 (ps0 && pInS) V (pc0 || !pInS) true
Sequence: pc0, pa0 ((pc0) || !pInS) U ((pa0) && pInS) true
Instantly consequence: pb0, pa0 [](!pb0 || pa0 || !pInS) true
Consequence: p1, p2 []((p1 -> <>(p2 && pInS)) || !pInS) true

Table 2. Set of properties verified for Π1.

number of b objects. Some properties, which take into account the value of the
variable in the previous configuration, var old, and the current computation step,
are:

Prop. ID Property Promela proposition

pbc c==b*b #define pbc (c==b*b)

p2 c-2*b_old-c_old-1==0 #define p2 (c-2*b_old-c_old-1==0)

pStep1 step>=1 #define pStep1 (step>=1)

pb b==b_old+1 #define pb (b==b_old+1)

pc16 c==16 #define pc16 (c==16)

px0 x==0 #define px0 (x==0)

px1 x==1 #define px1 (x==1)

Properties LTL specifications for Spin Truth

Invariance: pbc [] (pbc || !pInS) true
Occurrence: pc16 <> (pc16 && pInS) true
Instantly consequence: pStep1, pb [] (!pStep1 || pb || !pInS) true
Instantly consequence: pStep1, p2 [] (!pStep1 || p2 || !pInS) true
Sequence: px0, px1 (px0 || !pInS) U (px1 && pInS) true

Table 3. Sample of properties verified for Π2.

4.2 P Systems with Polarizations

Consider the following P system with charges: Π3 = (V3, µ3, w3, R3), having
V3 = {a, b, c, d}, µ3 = [1]1, w3 = a3, R3 = {r1 : [a]−1 → [a, d]01; r2 : [a]01 →
[ab]+1 ; r3 : [a]+1 → [ac]−1 }. The computation of this P system is [a3]01 =⇒ [a3b3]+1 =⇒
[a3b3c3]−1 =⇒ [a3b3c3d3]01 =⇒ [a3b6c3d3]+1 =⇒ [a3b6c6d3]−1 =⇒ . . . and it does not
halt. It can be easily observed that the number of each object is always a multiple

248 R. Lefticaru, C. Tudose, F. Ipate

of 3; also, if the charge is 0, then the number of occurrences of b, c, d is equal.
Examples of properties which can be formulated are:

Prop. ID Property Promela proposition

pa3 a%3==0 #define pa3 (a%3==0)

pagt0 a>0 #define pagt0 (a>0)

pba b%a==0 #define pba (b%a==0)

pch0 ch==0 #define pch0 (ch==0)

pch1 ch==1 #define pch1 (ch==1)

pbcd (b==c && c==d) #define pbcd ((b==c && c==d))

Properties LTL specifications for Spin Truth

Invariance: pa3 [] ((pa3) || !pInS) true
Instantly consequence pagt0, pba [] (!pagt0 || pba || !pInS) true
Instantly consequence ch0, pbcd [] (!pch0 || pbcd || !pInS) true
Instantly consequence ch1, pbcd [] (!pch1 || pbcd || !pInS) false

Table 4. Sample of properties verified for Π2

5 Related Work

A first approach to P system model checking is presented in [1]. The authors use
executable specifications written in Maude, a software system supporting rewriting
and equational logic, to verify LTL properties of P systems.

The decidability of model-checking properties for P systems has been analysed
in [5, 6] and the experiments realized show that Spin is preferable over Omega ‘to
serve as the back-end solver in a future P system model-checker’.

The probabilistic model checker Prism is employed in [18] to answer specific
questions about stochastic P systems.

An approach to P system test generation, based on model checking, is pre-
sented in [11, 13] and uses the NuSMV symbolic model checker. This approach is
compared with P system model checking using Spin in [12] and the experimental
results obtained show that Spin achieves better performance with P system mod-
els. A very recent work on P system verification [10] uses the ProB model checker
to verify P systems represented in Event-B, a modelling language considered to be
an evolution of the B language.

6 Conclusions and Future Work

In this paper, we present a method to automatically verify P systems using the Spin
model checker. The theoretical foundations of this approach have been presented

Towards Automated Verification of P Systems Using Spin 249

in [12] and its advantages have been shown, in comparison to previous work, that
use another main stream model checker, NuSMV [13].

The tool presented in this paper is intended to help designing and verifying P
systems by automatically transforming the P-Lingua specifications into Promela,
the language accepted by the Spin model checker. The P system properties are
specified in a natural language after which they are translated automatically into
LTL specifications for the Promela model and then the Spin model checker is run
against them. In case a counterexample is received, the Spin trace is decoded and
expressed as a P system computation.

Future work consists in extending the tool to accept other classes of P systems,
with division and dissolving rules. More experiments will be performed to deter-
mine the performance of the Spin model checker for more complex systems, such
as those solving SAT problems.

Acknowledgment

This work was supported by CNCSIS - UEFISCSU, project number PNII - IDEI
643/2008.

References

1. Oana Andrei, Gabriel Ciobanu, and Dorel Lucanu. Executable specifications of P
systems. In Giancarlo Mauri, Gheorghe Păun, Mario Pérez-Jiménez, Grzegorz Rozen-
berg, and Arto Salomaa, editors, Membrane Computing, volume 3365 of Lecture Notes
in Computer Science, pages 126–145. Springer Berlin / Heidelberg, 2005.

2. Gabriel Ciobanu, Mario J. Pérez-Jiménez, and Gheorghe Păun, editors. Applications
of Membrane Computing. Natural Computing Series. Springer, 2006.

3. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999.

4. Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. Model checking. MIT
Press, Cambridge, MA, USA, 1999.

5. Zhe Dang, Oscar Ibarra, Cheng Li, and Gaoyan Xie. On model-checking of P systems.
In Cristian Calude, Michael Dinneen, Gheorghe Păun, Mario Pérez-J́ımenez, and
Grzegorz Rozenberg, editors, Unconventional Computation, volume 3699 of Lecture
Notes in Computer Science, pages 82–93. Springer Berlin / Heidelberg, 2005.

6. Zhe Dang, Oscar H. Ibarra, Cheng Li, and Gaoyan Xie. On the decidability of
model-checking for P systems. Journal of Automata, Languages and Combinatorics,
11(3):279–298, 2006.

7. Rob Gerth, Doron Peled, Moshe Y. Vardi, R. Gerth, Den Dolech Eindhoven, D. Peled,
M. Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic verification of linear
temporal logic. In In Protocol Specification Testing and Verification, pages 3–18.
Chapman & Hall, 1995.

8. Gerard Holzmann. Spin model checker, the: primer and reference manual. Addison-
Wesley Professional, first edition, 2003.

9. http://www.p lingua.org. The P-lingua website. last visited, April 2011.

250 R. Lefticaru, C. Tudose, F. Ipate

10. Florentin Ipate and Adrian Ţurcanu. Modelling, verification and testing of P systems
using Rodin and ProB. In Ninth Brainstorming Week on Membrane Computing
(BWMC 2011), page this volume, 2011.

11. Florentin Ipate, Marian Gheorghe, and Raluca Lefticaru. Test generation from P sys-
tems using model checking. Journal of Logic and Algebraic Programming, 79(6):350–
362, 2010.

12. Florentin Ipate, Raluca Lefticaru, and Cristina Tudose. Formal verification of P
systems using Spin. International Journal of Foundations of Computer Science,
22(1):133–142, 2011.

13. Raluca Lefticaru, Florentin Ipate, and Marian Gheorghe. Model checking based
test generation from P systems using P-lingua. Romanian Journal of Information
Science and Technology, 13(2):153–168, 2010. Special issue on membrane comput-
ing, devoted to Eighth Brainstorming Week on Membrane Computing (selected and
revised papers).

14. Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foun-
dations of Computer Science, pages 46–57. IEEE, 1977.

15. Gheorghe Păun. Computing with membranes. Journal of Computer and System
Sciences, 61(1):108–143, 2000.

16. Gheorghe Păun. Membrane Computing: An Introduction. Springer-Verlag, 2002.
17. Gheorghe Păun, Grzegorz Rozenberg, and Arto Salomaa, editors. The Oxford Hand-

book of Membrane Computing. Oxford University Press, 2010.
18. Francisco José Romero-Campero, Marian Gheorghe, Luca Bianco, Dario Pescini,

Mario J. Pérez-Jiménez, and Rodica Ceterchi. Towards probabilistic model checking
on P systems using PRISM. In Hendrik Jan Hoogeboom, Gheorghe Păun, Grzegorz
Rozenberg, and Arto Salomaa, editors, Membrane Computing - 7th International
Workshop, WMC 2006, Revised, Selected, and Invited Papers, volume 4361 of Lecture
Notes in Computer Science, pages 477–495. Springer, 2006.

MP Modeling of Glucose-Insulin Interactions in
the Intravenous Glucose Tolerance Test

Vincenzo Manca, Luca Marchetti, and Roberto Pagliarini

University of Verona
Department of Computer Science
Strada Le Grazie 15, 37134 Verona, Italy
{vincenzo.manca,luca.marchetti,roberto.pagliarini}@univr.it

Summary. The Intra Venous Glucose Tolerance Test (IVGTT) is an experimental pro-
cedure in which a challenge bolus of glucose is administered intra-venously and plasma
glucose and insulin concentrations are then frequently sampled. An open problem is to
construct a model representing simultaneously the entire control system. In the last three
decades, several models appeared in the literature. One of the mostly used one is known
as the minimal model, which has been challenged by the dynamical model. However,
both the models have not escape from criticisms and drawbacks. In this paper we ap-
ply Metabolic P systems theory for developing new physiologically based models of the
glucose-insulin system which can be applied to the Intra Venous Glucose Tolerance Test.
We considered ten data-sets obtained from literature and for each of them we found an
MP model which fits the data and explains the regulations of the dynamics. Finally, fur-
ther analysis are planned in order to define common patterns which explain, in general,
the action of the glucose-insulin control system.

1 Introduction

Glucose is the primary source of energy for body’s cells. It is transported from the
intestines or liver to body cells via the bloodstream, and is absorbed by the cells
with the intervention of the hormone insulin produced by the pancreas. Blood glu-
cose concentration is a function of the rate of glucose which enters the bloodstream,
the glucose appearance, balanced by the rate of glucose which is removed from the
circulation, the glucose disappearance. Normally, in mammals this concentration
is tightly regulated as a part of metabolic homeostasis. Indeed, although several
exogenous factors, like food intake and physical exercise, affect the blood glucose
concentration level, the pancreatic endocrine hormones insulin and glucagon1 keep
this level in the range 70−110 mg/dl. When the blood glucose concentration level
is high, the pancreatic β−cells release insulin which lowers that concentration by
1 Others gluco-regulatory hormones are: amylin, GLP-1, glucose-dependent in-

sulinotropic peptide, epinephrine, cortisol, and growth hormone.

252 V. Manca, L. Marchetti, R. Pagliarini

Fig. 1. The glucose homeostasis.

inducing the uptake of the excess glucose by the liver and other cells and by in-
hibiting hepatic glucose production. On the contrary, when the glucose level is
low, the pancreatic α−cells release glucagon that results in increasing the blood
glucose level by acting on liver cells and causing them to release glucose into the
blood2 (see Figure 1).

If the plasma glucose concentration level is constantly out of the usual range,
then we are in presence of blood glucose problems. In particular, when this level
is constantly higher than the range upper bound (which is referred to as hyper-
glycemia), we are in presence of Diabetes: a dreadfully severe and pervasive illness
which concerns a good number of structures in the body. Diabetes is classified into
two main categories known as type I and type II, respectively. Type I diabetes is
an illness concerning the pancreas during which the body demolishes its individual
β-cells and the pancreas is no longer capable of making insulin. By means of no
insulin to stir glucose within the body units, glucose assembles in the bloodstream
and the concentrations rise. This category is most widespread among citizens be-
low 30 and frequently appears in early days. The crest beginning is 12-14 years of
period. Insulin injections are necessary for the residue of the victims’ life. Luck-
ily, Type I Diabetes results in 5 − 10% of all categories of diabetes [30]. In quick
disparity, Type II diabetes asserts the remaining 90%. It typically begins at the
age of 35 or older and is particularly widespread in the aged. This type of dia-
betes may include an amalgamation of troubles. The pancreas is at rest capable
to compose insulin, however regularly it does not compose sufficient or/and the
units are not capable to utilize the insulin. Contrasting type I diabetes, insulin
injections are not at all times essential, since the body is capable of at rest making
a little insulin. Every now and then oral prescriptions, habitual work outs and
high-quality nourishment are capable to controlling the elevated glucose heights.
However, in both the types of diabetes, the illness can lead to several compli-
cations like retinopathy, nephropathy, peripheral neuropathy and blindness [6].
2 We refer the reader to [24] for a deeper description of the processes that underlies the

glucose-insulin system.

MP Modeling of Glucose-Insulin Interactions 253

Fig. 2. Plots of a IVGTT data-set starting from the time of the glucose injection. The
glucose dynamics is given on the left, while the insulin dynamics is given on the right.

While different regulatory interactions in the pathogenesis of this disease remain
to be clarified [9] the number of diabetic patients is increasing [33]. This motivates
researches to study the glucose-insulin endocrine regulatory system. In particular,
the glucose-insulin system has been the object of repeated, mathematical mod-
elling attempts. The majority of the proposed models were devoted to the study
of the glucose-insulin dynamics by considering experimental data obtained by in-
travenous glucose tolerance test, shortly IVGTT, and the oral glucose tolerance
test, shortly OGTT. In these models, the insulin-glucose system is assumed to be
composed of two linked subsystems modelling the insulin action and the glucose
kinetics, respectively. Since the action of insulin is delayed with respect to plasma
glucose, the subsystems of insulin action typically includes a delay.

However, considering the limits of the existing mathematical models, a need
exists to have reliable mathematical models representing the glucose-insulin sys-
tem. The mere fact that several models have been proposed [4, 14, 23] shows
that mathematical and physiological considerations have to be carefully integrated
when attempting to represent the glucose-insulin regulatory mechanism. In par-
ticular, in order to model the IGVTT, a reasonably simple model is required. It
has to have a few parameters to be estimated and has to have dynamics consistent
with physiology and experimental data. Further, the model formulation, while ap-
plicable to model the IGVTT, should be logically and easily extensible to model
other envisaged experimental procedures.

2 The intravenous glucose tolerance test

The intravenous glucose tolerance test focuses on the metabolism of glucose in a
period of 3 hours starting from the infusion of a bolus of glucose at time t = 0.
It is based on the assumption that, in a healthy person, the glucose concentration
decreases exponentially with time following the loading dose (see Figure 2). It

254 V. Manca, L. Marchetti, R. Pagliarini

has been recommended as a method to asses the use of insulin in order to identify
subjects which may be diabetics [26]. This test makes use of an interaction between
clearance of insulin from β-cells and the actions of insulin to accelerate glucose
disappearance and to inhibit endogenous glucose production.

The IVGTT starts by rapidly, less that 3 minutes, inject into the blood stream
of a subject a 33% glucose solution (i.e. 0.33g/Kg) in order to induce an impulsive
increase of the plasma concentrations of glucose and insulin. These concentrations
are measured, by taking blood samples, during a period of three hours beginning
at injection. The samples are then analysed for glucose and insulin context. In
fact, in a healthy person, after this time interval the glucose and insulin plasma
concentrations return normal (i.e. they return to their basal levels). Differently,
this does not happen in a sick person.

Qualitatively, the plasma glucose level starts at a peak due to the injection,
drops to a minimum which is below the basal glucose level, and then gradually
returns to the basal level. At the same time, the plasma insulin concentration
rapidly rises to a peak which follows the injection, drops to a lower level which is
still above the basal insulin level, rises again to a lesser peak, and then gradually
drops to the basal level. Depending to the state of the patient, there can be wide
variations from this response. The glucose concentration may not drop below the
basal level, the first peak of insulin level may have different amplitude, there may
be no secondary peak in insulin concentration, or there may be more than two
peaks in insulin.

3 Mathematical models of the intravenous glucose tolerance
test

A variety of mathematical models, statistical methods and algorithms have been
proposed to understand different aspects of diabetes. In this section we briefly
review the two mathematical models which had the most important impact in
diabetology for modelling the intravenous glucose tolerance test. They have been
useful to assess physiological parameters and to study the glucose-insulin interac-
tions. However, they have not escape from criticism and drawbacks.

Although several others models have been proposed [2], the real start of mod-
eling glucose-insulin dynamics is due to the minimal model developed in [3, 32]. It
has been characterized as the simplest model which is able to describe the glucose
metabolism reasonably well by using the smallest set of identifiable and meaningful
parameters [3, 27]. Several versions based on the minimal model have been pro-
posed, and the reader can find further information on them in [2, 7]. The minimal
model has been formulated by using the following system of differential equations:

MP Modeling of Glucose-Insulin Interactions 255

dG(t)
dt

= − (p1 +X(t))G(t) + p1Gb

dX(t)
dt

= −p2X(t) + p3 (I(t)− Ib) (1)

dI(t)
dt

= p4 (G(t)− p5) t− p6 (I(t)− Ib)

where G(t) [mg/dl] and I(t) [µUI/ml] are plasma glucose and insulin concentra-
tion at time t [min], respectively. X(t) [min−1] is an auxiliary function which mod-
els the time delay of the insulin consumption on glucose. Gb and Ib are the subject
baseline blood glucose and insulin concentration, while pi, for i = 1, 2, . . . , 6, are
the model’s parameters (we refer the reader to [3, 32] for all the details connected
to these parameters). The first two equations of (1) represent the glucose disap-
pearance subsystem, while the third one describes the insulin kinetic subsystem.
In the second subsystem, the following rule is applied:

(G(t)− p5) =
{

(G(t)− p5) if G(t) > p5

0 if G(t) ≤ p5
(2)

while the multiplication by t is introduced to approximate the hypothesis that the
effect of circulating hyperglicemia on the rate of pancreatic secretion of insulin is
proportional both to the attained hyperglicemia and to the time delay from the
glucose injection [32].

Although (1) is very useful in physiology research, it has some dynamical and
mathematical drawbacks. First, some results produced by this model are not re-
alistic [10]. Second, the glucose-insulin regulatory mechanism is an integrated dy-
namical system having feedback regulations, while the minimal model is composed
of two subsystems. The parameters of these two subsystems are to be separately
fitted from the available data, but by following this approach an internal coherency
check is omitted. Last, the artificial non-observable variable X(t) is introduced to
model the delay in the action of insulin.

To overcome these drawbacks the dynamical model has been proposed in [10]:

dG(t)
dt

= −b1G(t)− b4I(t)G(t) + b7

G(t) ≡ Gb ∀t ∈ [−b5, 0) (3)
dI(t)
dt

= −b2I(t) +
b6
b5

∫ t

t−b5

G(s)ds.

It is a delay integro-differential equation model which is a more realistic representa-
tion of the glucose-insulin dynamics which follows an IVGTT. Although it retains
the physiological hypotheses underlying the first equation of (1), non-observable
state variables are not introduced. Moreover, the physiological assumption under-
lying the third equation of (1), that pancreas is able to linearly increase its rate of
insulin production with respect to the time, is not taken into account. The dynami-
cal model assumes that the glucose concentration depend i) on insulin-independent

256 V. Manca, L. Marchetti, R. Pagliarini

net glucose tissue uptake, ii) on spontaneous disappearance and iii) on constant
liver glucose production. The insulin concentration, instead, is assumed to depend
i) on a spontaneous constant-rate decay, which is due to the insulin catabolism,
and ii) on pancreatic secretion. In particular, the insulin secretion at time t is
assumed to be proportional to the average value in the b5 minutes which precede
t, where b5 is assumed to lie in a range from 5 to 30.

The term b6
b5

∫ t

t−b5
G(s)ds represents the decaying memory kernel [8], which is

introduced to model the time delay. The physiologic meaning of the delay kernel
reflects the pancreas’ sensitivity to the blood glucose concentration. At a given
time t, the pancreas will produce insulin at a rate proportional to the suitably
weighted average of the plasma glucose concentrations in the past.

The dynamical model allows simultaneous estimation of both insulin secretion
and glucose uptake parameters. However, it is conceivable that the dynamical
model may not be considerable appropriate under all circumstance [25]. This is
due to the fact that the IVGTT data related to several subjects could be best
fitted by using different delay kernels. Therefore, an extension of (3) is proposed
in [25], where a generic weight function ω is introduced in the delay integral kernel
modeling the pancreatic response to glucose level. In this way, the second equation
of (3) becomes:

dI(t)
dt

= −b2I(t) + b6

∫ ∞
0

ω(s)G(t− s)ds (4)

where ω(s) is assumed to be a non-negative square integrable function on R+ =
[0,∞), such that

∫∞
0
ω(s)ds = 1 and

∫∞
0
s · ω(s)ds is equal to the average time

delay. The idea is that different patients populations show different shapes of the
kernel function ω, and then suitable parametrization of such a function could offer
the possibility to differentiate between patient populations by means of experi-
mental parameter identification.

Despite the models (3) and (4) solve the drawbacks of the minimal model, they
made some assumptions that may not be realistic. The main restriction regards
the way used to introduce the delay, for which the justification is only based on
a subjective assumption. This limit implies the study of others ways to consider
the time delay. To this end, an alternative approach to incorporate the time delay
is analyzed in [13], where the authors propose a model which includes (3) and (4)
as special cases. In this model, the delay is modelled by using a Michaelis-Menten
form, and the effective secretion of insulin at time t is assumed to be regulated by
the concentrations of glucose in the b5 minutes which precede time t instead of the
average amount in that period.

4 MP modelling

An important problem of systems biology is the mathematical definition of a dy-
namical system which explains the observed behaviour of a phenomenon by in-
creasing what is already known about it. An important line of research of biolog-
ical modelling is aimed at defining new classes of discrete models avoiding some

MP Modeling of Glucose-Insulin Interactions 257

limitations of classical continuous models based on ordinary differential equations
(ODEs). In fact, very often, the evaluation of the kinetic reaction rates is problem-
atic because it may require measurements hardly accessible in living organisms.
Moreover, these measurements dramatically alter the context of the investigated
processes. In contrast to ODEs, Metabolic P systems (MP systems) [18, 16, 17, 15],
based on Păun’s P systems [28], were introduced for modelling metabolic systems.

In MP systems no single instantaneous kinetics are addressed, but rather the
variation of the whole system under investigation is considered, at discrete time
points, separated by a specified macroscopic interval τ . The dynamics is given along
a sequence of steps and, at each step, it is governed by partitioning the matter
among reactions which transform it. Metabolic P systems proved to be promising
in many contexts and their applicability was tested in many situations where
differential models are prohibitive due to the unavailability or the unreliability of
the kinetic rates [15, 21, 19, 20, 22, 5].

A Metabolic P system is essentially a multiset grammar where multiset trans-
formations are regulated by functions. Namely, a rule like a + b → c means that
a number u of molecules of kind a and u of kind b are replaced by u molecules
of type c. The value of u is the flux of the rule application. Assume to consider
a system at some time steps i = 0, 1, 2, . . . , t, and consider a substance x that is
produced by rules r1, r3 and is consumed by rule r2. If u1[i], u2[i], u3[i] are the
fluxes of the rules r1, r2, r3 respectively, in the passage from step i to step i + 1,
then the variation of substance x is given by:

x[i+ 1]− x[i] = u1[i]− u2[i] + u3[i].

In an MP system it is assumed that in any state the flux of each rule is pro-
vided by a function, called regulator. Substances, reactions, and regulators (plus
parameters which are variables different from substances occurring as arguments
of regulators) specify a discrete dynamics at steps indexed in the set N of natural
numbers. Moreover, a temporal interval τ , a conventional mole size ν, and sub-
stances masses are considered, which specify the time and population (discrete)
granularities respectively. They are scale factors that do not enter directly in the
definition of the dynamics of a system, but are essential for interpreting it at a
specific physical level of mass and time granularity.

Here we apply an algorithm, called Log-Gain Stoichiometric Stepwise Regres-
sion (LGSS) [19], to define new MP models which describe the glucose-insulin
dynamics in the IVGTT. LGSS represents the most recent solution, in terms of
MP systems, of the inverse dynamics problem, that is, of the identification of (dis-
crete) mathematical models exhibiting an observed dynamics and satisfying all the
constraints required by the specific knowledge about the modelled phenomenon.
The LGSS algorithm combines and extends the log-gain principles developed in the
MP system theory [17, 15] with the classical method of Stepwise Regression [12],
which is a statistical regression technique based on Least Squares Approximation
and a statistical F-test [11]. The method can be correctly applied independently

258 V. Manca, L. Marchetti, R. Pagliarini

Fig. 3. The dynamics calculated by means of the MP grammar given in Table 1.

from any knowledge about reaction rate kinetics, and can provide, with respect to
differential models, different and even simpler mathematical formulations.

The first MP grammar we give is the one of Table 1 which models the dynamics
depicted in Figure 2. The model is given by 2 substances (G for the blood glucose
level and I for the level of insulin) and 4 rules, the first two related to glucose and
the others related to insulin: i) r1: constant release of glucose in the blood, ii) r2:
glucose disappearance due to a term which represents the normal decay of glucose
(depending on G) and to a term which indicate the action of insulin (depending
on both G and I), iii) r3: release of insulin by the pancreas which depends on the
blood glucose level, and iv) r4: normal decay of insulin.

The MP grammar is defined for a value of τ of two minutes3 (which gives the
length of the time interval between two consecutive computed step) and allows
the calculation of the curves depicted in Figure 3. The dynamics is quite close to
the data-set we started from. In fact, the multiple coefficients of determination
R2

G and R2
I , calculated to estimate the goodness of the approximation for glucose

and insulin [1], are equal to 0.94 and 0.87 respectively4. The usage of the term
G3 in ϕ3, against the possibility of choosing monomials of G with lower degree,
expresses the high sensitivity of the pancreas β−cells for the blood glucose level
when they release insulin.
3 In order to maintain the models as accurate as possible, we adopt here a time unit
τ of two minutes because it is the minimal time granularity used in the data-sets we
considered.

4 The coefficient value ranges from 1, when the regression model perfectly fits the data,
to 0 according to the goodness of the model fit.

r1 : ∅ → G ϕ1 = 0.6
r2 : G→ ∅ ϕ2 = 0.12G+ 1.6 · 10−6G2I
r3 : ∅ → I ϕ3 = 49.9 + 0.1G3

r4 : I → ∅ ϕ4 = 0.84I

Table 1. The MP grammar which models the dynamics given in Figure 2 (τ = 2 min).

MP Modeling of Glucose-Insulin Interactions 259

Fig. 4. The dynamics calculated by means of the MP grammar given in Table 2.

The formula of each regulator has been calculated by means of LGSS which
selects suitable linear combinations starting from a given set of possible basic
functions, called regressors, associated to each rule. Due to the biological meaning
given to each reaction, in our analysis we forced: i) ϕ1 to be a constant, ii) ϕ2 to be
a linear combination of monomials of G and I, iii) ϕ3 to be a linear combination of
monomials of G, and iv) ϕ4 to depend on I. These assumptions, however, do not
take into account the time delays which occur in the insulin release reducing the
precision of the models. If we consider the dynamics of Figure 3, for example, the
simulation fails to describe the insulin peak which occurs between the 20th and the
40th minute. This missing peak is quite small and for this reason our approximation
seems to be enough precise, but if we try to define new MP grammars for other
data-sets related to the IVGTT, we reach very soon situations in which the missing
peaks are very high causing a dramatical lost of precision.

In the differential models introduced in Section 3, the delay of the insulin
release is approached by adding artificial substances or by considering a delay
integral kernel. Here, instead, we solve the problem by assuming that ϕ3 is given
by a linear combinations of monomial of G and of its memories. This permits to
point out in a more natural and detailed way the different delays which act in the
insulin production. If we indicate by Gt = (G[i]|0 ≤ i ≤ t) the vector containing
the time-series of glucose in a given data-set, we define the time-series Gt

−m related
to the memory of glucose shifted m steps after as the vector

Gt
−m = (Gb, Gb, . . . , Gb︸ ︷︷ ︸

m times

, G[0], G[1], . . . , G[t−m])

where Gb is the basal value of the blood glucose level5. Memories are very simple
to be managed in MP systems and increase a lot the approximation power of the
models as showed in [21], where memories have been applied in the context of
periodical function approximation.

The extension of the MP grammar of Table 1 which considers glucose memories
is given in Table 2, while the new calculated dynamics is depicted in Figure 4.
5 Since during the IVGTT the glucose level gradually returns to its basal level, here we

assume Gb to be equal to the last value of the considered glucose time-series.

260 V. Manca, L. Marchetti, R. Pagliarini

The new model provides a better data fitting for the insulin curve. The multiple
coefficient of determination for the insulin is increased from 0.87 to 0.95. Moreover
ϕ3 gives now an idea of the different phases which act in the blood release of insulin
by pointing out their strength (given by the degree of the selected monomials) and
their delay (given by the delay of the selected memories).

In our analysis we considered ten different data-sets published in literature
and obtained by applying the intravenous glucose tolerance test to ten healthy pa-
tients. All subjects have negative family histories for diabetes and other endocrine
diseases. During the test, the patients were on no medications and had no current
illness. Each test has been performed during the morning after an overnight fast,
and for the three days preceding the test each subject followed a diet composed
of 55% carbohydrates, 30% fats, and 15% proteins. The curves of the considered
data-sets are very different form each other, especially the curve related to the
insulin dynamics which exhibits values and peaks of different height and at dif-
ferent delays. In all the cases, however, we found MP models which provide good
data fitting (the average of the calculated multiple coefficients of determination
for all the models is greater than 0.95 for both glucose and insulin). In Table 3 we
provide the regulators related to four of the considered data-sets, and the plotting
of the corresponding calculated dynamics for the insulin. The depicted dynamics
exhibit examples of all the different scenarios we observed concerning the insulin
release in our data-sets. We can have situations where the insulin curve exhibits
many peaks which model the different release phases, or we can have dynamics
without significant peaks but that are in any case modelled by a delayed insulin
secretion (this is the case of data-set 1).

The total number of monomials used to define ϕ3 can be changed by acting
on the thresholds used by LGSS during the computing of its statistical tests. The
models provided here have been defined trying to balance their simplicity with their
power of approximation. Each model provides a sort of picture of the metabolism
of the subject which have been analysed.

r1 : ∅ → G ϕ1 = 0.6
r2 : G→ ∅ ϕ2 = 0.12G+ 1.6 · 10−6G2I
r3 : ∅ → I ϕ3 = 1.5 · 10−5G6 + 0.25G2

−6 + 0.17G2
−8

+2.65G−16 + 3.6G−26

r4 : I → ∅ ϕ4 = 0.65I

Table 2. The MP grammar which models the dynamics given in Figure 2 (τ = 2 min)
enriched with the usage of glucose memories (subscripts give the delay in minutes of each
memory).

MP Modeling of Glucose-Insulin Interactions 261

Data-set Regulators

ϕ1 = 0.011
1 ϕ2 = 6.6 · 10−5GI

ϕ3 = 0.5G2
−4

ϕ4 = 0.16I

ϕ1 = 0.056
2 ϕ2 = 5.2 · 10−4I + 8.1 · 10−5GI

ϕ3 = 3.76 · 10−6G7 + 0.74G2
−8 + 0.02G3

−20 + 0.21G2
−40 + 10−4G5

−68

ϕ4 = 0.49I

ϕ1 = 0.12
3 ϕ2 = 0.02G+ 1.9 · 10−4GI

ϕ3 = 0.04G3
−2 + 3.3 · 10−5G6

−6 + 0.44G2
−20 + 0.04G3

−24

ϕ4 = 0.5I

ϕ1 = 0.11
ϕ2 = 6.2 · 10−4GI

4 ϕ3 = 0.1G2
−2 + 0.9G−6 + 1.07G−10 + 2.4 · 10−4G4

−24

+5.4 · 10−7G6
−32 + 5.3 · 10−8G7

−34

ϕ4 = 0.4I

Table 3. MP regulation and the calculated insulin dynamics related to four of the
considered data-sets (τ = 2 min).

5 Conclusions and ongoing work

The main goal of this work was to study the possible application of MP systems
as an alternative to model the intravenous glucose tolerance test. In Section 2
we briefly described the test, while Section 3 reviewed two mathematical models
which had the most important impacts in diabetology and analysed their limits
and drawbacks. In Section 4 we proposed the use of Metabolic P systems to model

262 V. Manca, L. Marchetti, R. Pagliarini

the IVGTT data-sets by combining some principles of MP systems with statistical
techniques to obtain MP models of IVGTT. Our preliminary results and analysis
suggest that glucose-insulin metabolism needs a careful evaluation which makes
evident different aspects related to different subjects. MP models seem to provide
comprehensive tools for discovering personalized glucose-insulin dynamics. Fur-
ther analysis should permit to characterize the differentiation between subjects
by considering physiological parameters such as the height, the weight, the work,
the sport activity, and so on. Despite these differences, we are working in order to
point out common features in the regulation governing the release of insulin. Our
regression approach allows us a quantitative analysis which could highlight results
which have been only theorized during the development of the differential models.

References

1. A. D. Aczel, and J. Sounderpandian. Complete Business Statistics. Mc Graw Hill,
International Edition, 2006.

2. R.N. Bergman, D.T. Finegood, and M. Ader. Assessment of insulin sensitivity in
vivo. Endocr Rev, 6(1):45–86, 1985.

3. R.N. Bergman, Y.Z. Ider, C.R. Bowden, and C. Cobelli. Quantitative estimation of
insulin sensitivity. Am J Physiol Endocrinol Metab, 236(6):667–677, 1979.

4. A. Boutayeb and A. Chetouani. A critical review of mathematical models and data
used in diabetology. Biomedical engineering online, 5:43+, 2006.

5. A. Castellini, G. Franco, and R. Pagliarini. Data analysis pipeline from laboratory
to MP models. Natural Computing, 10(1):55–76, 2011.

6. E. Cerasi. Insulin deficiency and insulin resistance in the pathogenesis of niddm: is
a divorce possible? Diabetologia, 38(8):992–997, 1995.

7. C. Cobelli and A. Mari. Validation of mathematical models of complex endocrine-
metabolic systems. a case study on a model of glucose regulation. Medical and
Biological Engineering and Computing, 21(4):390–399, 1983.

8. J.M. Cushing. Integrodifferential equations and delay models in population dynamics.
Lecture notes in biomathematics. Springer-Verlag, 1977.

9. M. Derouich and A. Boutayeb. The effect of physical exercise on the dynamics of
glucose and insulin. Journal of Biomechanics, 35(7):911 – 917, 2002.

10. A. De Gaetano and O. Arino. Mathematical modelling of the intravenous glucose
tolerance test. Journal of Mathematical Biology, 40(2):136–168, 2000.

11. N. Draper and H. Smith. Applied Regression Analysis, 2nd Edition. John Wiley &
Sons, New York, 1981.

12. R.R. Hocking. The Analysis and Selection of Variables in Linear Regression. Biomet-
rics 32, 1976.

13. J. Li, Y. Kuang, and B. Li. Analysis of ivgtt Glucose-Insulin Interaction Models
with time delay. Discrete and Continuous Dynamical Systems Series B, 1(1):103–
124, 2001.

14. A. Makroglou, J. Li, and Y. Kuang. Mathematical models and software tools for the
glucose-insulin regulatory system and diabetes: an overview. Appl. Numer. Math.,
56(3):559–573, 2006.

15. V. Manca. Metabolic P systems. Scholarpedia 5(3):9273, 2010.

MP Modeling of Glucose-Insulin Interactions 263

16. V. Manca. Fundamentals of Metabolic P Systems. In [29], chapter 19, Oxford Uni-
versity Press, 2010.

17. V. Manca. Log-Gain Principles for Metabolic P Systems. In Condon, A. et al.
(eds), Algorithmic Bioprocesses, Natural Computing Series, chapter 28, pp. 585–605,
Springer-Verlag, 2009.

18. V. Manca, L. Bianco, and F. Fontana. Evolutions and Oscillations of P systems:
Theoretical Considerations and Application to biological phenomena. In Membrane
Computing, WMC 2004, LNCS 3365, pp. 63–84, Springer, 2005.

19. V. Manca and L. Marchetti. Log-Gain Stoichiometic Stepwise regression for MP
systems. International Journal of Foundations of Computer Science, 22(1):97–106,
2011.

20. V. Manca and L. Marchetti. Goldbeters Mitotic Oscillator Entirely Modeled by MP
Systems. Gheorghe M. et al. (Eds.): CMC 2010, LNCS 6501, pp. 273–284, Springer-
Verlag Berlin Heidelberg, 2010.

21. V. Manca and L. Marchetti. Metabolic approximation of real periodical functions.
The Journal of Logic and Algebraic Programming 79:363–373, 2010.

22. V. Manca, R. Pagliarini, and S. Zorzan. A photosynthetic process modelled by a
metabolic P system. Natural Computing, 8(4):847–864, 2009.

23. A. Mari. Mathematical modeling in glucose metabolism and insulin secretion. Curr
Opin Clin Nutr Metab Care, 5(5):495–501, 2002.

24. F. H. Martini. Fundamentals of Anatomy and Physiology. Benjamin Cummings, 8
edition, 2008.

25. A. Mukhopadhyay, A. De Gaetano, and O. Arino. Modelling the intravenous glu-
cose tolerance test: A global study for single-distributed-delay model. Discrete and
Continuous Dynamical Systems Series B, 4(2):407–417, 2004.

26. National Diabetes Data Group. Classification and diagnosis of diabetes mellitus and
other categories of glucose intolerance. Diabetes, 28(28):1039–1057, 1979.

27. G. Pacini and R. N. Bergman. Minmod: a computer program to calculate insulin
sensitivity and pancreatic responsivity from the frequently sampled intravenous glu-
cose tolerance test. Computer Methods and Programs in Biomedicine, 23(2):113 –
122, 1986.

28. G. Păun. Membrane Computing. An Introduction. Springer, 2002.
29. G. Păun, G. Rozenberg, and A. Salomaa (eds): Oxford Handbook of Membrane

Computing. Oxford University Press, 2010.
30. K. I. Rother. Diabetes treatment bridging the divide. The New England Journal of

Medicine, 356(15):1499–1501.
31. G. Segre, G.L. Turco, and Vercellone G. Modeling blood glucose and insulin kinetics

in normal, diabetic and obese subjects. Diabetes, 22(2):94–103, 1973.
32. G. Toffolo, R.N. Bergman, D.T. Finegood, C.R. Bowden, and C. Cobelli. Quantita-

tive estimation of beta cell sensitivity to glucose in the intact organism: a minimal
model of insulin kinetics in the dog. Diabetes, 29(12):979–990, 1980.

33. S. Wild, G. Roglic, A. Green, R. Sicree, and H. King. Global prevalence of diabetes.
Diabetes Care, 27(5):1047–1053, 2004.

BFS Solution for Disjoint Paths in P Systems

Radu Nicolescu and Huiling Wu

Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand
r.nicolescu@auckland.ac.nz, hwu065@aucklanduni.ac.nz

Summary. This paper continues the research on determining a maximum cardinality
set of edge- and node-disjoint paths between a source cell and a target cell in P systems.
We review the previous solution [3], based on depth-first search (DFS), and we propose
a faster solution, based on breadth-first search (BFS), which leverages the parallel and
distributed characteristics of P systems. The runtime complexity shows that, our BFS-
based solution performs better than the DFS-based solution, in terms of P steps.

1 Introduction

P systems is a bio-inspired computational model, based on the way in which chem-
icals interact and cross cell membranes, introduced by Păun [16]. The essential
specification of a P system includes a membrane structure, objects and rules. All
cells evolve synchronously by applying rules in a non-deterministic and (potentially
maximally) parallel manner. Thus, P systems is a strong candidate as a model for
distributed and parallel computing.

Given a digraph G and two nodes, s and t, the disjoint paths problem aims to
find the maximum number of s-to-t edge- or node-disjoint paths. There are many
important applications that need to find alternative paths between two nodes, in
all domains. Alternative paths are fundamental in biological remodelling, e.g., of
nervous or vascular systems. Multipath routing can use all available bandwidth
in computer networks. Disjoint paths are sought in streaming multi-core applica-
tions that are bandwidth sensitive to avoid sharing communication links between
processors [17]. The maximum matching problem in a bipartite graph can also be
transformed to the disjoint paths problem. In case of non-complete graphs, Byzan-
tine Agreement requires at least 2k + 1 node-disjoint paths, between each pair of
nodes to ensure that a distributed consensus can occur, with up to k failures [9].

It is interesting to design a native P system solution for the disjoint path
problem. In this case, the input graph is the P system structure itself, not as data
to a program. Also, the system is fully distributed, i.e. there is no central node and
only local channels (between structural neighbours) are allowed. In 2010, Dinneen,

266 R. Nicolescu, H. Wu

Kim and Nicolescu [3] proposed the first P solution, as a distributed version of
the Ford-Fulkerson algorithm, based on depth-first search (DFS). This solution
searches by visiting nodes sequentially, which is not always efficient. To exploit
the parallel potential of P systems, we propose a faster P system solution—a
distributed version of the Edmonds-Karp algorithm, which concurrently searches
as many paths as possible in breadth-first search (BFS).

This paper is organized as follows. Section 2 defines a simplified P system,
general enough to cover most basic families. Section 3 describes the disjoint paths
problem and the strategies for finding disjoint paths in digraphs. Section 4 dis-
cusses the specifics of the disjoint paths problem in P systems. Section 5 reviews
the previous DFS-based solution [3] and sets out our faster BFS-based solution.
Section 6 presents the P system rules for the disjoint paths algorithm using BFS.
Section 7 compares the performance of the BFS-based and DFS-based algorithms,
in terms of P steps, and the relative performance of the BFS-based solution simula-
tion on sequential vs. parallel (multi-core) hardware. Finally, Section 8 summarizes
our work and highlights future work.

2 Preliminary

Essentially, a static P system is specified by the membrane structure, objects
and rules. The membrane structure can be modeled as: a rooted tree (cell-like
P systems [16]), a directed acyclic graph (hyperdag P systems [11], [12], [13]), or
in a more general case, an arbitrary digraph (neural P systems [10], [14]). Usually,
the objects are symbols from a given alphabet, but one can also consider strings
or other more complex structures (such as tuples). P systems combine rewriting
rules that change objects in the region and communication rules that move objects
across membranes. Here, we define a simple P system, with priorities, promoters
and duplex channels as a system, Π = (O, σ1, σ2, . . . , σn, δ), where:

1. O is a finite non-empty alphabet of objects;
2. σ1, . . . , σn are cells, of the form σi = (Qi, si,0, wi,0, Ri), 1 ≤ i ≤ n, where:
• Qi is a finite set of states;
• si,0 ∈ Qi is the initial state;
• wi,0 ∈ O∗ is the initial multiset of objects;
• Ri is a finite ordered set of rewriting/communication rules of the form:

s x →α s′ x′ (y)β |z, where: s, s′ ∈ Qi, x, x′, y, z ∈ O∗, α ∈ {min,max},
β ∈ {↑, ↓, l}.

3. δ is a set of digraph arcs on {1, 2, . . . , n}, without symmetric arcs, representing
duplex channels between cells.

The membrane structure is a digraph with duplex channels, so parents can send
messages to children and children to parents, but the disjoint paths strictly follow
the parent-child direction. Rules are prioritized and are applied in weak priority
order [15].

BFS Solution for Disjoint Paths in P Systems 267

The general form of a rule, which transforms state s to state s′, is s x →α

s′ x′ (y)βγ |z. This rule consumes multiset x, and then (after all applicable rules
have consumed their left-hand objects) produces multiset x′, in the same cell
(“here”). Also, it produces multiset y and sends it, by replication, to all parents
(“up”), to all children (“down”), or to all parents and children (“up and down”),
according to the value of target indicator β ∈ {↑, ↓, l} (effectively, here we use the
repl communication mode, exclusively). α ∈ {min,max} describes the rewriting
mode. In the minimal mode, an applicable rule is applied exactly once. In the
maximal mode, an applicable rule is used as many times as possible and all rules
with the same states s and s′ can be applied in the maximally parallel manner.
Finally, the optional z indicates a multiset of promoters, which are not consumed,
but are required, when determining whether the rule can be applied.

3 Disjoint Paths

Given a digraph, G = (V,E), a source node, s ∈ V , and a target node, t ∈ V , the
edge- and node-disjoint paths problem looks for one of the largest sets of edge- and
node-disjoint s-to-t paths. A set of paths is edge-disjoint or node-disjoint if they
have no common arc or no common intermediate node. Note that node-disjoint
paths are also edge-disjoint paths, but the converse is not true. Cormen et al. [1]
give a more detailed presentation of the topics discussed in this section.

Figure 1 (a) shows two node-disjoint paths from 0 to 6, i.e. 0.3.6 and 0.1.4.6,
which are also edge-disjoint. In this scenario, this is the maximum number of
node-disjoint paths one can find. However, one could add to this set another path,
0.2.3.5.6, shown in Figure 1 (b), to obtain a set of three edge-disjoint paths.

 2

 3

 1

 6 0

 4

 5 2

 3

 1

 6 0

 4

 5
(a) (b)

Fig. 1. Node- and edge- disjoint paths.

The maximum edge-disjoint paths problem can be transformed to a maximum
flow problem by assigning unit capacity to each edge [5]. Given a set of already
established edge- or node-disjoint paths P , we recall the definition of the residual
digraph Gr = (Vr, Er):

• Vr = V and
• Er = (E \ EP) ∪ E′P , where EP is the set of arcs (u, v) that appear in the P

paths and E′P = {(v, u) | (u, v) ∈ EP }.

Briefly, the residual digraph is constructed by reversing the already established
path arcs. An augmenting path is an s-to-t path in the residual digraph, Gr.

268 R. Nicolescu, H. Wu

Augmenting paths are used to extend the existing set of established disjoint paths.
If an augmenting arc reverses an existing path arc (also known as a push-back
operation), then these two arcs “cancel” each other, due to zero total flow, and are
discarded. The remaining path fragments are relinked to construct an extended
set of disjoint paths. This round is repeated, starting with the new and larger set
of established paths, until no more augmenting paths are found. A more detailed
construction appears in Ford and Fulkerson maximal flow algorithm [5].

Example 1. Figure 2 illustrates a residual digraph and an augmenting path: (a)
shows a digraph, where two edge-disjoint paths, 0.1.4.7 and 0.2.5.7, are present; (b)
shows the residual digraph, formed by reversing path arcs; (c) shows an augmenting
path, 0.3.5.2.6.7, which uses a reverse arc, (5, 2); (d) discards the cancelling arcs,
(2, 5) and (5, 2); (e) relinks the remaining path fragments, 0.1.4.7, 0.2, 5.7, 0.3.5
and 2.6.7, resulting in now three edge-disjoint paths, 0.1.4.7, 0.2.6.7 and 0.3.5.7.

 3

 2

 1

 7 0
 5

 6
(a) (b)

 4

 3

 2

 1

 7 5

 6

 4

 0

(c)

 3

 2

 1

 7 5

 6

 4

 0

 3

 2

 1

 7 5

 6
(d)

 4

 0

 3

 2

 1

 7 0
 5

 6
(e)

 4

Fig. 2. Finding an augmenting path in the residual digraph.

The search for augmenting paths uses a search algorithm such as DFS (e.g., the
Ford-Fulkerson algorithm) or BFS (e.g., the Edmonds-Karp algorithm). A search
path in the residual graph (also known as a tentative augmenting path) starts
from the source node and tries to reach the target node. A successful search path
becomes a new augmenting path and is used (as previously explained) to increase
the number of disjoint paths. Conceptually, this solves the edge-disjoint paths
problem (at a high level). However, the node-disjoint paths require additional
refinements—usually by node splitting [8]. Each intermediate node, v, is split into
an entry node, v1, and an exit node, v2, linked by an arc (v1, v2). Arcs that in the
original digraph, G, were directed into v are redirected into v1 and arcs that were
directed out of v are redirected out of v2. Figure 3 illustrates this node-splitting
procedure: (a) shows the original digraph and (b) the modified digraph, where all
intermediate nodes are split—this is a bipartite digraph.

BFS Solution for Disjoint Paths in P Systems 269

4 Disjoint Paths in P Systems

Classical algorithms use the digraph as data and keep global information. In con-
trast, our solutions are fully distributed. There is no central cell to convey global
information among all cells, i.e. cells only communicate with their neighbors via
local channels (between structural neighbours).

Unlike traditional programs, which keep full path information globally, our
P systems solution records paths predecessors and successors locally in each cell,
similar to distributed routing tables in computer networks. To construct such
routing indicators, we assume that each cell σi is “blessed” with a unique cell ID
object, ιi, functioning as a promoter.

Although many versions of P systems accept cell division, we feel that this
feature should not be used here and we intentionally discard it. Rather than actu-
ally splitting the intermediate P cells, we simulate this by ad-hoc cell rules. This
approach could be in other distributed networks, where nodes cannot be split [3].
Essentially, node splitting prevents more than one unit flow to pass through an
intermediate node [8].

In our case, node splitting can be simulated by: (i) constraining in and out
flow capacities to one and (ii) having two visited markers for each cell, one for
a virtual entry node and another for a virtual exit node, extending the visiting
idea of classical search algorithms. Figure 3 illustrates a scenario when one cell,
y, is visited twice, first on its entry and then on its exit node [3]. Assume that
path π = s.x.y.z.t, is established. Consider a search path, τ , starting from cell, s,
and reaching cell, y, in fact, y’s entry node. This is allowed and y’s entry node
is marked as visited. However, to constrain its in-flow to one, y can only push-
back τ on its in-flow arc, (x, y). Cell x’s exit node becomes visited, x’s out-flow
becomes zero and τ continues on x’s outgoing arc, (x, z). When τ reaches cell
z, z’s entry node becomes visited and z pushes τ back on its in-flow arc, (y, z).
Cell y’s exit node becomes visited, y’s out-flow becomes zero and τ continues on
y’s outgoing arc, (y, t). When no other outgoing arc is present, the cell needs to
push-back from its exit node to its entry node, which is only possible if its entry
node is not visited. Finally, the search path, τ , reaches the target, t, and becomes
τ = s.y.x.z.t. After removing cancelling arcs and relinking the remaining ones, we
have two node-disjoint paths, s.x.z.t and s.y.t.

Fig. 3. Simulating node splitting [3].

270 R. Nicolescu, H. Wu

5 Distributed DFS-based and BFS-based Solutions

As mentioned in Section 3, augmenting paths can be searched using DFS or BFS.
Conceptually, DFS explores as far as possible along a single branch, before back-
tracking, while BFS explores as many branches as possible concurrently—P sys-
tems can exploit this parallelism.

5.1 Distributed DFS-based Strategy

Dinneen et al’s DFS-based algorithms find disjoint paths in successive rounds [3].
Each round starts with a set of already established disjoint paths, which is

empty at the start of the first round. The source cell, σs, starts to explore one of
the untried branches. If the search path reaches the target cell, σt, it confirms to σs
that a new augmenting paths was found; otherwise, it backtracks. While moving
towards σs, the confirmation reshapes the existing paths and the newly found
augmenting path, i.e. discarding cancelling arcs and relinking the rest, building a
larger set of paths,

If σs receives the confirmation (one search path was successful, i.e. a new
augmenting path was found), it broadcasts a reset signal, to prepare the next
round. Otherwise, if the search fails, σs receives the backtrack. If there is an
untried branch, the round is repeated. Otherwise, σs broadcasts a finalize signal
to all cells and the search terminates.

This search algorithm is similar to a classical distributed DFS. Other more
efficient distributed DFS algorithms [18] can be considered, but we do not follow
this issue here.

5.2 Distributed BFS-based Strategy

Our BFS-based algorithms also work in successive rounds:
Each round starts with a set of already established disjoint paths, which is

empty at the start of the first round. The source cell, σs, broadcasts a “wave”, to
find new augmenting paths. Current “frontier”cells send out connect signals. The
cells which receive and accept these connect signals become the new frontier, by
appending themselves at the end of current search paths. The advancing wave peri-
odically sends progress indicators back to the source: (a) connect acknowledgments
(at least one search path is still extending) and (b) path confirmations (at least
one search path was successful, i.e. at least a new augmenting path was found).
While travelling towards the source, each path confirmation reshapes the existing
paths and the newly found augmenting path, creating a larger set of paths.

If no progress indicator arrives in the expected time, σs assumes that the search
round ends. If at least one search path was successful (at least one augmenting
path was found), σs broadcasts a reset signal, which prepares the next round, by
resetting all cells (except the target). Otherwise, σs broadcasts a finalize signal to
all cells and the search terminates.

BFS Solution for Disjoint Paths in P Systems 271

In each round, an intermediate cell, σi, can be visited only once. Several search
paths may try to visit the same intermediate cell simultaneously, but only one of
them succeeds. Figure 4 (a) shows such a scenario: cells 1, 2 and 3 try to connect
cell 4, in the same step; but only cell 1 succeeds, via arc (1, 4). This choice operation
is further described in Section 6.

The target cell, σt, faces a subtle decision problem. When several search paths
arrive, simultaneously or sequentially, σt must quickly decide which augmenting
path can be established and which one must be ignored (in the current round).
We solve this problem using a branch-cut strategy. Given a search path, τ , its
branch ID is the cell ID of its first intermediate cell after the source, taken by τ .
Figure 4 (b) shows four potential paths arriving at cell 6: π = 0.1.6, τ1 = 0.1.3.6,
τ2 = 0.1.5.6 and τ3 = 0.2.4.6; their branch IDs are 1, 1, 1 and 2, respectively. Paths
π, τ1 and τ2 share the same branch ID, 1, and are incompatible. The following result
is straightforward:

Proposition 1. In any search round, search paths which share the same branch
ID are incompatible; only one of them can be accepted.

Therefore, the target cell accept or reject decision is based on branch ID. These
branch ID operations are further described in Section 6.

 2

 5

 1

 6 0

 3

 4

(b)

 3

 4

 1

 2

(a)

 5

{h}

c1.3

c2.4

c1.5
{e1 }

Fig. 4. BFS challenges. (a) A choice must be made between several search paths con-
necting the same cell (4), (b) Search paths sharing the same branch ID are incompatible.

6 P System Rules for Disjoint Paths Using BFS

The P system rules for edge- and node-disjoint paths are slightly different, due to
the simulated node-splitting approach, but the basic principle is the same. We first
discuss the edge-disjoint and then the changes required to cover the node-disjoint.

6.1 Rules for Edge-disjoint Paths

Algorithm 1 (P system algorithm for edge-disjoint paths)

Input: All cells start with the same set of rules and without any topological
awareness (they do not even know their local neighbours). All cells start in the

272 R. Nicolescu, H. Wu

same initial state. Initially, each cell, σi, contains a cell ID object, ιi, which is
immutable and used as a promoter. Additionally, the source cell, σs, and the target
cell, σt, are decorated with objects, a and z, respectively.

Output: All cells end in the same final state. On completion, all cells are
empty, with the following exceptions: (1) The source cell, σs, and the target cell,
σt, are still decorated with objects, a and z, respectively; (2) The cells on edge-
disjoint paths contain path link objects, for predecessors, pj , and for successors,
sk.

We use the following six states: S0, the initial state; S1, the quiescent state;
S2, the frontier state; S3, for previous frontier cells; S4, the final state; and S5, a
special state for the target cell.

Initially, all cells are in the initial state, S0. When each cell produces a catalyst-
like object, it enters the quiescent state, S1. When cells in S1 accept connect
signals, they enter the frontier state, S2, except the target which changes directly
to S5. Cells on the frontier send connect signals to neighbors and then change
to S3, to receive and relay progress indicators. Specifically, the target remains in
S5, after accepting the first connect signal (because it is always waiting to be
connected), until it receives the finalize signal. When the search finishes, all cells
transit to the final state, S4. Figure 5 shows all state transitions.

S1 S2 S3 S4 S5

receive connect signal send connect signal

receive finalize signal
receive connect signal

receive finalize signal

receive reset signal

receive reset signal

target receives 1st connect signal

S0

produce a catalyst

receive reset signal

receive finalize signal

receive finalize signal

receive & relay progress indicators

Fig. 5. State-chart of BFS-based algorithm.

We use these symbols to describe our edge-disjoint implementation:

• a indicates the source cell.
• z indicates the target cell.
• d indicates, in the source cell, that an augmenting path was found in the current

round (it appears in the source cell).
• ej records, in the target cell, the branch ID of a successful augmenting path

(i.e. σj is the first cell after the source, in this augmenting path).
• cs is the connect signal sent by the source cell, σs, to its children.
• cj.k is the connect signal sent by an intermediate cell, σk, to its children; j is

the branch ID.
• lj.k is the connect signal sent by an intermediate cell, σk, to its parents; j is

the branch ID.
• rj is the connect acknowledgment sent to cell, σj .

BFS Solution for Disjoint Paths in P Systems 273

• fj.k is the path confirmation of a successful augmenting path, sent by cell σj
to cell σk.

• h is a catalyst object in each cell.
• o is a signal broadcast by the source cell, σs, to make each cell produce one

catalyst object.
• u indicates the first intermediate cell after the source, which is produced on

receiving the connect signal, cs.
• b is the reset signal which starts a new round.
• g is the finalize signal which terminates the search.
• tj indicates that cell σj is a predecessor on a search path (recorded when a cell

accepts a connect signal).
• pj is a disjoint path predecessor (recorded when a successful augmenting path

is confirmed).
• sj is a disjoint path successor (recorded when a successful augmenting path is

confirmed).
• w, v implement a source cell timer to wait for the first response or confirmation.
• x, y implement another source cell timer to wait for the periodically relayed

response or confirmation.

We next present the rules and briefly explain them.

0. Rules in state S1:
1 S0 a→min S1 ah(o)↓
2 S0 o→min S1 h(o)↓
3 S0 o→max S1

1. Rules in state S1:
1 S1 o→max S1

2 S1 d→max S1

3 S1 b→max S1

4 S1 ej →max S1

5 S1 g →min S4 (g)↓
6 S1 v →max S1

7 S1 w →max S1

8 S1 x→max S1

9 S1 y →max S1

10 S1 fj.k →max S1

11 S1 tj →max S1

12 S1 rj →max S1

13 S1 a→min S2 a
14 S1 cjpj →min S1 upj
15 S1 cj.kpk →min S1 pk
16 S1 zhcj.k →min S5 zhpkej(fi.k)l|ιi
17 S1 zhcj →min S5 zhupj(fi.j)l|ιi
18 S1 hlj.ksk →min S2 htkejsk (rk)l

274 R. Nicolescu, H. Wu

19 S1 hcj →min S2 hutj (rj)l
20 S1 hcj.k →min S2 htkej (rk)l

2. Rules in state S2:
1 S2 b→min S1(b)↓
2 S2 g →min S4(g)↓
3 S2 ah→min S3 ahw(ci)↓|ιi
4 S2 hej →min S3 hej(lj.i)↑ (cj.i)↓|ιi
5 S2 hu→min S3 hu(li.i)↑ (ci.i)↓|ιi
6 S2 fj.k →max S2

7 S2 cj.k →max S2

8 S2 lj.k →max S2

3. Rules for state S3:
1 S3 b→min S1(b)↓
2 S3 g →min S4(g)↓
3 S3 axyyfj.i →min S3 adsjx|ιi
4 S3 axyyri →min S3 ax|ιi
5 S3 axyyyfj.i →min S3 adsjx|ιi
6 S3 axyyyri →min S3 ax|ιi
7 S3 adxyyy →min S1 a(b)↓
8 S3 axyyy →min S4 a(g)↓
9 S3 awvv →min S4 a(g)↓

10 S3 awvfj.i →min S3 adsjx|ιi
11 S3 awvri →min S3 ax|ιi
12 S3 x→min S3 y
13 S3 tjfk.i →min S3 pjsk(fi.j)l|ιi
14 S3 afj.i →min S3 asj |ιi
15 S3 pjsj →min S3

16 S3 ritj →min S3 tj(rj)l|ιi
17 S3 w →min S3 wv
18 S3 rj →max S3

19 S3 cj.k →max S3

20 S3 fj.k →max S3

21 S3 lj.k →max S3

4. Rules for state S4:
1 S4 g →max S4

2 S4 ej →max S4

3 S4 fj.k →max S4

4 S4 cj.k →max S4

5 S4 lj.k →max S4

6 S4 tj →max S4

7 S4 rj →max S4

8 S4 w →max S4

BFS Solution for Disjoint Paths in P Systems 275

9 S4 v →max S4

10 S4 u→max S4

11 S4 h→max S4

12 S4 o→max S4

5. Rules for state S5:
1 S5 cjpj →min S5 pj
2 S5 cj.k →min S5|ej
3 S5 cj.kpk →min S5 pk
4 S5 hcj.k →min S5 hpkej(fi.k)l|ιi
5 S5 hcj →min S5 hpj(fi.j)l|ιi
6 S5 g →max S4

7 S5 b→max S5

8 S5 fj.k →max S5

9 S5 lj.k →max S5

10 S5 tj →max S5

11 S5 rj →max S5

12 S5 u→max S5

The following paragraphs outline how these rules are used by each major cell
group: the source cell, frontier cells, other intermediate cells and the target cell.

Scripts for the source cell: In the initial state S0, the source cell, σs, indi-
cated by the special object a, starts by broadcasting an object, o, to all cells and
enters S1 (rule 0.1); each receiving cell creates a local catalyst-like object, h, and
enters S1 (rule 0.2).

Next, cell σs enters S2 (rule 1.13) and starts the search wave via connection
requests, cs (rule 2.3). Then, the source cell σs changes to state S3 and uses timers
to wait (a) one step for the the first progress indicators (rules 3.10, 3.11, 3.17),
and (b) two steps for further relayed progress indicators (rules 3.3, 3.4, 3.12). If
no progress indicator arrives when the timer overflows, cell σs waits one more
step (rules 3.5, 3.6). If still no expected progress indicator arrives, cell σs assumes
the round has ended. If an augmenting path was found in the current round, σs
broadcasts a reset signal b to reset all cells (except the target σt) to S1 (rule 3.7).
Otherwise, σs broadcasts a finalize signal, g, which prompts all cells to enter S4

(rules 3.8, 3.9).
It is interesting to note why the source cell needs to wait for one more step,

even when the timer overflows. An intermediate cell filters connect signals, using
rules 1.14–15, which have higher priority than the rules to accept a connect signal,
i.e. rules 1.18–20. The rules to accept a connect signal cannot apply in the same step
because of the different target states. For example, in Figure 6, path 0.2.4.6.7.9 is
found in the first round. In the second round, search paths 0.1.4 and 0.3.5 attempt
to connect to cell 6. Cell 6 discards cell 4’s connect signal, following the higher-
priority rule 1.15 and then, in the next step, accepts cell 5’s connect signal, using
rule 1.20. In this case, the source cell needs an extra one-step delay, to receive the

276 R. Nicolescu, H. Wu

relayed connect acknowledgment from cell 6. All unacceptable signals are discarded
in one step, so a one-step delay is enough.

 0 2

 5

 6

 1

 9 4

 3

 7

 8

Fig. 6. A particular case requiring a delayed connect acknowledgment.

Scripts for a frontier cell: An intermediate cell, σi, if it is unvisited in
this round, accepts exactly one connect signal and discards the rest; otherwise,
it discards all connect signals. By accepting one connect signal, σi enters S2 and
becomes a frontier cell to send connect signals. When σi sends its connect signals,
the frontier advances.

An intermediate cell, σi, may receive connect signals: (a) cs, connect signals
sent by the source cell, σs, to its children; (b) cj.k, connect signals sent by a
frontier cell, σk, to its children; (c) lj.k, connect signals sent by a frontier cell,
σk, to its parents. Received connect signals are checked for acceptability : (a) a cs
or cj.k connect signal is acceptable if it does not come from an established path
predecessor, which corresponds to a forward operation (rules 1.14, 1.15, 1.19, 1.20);
(b) a lj.k connect signal is acceptable if it comes from an established path successor,
which corresponds to a push-back operation (rule 1.18).

Cell σi becomes a frontier cell by accepting either: (1) a connect signal, cs,
from σs (rules 1.14, 1.19), in this case, cell σi (a) generates an u, indicating that
it is the first intermediate cell on the current search path (the first after cell σs);
(b) records its predecessor on the search path, σs, as ts; and (c) sends a connect
acknowledgment, rs, back to cell σs; or (2) a connect signal, cj.k or lj.k from σk
(rules 1.15, 1.18, 1.20), in this case, cell σi (a) records the branch ID, j, as ej ;
(b) records its predecessor on the search path, σk, as tk; and (c) sends a connect
acknowledgment, rk, back to cell σk.

Then, as a frontier cell, σi sends connect signals to neighbors and changes to
state S3: (1) if cell σi is marked by an u object, it uses its own ID, i, as the branch
ID to further generate connect signals, ci.i or li.i (rule 2.5); (2) otherwise, σi uses
the recorded ej as the branch ID to further generate connect signals, cj.i or lj.i
(rule 2.4).

Consider the scenario when several connect signals arrive simultaneously in
an unvisited cell, σi (see Figure 4 (a)). Cell σi makes a (conceptually random)
choice and selects exactly one of the acceptable connect signals, thus deciding
which search path can follow through. To solve this choice problem, we use an
object, h, which functions like a catalyst [15]. Object h is immediately consumed
by the rule which accepts the connect signal, therefore no other connect signal
is accepted (rules 1.16–20). Next, the catalyst, h, is recreated, but the cell also

BFS Solution for Disjoint Paths in P Systems 277

changes its state, thus it cannot accept another connect signal (not in the same
search round).

Scripts for other intermediate cell: A previous frontier cell, σi, relays
progress indicators: connect acknowledgments, ri (rule 3.16) and path confirma-
tions, fk.i (rule 3.13). On receiving path confirmations, σi transforms a temporary
path predecessor, tj , into an established path predecessor, pj , and records the path
successors, sk. In the next step, cell σi discards matching predecessor and succes-
sor objects (i.e. referring to the same cell), e.g., σi may already contain (from a
previous round) another predecessor-successor pair, pj′ , sk′ . If j = k′, then pj and
sk′ are deleted, as one end of the cancelling arc pair, (j, i) and (i, j); similarly, if
k = j′, then sk and pj′ are deleted (rule 3.15).

Scripts for the target cell: The target cell, σt, accepts either (1) a connect
signal from σs, cs, if it does not come from an established path predecessor (rules
1.17, 5.1, 5.5), or (2) a connect signal from a frontier cell σk, cj.k (rules 1.16, 5.2,
5.3, 5.4), which indicates the different branch ID (rule 5.2) and does not come
from an established path predecessor (rule 5.3). In case (1), cell σt: (a) generates
an u, indicating that it is the second cell on a search path (the first after cell σs);
(b) records its predecessor on the search path, σs, as ps; and (c) sends a path
confirmation ft.s, back to cell σs. In case (2), cell σt: (a) records the branch ID,
j, as ej ; (b) records its predecessor on the search path, σk, as pk; and (c) sends a
path confirmation, ft.k, back to cell σk.

This branch-cut strategy is illustrated in Figure 4 (b). It shows an established
path, π = 0.1.6, whose branch ID is recorded as e1. Consider the fate of other
search paths, τ1 = 0.1.3.6, τ2 = 0.1.5.6, and τ3 = 0.2.4.6, which attempt to reach
the target 6, later in the same round. τ1 sends the connect signal c1.3, which
is rejected. τ2 sends the connect signal c1.5, which is also rejected. τ3 sends the
connect signal c2.4, which is accepted. To summarize, in this example round, two
augmenting paths are established, π and τ3; other attempts are properly ignored.

It is important that recording objects ei are used as promoters, which enable
rules, without being consumed [7]. Otherwise, objects ei can be consumed before
completing their role; e.g., the rejection of τ1 would consume e1 and there would
be nothing left to reject τ2.

Example 2. Table 7 shows Algorithm 1 tracing fragments for stages (a), (c) and
(e) of Figure 2, illustrating how our P system solution works. In all stages, each
cell, σi, contains a promoter object, ιi, as the cell ID; the source cell, σ0, and the
target cell, σ7, are decorated by objects, a and z, respectively. The catalyst object,
h, remains in each cell after it is produced, until the cell enters the final state, S4.

In stage 1(a), the two established paths, 0.1.4.7 and 0.2.5.7, are recorded by
the following cell contents: σ0 : {s1, s2}, σ1 : {p0, s4}, σ2 : {p0, s5}, σ4 : {p1, s7},
σ5 : {p2, s7}, σ7 : {p4, p5}. In the source cell σ0, xy3 is a timer to wait for the
relayed progress indicators, which currently overflows. The object d indicates that
an augmenting path was found in the current round, so in the next step, the source
cell, σ0, broadcasts a reset signal to all cells to start a new round. Cells σ1, σ2, and

278 R. Nicolescu, H. Wu

Table 7. Algorithm 1 tracing fragments for stages (a), (c) and (e) of Figure 2.

Stage\Cell σ0 σ1 σ2 σ3

1(a) S3 ι0adhs1s2xy
3 S3 ι1hp0s4u S3 ι2hp0s5u S3 ι3ht0u

1(c) S3 ι0ahs1s2xy S1 ι1hp0s4u
2 S3 ι2e3hp0r3s5t5u

2 S3 ι3hr3t0u
2

1(e) S4 ι0as1s2s3 S4 ι1p0s4 S4 ι2p0s6 S4 ι3p0s5

Stage\Cell σ4 σ5 σ6 σ7
1(a) S3 ι4e1hp1s7 S3 ι5e2hp2s7 S3 ι6e2ht2 S5 ι7e1e2hp4p5z
1(c) S1 ι4f7.6hp1s7 S3 ι5e3f7.6hp2s7t3 S3 ι6e3f7.6ht2 S5 ι7e1e2e3hp4p5p6r3z
1(e) S4 ι4p1s7 S4 ι5p3s7 S4 ι6p2s7 S4 ι7p4p5p6z

σ3 have objects, u, indicating that they are the first intermediate cells after the
source, while cells σ4, σ5, σ6 contain objects, ej , which mean they should include
j as the branch ID when sending connect signals. The target cell, σ7, records the
already used branch IDs, e1 and e2.

In stage 1(c), the successful search path 0.3.5.2.6.7 is recorded as: σ3 : {t0},
σ5 : {t3}, σ2 : {t5}, σ6 : {t2}, σ7 : {p6} (the target records p6 directly). The target
cell σ7 also records the branch ID of the newly successful path, e3, and sends back
a path confirmation f7.6 to all its neighbors. In cell σ3, the objects, r3 and t0,
indicate that the connect acknowledgment needs to be relayed to the source cell
σ0. Thus, in the next step, cell σ0 receives a connect acknowledgment from cell σ3

and resets the timer.
In stage 1(e), all cells enter the final state S4 and there are three established

paths, 0.1.4.7, 0.2.6.7 and 0.3.5.7, which are recorded as: σ0 : {s1, s2, s3}, σ1 :
{p0, s4}, σ2 : {p0, s6}, σ3 : {p0, s5}, σ4 : {p1, s7}, σ5 : {p3, s7}, σ6 : {p2, s7},
σ7 : {p4, p5, p6}.

The preceding arguments indicate a bisimulation relation between our BFS-
based algorithm and the classical Edmonds and Karp BFS-based algorithm for
edge-disjoint paths [4]. The following theorem encapsulates all these arguments:

Theorem 1. When Algorithm 1 terminates, path predecessor and successor objects
listed in its output section indicate a maximal cardinality set of edge-disjoint paths.

6.2 Rules for Node-disjoint Paths

Algorithm 2 (P system algorithm for node-disjoint paths)

Input: As in the edge-disjoint paths algorithm of Algorithm 1.
Output: Similar to in the edge-disjoint paths algorithm. However, the prede-

cessor and successor objects indicate node-disjoint paths, instead of edge-disjoint
paths.

To simulate node splitting, the node-disjoint version uses additional symbols
(as before, rules assume that cell σi is the current cell):

• m indicates that the “entry node is visited”.
• n indicates that the “exit node is visited”.

BFS Solution for Disjoint Paths in P Systems 279

• q indicates that this cell’s in-flow and out-flow is one (or, equivalently, that this
cell is in an already established or confirmed path).

• tj.k indicates cell σi’s predecessor, σj , on a search path, recorded after it receives
the connect acknowledgment from cell σi’s successor, σk (before receiving this
acknowledgment, σi’s predecessor is temporarily recorded as tj .)

• rj.k is a connect acknowledgment sent by cell σj to cell σk.

0. Rules in state S1:
1 S0 a→min S1 ah(o)↓
2 S0 o→min S1 h(o)↓
3 S0 o→max S1

1. Rules in state S1:
1 S1 o→max S1

2 S1 d→max S1

3 S1 b→max S1

4 S1 ej →max S1

5 S1 g →min S4 (g)↓
6 S1 v →max S1

7 S1 w →max S1

8 S1 u→max S1

9 S1 m→max S1

10 S1 n→max S1

11 S1 fj.k →max S1

12 S1 tj.k →max S1

13 S1 tj →max S1

14 S1 rj.k →max S1

15 S1 a→min S2 a
16 S1 cjpj →min S1 pj
17 S1 cj.kpk →min S1 pk
18 S1 zhcj.k →min S5 zhpkej(fi.k)l|ιi
19 S1 zhcj →min S5 zhpj(fi.j)l|ιi
20 S1 hlj.ksk →min S2 htkejskn (ri.k)l|ιi
21 S1 hcj.kq →min S2 htkejmq (ri.k)l|ιi
22 S1 hcj →min S2 hutj (ri.j)l|ιi
23 S1 hcj.k →min S2 htkej (ri.k)l|ιi

2. Rules in state S2:
1 S2 b→min S1(b)↓
2 S2 g →min S4(g)↓
3 S2 ah→min S3 ahw(ci)↓|ιi
4 S2 hejm→min S3 hejm (lj.i)↑|ιi
5 S2 hejn→min S3 hejn (lj.i)↑ (cj.i)↓|ιi
6 S2 hej →min S3 hej (lj.i)↑ (cj.i)↓|ιi
7 S2 hu→min S3 hu(li.i)↑ (ci.i)↓|ιi

280 R. Nicolescu, H. Wu

8 S2 fj.k →max S2

9 S2 cj.k →max S2

10 S2 lj.k →max S2

3. Rules in state S3:
1 S3 b→min S1(b)↓
2 S3 g →min S4(g)↓
3 S3 hmlj.ksk →min S3 hmntkejsk (ri.k)l|ιi
4 S3 hejmn→min S3 hwej (lj.i)↑ (cj.i)↓|ιi
5 S3 axyyfj.i →min S3 adsjx|ιi
6 S3 axyyrj.i →min S3 ax|ιi
7 S3 axyyyfj.i →min S3 adsjx|ιi
8 S3 axyyyrj.i →min S3 ax|ιi
9 S3 adxyyy →min S1 a (b)↓|ιi

10 S3 axyyy →min S4 a (g)↓|ιi
11 S3 awvv →min S4 a(g)↓|ιi
12 S3 awvfj.i →min S3 adsjx|ιi
13 S3 awvrj.i →min S3 ax|ιi
14 S3 x→min S3 xy
15 S3 tj.kfk.i →min S3 pjskq (fi.j)l|ιi
16 S3 tjfk.i →min S3 pjskq (fi.j)l|ιi
17 S3 afj.i →min S3 asj |ιi
18 S3 pjsjq →min S3

19 S3 rk.itj.k →min S3 tj.k (ri.j)l|ιi
20 S3 tjrk.i →min S3 tj.k (ri.j)l|ιi
21 S3 tj.lrk.i →min S3 tj.ltj.k (ri.j)l|ιi
22 S3 w →min S3 wv
23 S3 arj.i →max S3 a|ιi
24 S3 cj.k →max S3

25 S3 fj.k →max S3

26 S3 lj.k →max S3

4. Rules in state S4:
1 S4 g →max S4

2 S4 ej →max S4

3 S4 q →max S4

4 S4 fj.k →max S4

5 S4 cj.k →max S4

6 S4 lj.k →max S4

7 S4 tj.k →max S4

8 S4 tj →max S4

9 S4 rj.k →max S4

10 S4 w →max S4

11 S4 v →max S4

12 S4 u→max S4

BFS Solution for Disjoint Paths in P Systems 281

13 S4 m→max S4

14 S4 n→max S4

15 S4 h→max S4

16 S4 o→max S4

5. Rules in state S5:
1 S5 cjpj →min S5 pj
2 S5 cj.k →min S5|ej
3 S5 cj.kpk →min S5 pk
4 S5 hcj.k →min S5 hpkej(fi.k)l|ιi
5 S5 hcj →min S5 hpj(fi.j)l|ιi
6 S5 g →max S4

7 S5 b→max S5

8 S5 fj.k →max S5

9 S5 lj.k →max S5

10 S5 tj.k →max S5

11 S5 tj →max S5

12 S5 rj.k →max S5

13 S5 u→max S5

When a cell, σi, is first reached by a search path, then both its “entry node”
and “exit node” become visited. If this search path is successful, then σi is marked
by one object q (rules 3.15, 3.16). In a subsequent round, new search paths can
visit σi (1) via an incoming arc (forward mode); (2) via an outgoing arc, in the
reverse direction (push-back mode) or (3) on both ways. When a search path visits
σi via an incoming arc, it marks σi with one object, m, indicating a visited entry
node (rule 1.21); in this case, the search path can only continue with a push-back
(rule 2.4). When a search path visits σi via an outgoing arc, it marks the cell with
one object, n, indicating a visited exit node (rule 1.20); in this case, the search
path continues with all other possible arcs (rule 2.5), i.e. all forward searches and
also a push-back on its current in-flow arc. A cell which has a visited entry node is
in state S3, but it can be later revisited by its exit node. Thus, in S3, we provide
extra rules to accept and send connect signals (rules 3.3, 3.4).

Cell, σi, can be visited at most once on each of its entry or exit nodes; but, it
can be visited both on its entry and exit nodes, in which case it has two temporary
predecessors (which simulate the node-splitting technique). In Figure 8, the search
path, 0.4.5.2.1.8.9.3.2.6.7.10, has visited cell 2 twice, once on its “entry” node and
again on its “exit” node. Cell 2 has two temporary predecessors, cells 5 and 3, and
receives progress indicators from two successors, cells 1 and 6. Progress indicators
relayed by cell 6 must be further relayed to cell 3 and progress indicators relayed
by cell 1 must be further relayed to cell 5. To make the right choice, each cell
records matching predecessor-successor pairs, e.g., cell 2 records the pairs t5.1 and
t3.6. For example, when the progress indicator r1.2 or f1.2 arrives, cell 2 knows to
forward it to the correct predecessor, cell 5. When the progress indicator r6.2 or
f6.2 arrives, cell 2 knows to forward it to the correct predecessor, cell 3.

282 R. Nicolescu, H. Wu

 0

 4 5

 1 2

 9

 3 10

 8

 6 7

Fig. 8. An example of node-disjoint paths.

The following theorem sums up all these arguments:

Theorem 2. When Algorithm 2 ends, path predecessors and successors objects
mentioned in its output section indicate a maximal cardinality set of node-disjoint
paths.

7 Performance of BFS-based Solutions

Consider a simple P system with n cells, m = |δ| arcs, where fe = the maximum
number of edge-disjoint paths, fn = the maximum number of node-disjoint paths
and d = the outdegree of the source cell. Dinneen at al. show that the DFS-based
algorithms for edge- and node-disjoint paths run in O(mn) P steps [3]. A closer
inspection, not detailed here, shows that this upper bound can be improved.

Theorem 3. The DFS-based algorithms run in O(md) P steps, in both the edge-
and node-disjoint cases.

We show that our algorithms run asymptotically faster (fe, fn ≤ d):

Theorem 4. Our BFS-based algorithms run in at most B(m, f) = (3m + 5)f +
4m+ 6 P steps, i.e. O(mf), where f = fe, in the edge-disjoint case, and f = fn,
in the node-disjoint case.

Proof. 1. Initially, the source cell broadcasts a “catalyst” in one step.
2. Then, the algorithm repeatedly searches augmenting paths. First, consider the

rounds where augmenting paths are found. In each round, each cell on the
search path takes two steps to proceed, i.e. one step to accept a signal and
one more step to send connect signals. Each search path spans at most m
arcs, thus it takes at most 2m steps to reach its end (with or without reaching
the target). All search paths in a round proceed in parallel. After the last
augmenting path in a round was found, it takes at most m steps to confirm to
the source. After receiving the last confirmation signal, the source cell waits
four steps (to ensure that it is the last) and then takes one step to broadcast a
reset signal. Therefore, each round, where augmenting paths are found, takes
at most 3m + 5 steps. At least one augmenting path is found in each round,
so the total number of search rounds is at most f .

BFS Solution for Disjoint Paths in P Systems 283

3. Next, consider the last search round, where no more augmenting paths are
found. This case is similar, but not identical, to the preceding case. Each cell
on the search path takes two steps to proceed, so it takes at most 2m steps to
search augmenting paths. The connect acknowledgment from the end cell of
the search path takes at most m steps to arrive at the source. The source waits
for three or four steps for the time-out: three steps, if it does not receive any
progress indicators; and four steps, otherwise. Then, the source cell broadcast
a finalize signal, which takes at most m steps to reach all cells.

4. Finally, all cells take one final step, to clear all irrelevant objects, and the
algorithm terminates.
To summarize, the algorithm runs in at most (3m+ 5)f + 4m+ 6 steps and its

asymptotic runtime complexity is O(mf).

Table 9 compares the asymptotic complexity of our BFS-based algorithms
against some well-known maximum flow BFS-based algorithms. Our BFS-based
algorithms are faster, because they leverage the potentially unbounded parallelism
inherent in P systems.

Table 9. Asymptotic worst-case complexity: classical BFS-based algorithms (steps),
P system DFS-based algorithms [3] (P steps) and our P system BFS-based algorithms
(P steps).

Edmonds-Karp [4] O(m2n) steps

Dinic [2] O(mn2) steps

Goldberg and Tarjan [6] O(nm log n2/m) steps

P System DFS-based [3] O(md) P steps

P System BFS-based [here] O(mf) P steps

Theorem 4 indicatess the worst-case upper bound, not the typical case. A
typical search path does not use all m arcs. Also, the algorithm frequently finds
more than one augmenting paths in the same search round, thus the number
of rounds is typically much smaller than f . Therefore, the average runtime is
probably much less than than the upper bound indicated by Theorem 4. Empirical
results, obtained with our in-house simulator (still under development) support
this observation.

Table 11, empirically compares the performance of our BFS-based algorithms
against the DFS-based algorithms [3], for the scenarios of Figure 10. The empirical
results show that BFS-based algorithms take fewer P steps than DFS-based algo-
rithms. The performance is, as expected, influenced by the number of nodes and
the density of the digraph. Typically, the ratio of BFS:DFS decreases even more,
with the complexity of the digraph. We conclude that, the empirical complexity
is substantially smaller than the asymptotic worst-case complexity indicated by
Theorem 4.

284 R. Nicolescu, H. Wu

 3

 2

 1

 7 0
 5

 6

 4

 4

 3

 1

 9 0
 7

 8

(c)

 5

 2
 6

 1

 4 5

 6

 2 3

(b) (a)

Fig. 10. Empirical tests of BFS-based and DFS-based algorithms.
Table 11. Empirical complexity of BFS-based and DFS-based algorithms (P steps).

Test BFS Empirical Complexity DFS Empirical Complexity
Case m f = fe, fn B(m, f) Edge-disjoint Node-disjoint Edge-disjoint Node-disjoint

(a) 10 3 151 44 45 63 62

(b) 9 2 106 24 24 61 59

(c) 24 4 410 66 75 241 194

8 Conclusions

We proposed the first BFS-based P system solutions for the edge- and node-disjoint
paths problems. As expected, because of potentially unlimited parallelism inherent
in P systems, our P system algorithms compare favourably with the traditional
BFS-based algorithms. Empirical results show that, in terms of P steps, our BFS-
based algorithms outperform the previously introduced DFS-based algorithms [3].

Several interesting questions and directions remain open. Can we solve this
problem using a restricted P system without states, without sacrificing the cur-
rent descriptive and performance complexity? What is the average complexity of
our BFS-based algorithms? How much can we speedup the existing DFS-based
algorithms, by use more efficient distributed DFS algorithms? An interesting av-
enue is to investigate a limited BFS design, in fact, a mixed BFS-DFS solution,
which combines the advantages of both BFS and DFS. Finally, another direction is
to investigate disjoint paths solutions on P systems with asynchronous semantics,
where additional speedup is expected.

Acknowledgments

The authors wish to thank Tudor Balanescu, Michael J. Dinneen, Yun-Bum Kim,
John Morris and three anonymous reviewers, for valuable comments and feedback
that helped us improve the paper.

References

1. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms.
The MIT Press, 3rd edn. (2009)

BFS Solution for Disjoint Paths in P Systems 285

2. Dinic, E.A.: Algorithm for solution of a problem of maximum flow in a network with
power estimation. Soviet Math. Dokl., 11, 1277–1280 (1970)

3. Dinneen, M.J., Kim, Y.B., Nicolescu, R.: Edge- and node-disjoint paths in P systems.
Electronic Proc. in TCS, 40, 121–141 (2010)

4. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for
network flow problems. J. ACM, 19(2), 248–264 (1972)

5. Ford, L.R., Jr., Fulkerson, D.R.: Maximal flow through a network. Canadian Journal
of Mathematics, 8, 399–404 (1956)

6. Goldberg, A.V., Tarjan, R.E.: A new approach to the maximum flow problem. J.
ACM, 35(4), 921–940 (1988)

7. Ionescu, M., Sburlan, D.: On p systems with promoters/inhibitors. J. Universal Com-
puter Science, 10(5), 581–599 (2004)

8. Kozen, D.C.: The Design and Analysis of Algorithms. Springer, New York, NY, USA
(1991)

9. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (1996)

10. Mart́ın-Vide, C., Păun, G., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems. Theor.
Comput. Sci. 296(2), 295–326 (2003)

11. Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Structured modelling with hyper-
dag P systems: Part A. Report CDMTCS-342, Centre for Discrete Mathe-
matics and Theoretical Computer Science, The University of Auckland, Auck-
land, New Zealand (December 2008), http://www.cs.auckland.ac.nz/CDMTCS/

researchreports/342hyperdagA.pdf

12. Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Structured modelling with hyperdag P sys-
tems: Part B. Report CDMTCS-373, Centre for Discrete Mathematics and Theoreti-
cal Computer Science, The University of Auckland, Auckland, New Zealand (October
2009), http://www.cs.auckland.ac.nz/CDMTCS//researchreports/373hP_B.pdf

13. Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Towards structured modelling with hyper-
dag P systems. Intern. J. Computers, Comm. and Control, 2, 209–222 (2010)

14. Păun, G.: Membrane Computing: An Introduction. Springer, New York, Inc., Secau-
cus, NJ, USA (2002)

15. Păun, G.: Introduction to membrane computing. In: Ciobanu, G., Pérez-Jiménez,
M.J., Păun, G. (eds.) Applications of Membrane Computing, pp. 1–42. Natural Com-
puting Series, Springer (2006)

16. Păun, G., Centre, T., Science, C.: Computing with membranes. J. Computer and
System Sciences, 61, 108–143 (1998)

17. Seo, D., Thottethodi, M.: Disjoint-path routing: Efficient communication for stream-
ing applications. In: IPDPS. pp. 1–12. IEEE (2009)

18. Tel, G.: Introduction to Distributed Algorithms. Cambridge Univ. Press (2000)

On a Contribution of Membrane Computing
to a Cultural Synthesis of Computer Science,
Mathematics, and Biological Sciences

Adam ObtuÃlowicz

Institute of Mathematics, Polish Academy of Sciences,
Śniadeckich 8, P.O.Box 21, 00-956 Warsaw, Poland
e-mail: adamo@impan.gov.pl

Summary. Some topic contribution of membrane computing to a cultural synthesis of
computer science, mathematics and biological sciences is presented.

1 Introduction

After a more than decade of the researches in the area of membrane computing,
cf. [19], initiated by Gheorghe Păun it is worth to propose a discussion about
a contribution of these researches to a cultural synthesis of computer science,
mathematics, and biological sciences.

An aim of the present paper is to initiate the discussion focusing on these its as-
pects which are familiar to the author whose research area comprises mathematical
foundations of computer science and foundations of mathematics itself.

The theme of the discussion was inspired by [11] and [2], where the goal of [11]
is to propose a framework that should allow a healthy and positive role for specu-
lations in mathematics although traditional mathematical norms discourage spec-
ulation whereas it is the fabric of theoretical physics. Thus a cultural synthesis of
mathematics and theoretical physics is understood in [11] more or less explicitly
as a mutual inspiration between the discussed areas.

We point out here that speculation in mathematics can be reinforced by com-
puter experiments, cf. provocative article [10], which could extend the discussion
in [11] to computer science with a regard to the relations between mathematical
thinking and algorithmic thinking, cf. [12].

The responses in [2] contain various opinions about a role of speculation in
mathematics from a defense of an importance of proofs, see S. Mac Lane’s response
continued in [14], to an acceptance of speculation as possessing equal rights to
proofs. The response due to R. Thom in [2] suggests also a cultural synthesis of
mathematics and biology.

288 A. ObtuÃlowicz

We propose a looking forward approach to a cultural synthesis of the areas
mentioned in the title of the present paper, where a cultural synthesis is also
understood as mutual inspiration.

In the next section we outline some topic contribution of membrane computing
to this cultural synthesis.

2 Topic contribution

We point out the following topics as a contribution of membrane computing to the
discussed synthesis:

A) biologically inspired self-assembly (randomized, cf. [15] and [16]) P systems
(with membrane division and creation) for solving NP complete problems,
cf. [17] and [21], which extend algorithmic thinking by a new idea of a (ran-
domized) algorithm for a construction of a self-assembly distributed system
realizing massively parallel computation,

B) spiking neural P systems, cf. [18], with learning problem solution, cf. [9], which
are a step towards digitalization1 of neural networks within mathematical neu-
roscience, cf. e.g. [3],

C) fractal constructs generated by P systems, cf. [8], with P systems for obtaining
homology groups, cf. [5], and a possibility to experiment with them (to predict
some mathematical results like in [10] to be proved with mathematical precision
like in [14]) via P-lingua programming environment designed in Seville, cf. [4]
and [20].

Concerning A) one can ask for a relation of randomized P systems in [15] and
randomized Gandy–Păun–Rozenberg machines [16] with probabilistic computing
devices discussed in [1].

References

1. Arora, S., Barak, B., Computational Complexity: A Modern Approach, Cambridge
Univ. Press, Cambridge, 2009.

2. Atiyah, M., et al., Responses to [11], Bull. Amer. Math. Soc. 30 (1994), pp. 178–207.
3. Bohte, S. M., Spiking Neural Networks, Professorschrift, Leiden University, 2003.
4. Dı́az-Pernil, D., Pérez-Hurtado, I., Pérez-Jiménez, M. J., Riscos-Núñez, A., A P-

Lingua Programming Environment for Membrane Computing, in: Membrane Com-
puting, Lecture Notes in Computer Science 5391, Springer, Berlin, 2009, pp. 187–203.

5. Dı́az-Pernil, D., Gutiérrez-Naranjo, M. A., Real, P., Sanchez-Canales, V., A cellular
way to obtain homology groups in binary 2D images, in: Eight Brainstorming Week
on Membrane Computing, Seville 2010, ed. M. A. Martinez-del-Amor et al., RGNC
Report 01/2010, Seville University, pp. 89–99.

1 in a similar way as cellular automata digitalize physics according to E. Fredkin, S. Wol-
fram, cf. [6], [7], [13]

Synthesis of Computer Science, Mathematics, and Biology 289

6. Fredkin, E., An introduction to digital philosophy, Internat. J. Theor. Phys. 42 (2003),
pp. 189–247.

7. Fredkin, E., Digital mechanics, Phys. D 45 (1990), pp. 254–270.
8. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Fractals and P systems, in: Fourth

Brainstorming Week on Membrane Computing, Seville 2006, vol. II, ed. C. Graciani
et al., Fenix Editora, 2006, pp. 65–86.

9. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., A spiking neural P systems based
model for Hebbian learning, in: Proceedings of 9th Workshop on Membrane Com-
puting, Edinburgh, July 28 – July 31, 2008, ed. P. Frisco et al., Technical Report
HW-MASC-TR-0061, School of Mathematical and Computer Sciences, Heriot–Watt
University, Edinburgh, UK, 2008, pp. 189–207.

10. Horgan, J., The death of proof, Scientific American 269, no. 4 (October 1993), pp. 74–
82.

11. Jaffe, A., Quinn, F., Theoretical mathematics: Towards a cultural synthesis of math-
ematics and theoretical physics, Bull. Amer. Math. Soc. 29 (1993), pp. 1–13,

12. Knuth, D. E., Algorithmic thinking and mathematical thinking, Amer. Math. Monthly
92 (1985), pp. 170–181.

13. Kůrka, P., Topological and Symbolic Dynamics, Société Mathématique de France,
Paris, 2003.

14. S. Mac Lane, Despite physicists, proof is essential in mathematics, Synthese 111
(1997), pp. 147–154.

15. A. ObtuÃlowicz, Probabilistic P systems, in: Membrane Computing, ed. Gh. Păun et
al., Lecture Notes in Computer Science 2597, Springer, Berlin, 2003, pp. 377–387.

16. A. ObtuÃlowicz, Randomized Gandy–Păun–Rozenberg machines, in: Membrane Com-
puting, Lecture Notes in Computer Science 6501, Springer, Berlin, 2011, pp. 305–324.

17. Păun, Gh., P systems with active membranes: Attacking NP complete problems, Jour-
nal of Automata, Languages and Combinatorics 6 (2000), pp. 75–90.

18. Păun, Gh., Pérez-Jiménez, M. J., Spiking neural P systems. Recent results, research
topics, presented at the 6th Brainstorming Week on Membrane Computing, Sevilla
2008, web page http://psystems.disco.unimib.it/download/leidenGR65.pdf

19. Păun, Gh., Rozenberg, G., Salomaa, A., The Oxford Handbook of Membrane Com-
puting, Oxford, 2009.

20. The P-Lingua website, http://www.p-lingua.org
21. Zandron, C., Ferretti, C., Mauri, G., Solving NP complete problems with active mem-

branes, in: Unconventional Models of Computation, UMC’2K, ed. I. Antoniu et al.,
Berlin, 2001, pp. 289–301.

Well-Tempered P Systems:
Towards a Membrane Computing Environment
for Music Composition

Adam ObtuÃlowicz

Institute of Mathematics, Polish Academy of Sciences,
Śniadeckich 8, P.O.Box 21, 00-956 Warsaw, Poland
e-mail: adamo@impan.gov.pl

Summary. A proposal of designing a membrane computing environment for music com-
position is outlined.

1 Introduction

We outline a proposal of designing a membrane computing environment for music
composition, where a basic theoretical concept for this environment is a notion
of a well-tempered P system with the adjective “well-tempered” understood here
in a similar way as in the title of Well-tempered computer of [12] and with the
notion of a P system defined as in [9]. The notion of a well-tempered P system is
explained in the next section as a result of a synthesis of some known concepts.

2 Well-tempered P systems

The notion of a well-tempered P system is proposed to be a result of synthesis of
the following known concepts, ideas, and notions:

— the notion of a λP system due to N. Jonoska and M. Margenstern, cf. [1] and [6],
— a concept of a music score, written or analyzed, in terms of music calculi having

common features with (type-free) lambda calculus, cf. [8] and [7],
— the idea of sounding P system, cf. [3],

with a regard to M. Steedman’s categorical grammar approach to jazz improvisa-
tion, cf. [13].

More precisely, a well-tempered P system is aimed to represent a score of a
music piece, e,g. fuge, written in terms of a music calculus, cf. [8] and [7], like
λP systems represent λ terms, respectively, where a reduction process of a λ term

292 A. ObtuÃlowicz

corresponds to an evolution process generated by the lambda P system represent-
ing this λ term, cf. [1] and [6].

We do not exclude other approaches to the notion of a well-tempered P system,
where:

— a P system for modelling higher plants, cf. [10], could represent a score of music
piece expanding in time like plants with some probability factor like in [5],

— a P system for fractal generation, cf. [4], could represent a score of music piece
expanding in time like cellular automata generating fractals, cf. [11].

Therefore the P-Lingua tools, cf. [2] and [14], could provide an appropriate soft-
ware for an environment for music composition designed in the frames of membrane
computing by using well-tempered P systems.

References

1. Colson, L., Jonoska, N., Margenstern, M., λP systems and typed λ-calculus, in: Mem-
brane Computing, LNCS 3365, Springer, Berlin, 2005, pp. 1–18.

2. Dı́az-Pernil, D., Pérez-Hurtado, I., Pérez-Jiménez, M. J., Riscos-Núñez, A., A P-
Lingua Programming Environment for Membrane Computing, in: Membrane Com-
puting, LNCS 5391, Springer, Berlin, 2009, pp. 187–203.

3. Garcia-Quasimodo, M., Gutiérrez-Naranjo, M. A., Ramı́rez-Mart́ınez, D., How does
a P system sound?, in: Eight Brainstorming Week on Membrane Computing, Seville
2010, ed. M.A. Martinez-del-Amor et al., RGNC Report 01/2010, Seville University,
pp. 123–132.

4. Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Fractals and P systems, in: Fourth
Brainstorming Week on Membrane Computing, Seville 2006, vol. II, ed. C. Graciani
et al., Fenix Editora, 2006, pp. 65–86.

5. Hiller, L. A., Isaacson, L. M., Experimental Music Composition with Electronic Com-
puter, McGraw–Hill, 1959.

6. Jonoska, N., Margenstern, M., Tree operators in P systems and λ-calculus, Funda-
menta Informaticae 59 (2004), pp. 67–90.

7. Letz, S., Faber, D., Orlarey, Y., The role of lambda abstraction in elody, in: Proceed-
ings ICMC’98, 1998.

8. Orlarey, Y., Faber, D., Letz, S., Bilton, M. Lambda calculus and music calculi, in:
Proceedings ICMC’94, San Francisco, 1994.

9. Păun, Gh., Rozenberg, G., Salomaa, A., The Oxford Handbook of Membrane Com-
puting, Oxford, 2009.

10. Romero-Jiménez, A., Gutiérrez-Naranjo, M. A., Pérez-Jiménez, M. J., Graphical
modelling of higher plants using P systems, in: Membrane Computing, LNCS 4361,
Springer, Berlin, 2006, pp. 496–506.

11. Solomos, M., Cellular automata in Xenakis music. Theory and practice, in: Pro-
ceedings of the International Symposium Iannis Xenakis (Athens, May 2005), ed.
A. Georgaki and G. Zervos, pp. 120–138.

12. Steedman, M., The well-tempered computer, Philosophical Transactions: Physical Sci-
ences and Engineering 349 (1994), no. 1689, pp. 115–131.

13. Steedman, M., The blues and the abstract truth: music and mental models, in: Mental
Models in Cognitive Science, ed. A. Garnham and J. Oakhill, 1996.

14. The P-Lingua website, http://www.p-lingua.org

dP Automata versus Right-Linear
Simple Matrix Grammars

Gheorghe Păun1,2, Mario J. Pérez-Jiménez2

1 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

2 Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, marper@us.es

Summary. We consider dP automata with the input string distributed in an arbitrary
(hence not necessary balanced) way, and we investigate their language accepting power,
both in the case when a bound there is on the number of objects present inside the system
and in the general case. The relation with right-linear simple matrix grammars is useful
in this respect. Some research topics and open problems are also formulated.

1 Introduction

dP automata are a class of computing devices considered in membrane computing
area in order to have a distributed language accepting machinery, with the strings
to recognize being split among the components of the system and with these com-
ponents working in parallel on the input strings. In the general case, dP systems
consist of a given number of components in the form of a usual symport/antiport
P system, which can have their separate inputs and communicate from skin to skin
membranes by means of antiport rules like in tissue-like P systems. Such devices
were introduced in [7] and further investigated in [3], [8], [9], mainly comparing
their power with that of usual P automata and with families of languages in the
Chomsky hierarchy. In the basic definition and in all these papers, following the
style of the communication complexity area (see, [4]), the so-called balanced mode
of introducing the input string is considered: the string is split in equal parts,
modulo one symbol, and distributed among components.

Here we consider the general case, with no restriction on the input string distri-
bution; each component just takes symbols from the environment when it can do
it it, without any restriction on their number. This is a very natural and general
set-up, which, however, was only incidentally investigated so far. Two cases are
distinguished: with a bound on the size of the system (on the total number of ob-
jects present inside) and without such a bound. Both cases are naturally related to

294 Gh. Păun, M.J. Pérez-Jiménez

a classic family of regulated grammars, the simple matrix grammars of [5] (see also
[2]). Actually, as expected, right-linear simple matrix grammars are closely related
to dP automata, and we will examine below this connection (looking for mutual
simulations among the two types of language identifying machineries). This con-
nection was already pointed out in [8], where the conjecture was formulated that,
in the same way as a usual finite automaton can be simulated by a P automaton,
a right-linear simple matrix grammar can be simulated by a dP automaton. We
confirm here this conjecture (in the general, not the balanced case).

2 Formal Language Theory Prerequisites

The reader is assumed to have some familiarity with basics of membrane comput-
ing, e.g., from [6], [10], and of formal language theory, e.g., from [2], [11], but we
recall below all notions necessary in the subsequent sections.

In what follows, V ∗ is the free monoid generated by the alphabet V , λ is
the empty word, V + = V ∗ − {λ}, and |x| denotes the length of the string x ∈
V ∗. REG, LIN, CF, CS, RE denote the families of regular, linear, context-free,
context-sensitive, and recursively enumerable languages, respectively.

Essential below will be the right-linear simple matrix grammars introduced
in [5]. Such a grammar of degree n ≥ 1 is a construct of the form G =
(N1, . . . , Nn, T, S, M), where N1, N2, . . . , Nn, T are pairwise disjoint alphabets (we
denote by N the union of N1, . . . , Nn), S /∈ T ∪ N , and M contains matrices of
the following forms:

(i) (S → x), x ∈ T ∗,
(ii) (S → A1A2 . . . An), Ai ∈ Ni, 1 ≤ i ≤ n,
(iii) (A1 → x1B1, . . . , An → xnBn), Ai, Bi ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n,
(iv) (A1 → x1, . . . , An → xn), Ai ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n.

A derivation starting with a matrix of type (ii) continues with an arbitrary
numbers of steps which use matrices of type (iii) and ends by applying a matrix
of type (iv).

We denote by L(G) the language generated in this way by G and by RSMn

the family of languages L(G) for right-linear simple matrix grammars G of degree
at most n, for n ≥ 1. The union of all these families is denoted by RSM∗. The
strict inclusions RSMn ⊂ RSMn+1, n ≥ 1, are known. Moreover, REG = RSM1,
RSM∗ ⊂ CS, RSM∗ is incomparable with LIN and CF , all languages in RSM∗
are semilinear, and this family is closed under union, intersection with regular
languages, direct and inverse morphisms (but not under intersection, complement
and Kleene +).

Clearly, a normal form can be easily found for these grammars: in matrices of
type (iii) we can ask to have xi ∈ T ∪ {λ}, 1 ≤ i ≤ n, and in matrices of type (iv)
we can have xi = λ for all 1 ≤ i ≤ n.

dP Automata versus Right-Linear Simple Matrix Grammars 295

3 dP Automata

We introduce now the computing devices we investigate in this paper, also giving
a relevant example.

As usual in membrane computing, the multisets over an alphabet V are repre-
sented by strings in V ∗; a string and all its permutations correspond to the same
multiset, with the number of occurrences of a symbol in a string representing the
multiplicity of that object in the multiset. (We work here only with multisets of
finite multiplicity.) The terms “symbol” and “object” are used interchangeably, all
objects are here represented by symbols.

A dP automaton (of degree n ≥ 1) is a construct

∆ = (O, E,Π1, . . . , Πn, R),

where:

(1) O is an alphabet (of objects);
(2) E ⊆ O (the objects available in arbitrarily many copies in the environment);
(3) Πi = (O, µi, wi,1, . . . , wi,ki , E, Ri,1, . . . , Ri,ki) is a symport/antiport P system

of degree ki (O is the alphabet of objects, µi is a membrane structure of degree
ki, wi,1, . . . , wi,ki are the multisets of objects present in the membranes of µi

in the beginning of the computation, E is the alphabet of objects present – in
arbitrarily many copies – in the environment, and Ri,1, . . . , Ri,ki are finite sets
of symport/antiport rules associated with the membranes of µi; the symport
rules are of the form (u, in), (u, out), where u ∈ O∗, and the antiport rules
are of the form (u, out; v, in), where u, v ∈ O∗; note that we do not have an
output membrane), with the skin membrane labeled with (i, 1) = si, for all
i = 1, 2, . . . , n;

(4) R is a finite set of rules of the form (si, u/v, sj), where 1 ≤ i, j ≤ n, i 6= j, and
u, v ∈ O∗, uv 6= λ.

The systems Π1, . . . , Πn are called components of ∆ and the rules in R are
called communication rules. For a rule (si, u/v, sj), |uv| is the weight of this rule.

Using a rule (u, in), (u, out) associated with a membrane i means to bring in the
membrane, respectively to send out of it the multiset u; using a rule (u, out; v, in)
associated with a membrane i means to send out of the membrane the objects of
multiset u and, simultaneously, to bring in the membrane, from the region sur-
rounding membrane i, the objects of multiset v. A communication rule (si, u/v, sj)
moves the objects of u from component Πi to component Πj , simultaneously with
moving the objects in the multiset v in the opposite direction.

Each component Πi can take symbols from the environment, work on them by
using the rules in sets Ri,1, . . . , Ri,ki , and communicate with other components by
means of rules in R.

A halting computation with respect to ∆ accepts the string x = x1x2 . . . xn

over O if the components Π1, . . . ,Πn, starting from their initial configurations,
using the symport/antiport rules as well as the inter-components communication

296 Gh. Păun, M.J. Pérez-Jiménez

rules, in the non-deterministic maximally parallel way, bring from the environment
the substrings x1, . . . , xn, respectively, and eventually halts. A problem appears
in the case when several objects are read at the same time from the environment,
by several rules or by a single rule of the form (u, out; v, in), with |v| ≥ 2; in
such a case any permutation of the symbols brought in the system in the same
step are considered as a valid substring of the input string (thus, a computation
can recognize several strings, differing to each other by permutations of certain
substrings). Note that we impose here no condition on the relative lengths of
strings x1, x2, . . . , xn (as it is done in previous papers dealing with dP automata,
under the influence of communication complexity area). We denote by L(∆) the
language of all strings recognized by ∆ in this way, and by LdPn the family of
languages L(∆), for ∆ of degree at most n ≥ 1. The union of all these families is
denoted by LdP∗.

The dP automata are synchronized devices, a universal clock exists for all
components, marking the time in the same way for the whole dP automaton.
When the system has only one component, then we obtain the usual notion of a P
automaton, as investigated in a series of papers (mainly in the extended version,
with a terminal alphabet of objects – see the respective chapter in [10] and the
references therein). We denote by LP the family of languages recognized by P
automata. Hence, LP = LdP1 and, from [3], it is known that REG ⊂ LP ⊂ CS
and LP is incomparable with CF .

We consider now a somewhat surprising example, of a dP automaton of degree
2, generating a complex language, L1 = {ww | w ∈ {a, b}∗}. The automaton is
given in Figure 1, in the standard way of representing a dP automaton. We have
O = {a, b, c1, c2, d, #} and E = {a, b}.

All antiport rules which bring objects from the environment are of weight one,
hence the number of objects present in the system is constant, four in each compo-
nent. In the first step, objects d release c2a in the skin region of the first component
and c1a in the second. Each symbol a can bring either an a or a b from the en-
vironment and, at the same time, the objects c1, c1 are interchanged between the
two components (otherwise, they release the trap object #, which will oscillate
forever across membranes (1, 1), respectively, (2, 1), and the computation never
stops). With c1α, α ∈ {a, b}, in the first component and c2β, β ∈ {a, b}, in the
second one, the only continuation which does not release the trap object is possi-
ble when α = β, by using the communication rule (s1, c1α/c2α, s2) (if one of the
symbols α, β brings new symbols from the environment, the corresponding c1, c2

should enter the membrane (1, 2) or (2, 2), bringing out the object #). We obtain
a configuration as that we started with, hence the process can be iterated. If, at
any moment when c2 is in Π1 and c1 is in Π2, one of the rules (c2α, in), α ∈ {a, b},
is used in the first component, or (c1α, in), α ∈ {a, b}, is used in the second com-
ponent, then this should be done simultaneously in both components, otherwise
again one of c1, c2 has to release the trap object. In conclusion, the strings read
from the environment by the two components are identical, hence L(∆) = L1.

dP Automata versus Right-Linear Simple Matrix Grammars 297

'

&

$

%

'

&

$

%

º

¹

·

¸

º

¹

·

¸
º

¹

·

¸

º

¹

·

¸

-¾

s1

d

(1,1)

a

c2

(c2a, out; d, in)

(c2a, in)

(c2b, in)

(#, in)

(#, out)

#
(#, out; c1, in)

(#, out; c2, in)

(a, out; a, in)

(a, out; b, in)

(b, out; a, in)

(b, out; b, in)

(s1, c1a/c2a, s2)

(s1, c1b/c2b, s2)

(s1, c2/c1, s2)

s2

d

(2,1)

c1

a

(c1a, out; d, in)

(c1a, in)

(c1b, in)

(#, in)

(#, out)

(2,2)(1,2)

#
(#, out; c2, in)

(#, out; c1, in)

(a, out; a, in)

(a, out; b, in)

(b, out; a, in)

(b, out; b, in)

Fig. 1. A dP automaton recognizing the language L1.

Note the important facts that the system reads the input in a balanced way and
that it is bounded, the total number of objects present inside is always bounded by
a constant (8 in our case) given in advance. This last characteristics is important,
so that we denote by LdP b

n, n ≥ 1, the family of languages recognized by bounded
dP automata of degree at most n; when n is not specified, we replace it by ∗.

4 The Power of dP Automata

We start by reformulating in a more general way a result already suggested by a
proof in [9].

Theorem 1. LdP b
n ⊆ RSMn, for all n ≥ 1.

Proof. Let ∆ be a dP automaton of degree n (with the set of objects O) which is
bounded. Then, the set of all its configurations is finite. Let σ0, σ1, . . . , σp be this
set, with σ0 being the initial configuration. We construct the following right-linear
simple matrix grammar:

298 Gh. Păun, M.J. Pérez-Jiménez

G = (N1, . . . , Nn, O, S, M), with
Ni = {(σj)i | 0 ≤ j ≤ p}, i = 1, 2, . . . , n,

M = {(S → (σ0)1(σ0)2 . . . (σ0)n)}
∪ {(σi)1 → α1(σj)1, . . . , (σi)n → αn(σj)n) |

from configuration σi the dP automaton ∆ can pass to
the configuration σj by a correct transition, taking from the
environment the objects α1, . . . , αn by its components, where
αs ∈ O ∪ {λ}, 1 ≤ s ≤ n}

∪ {(σh)1 → λ, . . . , (σh)n → λ) | σh is a halting configuration}.

Note that all nonterminals in the rules of a matrix contain the same “core in-
formation”, namely the current configuration of the system, hence the complete
control of the system working is obtained in this way. The equality L(∆) = L(G)
is obvious. 2

This result cannot be extended to arbitrary dP automata. Actually, we have:

Theorem 2. LdP2 −RSM∗ 6= ∅.
Proof. Let us consider the following dP automaton:

∆ = (O, E, Π1,Π2, R), with
O = {a, c, d, e, f, #},
E = {a, c, d, e},

Π1 = (O, []s1
, f, E, {(f, out; a, in), (a, out; aa, in)}),

Π2 = (O, [[] (2,1)]s2
, E, {(f, out; d, in), (a, out; c, in), (d, out; e, in)},

{(f, out; f, in)}),
R = {(s1, a/λ, s2)}.

For an easier examination of the work of the system, we also represent it graph-
ically, in Figure 2.

Let us look for strings accepted by this dP automaton which are of the form
aidcje, for some i, j ≥ 1.

After introducing the symbol a in the first component, let us assume that for
n ≥ 0 steps we use here the rule (a, out; aa, in), hence we produce 2n copies of a in
Π1, while the second component uses the rule (f, out; f, in) ∈ R(2,1). Suppose now
that p ≥ 0 copies of a remains in the first component and the others r = 2n−p are
moved to the second component. Here, all r copies of a must go out, in exchange
of objects c, hence the string read by the second component starts with cr. At the
same time or one step before, the second component must introduce the symbol
d. This object becomes immediately e, hence the exchange of a for c should be
done either in the same step with reading d or at the same time with reading e in

dP Automata versus Right-Linear Simple Matrix Grammars 299

'

&

$

%

'

&

$

%

¾

½

»

¼

-

s1

f

(f, out; a, in)

(a, out; aa, in)

(s1, a/λ, s2)

s2

f

f

(2,1)

(f, out; f, in)

(f, out; d, in)

(d, out; e, in)

(a, out; c, in)

Fig. 2. A dP system recognizing a language not in RSM∗

the second component (because any permutation of the objects is allowed in the
string, either variant is possible). However, after e, we do not want to have any
symbol, hence all copies of a were already moved to the second component, and
thus the work of the first component stops. When introducing the symbol d in
the second component, the p copies of a from the first component cannot use the
rule (a, out; aa, in), but they must come immediately in the second component, to
introduce c here at the same time with introducing e. Therefore, if the string has
the form aidcje, then i = j = 2n for some n ≥ 0 (n = 0 is obtained if the unique
a introduced in the first step in Π1 is immediately sent to component Π2).

Consequently, L(∆) ∩ a∗dc∗e = {a2ndc2ne | n ≥ 0}, which is not in RSM∗,
hence also L(∆) is not in RSM∗: this family is closed under intersection with
regular languages and contains only semilinear languages. 2

Note that the previous construction takes the input string in an almost bal-
anced way, and, if in the first step, the first component uses a rule (f, out; dea, in)
instead of (f, out; a, in), then we have a balanced functioning, hence the result in
the previous theorem holds true also for the balanced way of defining the recog-
nized string.

We pass now to the counterpart of Theorem 1 announced above.

Theorem 3. RSMn ⊆ LdP b
n+1, for all n ≥ 1.

Proof. Let us consider a right-linear simple matrix grammar G =
(N1, . . . , Nn, T, S, M) as introduced in Section 2, with the alphabets
N1, N2, . . . , Nn (their union is denoted by N) and T . Matrices of the form (i),
(S → x), x ∈ T ∗, can be replaced by matrices of forms (ii), (iii) and (iv), in an
obvious way, hence we assume that we do not have such matrices. We assume all
matrices labeled in a one-to-one way; let mj : (A1 → x1B1, . . . , An → xnBn), with
1 ≤ j ≤ k, be all matrices of type (iii), with Ai, Bi ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n.
Similarly, let mj : (A1 → x1, . . . , An → xn), with k + 1 ≤ j ≤ p, be all matrices of

300 Gh. Păun, M.J. Pérez-Jiménez

type (iv), with Ai ∈ Ni, xi ∈ T ∗, 1 ≤ i ≤ n. Without any loss of the generality we
can assume that all strings xi in these matrices are from T ∪ {λ}.

For each matrix, of any form, mj : (A1 → u1, . . . , Ai → ui, . . . , An → un), let
us consider the symbol [mj , Ai → ui] (thus identifying the matrix and its ith rule),
and let Xj(i) be a shorthand for it. Consider the alphabets

Mi = {Xj(i) | 1 ≤ j ≤ p}, for all 1 ≤ i ≤ n.

We also denote by M ′
i the alphabet of primed symbols in Mi.

For a matrix mj : (A1 → x1B1, . . . , An → xnBn) of type (iii), let us denote
lhsj = A1A2 . . . An and rhsj = B1B2 . . . Bn. Similarly, for a matrix mj : (A1 →
x1, . . . , An → xn) of type (iv), we denote lhsj = A1A2 . . . An.

If rhsj = lhsk, then we write mj ; mk. Similarly, we write S ; mj if
(S → A1A2 . . . An) ∈ M and A1A2 . . . An = lhsj .

For a set Q, we denote by Q also the multiset consisting of the elements of Q,
with the multiplicity one for each of them (hence Q can be considered also as the
string composed by the elements of the set, in any ordering).

We are now ready to construct the dP system we look for (a0 is an arbitrary
symbol of T fixed in advance):

∆ = (O, E, Π1, . . . , Πn+1, R), with :

O =
n⋃

i=1

(Mi ∪M ′
i) ∪ T ∪ {ci | 1 ≤ i ≤ n} ∪ {d, f, #},

E = T,

Πi = (O, [[]
(i,1)

[]
(i,2)

]
si

, λ, M ′
iTci,#, Rsi , R(i,1), R(i,2)),

Rsi = {(a, out; b, in) | a, b ∈ T},
R(i,1) = {(X ′

j(i), out; Xj(i), in),
(Xj(i)cia, out;X ′

j(i)cia, in) | 1 ≤ j ≤ p,

if Xj(i) = [mj , Ai → aBi], a ∈ T}
∪ {(X ′

j(i)a, out; Xj(i)a, in),
(Xj(i)cia, out;X ′

j(i)cia, in) | 1 ≤ j ≤ p, a ∈ T,

if Xj(i) = [mj , Ai → Bi]}
∪ {(#, in), (#, out)},

R(i,2) = {(#, out; ci, in)}
∪ {(#, out; Xj(i), in) | 1 ≤ j ≤ p, if Xj(i) = [mj , Ai → Bj]},

for all 1 ≤ i ≤ n,

Πn+1 = (O, [[]
(n+1,1)

]
sn+1

, c1 . . . cnf, M2
1 . . . M2

nTnan
0 , ∅, R(n+1,1)),

R(n+1,1) = {(Xj(1) . . . Xj(n)an
0 , out; f, in) | 1 ≤ j ≤ p if S ; mj}

∪ {(Xk(1)a1 . . . Xk(n)an, out; Xj(1)a1 . . . Xj(n)an, in)
| 1 ≤ j, k ≤ p, ai ∈ T, 1 ≤ i ≤ n, if mj ; mk}

dP Automata versus Right-Linear Simple Matrix Grammars 301

∪ {(Xj(1)c1a1 . . . Xj(n)cnan, in)
| ai ∈ T, 1 ≤ i ≤ n, if mj is a terminal matrix},

R = {(si, λ/ci, sn+1),
(si, ci/Xj(i)a, sn+1,

(si, Xj(i)cia/λ, sn+1) | 1 ≤ j ≤ p, 1 ≤ i ≤ n, a ∈ T}.
This dP system, with one component Πi and with Πn+1 given in full details,

is represented in Figure 3.

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

'

&

$

%

�

�

�

�

�

�

�

� �

�

�

�

�

�

�

� �

�

�

�

�

�

�

�

6

?

6

?

6

?

s1

(1,1)

(1,2)

. . .

si

(i, 1)

(i, 2)

. . .

sn

(n,1)

(n,2)

sn+1

(n+1,1)

(a, out; b, in), a, b ∈ T

(X ′

j(i), out; Xj(i), in),

(Xj(i)cia, out; X ′

j(i)cia, in),

if Xj(i) = [mj , Ai → aBi], a ∈ T, 1 ≤ j ≤ p

(X ′

j(i)a, out; Xj(i)a, in),

(Xj(i)cia, out; X ′

j(i)cia, in),

if Xj(i) = [mj , Ai → Bi], 1 ≤ j ≤ p, a ∈ T

(#, in)

(#, out)

(#, out, ci, in)

(#, out; Xj(i), in),

if rule i in mj is Ai → Bi, 1 ≤ j ≤ p

(si, λ/ci, sn+1)

(si, ci/Xj(i)a, sn+1), a ∈ T, 1 ≤ j ≤ p

(si, Xj(i)cia/λ, sn+1), a ∈ T, 1 ≤ j ≤ p

c1c2 . . . cnf

⋃n

i=1
M2

i

T n

an
0

(Xj(1) . . . Xj(n)an
0 , out; f, in) if S ; mj

(Xk(1)a1 . . . Xk(n)an, out; Xj(1)a1 . . . Xj(n)an, in), if mj ; mk

(Xj(1)c1a1 . . . Xj(n)cnan, in) if mj is terminal

Fig. 3. The dP system in the proof of Theorem 3

The components Πi, 1 ≤ i ≤ n, simulate the corresponding “component” of the
grammar G, while Πn+1 is a “synchronizer” of the other components, it takes no

302 Gh. Păun, M.J. Pérez-Jiménez

objects from the environment. All rules which bring objects from the environment
are uniport rules, hence the system is bounded, the number of objects inside it
remains constant during the computation.

We start by sending objects ci from Πn+1 to components Πi, simultaneously
releasing from membrane (n + 1, 1) some objects Xj(i), 1 ≤ i ≤ n, for a matrix
mj which can follow immediately after an initial matrix of G; each symbol Xj(i)
is accompanied by a copy of the symbol a0, arbitrarily chosen from T .

In the next step, we have to exchange the symbol ci from Πi with Xj(i)a0

from Πn+1 (if ci remains unused in Πi, then it will release the trap object # from
membrane (i, 2), and the computation will never halt).

In the next step, ci comes back to Πi, and in this component we have two
possibilities:

(1) The rule i from mj is of the form Ai → aBi, and then we use a rule
(a0, out; b, in), for some b ∈ T , and (X ′

j(i), out; Xj(i), in).
Now, we check whether the simulation of the rule in G is correct (hence b was

the right symbol to take from the environment, i.e., a = b): ci cannot return to
Πn+1 alone and cannot stay unused in Πi. The only continuation which does not
lead to an infinite computation is to use the rule (Xj(i)cia, out; X ′

j(i)cia, in). These
three objects, Xj(i)cia, can now move together to Πn+1. The only continuation
is to move again ci in Πi, for all i, and to exchange Xj(1) . . . Xj(n) for some
Xk(1) . . . Xk(n) in Πn+1, for mj ; mk.

We return in this way to a situation similar to that we have started with: object
ci in Πi and Xk(i) in Πn+1.

(2) If the rule i from mj is of the form Ai → Bi, and we use a rule (a0, out; b, in),
for some b ∈ T , then the computation will never stop: we do not have a rule for in-
troducing Xj(i) alone in membrane (i, 1), hence Xj(i) must release the trap object
from membrane (i, 2). Therefore, we have to use the rule (X ′

j(i)a, out; Xj(i)a, in)
from R(i,1) (at the same time, the object ci comes to Πi). As above, the three
objects Xj(i)cia can move together to Πn+1, where, while ci moves to Πi, we
exchange Xj(1) . . . Xj(n) for some Xk(1) . . . Xk(n) in Πn+1, for mj ; mk.

Also in this case we return to a situation similar to that we have started with:
object ci in Πi and Xk(i) in Πn+1.

The process can be continued. Checking the correctness of the simulation of
the rules in G is done in components Πi, the fact that the rules which are simul-
taneously checked form a matrix of G is ensured by the component Πn+1.

When a terminal matrix is simulated, component Πn+1 halts the computation
by using the rule (Xj(1)c1a1 . . . Xj(n)cnan, in) (if we do not “hide” also the objects
ci in membrane (n + 1, 1), then these objects have to go to components Πi, where
no rule can use them other than the trap-releasing ones).

We conclude that L(G) = L(∆). 2

dP Automata versus Right-Linear Simple Matrix Grammars 303

5 Final Remarks

Let us first synthesize all previous results and remarks in a diagram – see Figure
4. The arrows indicate inclusions; if the arrow is marked with a dot, then that
inclusion is known to be proper. The inclusions RSMn ⊂ RSMn+1, n ≥ 1, are
known to be proper, hence also the hierarchy LdP b

n, n ≥ 1, is infinite, but we do not
know languages proving the strictness of inclusions LdP b

n ⊆ RSMn ⊆ LdP b
n+1, n ≥

1, with the exception of the inclusion RSM1 ⊂ LdP b
2 , because RSM1 = REG

and LdP b
2 contains non-regular languages (see, e.g., the example in Section 3).

Similarly, we do not know whether the inclusions LdPn ⊆ LdPn+1, n ≥ 2, are
proper – but we conjecture that this is the case.

LdP b
1 = LP b = REG = RSM1

6

6

t t

LdP1 = LP

LdP b
2

6
©©©©©*

t

LdP2

6

RSM2

6

LdP b
3

©©©©©* 6

LdP3

6

6

RSM3

6

.

6

RSM∗ = LdP b
∗

©©©©©* 6

LdP∗

t

t

t

Fig. 4. The hierarchy of the families RSMn, LdP b
n, and LdPn

304 Gh. Păun, M.J. Pérez-Jiménez

Further open problems and research topics about dP systems can be found in
the papers mentioned in the bibliography – the study of dP automata is one of
the recently introduced and most active branches of membrane computing.

Acknowledgements

Work supported by Proyecto de Excelencia con Investigador de Reconocida Vaĺıa,
de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. E. Csuhaj-Varju, G. Vaszil: About dP automata
2. J. Dassow, Gh. Păun: Regulated Rewriting in Formal Language Theory. Springer,

Berlin, 1989.
3. R. Freund, M. Kogler, Gh. Păun, M.J. Pérez-Jiménez: On the power of P and dP

automata. Annals of Bucharest University. Mathematics-Informatics Series, 2010 (in
press).

4. J. Hromkovic: Communication Complexity and Parallel Computing: The Application
of Communication Complexity in Parallel Computing. Springer, Berlin, 1997.

5. O. Ibarra: Simple matrix grammars. Information and Control, 17 (1970), 359–394.
6. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
7. Gh. Păun, M.J. Pérez-Jiménez: Solving problems in a distributed way in membrane

computing: dP systems. Int. J. of Computers, Communication and Control, 5, 2
(2010), 238–252.

8. Gh. Păun, M.J. Pérez-Jiménez: P and dP automata: A survey. Rainbow of Computer
Science (C.S. Calude, G. Rozenberg, A. Salomaa, eds.), LNCS, Springer, Berlin, 2010
(in press).

9. Gh. Păun, M.J. Pérez-Jiménez: An infinite hierarchy of languages defined by dP
Systems. Theoretical Computer Sci., in press.

10. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-
ford University Press, 2010.

11. G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. 3 volumes, Springer,
Berlin, 1998.

12. The P Systems Website: http://ppage.psystems.eu.

Towards Bridging Two Cell-Inspired Models:
P Systems and R Systems

Gheorghe Păun1,2, Mario J. Pérez-Jiménez2

1 Institute of Mathematics of the Romanian Academy
PO Box 1-764, 014700 Bucureşti, Romania

2 Department of Computer Science and Artificial Intelligence
University of Sevilla
Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
gpaun@us.es, marper@us.es

Summary. We examine, from the point of view of membrane computing, the two basic
assumptions of reaction systems, the “threshold” and “no permanence” ones. In certain
circumstances (e.g., defining the successful computations by local halting), the second
assumption can be incorporated in a transition P system or in a symport/antiport P
system without losing the universality. The case of the first postulate remains open: the
reaction systems deal, deterministically, with finite sets of symbols, which is not of much
interest for computing; three ways to introduce nondeterminism are suggested and left
as research topics.

1 Introduction

The aim of this note is to bridge two branches of natural computing inspired from
the biochemistry of a living cell, membrane computing (see, e.g., [11], [12], [13],
and the domain website from [15]) and the recently introduced reaction systems
area – see [2], [3], [4], [5], [6].

Both areas deals with populations of reactants (molecules) which evolve by
means of reactions, with several basic differences. Most of these differences are
not mentioned here (e.g., the compartmental structure of models – P systems – in
membrane computing versus the missing of membranes in reaction systems – we
also call them R systems –, the focus on evolution, not on computation, in reaction
systems, the unique form of rules in reaction systems and so on), and we recall the
two basic ones in the formulation from [2]:

The way that we define the result of a set of reactions on a set of elements
formalizes the following two assumptions that we made about the chemistry of a
cell:

(i) We assume that we have the “threshold” supply of elements (molecules) –
either an element is present and then we have “enough” of it, or an element is

306 Gh. Păun, M.J. Pérez-Jiménez

not present. Therefore we deal with a qualitative rather than quantitative (e.g.,
multisets) calculus.

(ii) We do not have the “permanence” feature in our model: if nothing happens to
an element, then it remains/survives (status quo approach). On the contrary,
in our model, an element remains/survives only if there is a reaction sustaining
it.

Passing from multisets, which are basic in P systems, to sets (actually, to mul-
tisets with an infinite multiplicity of their elements) is a fundamental assumption,
which changes completely the approach; for instance, we can no longer define com-
putations with the result expressed in terms of counting molecules: the total set
of molecules is finite, any molecule is either absent or present in infinitely many
copies. Moreover, the behavior of a reaction system is deterministic, from a set
of symbols we precisely pass to a unique set of symbols (hence the behavior of a
reaction system can be described by a graph of outdegree one, having the nodes
marked with subsets of the total set of molecules). How to bridge at this level
the two research areas (defining computations in reaction systems or working with
multisets with infinite multiplicity of each element in P systems) remains as a
research topic. Here we only propose three ways to introduce nondeterminism in
reaction systems, so that more interesting computation (evolution) graphs can
be obtained: providing tables of rules, considering also molecules with a finite
multiplicity, and considering a threshold on the number of rules which can use
simultaneously molecules of a given type.

P systems with sets were also considered in [10], mainly from the semantics
(via Petri nets) point of view.

The second assumption of the reaction systems theory is much easier to handle
in terms of membrane computing. The immediate idea is to simply remove any
element which does not evolve by means of a reaction; somewhat equivalently, if
we want to preserve an object a which is not evolving, we may provide a dummy
rule for it, of the type a → a, changing nothing.

Still, many technical problems appear in this framework. The presence of such
dummy rules makes the computation endless, while halting is the “standard” way
to define successful computations in membrane computing. Moreover, the rules
are nondeterministically chosen, hence the dummy rules can interfere with the
“computing rules”.

While the second difficulty is a purely technical one, the first one can be over-
passed by considering other ways of defining the result of a computation in a P
system, and there are many suggestions in the literature. We consider here three
possibilities: (i) the local halting of [8] (the computation stops when at least one
membrane in the system cannot use any rule), (ii) signal-objects (the result con-
sists of the number of objects in a specified membrane at the moment when a
distinguished object appears in the system), (iii) signal-events (the result consists
of the number of objects in a specified membrane at the moment when a distin-
guished rule is used in the system). Such signals were considered in various papers;
we refer here only to [9].

Towards Bridging P Systems and R Systems 307

All these possibilities are checked both for transition and for symport/antiport
P systems – with some cases still remaining open (the most important one is that
of catalytic P systems).

2 Basic Definitions

For the sake of completeness, we recall here a few elementary notions about reac-
tion systems and P systems.

The language theory notations are standard. An alphabet is a finite and
nonempty set. For an alphabet V , by V ∗ we denote the set of all strings over
V , including the empty string, denoted by λ. The set of nonempty strings over V
is denoted by V +. The length of a string x ∈ V ∗ is denoted by |x|. The multisets
over a finite set S are represented by strings in S∗; a string and all its permuta-
tions represent the same multiset. (The Parikh mapping of a string representing a
multiset indicates the multiplicity of each object in the multiset.)

In the proofs from Section 4 we will use the characterization of recursively
enumerable sets of numbers (sets of numbers computable by Turing machines;
their family is denoted by NRE, reminding the fact that these sets ate length sets
of recursively enumerable languages) by means of register machines; such a device
is a construct M = (m,H, l0, lh, I), where m is the number of registers, H is the
set of instruction labels, l0 is the start label (labeling an ADD instruction), lh is
the halt label (assigned to instruction HALT), and I is the set of instructions; each
label from H labels only one instruction from I, thus precisely identifying it. The
instructions are of the following forms:

• li : (ADD(r), lj , lk) (add 1 to register r and then go to one of the instructions
with labels lj , lk),

• li : (SUB(r), lj , lk) (if register r is non-empty, then subtract 1 from it and go to
the instruction with label lj , otherwise go to the instruction with label lk),

• lh : HALT (the halt instruction).

A register machine M computes (generates) a number n in the following way:
we start with all registers empty (i.e., storing the number zero), we apply the
instruction with label l0 and we proceed to apply instructions as indicated by labels
(and made possible by the content of registers); if we reach the halt instruction,
then the number n stored at that time in the first register is said to be computed
by M . The set of all numbers computed by M is denoted by N(M). It is known
that register machines compute all sets of numbers which are Turing computable,
i.e., they characterize the family NRE.

Without loss of generality, we may assume that in the halting configuration,
all registers different from the first one are empty, and that the output register is
never decremented during the computation, we only add to its content.

308 Gh. Păun, M.J. Pérez-Jiménez

2.1 Reaction Systems

We recall here some elementary notions and notation about reaction systems, as
available in the few papers already published in this area – see again the titles
mentioned at the beginning of the Introduction.

Let S be an alphabet (its elements are called molecules or, simply, symbols).
A reaction (in S) is a triple a = (R, I, P), where R, I, P are nonempty subsets of
S such that R ∩ I = ∅. R is the reactant set of a, I is the inhibitor set of a, and
P is the product set of a. R, I, P are also denoted Ra, Ia, Pa. We denote by rac(S)
the set of all reactions in S.

If T ⊆ S and a ∈ rac(S), then a is enabled by T if Ra ⊆ T and Ia ∩T = ∅, and
then the result of a on T, denoted by resa(T), is defined by resa(T) = Pa. If a is
not enabled by T , then resa(T) = ∅.

If A is a finite set of reactions, then the result of A on T is defined by resA(T) =⋃
a∈A resa(T).

Then, a reaction system (we also call it an R system) is an ordered pair σ =
(S,A), where S is an alphabet and A ⊆ rac(S).

Note in the definition of the result of a set A of reactions on a set T of molecules
the occurrence of the two assumptions mentioned in the Introduction: a molecule
can evolve by means of several reactions (or can inhibit several reactions if it
appears in inhibitor sets), hence the multiplicity of each molecule is unbounded,
while all molecules present at a given time “disappears”, after the reactions we
continue with the set of molecules produced by the reactions.

2.2 P Systems

We introduce first the class of transition P systems, closer in their definition to
reaction systems. Some familiarity of the reader with the elementary notions of
membrane computing is assumed, e.g., from [12], [13].

A membrane structure is a cell-like hierarchical arrangement of labeled mem-
branes (understood as 3D vesicles); the external membrane is usually called the
skin membrane, and a membrane without any membrane inside is called elemen-
tary. With each membrane, a region is associated, the space delimited by it and
the inner membranes, if any. A membrane structure can be represented by a rooted
tree or by an expression of labeled parentheses (with a unique external parenthesis,
associated with the skin).

Given an alphabet O of objects, a multiset-rewriting rule (over O; we also say
evolution rule) is a pair (u, v), written in the form u → v, where u and v are
multisets over O (given as strings in O∗). The rules are classified according to the
complexity (of their left hand side). A rule with at least two objects in its left
hand side is said to be cooperative; a particular case is that of catalytic rules, of
the form ca → cv, where c is a catalyst which assists the object a (which is not
a catalyst) to evolve into the multiset v (where no catalyst appears); rules of the
form a → v, where a is an object, are called non-cooperative.

Towards Bridging P Systems and R Systems 309

The rules can also have associated promoters or inhibitors, objects whose pres-
ence make possible the use of a rule (but are not modified by the rule application),
respectively, can forbid the application of the rule. Also, a priority relation can
be considered, in the form of a partial order relation among the set of rules in
a membrane; a rule can be used only if no rule of a higher priority can be used.
Finally, we mention the dissolution operation: a rule can be of the form u → vδ
and, when used, the membrane in which it is applied is “dissolved”, its objects
become elements of the immediately higher membrane (and its rules disappear, as
being associated with the “reactor” defined by the membrane). We do not enter
here into details – in general, such additional controls on using the rules are rather
useful (and powerful) in “programming” the work of a P system.

Now, a transition P system (of degree m) is a construct

Π = (O, µ,w1, . . . , wm, R1, . . . , Rm, iin, iout),

where O is the alphabet of objects, µ is the membrane structure (with m mem-
branes), given as an expression of labeled parentheses, w1, . . . , wm are (strings over
O representing) multisets of objects present in the m regions of µ at the beginning
of a computation, R1, . . . , Rm are finite sets of evolution rules associated with the
regions of µ, and iin, iout are the labels of input and output membranes, respec-
tively. If the system is used in the generative mode, then iin is omitted, and if
the system is used in the accepting mode, then iout is omitted. If the system is
a catalytic one, then a subset C of O is specified, containing the catalysts. The
number m of membranes in µ is called the degree of Π.

The rules in sets Ri are of the form u → v, as specified above, with u ∈ O+,
but with the objects in v also having associated target indications, i.e., v ∈ (O ×
{here, out, in})∗. After using a rule u → v, the objects in u are consumed, and
those in v are produced; if (a, here) appears in v, then a remains in the same
compartment of the system where the rule was used, if (u, out) is in v, then the
object a is moved immediately in the region surrounding the compartment where
the rule was used (this is the environment if the rules is used in the skin region), and
if (a, in) is in v, then a is sent to one of the inner membranes, nondeterministically
chosen (if there is no membrane inside the membrane where the rule is meant to
be applied, then the use of the rule is forbidden). The indication here is omitted,
we write a instead of (a, here).

The rules are used in the nondeterministic maximally parallel manner: in each
membrane, a multiset of rules is applied such that there is no larger multiset of
rules which is applicable in that membrane.

In the generative mode, the result of a computation consists of the number of
objects in membrane iout in the moment when the computation halts, i.e., no rule
can be applied in any membrane of the system. In the accepting mode, a number
is introduced in the membrane iin, in the form of the multiplicity of a given object,
and, if the computation halts, then this number is accepted. A P system can also
be used in the computing mode, with a number introduced in membrane iin and
the result obtained in membrane iout, in the moment when the computation halts.

310 Gh. Păun, M.J. Pérez-Jiménez

In what follows, we only deal with generating P systems. One knows that
catalytic P systems are Turing equivalent, they compute all recursively enumerable
sets of natural numbers (i.e., they characterize NRE), but non-cooperative P
systems compute only semilinear sets of numbers. Details can be found in the
references given at the beginning of the Introduction.

Another much investigated class of P systems is that of symport/antiport P
systems. These systems are not based on reaction rules, but on biological operations
of passing coupled molecules across membranes.

We can formalize these operations by considering symport rules of the form
(x, in) and (x, out), and antiport rules of the form (z, out;w, in), where x, z, and
w are multisets of objects.

A P system with symport/antiport rules is a construct of the form

Π = (O, µ, w1, . . . , wm, E, R1, . . . , Rm, iin, iout),

where all components O,µ, w1, . . . , wm, iin, iout are as in a P system with multiset
rewriting rules, E ⊆ O, and R1, . . . , Rm are finite sets of symport/antiport rules
associated with the m membranes of µ. The objects of E are supposed to be
present in the environment of the system with an arbitrary multiplicity. (Note
that the symport/antiport rules do not change the number of objects, but only
their place, that is why we need a supply of objects in the environment; this
supply is inexhaustible, i.e., does not matter how many objects are introduced in
the system, arbitrarily many still remain in the environment.)

As above, the rules are used in the nondeterministic maximally parallel manner:
we choose nondeterministically multisets of rules associated with each membrane
and such an m-tuple of multisets is applied if for no membrane a rule can be
added to the associated multiset still having the enlarged m-tuple of multisets
applicable. We define transitions, computations, and halting computations in the
usual way. The number of objects present in region iout in the halting configuration
is said to be computed by the system by means of that computation; the set of
all numbers computed in this way by Π is denoted by N(Π). Accepting and
computing symport/antiport P systems are defined in the natural manner.

It is known that symport/antiport P systems (with a small number of mem-
branes and with rules of a low complexity) characterize NRE.

Note that in the previous definitions multisets play a crucial role, objects not
evolving by a rule remain unchanged, and that always successful computations are
defined by halting.

3 Computing with Reaction Systems

Starting from a reaction system σ = (S, A), we can consider a “generative device”
γ = (S,A, w0), where w0 is a subset of S, an “axiom set”. (We denoted the starting
set by a small letter, like a string, in the multiset sense, because we will need such

Towards Bridging P Systems and R Systems 311

an approach below, e.g., when part of molecules will be considered in the multiset
sense.) Then, we can obtain a sequence w0 =⇒A w1 =⇒A w1 =⇒A . . ., where
wi+1 = resA(wi), i ≥ 0.

Two basic observations: (i) this sequence is unique, because the passage from
a set of molecules to the next one is deterministic, and (ii) for all i ≥ 0 we have
wi ⊆ S. Therefore, if we associate a label to each subset of S, then a sequences
as above is either finite (at some moment, no rule can be applied, all elements
vanishes, hence we end with the label of the empty set), or the sequence is infinite
and then it can be described by a string of the form uvω: after a finite path among
subsets of S, we enter a cycle which goes forever.

In terms of graphs, the relation =⇒A defines a graph GS(A) = (2S ,=⇒A) of
outdegree (at most) one (the outdegree can be zero, but this is a trivial case).
Computations in γ = (S, A,w0) can then be followed along the paths in GS(A)
starting in the node w0.

We do not have here too much from a computability point of view, even if we
consider the graph itself as the result of the computation (the number of graphs
GS(A) is bounded, because of the finiteness of S). The dramatic restriction here is
the deterministic behavior of a reaction system, that is why we propose here three
possibilities to get a nondeterministic device.

The first natural idea is to consider a tabled reaction system, in the form
γ = (S, A1, A2, . . . , An, w0) where Ai, 1 ≤ i ≤ n, are sets of reactions over S
(called tables). Like in an E0L system (see, e.g., [14]), in a step of a computation
we can nondeterministically choose the table to use, hence branching is possible.
In this case, we can also introduce halting as a criterion for defining successful
computations: a halt table can be considered, for instance, with rules of the form
a → a′ for all a ∈ S, such that no rule exists for a′, hence in the next step all
(primed) molecules disappear.

Another idea, at the bridge of membrane computing and reaction systems, is to
consider a subset C ⊆ S of molecules for which the multiplicity matters, and having
finite multiplicities. Then we move towards usual P systems (cooperative, with
inhibitors, hence rather powerful). The elements of C are counted when applying
the rules, those in S−C not. The nondeterminism appears now when using copies
of elements in C, if more rules than such objects can be applied.

Finally, without modifying the components of a computing reaction system γ =
(S,A, w0), we can provide the nondeterminism by introducing a general threshold
on the number of rules which can use the same molecule, hence having a system
of the form γ = (S, A,w0, k), where k is the threshold. This is similar to the
previous case, taking C = S, which is like working with multisets, but with the
same multiplicity for all objects (only at most k copies of each object can evolve,
the others are removed, hence we can assume that the multiplicity is exactly k for
each object). The nondeterminism appears again when choosing the rules which
compete for the same objects. We have a usual P system, but dealing with finite
populations of objects: if only k rules are used for each molecule, only finitely many

312 Gh. Păun, M.J. Pérez-Jiménez

rules are used, all existing objects are consumed or they vanishes and a bounded
number of objects are produced.

In the second case, the multiplicity of objects in C can increase arbitrarily, but
in the other two cases we again deal with a finite computation graph (but not of
an outdegree bounded in advance).

All these three possibilities remain to be investigated: properties of the obtained
graphs, possible links with computing devices from formal language and automata
theory, influence of the introduced parameters (number of tables, cardinality of C,
threshold k), possible hierarchies.

Of course, another research topic is to find other ways of building a (string or
graph) computing device in terms of reaction systems.

4 P Systems without the “Permanence” of Objects

Let us now move to membrane computing, and borrow from reaction systems area
the assumption that an object which is not involved in a rule does not pass to
the next configuration. Then, we cannot define the result of a computation by
halting, because in a halting step all objects vanish. Similarly, it is not enough
to add dummy rules of the form a → a (in transition systems), because this
time the computation never halts. Thus, we have to define successful computa-
tions by other conditions – and we consider here the three possibilities recalled
in the Introduction: local halting, signal-objects, signal-events. The definitions are
straightforward, we pass directly to examine the power of P systems endowed with
such conditions.

4.1 The Case of Transition P Systems

Let us consider a register machine M = (m,H, l0, lh, I), as introduced at
the beginning of Section 2. We first construct a transition P system Π =
(O, µ, w1, w2, R1, R2, 1), aiming to simulate the machine M , and then we discuss
modes of defining the result of a computation in Π. We take:

O = {ai, a
′
i | 1 ≤ i ≤ m} ∪ {l, l′, l′′, l′′′, liv | l ∈ H} ∪ {b, c,#},

µ = [[]
2

]
1
,

w1 = l0, w2 = b,

R1 = {li → ljar,

li → lkar | li : (ADD(r), lj , lk) ∈ I}
∪ {a1 → a1} ∪ {as → asa

′
s | 2 ≤ s ≤ m}

∪ {li → l′il
′′
i ,

l′iar → l′′′i ,

l′ia
′
r → (#, in),

Towards Bridging P Systems and R Systems 313

l′′i → livi ,

livi → lk,

l′′′i → (#, in),
livi l′′′i → lj | li : (SUB(r), lj , lk) ∈ I}

∪ {lh → (lh, in)},
R2 = {b → b, # → #, lhb → c}.

This system works as follows. The contents of each register r is represented by
the number of occurrences of objects ar in the skin region of Π. In each step, each
of these objects is reproduced, hence their number is never decreased; moreover,
objects ar, r 6= 1, also produce “twin objects” a′r, which disappear in the next
step (one copy is used in simulating SUB instructions, as we will see below).
Object b evolves forever in membrane 2. One of our goals is to define the end of a
computation in Π by local halting, namely, by halting the evolution of membrane
2. This can happen only in the presence of the halt label of M , and without
introducing the trap-object #.

We start with label l0 in membrane 1. In general, when a label li is present in
membrane 1, the respective instruction of M is simulated.

The simulation of an ADD instruction is obvious. Assume that li is the label of
a SUB instruction, li : (SUB(r), lj , lk). We use the rule li → l′il

′′
i . At the same time,

all objects a′s disappear and all objects as are replaced by asa
′
s, 2 ≤ s ≤ m; objects

a1 remains always unchanged during simulating a SUB instruction (remember that
M never decreases register 1). In the next step, l′′i is replaced by livi , while l′i has
two possibilities. If a copy of ar is present (hence register r is not empty), then
also a′r is present. If the rule l′iar → l′′′i is used, then a′r disappear, and this is the
correct continuation – in the next step, the rule livi l′′′i → lj is used, introducing
the label of the next instruction to simulate. If, instead of l′iar → l′′′i , the rule
l′ia

′
r → (#, in) is used, then the trap-object # is introduced in membrane 2, and

it will evolve here forever. If the register r is empty, hence no object ar and a′r is
present, then l′′′i is not introduced, l′i disappears. In the next step livi has to evolve
by means of the rule livi → lk, the correct continuation in the register machine.
If this rule is used also in the presence of l′′′3 (hence in case the register r was
nonempty), then we have to use the rule l′′′i → (#, in).

In this way, the instructions of M are correctly simulated. When the halt label
lh is introduced in M , this object is moved to membrane 2. If the only object
present here is b, then the computation in membrane 2 can halt by means of lhb →
c. If also # is present, then the computation in membrane 2 continues forever. The
number of objects a1 in membrane 1 at the moment of halting membrane 2 gives
the result of the computation. (Remember that all registers of M except the first
one are empty in the end of computations in M .)

The previous construction can be slightly modified in order to mark the end
of the computation by means of signal objects or events instead of local halting.
For instance, if we replace the rule # → # of R2 with # → δ, then membrane

314 Gh. Păun, M.J. Pérez-Jiménez

2 is dissolved, the rule lhb → c cannot be used. Thus, the signal can be either
the object c or the use of the rule lhb → c. When one of these signals appears
in membrane 2, the number of copies of a1 in membrane 1 is the result of the
computation. If # was introduced, then these signals never appear.

We conclude with the assertion-theorem that transition P systems of degree 2,
using cooperative rules, without the “permanence” of objects, are computationally
complete.

An interesting open problem in this framework is the case of catalytic P systems,
known to be universal in the “permanence” assumption (see, e.g., [7]).

4.2 The Case of Symport/Antiport P Systems

The case of symport/antiport systems just “recodes” the previous construction,
but, because for these systems we do not have the dissolution operation (it can be
introduced, in a natural way, but this was not done up to now, hence we do not
consider it here), only the case of local halting is considered.

Take again a register machine M = (m,H, l0, lh, I). We construct the sym-
port/antiport P system Π = (O, µ, w1, w2, E, R1, R2, 1) with the same alpha-
bet of objects and membrane structure as in the previous subsection, but with
w1 = bl0, w2 = b, E = O, and with the rules as specified in Figure 1 – instead of
a formal definition, we give now the graphical representation of the system.

The functioning of this system is very much similar to the functioning of the
system in the previous subsection, hence we do not describe it in details (membrane
2 halts only when # is not present and lh moves outside the system the object b
from the skin region).

The case of defining the result of a computation by means of signals – objects
or events (using a specified rule) – remains as an open problem. (Considering a
priority relation on each set of rules can easily solve this problem.) The previous
symport/antiport P system contains antiport rules of sizes (2, 1) and (1, 2), which
is “large” for universality results in the case when objects are persistent (see, e.g.,
[1]). Can the size of rules be decreased also in the case discussed here?

5 Final Remarks

Although there are so many similarities and differences between membrane com-
puting (P systems) and reaction systems (R systems), up to our knowledge, so
far there is no bridging investigation, in spite of the fact that this research topic
was formulated several times in the membrane computing community (e.g., dur-
ing the yearly Brainstorming Weeks on Membrane Computing). This is a natural
and surely fruitful area to explore, especially in checking the influence of basic
postulates of one domain in another one and in borrowing notions and research
issues from a domain to another one. The present paper is only a first step in this
direction, examining the two basic postulates of reaction systems: working with

Towards Bridging P Systems and R Systems 315

'

&

$

%

Â

Á

¿

À

1

2

b

(b, out; b, in)

(#, in)

(#, out)

l0b
(li, out; ljar, in),

(li, out; lkar, in), li : (ADD(r), lj , lk) ∈ I

(a1, out; a1, in)

(as, out; asa
′
s, in), 2 ≤ s ≤ m

(li, out; l′il
′′
i , in),

(l′iar, out; l′′′i , in),

(l′ia
′
r, out;#, in),

(l′′i , out; livi , in),

(livi , out; lk, in),

(l′′′i , out;#, in),

(livi l′′′i , out; lj , in), li : (SUB(r), lj , lk) ∈ I

(lhb, out)

Fig. 1.

molecules whose multiplicity is not counted (it is considered infinite) and removing
from the system molecules which do not evolve by reactions. Many open problems
and research topics are formulated.

Acknowledgements. Work supported by Proyecto de Excelencia con Investi-
gador de Reconocida Vaĺıa, de la Junta de Andalućıa, grant P08 – TIC 04200.

References

1. A. Alhazov, R. Freund, Yu. Rogozhin: Some optimal results on symport/ antiport
P systems with minimal cooperation. In Cellular Computing (Complexity Aspects)
(M.A. Gutiérrez-Naranjo, Gh. Păun, M.J. Pérez-Jiménez, eds.), ESF PESC Ex-
ploratory Workshop, Fénix Editorial, Sevilla, 2005, 23–36.

2. A. Ehrenfeucht, G. Rozenberg: Basic notions of reaction systems, Proc. DLT 2004
(C.S. Calude, E. Calude, M.J. Dinneen, eds.), LNCS 3340, Springer, 2004, 27–29.

3. A. Ehrenfeucht, G. Rozenberg: Reaction systems. Fundamenta Informaticae, 75
(2007), 263–280.

316 Gh. Păun, M.J. Pérez-Jiménez

4. A. Ehrenfeucht, G. Rozenberg: Events and modules in reaction systems. Theoretical
Computer Sci., 376 (2007), 3–16.

5. A. Ehrenfeucht, G. Rozenberg: Introducing time in reaction systems. Theoretical
Computer Sci., 410 (2009), 310–322.

6. A. Ehrenfeucht, G. Rozenberg: Reaction systems. A model of computation inspired
by biochemistry. Proc. DLT 2010 (Y. Gao et al., eds.), LNCS 6224, Springer, 2010,
1–3.

7. R. Freund, L. Kari, P. Sosik: Computationally universal P systems without priorities:
two catalysts are sufficient. Theoretical Computer Sci., 330 (2005), 251–266.

8. R. Freund, M. Oswald: Partial halting in P systems. Intern. J. Foundations of Com-
puter Sci., 18 (2007), 1215–1225.

9. P. Frisco: Computing with Cells. Advances in Membrane Computing. Oxford Univer-
sity Press, 2008.

10. J. Kleijn, M. Koutny: Membrane systems with qualitative evolution rules, Fundaenta
Informaticae, to appear.

11. Gh. Păun: Computing with membranes. Journal of Computer and System Sciences,
61, 1 (2000), 108–143 (first circulated as Turku Center for Computer Science-TUCS
Report 208, November 1998, www.tucs.fi).

12. Gh. Păun: Membrane Computing. An Introduction. Springer, Berlin, 2002.
13. Gh. Păun, G. Rozenberg, A. Salomaa, eds.: Handbook of Membrane Computing. Ox-

ford University Press, 2010.
14. G. Rozenberg, A. Salomaa: The Mathematical Theory of L Systems. Academic Press,

New York, 1980.
15. The P Systems Website: http://ppage.psystems.eu.

Smoothing Problem in 2D Images with Tissue-like
P Systems and Parallel Implementation

Francisco Peña-Cantillana1, Daniel Dı́az-Pernil2, Hepzibah A. Christinal2,3,
Miguel A. Gutiérrez-Naranjo1

1 Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla, Spain
frapencan@gmail.com,magutier@us.es

2 Computational Algebraic Topology and Applied Mathematics Research Group
Department of Applied Mathematics I
University of Sevilla, Spain
sbdani@us.es

3 Karunya University, Coimbatore, Tamilnadu, India
hepzi@yahoo.com

Summary. Smoothing is often used in Digital Imagery to reduce noise within an image.
In this paper we present a Membrane Computing algorithm for smoothing 2D images in
the framework of tissue-like P systems. The algorithm has been implemented by using a
novel device architecture called CUDATM, (Compute Unified Device Architecture). We
present some examples, compare the obtained time and present some research lines for
the future.

1 Introduction

The study of digital images [22] has seen a large progress over the last decades.
The aim of dealing with an image in its digital form is improving its quality, in
some sense, or to simply achieving some artistic effect. The physical properties
of camera technology are inherently linked to different sources of noise, so the
application of smoothing algorithm are necessary for an appropriate use of the
images. Smoothing is often used to reduce such noise within an image.

In this paper we use Membrane Computing4 techniques for smoothing 2D im-
ages in the framework of tissue-like P systems. The algorithm has been imple-
mented by using a novel device architecture called CUDATM, (Compute Unified
Device Architecture) [16, 23]. CUDATM is a general purpose parallel computing
architecture that allows the parallel NVIDIA Graphics Processors Units (GPUs)
4 We refer to [19] for basic information in this area, to [20] for a comprehensive presen-

tation and the web site [24] for the up-to-date information.

318 F. Peña-Cantillana et al.

to solve many complex computational problems5 in a more efficient way than on
a CPU . This parallel architecture has been previously used in Membrane Com-
puting [1, 2, 3] but, to the best of our knowledge, this is the first time that it is
used for implementing smoothing algorithms with tissue-like P systems.

Dealing with Digital Imagery has several features which make it suitable for
techniques inspired by nature. One of them is that it can be parallelized and
locally solved. Regardless how large the picture is, the segmentation process can be
performed in parallel in different local areas. Another interesting feature is that the
basic necessary information can be easily encoded by bio-inspired representations.

In the literature, one can find several attempts for bridging problems from
Digital Imagery with Natural Computing as the works by K.G. Subramanian et al.
[4, 5] or the work by Chao and Nakayama where Natural Computing and Algebraic
Topology are linked by using Neural Networks [6] (extended Kohonen mapping).
Recently, new approaches have been presented in the framework of Membrane
Computing [7, 11]. In [8, 9, 10], Christinal et al. started a new bio-inspired research
line where the power and efficiency of tissue-like P systems [12, 13] were applied
to topological processes for 2D and 3D digital images.

The paper is organised as follows: Firstly, we recall some basics of tissue-like
P systems and the foundations of Digital Imagery. Next we present our P systems
family and an easy example showing different results by using different thresholds.
In Section 3 we present the implementation in CUDATM of the algorithm and
show an illustrative example, including a comparative of the time obtained in the
different variants. The paper finishes with some final remarks and hints for future
work.

2 Preliminaries

In this section we provide some basics on the used P system model, tissue-like P
systems, and on the foundation of Digital Imagery.

Tissue-like P systems [14, 15] have two biological inspirations: intercellular com-
munication and cooperation between neurons. The common mathematical model
of these two mechanisms is a network of processors dealing with symbols and
communicating these symbols along channels specified in advance.

Formally, a tissue-like P system with input of degree q ≥ 1 is a tuple

Π = (Γ,Σ, E , w1, . . . , wq,R, iΠ , oΠ),

where
1. Γ is a finite alphabet, whose symbols will be called objects;
2. Σ(⊂ Γ) is the input alphabet;
3. E ⊆ Γ is the alphabet of objects in the environment;
4. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells at the initial configuration;
5 For a good overview, the reader can refer to [17, 18].

Smoothing Problem in 2D Images with Tissue-like P Systems 319

5. R is a finite set of communication rules of the following form:

(i, u/v, j)

for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;
6. iΠ ∈ {1, 2, . . . , q} is the input cell;
7. oΠ ∈ {0, 1, 2, . . . , q} is the output cells

A tissue-like P system of degree q ≥ 1 can be seen as a set of q cells (each one
consisting of an elementary membrane) labelled by 1, 2, . . . , q. We will use 0 to
refer to the label of the environment, iΠ denotes the input region and oΠ denotes
the output region (which can be the region inside a cell or the environment).

The strings w1, . . . , wq describe the multisets of objects placed in the q cells
of the P system. We interpret that E ⊆ Γ is the set of objects placed in the
environment, each one of them available in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells labelled by i
and j such that u is contained in cell i and v is contained in cell j. The application
of this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells. Note that if either i = 0 or j = 0 then the
objects are interchanged between a cell and the environment.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e., in each step we apply a maximal set of rules.

A configuration is an instantaneous description of the P system Π. Given a
configuration, we can perform a computation step and obtain a new configuration
by applying the rules in a parallel manner as it is shown above. A sequence of
computation steps is called a computation. A configuration is halting when no
rules can be applied to it. Then, a computation halts when the P system reaches
a halting configuration.

Next we recall some basics on Digital Imagery6.
A point set is simply a topological space consisting of a collection of objects

called points and a topology which provides for such notions as nearness of two
points, the connectivity of a subset of the point set, the neighborhood of a point,
boundary points, and curves and arcs. For a point set X in Z, a neighborhood
function from X in Z, is a function N : X → 2Z . For each point x ∈ X, N(x) ⊆ Z.
The set N(x) is called a neighborhood for x.

There are two neighborhood function on subsets of Z2 which are of particular
importance in image processing, the von Neumann neighborhood and the Moore
neighborhood. The first one N : X → 2Z

2
is defined by N(x) = {y : y =

(x1 ± j, x2) or y = (x1, x2 ± k), j, k ∈ {0, 1}}, where x = (x1, x2) ∈ X ⊂ Z2.
While the Moore neighborhood M : X → 2Z

2
is defined by M(x) = {y : y =

(x1 ± j, x2 ± k), j, k ∈ {0, 1}}, where x = (x1, x2) ∈ X ⊂ Z2. The von Neumann
6 We refer the interested reader to [21] for a detailed introduction.

320 F. Peña-Cantillana et al.

and Moore neighborhood are also called the four neighborhood (4-adjacency) and
eight neighborhood (8-adjacency), respectively.

An Z-valued image on X is any element of ZX . Given an Z-valued image
I ∈ ZX , i.e. I : X → Z, then Z is called the set of possible range values of I
and X the spatial domain of I. The graph of an image is also referred to as the
data structure representation of the image. Given the data structure representation
I = {(x, I(x)) : x ∈ X}, then an element (x, I(x)) is called a picture element or
pixel. The first coordinate x of a pixel is called the pixel location or image point,
and the second coordinate I(x) is called the pixel value of I at location x.

For example, X could be a subset of Z2 where x = (i, j) denotes spatial location,
and Z could be a subset of N or N3, etc. So, given an image I ∈ ZZ

2
, a pixel of

I is the form ((i, j), I(x)), which be denoted by I(x)ij . We call the set of colors
or alphabet of colors of I, CI ⊆ Z, to the image set of the function I with domain
X and the image point of each pixel is called associated color. We can consider
an order in this set. Usually, we consider in digital image a predefined alphabet of
colors C ⊆ Z. We define h = |C| as the size (number of colors) of C. In this paper,
we work with images in grey scale, then C = {0, . . . , 255}, where 0 codify the black
color and 255 the white color.

A region could be defined by a subset of the domain of I whose points are all
mapped to the same (or similar) pixel value by I. So, we can consider the region
Ri as the set {x ∈ X : I(x) = i} but we prefer to consider a region r as a maximal
connected subset of a set like Ri. We say two regions r1, r2 are adjacent when at
less a pair of pixel x1 ∈ r1 and x2 ∈ r2 are adjacent. We say x1 and x2 are border
pixels. If I(x1) < I(x2) we say x1 is an edge pixel. The set of connected edge pixels
with the same pixel value is called a boundary between two regions.

The purpose of image enhancement is to improve the visual appearance of
an image, or to transform an image into a form that is better suited for human
interpretation or machine analysis. There exists a multitude of image enhance-
ment techniques, as are averaging of multiple images, local averaging, Gaussian
smoothing, max-min sharpening transform, etc.

One of the form to enhancement an image could be eliminate non important
regions of an image, i.e., remove regions which do not provide relevant information.
This technique is known as smoothing.

2.1 A Family of Tissue-like P Systems

Given a digital image with n2 pixels and n ∈ N we define a tissue-like P system
whose input is given by the pixels of the image encoded by the objects aij , where
1 ≤ i, j ≤ n and a ∈ C. Next, we shall give some outlines how to prove that our
smoothing problem can be solved in a logarithmic number of steps using a family
of tissue-like P systems Π.

We define a family of tissue-like P systems to do an smoothing of a 2D image.
For each image of size n2 with n ∈ N, we consider the tissue-like P system with
input of degree 1:

Smoothing Problem in 2D Images with Tissue-like P Systems 321

Π(r, n) = (Γ, Σ, E , w1,R, iΠ , oΠ),

where

• Γ = Σ ∪ E ,
• Σ = {aij : a ∈ C, 1 ≤ i, j ≤ n},
• E = {aij : 1 ≤ i, j ≤ n, a ∈ C},
• w1 = ∅,
• R is the following set of communication rules:

– (1, aijbkl/aijakl, 0),
· for 1 ≤ i, j ≤ n,
· a, b ∈ C, a < b and d(a, b) ≤ r,
These rules are used to simplify the image. If we have two colors whose
distance in the alphabet of colors of the image is small, then we change
the high color by the small one. Of this manner, we change the regions
structure.

• iΠ = oΠ = 1.

Each P system works as follows: We take pairs of adjacent pixels and change
the color of the pixel with lower color. We do it in a parallel way with all the
possible pairs of pixels. In the next step, we will repeat the previous process, but
the colors of the pixels have could to be changed. So, we need, in the worst case,
a linear number of steps to do all the possible changes to obtain an smoothing of
our image.

Fig. 1. An example

2.2 An Easy Example

In this section, we show the results obtained by the application of our method.
Our input image (of size 30×30) can be seen in Figure 1. In this case, 0 represents

322 F. Peña-Cantillana et al.

to white color and 30 represents to black color, i.e., the inverse order for C is
considered.

Fig. 2. Theoretical Smoothness of the Figure 1.

Working with different thresholds provides different results as we can observe
in Figure 2. If we take r = 5, then we get the first image, and when the threshold
is r = 10 the second image is obtained. By using this method, it is clear that
the structure of regions is (more or less) conserved with a threshold of r = 5 and
we need to a high number to obtain a more simplified image. Moreover, we can
observe in both cases the color of regions is similar to the regions of input image
in this method. Therefore, we can use this technique for smoothing images, and
clarify the structure of a region without eliminate important information.

Bearing in mind the size of the input data is O(n2), |C| = h and r is the
threshold used with both membrane solutions. The amount of necessary resources
for defining the systems of our families and the complexity of our problem is
determined in the following table:

Smoothing Problem
Complexity Dynamical
Number of steps of a computation O(n)
Necessary Resources
Size of the alphabet n2 · h
Initial number of cells 1
Initial number of objects 0
Number of rules O(n2 · h)
Upper bound for the length of the rules 4

3 Parallel Implementation

GPUs constitute nowadays a solid alternative for high performance computing, and
the advent of CUDATM allow programmers a friendly model to accelerate a broad
range of applications. The way GPUs exploit parallelism differ from multi-core

Smoothing Problem in 2D Images with Tissue-like P Systems 323

CPUs, which raises new challenges to take advantage of its tremendous computing
power. GPU is especially well-suited to address problems that can be expressed
as data-parallel computations. GPUs can support several thousand of concurrent
threads providing a massively parallel environment. This parallel computation
model leads us to look for a highly parallel computational technology where a
parallel simulator can run efficiently.

In this paper, we present a parallel software tool based in our membrane solu-
tion for smoothing images. It has been developed by using Microsoft Visual Studio
2008 Professional Edition (C++) with the plugging Parallel Nsight (CUDATM) un-
der Microsoft Windows 7 Professional with 32 bits.

To implement the P systems, CUDATM C, an extension of C for implemen-
tations of executable kernels in parallel with graphical cards NVIDIA has been
used. It has been necessary the nvcc compiler of CUDATM Toolkit. Moreover, we
use libraries from openCV to the treatment of input and output images. Microsoft
Visual Studio 2008 is responsible for calling to the compilers to build the objects,
and to link them with the final program. This allows us to deal with images stored
in .BMP, .DIB, .JPEG, .JPG, .JPE, .PNG, .PBM, .PGM, .PPM, .SR, .RAS, .TIFF
and .TIF formats

The experiments have been performed on a computer with a CPU Intel Pentium
4 650, with support for HT technology which allows to work like two CPUs of 32
bits to 3412 MHz. Computer has 2 MB of L2 cache memory and 1 GB DDR
SDRAM of main memory with 64 bits bus wide to 200 MHz. Moreover, it has a
hard disc of 160 GB SATA2 with a transfer rate of 300 Mbps in a 8 MB buffer.

The graphical card (GPU) is an NVIDIA Geforce 8600 GT composed by 4
Stream Processors with a total of 32 cores to 1300 MHz and executes 512 threads
per block as maximum. It has a 512 MB DDR2 main memory, but 499 MB could
be used by processing in a 128 bits bus to 700 MHz. So, the transfer rate obtained
is by 22.4 Gbps. For constant memory used 64 KB and for shared memory 16 KB
(It is not a good data for a good CUDATM graphical card). Its Compute Capability
is 1.1 (from 1.0 to 2.1), then we can obtain a lot of improvements in the efficiency
of the algorithms.

If we compare CPU and GPU, we observe that the former has two cores to
3412 MHz and the latter has 32 to 1300Mhz and has larger memory.

We have developed two applications of our P systems. In this case, we consider
the natural order in the set of colors C = {0, . . . , 255}. In the first one, we have
considered a deterministic implementation, where we work with the Moore neigh-
borhood. So, the system checks if the rules can be applied for eight adjacent pixels.
In the second one, we have considered an random selection of an adjacent pixel
to work. Then, the system checks only one possibility chosen in an random way.
Of this form, we simulate the characteristic non determinism of P systems with
random. Moreover, we have decided to stop the system before the halting config-
uration, because more than an appropriate number of parallel steps of processing
could be non-operative. In fact, in the deterministic version, the process could fin-

324 F. Peña-Cantillana et al.

ish before the pre-fixed number of steps. So, the system needs some time to check
this possibility. In the second one, it is not necessary to look at this question.

Fig. 3. Original image

Fig. 4. Deterministic version, Threshold 50: 0, 5, 10, 20, 32 and 44 steps, respectively.

Fig. 5. Deterministic version. First: Threshold 75, step 193. Second: Threshold 125, step
193.

Smoothing Problem in 2D Images with Tissue-like P Systems 325

We consider the image of size 640 × 400 in Figure 3. When we take the de-
terministic application of our software, we can check that if we use an threshold
r = 50, our software smooths the original image (see Figure 4) using 44 parallel
steps. Nonetheless, when we work with a higher threshold, new important regions
are changed, and the output image is different. (See the images of Figure 5).

When we consider the random version of our software, we can check that if we
use an threshold r = 50 we need 300 steps, but the differences with the resulting
image with 150 or 200 steps are minimum, as we can see in Figure 6. When we
take higher thresholds, as in the Figure 7, we can check that new regions change
of colors.

Fig. 6. Random version, Threshold 50: 0, 50, 100, 150, 200 and 300 steps, respectively.

Fig. 7. Random version.First: Threshold 75, step 1000. Second: Threshold 125, step 800.

We present a study the running time of our software for both cases with differ-
ent thresholds, showed in the above examples, with the next table. We can observe
that deterministic version of our software needs less time with respect to the ran-
dom version. In the first one, it applies eight rules for each pixels while, in the
second one, it applies only one rule for each pixel. Moreover, we need a running
time to implement the random in each step for each pixel.

326 F. Peña-Cantillana et al.

Version \ Thresholds Computation steps Running Time
Determ. \ 50 44 536.522 ms
Determ. \ 75 193 1582.098 ms
Determ. \ 125 193 1563.660 ms
Random \ 50 300 6823.683 ms
Random \ 75 1000 21537.701 ms
Random \ 100 800 17332.891 ms

Finally, we have done some experiments with our software to know what hap-
pened if we work with images of different size. We have checked our software with
images until size 512 in both version. The deterministic version needs much time
with bigger images, and the random version does not work with those images. This
is a physical problem our graphical card, because the shared memory is small.

Fig. 8. Comparatives.

4 Conclusions and Future Work

In this paper, three emergent research fields are put together. Firstly, as pointed in
[8, 10], Membrane Computing has features as the encapsulation of the information,
a simple representation of the knowledge and parallelism, which are appropriate
with dealing with digital images. Nonetheless, the use of the intrinsic parallelism of
Membrane Computing techniques cannot be implemented in current one-processor
computers, so the potential advantages of the theoretical design are lost.

In this paper we show that the drawback of using one-processor computers for
implementing Membrane Computing designs can be avoided by using the parallel
architecture CUDATM. This new technology provides the hardware needed for a
real parallel implementation of Membrane Computing algorithms.

Smoothing Problem in 2D Images with Tissue-like P Systems 327

Considering this paper as a starting point, several research lines are open:
From Digital Imagery, new parallel algorithms can be proposed adapted to the
new technology, from the Membrane Computing side, new design or different P
system models can be explored. From the hardware point of view, the advances
in the new technology CUDATM with the new boards Tesla and Fermi open new
possibilities for going on with the research.

Acknowledgements

DDP and MAGN acknowledge the support of the projects TIN2008-04487-E and
TIN-2009-13192 of the Ministerio de Ciencia e Innovación of Spain and the support
of the Project of Excellence with Investigador de Reconocida Vaĺıa of the Junta
de Andalućıa, grant P08-TIC-04200. HC acknowledges the support of the project
MTM2009-12716 of the Ministerio de Educación y Ciencia of Spain and the project
PO6-TIC-02268 of Excellence of Junta de Andalućıa, and the “CATAM” PAICYT
research group FQM-296.

References

1. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Implementing P systems parallelism by means
of GPUs. In: Păun, Gh., Pérez-Jiménez, M.J., Riscos-Núñez, A., Rozenberg, G., Sa-
lomaa, A. (eds.) Workshop on Membrane Computing. Lecture Notes in Computer
Science, vol. 5957, pp. 227–241. Springer (2009)

2. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution
to SAT by using GPUs. Journal of Logic and Algebraic Programming 79(6), 317–325
(2010)

3. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Simulation of P systems with active membranes
on CUDA. Briefings in Bioinformatics 11(3), 313–322 (2010)

4. Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.G.: Tissue-like P systems
with active membranes for picture generation. Fundamenta Informaticae 56(4), 311–
328 (2003)

5. Ceterchi, R., Mutyam, M., Păun, G., Subramanian, K.G.: Array-rewriting P systems.
Natural Computing 2(3), 229–249 (2003)

6. Chao, J., Nakayama, J.: Cubical singular simplex model for 3D objects and fast com-
putation of homology groups. In: 13th International Conference on Pattern Recog-
nition (ICPR’96). vol. IV, pp. 190–194. IEEE Computer Society, IEEE Computer
Society, Los Alamitos, CA, USA (1996)

7. Christinal, H.A., Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.:
Thresholding of 2d images with cell-like P systems. Romanian Journal of Information
Science and Technology (ROMJIST) 13(2), 131–140 (2010)

328 F. Peña-Cantillana et al.

8. Christinal, H.A., Dı́az-Pernil, D., Real, P.: Segmentation in 2D and 3D image using
tissue-like P system. In: Bayro-Corrochano, E., Eklundh, J.O. (eds.) CIARP. Lecture
Notes in Computer Science, vol. 5856, pp. 169–176. Springer (2009)

9. Christinal, H.A., Dı́az-Pernil, D., Real, P.: Using membrane computing for obtaining
homology groups of binary 2D digital images. In: Wiederhold, P., Barneva, R.P.
(eds.) IWCIA. Lecture Notes in Computer Science, vol. 5852, pp. 383–396. Springer
(2009)

10. Christinal, H.A., Dı́az-Pernil, D., Real, P.: P systems and computational algebraic
topology. Journal of Mathematical and Computer Modelling 52(11-12), 1982 – 1996
(December 2010), the BIC-TA 2009 Special Issue, International Conference on Bio-
Inspired Computing: Theory and Applications

11. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Molina-Abril, H., Real, P.: A bio-inspired
software for segmenting digital images. In: Nagar, A.K., Thamburaj, R., Li, K.,
Tang, Z., Li, R. (eds.) Proceedings of the 2010 IEEE Fifth International Conference
on Bio-Inspired Computing: Theories and Applications BIC-TA. vol. 2, pp. 1377 –
1381. IEEE Computer Society (2010)

12. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: A
uniform family of tissue P systems with cell division solving 3-COL in a linear time.
Theoretical Computer Science 404(1-2), 76–87 (2008)

13. Dı́az-Pernil, D., Pérez-Jiménez, M.J., Romero, A.: Efficient simulation of tissue-like
P systems by transition cell-like P systems. Natural Computing 8, 797–806 (2009)

14. Mart́ın-Vide, C., Pazos, J., Păun, Gh., Rodŕıguez-Patón, A.: A new class of symbolic
abstract neural nets: Tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON.
Lecture Notes in Computer Science, vol. 2387, pp. 290–299. Springer (2002)

15. Mart́ın-Vide, C., Păun, Gh., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems. The-
oretical Computer Science 296(2), 295–326 (2003)

16. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with
cuda. Queue 6, 40–53 (March 2008)

17. Owens, J.D., Houston, M., Luebke, D., Green, S., Stone, J.E., Phillips, J.C.: GPU
Computing. Proceedings of the IEEE 96(5), 879–899 (May 2008)

18. Owens, J.D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J., Lefohn, A., Purcell,
T.J.: A survey of general-purpose computation on graphics hardware. Computer
Graphics Forum 26(1), 80–113 (2007)

19. Păun, Gh.: Membrane Computing. An Introduction. Springer-Verlag, Berlin, Ger-
many (2002)

20. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

21. Ritter, G.X., Wilson, J.N., Davidson, J.L.: Image algebra: An overview. Computer
Vision, Graphics, and Image Processing 49(3), 297–331 (1990)

22. Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall PTR, Upper Saddle
River, NJ, USA (2001)

23. NVIDIA Corporation. NVIDIA CUDAtm Programming Guide.
http://www.nvidia.com/object/cuda home new.html

24. P system web page. http://ppage.psystems.eu

Elementary Active Membranes
Have the Power of Counting

Antonio E. Porreca, Alberto Leporati, Giancarlo Mauri, and Claudio Zandron

Dipartimento di Informatica, Sistemistica e Comunicazione
Universit degli Studi di Milano-Bicocca
Viale Sarca 336/14, 20126 Milano, Italy
{porreca,leporati,mauri,zandron}@disco.unimib.it

Summary. We prove that uniform families of P systems with active membranes operat-
ing in polynomial time can solve the whole class of PP decision problems, without using
nonelementary membrane division or dissolution rules. This result also holds for families
having a stricter uniformity condition than the usual one.

1 Introduction

P systems with active membranes [9] are known to solve computationally hard
problems in polynomial time by trading space for time: an exponential number
of membranes is created in polynomial time by using division rules, and then
massive parallelism is exploited, e.g., to explore the whole solution space of an
NP-complete problem in parallel.

When we allow nonelementary division rules, i.e., rules that can be applied
to membranes containing further membranes, even PSPACE-complete problems
become solvable in polynomial time [10, 2]. The general idea is that nonelementary
division allows us to construct a binary tree-shaped membrane structure, isomor-
phic to the parse tree of the formula resulting from the expansion of universal
and existential quantifiers into conjunctions and disjunctions, according to the
equivalences

∀x ϕ(x) ⇔ ϕ(0) ∧ ϕ(1) ∃x ϕ(x) ⇔ ϕ(0) ∨ ϕ(1).

We also know that no problem outside PSPACE can be solved in polynomial time,
as this is also an upper bound [11]: in symbols, we have PMCAM = PSPACE.

On the other hand, when no division at all is allowed the resulting P systems
can be shown to be no more powerful than polynomial-time Turing machines
(“Milano Theorem” [12]).

The “intermediate” case, when the only membranes that can divide are elemen-
tary (i.e., leaves of the tree corresponding to the membrane structure), is possibly

330 A.E. Porreca et al.

the most interesting one. The exponential number of membranes that may be
created cannot be structured into a binary tree: hence, the algorithm above can
only be applied to formulae having just one kind of quantifier. This is enough to
solve the SAT problem [12] and its complement (which are respectively NP- and
coNP-complete), where only existentially (resp., universally) quantified variables
are allowed.1 However, the corresponding complexity class PMCAM(−n) still lacks
a characterisation in terms of Turing machines. Alhazov et al. [1] have shown how
PP- and #P-complete problems can be solved without nonelementary division,
but their result is not directly related to the class PMCAM(−n), as it requires
some form of post-processing or the use of non-standard rules. In this paper, we
improve the previous NP∪ coNP lower bound to PP within the standard frame-
work of active membranes. This is an improved version of the paper “P systems
with active membranes: Beyond NP and coNP” presented by the authors and the
Eleventh International Conference on Membrane Computing [7].

2 Preliminaries

We use P systems with restricted elementary active membranes, which are defined
as follows.

Definition 1. A P system with restricted elementary active membranes of initial
degree d ≥ 1 is a tuple Π = (Γ, Λ, µ, w1, . . . , wd, R), where:

• Γ is a finite alphabet of symbols (the objects);
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree) consisting of d mem-

branes enumerated by 1, . . . , d; furthermore, each membrane is labeled by an
element of Λ, not necessarily in a one-to-one way;

• w1, . . . , wd are strings over Γ , describing the initial multisets of objects placed
in the d regions of µ;

• R is a finite set of rules.

Each membrane possesses, besides its label and position in µ, another attribute
called electrical charge (or polarization), which can be either neutral (0), positive
(+) or negative (−) and is always neutral before the beginning of the computation.

The rules are of the following kinds:

• Object evolution rules, of the form [a → w]αh
They can be applied inside a membrane labeled by h, having charge α and
containing an occurrence of the object a; the object a is rewritten into the
multiset w (i.e., a is removed from the multiset in h and replaced by every
object in w).

1 Some further partial results relating quantifier alternations and nonelementary division
depth, albeit in the slightly different framework of P systems with active membranes
without charges, have been obtained [8].

Elementary Active Membranes Have the Power of Counting 331

• Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labeled by h, having charge α and such
that the external region contains an occurrence of the object a; the object a is
sent into h becoming b and, simultaneously, the charge of h is changed to β.

• Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labeled by h, having charge α and con-
taining an occurrence of the object a; the object a is sent out from h to the
outside region becoming b and, simultaneously, the charge of h is changed to β.

• Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h, having charge α, contain-
ing an occurrence of the object a but having no other membrane inside (an
elementary membrane); the membrane is divided into two membranes having
label h and charge β and γ; the object a is replaced, respectively, by b and c
while the other objects in the initial multiset are copied to both membranes.

Each instantaneous configuration of a P system with active membranes is de-
scribed by the current membrane structure, including the electrical charges, to-
gether with the multisets located in the corresponding regions. A computation
step changes the current configuration according to the following set of principles:

• Each object and membrane can be subject to at most one rule per step, except
for object evolution rules (inside each membrane any number of evolution rules
can be applied simultaneously).

• The application of rules is maximally parallel : each object appearing on the
left-hand side of evolution, communication, dissolution or elementary division
must be subject to exactly one of them (unless the current charge of the mem-
brane prohibits it). The same reasoning applies to each membrane that can be
involved to communication, dissolution, elementary or nonelementary division
rules. In other words, the only objects and membranes that do not evolve are
those associated with no rule, or only to rules that are not applicable due to
the electrical charges.

• When several conflicting rules can be applied at the same time, a nondeter-
ministic choice is performed; this implies that, in general, multiple possible
configurations can be reached after a computation step.

• While all the chosen rules are considered to be applied simultaneously during
each computation step, they are logically applied in a bottom-up fashion: first,
all evolution rules are applied to the elementary membranes, then all commu-
nication, dissolution and division rules; then we proceed towards the root of
the membrane structure. In other words, each membrane evolves only after its
internal configuration has been updated.

• The outermost membrane cannot be divided or dissolved, and any object sent
out from it cannot re-enter the system again.

A halting computation of Π is a finite sequence of configurations C = (C0, . . . , Ck),
where C0 is the initial configuration, every Ci+1 is reachable by Ci via a single

332 A.E. Porreca et al.

computation step, and no rules can be applied anymore in Ck. A non-halting com-
putation C = (Ci : i ∈ N) consists of infinitely many configurations, again starting
from the initial one and generated by successive computation steps, where the
applicable rules are never exhausted.

P systems can be used as recognisers by employing two distinguished objects
yes and no; exactly one of these must be sent out from the outermost membrane
during each computation, in order to signal acceptance or rejection respectively; we
also assume that all computations are halting. If all computations starting from
the same initial configuration are accepting, or all are rejecting, the P system
is said to be confluent. If this is not necessarily the case, then we have a non-
confluent P system, and the overall result is established as for nondeterministic
Turing machines: it is acceptance iff an accepting computation exists.

In order to solve decision problems (i.e., decide languages), we use families of
recogniser P systems Π = {Πx : x ∈ Σ?}. Each input x is associated with a P sys-
tem Πx that decides the membership of x in the language L ⊆ Σ? by accepting or
rejecting. The mapping x 7→ Πx is restricted, in order to be computable efficiently
and uniformly for each input length.

Definition 2. A family of P systems Π = {Πx : x ∈ Σ?} is said to be
(polynomial-time) uniform if the mapping x 7→ Πx can be computed by two deter-
ministic polynomial-time Turing machines F (for “family”) and E (for “encod-
ing”) as follows:

• The machine F , taking as input the length n of x in unary notation, constructs
a P system Πn with a distinguished input membrane (the P systems structure
Πn is common for all inputs of length n).

• The machine E, on input x, outputs a multiset wx (an encoding of the specific
input x).

• Finally, Πx is simply Πn with wx added to the multiset placed inside its input
membrane.

Notice that this definition of uniformity is possibly weaker than the other one
commonly used in membrane computing [6], where the Turing machine F maps
each input x to a P system Πs(x), where s : Σ? → N is a measure of the size of the
input (in our case, s(x) is always |x|). In particular, complexity classes defined us-
ing this restricted uniformity condition are not always formally known to be closed
under polynomial-time reductions2. See [4] for further details on uniformity condi-
tions, including constructions using weaker devices than polynomial-time Turing
machines.

Any explicit encoding of Πx is allowed as output, as long as the number of
membranes and objects represented by it does not exceed the length of the whole
description, and the rules are listed one by one. This restriction is enforced in
2 This might complicate proofs of inclusions among complexity classes, although one

can usually find a proof not relying on closure under polynomial-time reductions, as
in the present paper.

Elementary Active Membranes Have the Power of Counting 333

order to mimic a (hypothetical) realistic process of construction of the P systems,
where membranes and objects are presumably placed in a constant amount during
each construction step, and require actual physical space in proportion to their
number. For instance, the membrane structure can be represented by brackets,
and the multisets as strings (i.e., in unary notation); this is a permissible encoding
in the sense of [4].

Finally, we describe how time complexity for families of recogniser P systems
is measured.

Definition 3. A uniform family of P systems Π = {Πx : x ∈ Σ?} is said to
decide the language L ⊆ Σ? (in symbols L(Π) = L) in time f : N → N iff, for
each x ∈ Σ?,

• the system Πx accepts if x ∈ L, and rejects if x /∈ L;
• each computation of Πx halts within f(|x|) computation steps.

In this paper we use uniform families of P systems to solve a variant of the SAT
problem. Hence, we set the relevant notation and describe how Boolean formulae
can be encoded in order to simplify a uniform solution.

Given a set of m ≥ 3 variables Xm = {x1, . . . , xm}, the number of clauses of
3 variables (without repeated variables, and ignoring permutations of literals) is
given by 8

(
m
3

)
, the number of 3-element subsets times the 23 ways to negate them.

Hence, a 3CNF formula ϕ can be encoded as an 8
(
m
3

)
-bit string, where the i-th

bit is 1 iff the i-th clause (under some fixed ordering) appears in ϕ. Notice that
8
(
m
3

)
= 4

3m3 − 4m2 + 8
3m is a polynomial.

In this paper, we will order the clauses according to the enumeration printed
by the recursive algorithm of Figure 1.

Example 1 (Encoding). The clauses over 4 variables X4 = {x1, . . . , x4}, in the
order given by the algorithm above, are the following ones:

x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3 x1 ∨ x2 ∨ x3

x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4

x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4 x1 ∨ x2 ∨ x4

x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4

x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4 x1 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4

x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4 x2 ∨ x3 ∨ x4

Then, the formula

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x3 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)

is encoded as the following sequence of 8
(
4
3

)
= 32 bits

334 A.E. Porreca et al.

print-clauses(m)
if m > 3 then

print-clauses(m− 1)
end
for i ← 1 to m− 2 do

for j ← i + 1 to m− 1 do
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”
print “xi ∨ xj ∨ xm”

end
end

end

Fig. 1. A recursive, polynomial-time algorithm that enumerates all clauses of 3 out of
m variables.

ϕ = 0100 0001 0000 0000 0001 0000 0000 0010

because the clauses actually appearing are the 2nd, 8th, 20th, and 31st ones.

Besides being computable in polynomial time with respect to m, this ordering
has the following important property: the sequence of clauses over m variables
is a prefix of the sequence of clauses over m′ variables whenever m′ ≥ m. As a
consequence, each formula over m variables can also be considered as a formula
over m′ variables by padding its encoding to the correct length. For instance,
the formula ϕ of Example 1 can be interpreted as a formula over five variables
x1, . . . , x5 if its encoding is padded to length 8

(
5
3

)
= 80 by a string of zeroes, i.e.,

as ϕ · 048.
We now consider the following decision problem.

Problem 1 (Threshold-3SAT). Given a Boolean formula ϕ over m variables
and a non-negative integer k < 2m, do more than k assignments (out of 2m)
satisfy it?

Notice that we can force all valid instances (ϕ, k) of Problem 1 to have a descrip-
tion of length exactly 8

(
m
3

)
+ m for some m, as every number in the range [0, 2m)

can be represented using m bits. This will be useful in the next section.

Proposition 1. Threshold-3SAT is PP-hard.

Proof. We reduce the following standard PP-complete problem [5, p. 256] to
Threshold-3SAT.

Elementary Active Membranes Have the Power of Counting 335

Problem 2 (Majority-SAT). Given a Boolean formula ϕ in CNF, hav-
ing c clauses over m variables and such that each variable occurs at most
once per clause, do more than half the assignments (i.e., more than 2m−1

assignments) satisfy it?

The reduction is similar to that from SAT to 3SAT described in [3, p. 48]. We
first transform ϕ into a formula having at most three literals per clause. Observe
that ϕ is satisfied iff the formula obtained by replacing a clause of p > 3 literals∨p

i=1 `i with

(y ⇔ `1 ∨ `2) ∧
(

y ∨
p∨

i=3

`i

)

is also satisfied, assuming y is a new variable. In CNF, that is equivalent to

(`1 ∨ y) ∧ (`2 ∨ y) ∧ (`1 ∨ `2 ∨ y) ∧
(

y ∨
p∨

i=3

`i

)
.

This substitution doubles the number of total assignments of the formula, due to
the addition of a new variable, but the number of satisfying ones is left unchanged,
as the value of y is forced to be equal to `1 ∨ `2. The substitution decreases by one
the number of literals of the initial clause; by repeating the process p − 3 times,
and then again to any other clause having more than three literals, we obtain
a formula ϕ′ having at most three literals per clause, and the same number of
satisfying assignments as ϕ. The number of variables of ϕ′ is bounded by m+ cm.

Next, we transform every clause of one or two literals into a clause of exactly
three. A clause of a single literal ` is replaced by

(` ∨ z1 ∨ z2) ∧ (` ∨ z1 ∨ z2) ∧ (` ∨ z1 ∨ z2) ∧ (` ∨ z1 ∨ z2),

where z1 and z2 are new variables, which is clearly satisfied iff ` is. Each replace-
ment like this one multiplies by 22 = 4 the number of satisfying assignments of
the whole formula, as the values of z1 and z2 are actually irrelevant.

A clause of two literals `1 ∨ `2 is replaced by

(`1 ∨ `2 ∨ z) ∧ (`1 ∨ `2 ∨ z),

where z is a new variable, which is also equivalent to the original clause but doubles
the number of satisfying assignments of the formula.

Call ϕ′′ the formula obtained from ϕ′ by replacing single and 2-literal clauses
by conjunctions of 3-literal clauses as described above, and let q be the number of
variables added in the process (notice that q is O(cm)). Then it should be clear
that ϕ has more than 2m−1 satisfying assignments iff ϕ′ does, and the latter is
equivalent to ϕ′′ having more than 2m+q−1 satisfying assignment.

Since the mapping R(ϕ) = (ϕ′′, 2m+q−1) is computable in polynomial time with
respect to c and m, it is a reduction from Majority-SAT to Threshold-3SAT.
ut

336 A.E. Porreca et al.

3 Solving Threshold-3SAT

In order to solve Threshold-3SAT we design a polynomial time, deterministic
Turing machine F (for “family”) such that, for each n of the form 8

(
m
3

)
+ m, the

output of F (1n) is a P system Πn that solves the problem for all inputs of length
n.

The input provided to Πn is computed by another polynomial time Turing
machine E (for “encoding”) that, given an m-variable 3CNF formula as described
in the previous section and an integer k, outputs the following set of objects:

E(ϕ, k) = {ci : the i-th clause does not appear in ϕ, for 1 ≤ i ≤ 8
(
m
3

)} ∪
{ki : the i-th bit of k (counting from 0) is 1, for 1 ≤ i ≤ m− 1}

Example 2. The formula ϕ of Example 1, together with the integer k = 12, are
encoded as E(ϕ, k) =

{
ci : 1 ≤ i ≤ 32 and i /∈ {2, 8, 20, 31}} ∪ {k2,k3}.

The initial configuration of Πn, input multiset excluded, is the following one:

C0 =
[
[in−m]0e []0k0

· · · []0km−1
ot+1 not+3

]0
in

where t = 4n− 3m + 4. The multiset encoding E(ϕ, k) is placed inside the input
membrane in, and then the computation proceeds according to the following five
phases:

1. Initialise the contents of the membranes.
2. Generate all possible assignments for ϕ.
3. Check if each assignment satisfies the input formula ϕ.
4. Count the number of assignments, testing whether it is larger than k.
5. Output the correct answer.

The fourth phase, first suggested by Alhazov et al. [1], differentiates our solution
from the standard algorithm schema, common in membrane computing, for solving
NP-complete problems.3

Phase 1 (Initialise). In the first computation steps, the objects ci, correspond-
ing to the clauses that do not appear in the input formula ϕ, are moved to mem-
brane e using the communication rules

ci []0e → [ci]0e for 1 ≤ i ≤ n−m. (R1)

This takes a number of steps at most equal to n−m (i.e., to the maximum number
of clauses in ϕ). In the mean time, the object in−m has its subscript decreased by
one for n−m− 1 computation steps, and is finally replaced during the (n−m)-th
step, using the rules
3 Indeed, by eliminating the fourth phase (or, equivalently, by choosing k = 0) we obtain

essentially a uniform version of the original solution to SAT described by Zandron et
al. [12].

Elementary Active Membranes Have the Power of Counting 337

[ii → ii−1]0e for 1 ≤ i ≤ n−m. (R2)

[i0 → x1 · · ·xmwm]0e (R3)

Hence, after n −m computation steps, membrane e contains ci for each missing
clause, and the variable-objects x1, . . . ,xm.

At the same time, the objects ki are first moved to their respective membranes
in the first time step, making them positively charged

ki []0ki
→ [ki]+ki

for 0 ≤ i ≤ m− 1 (R4)

then each ki divides its membrane i times:

[ki]+kj
→ [ki−1]+kj

[ki−1]+kj
for 0 ≤ j ≤ m− 1 and 1 ≤ i ≤ j. (R5)

After at most m steps (the largest possible subscript is m−1), there are exactly k
positively charged membranes among those having label k0, . . . ,km−1.

The total duration of Phase 1 is n−m steps.

Phase 2 (Generate). The variable-objects x1, . . . ,xm are used to generate all
the truth assignment inside multiple copies of membrane e. This is accomplished
by using the division rules

[xi]0e → [ti]0e [fi]0e for 1 ≤ i ≤ m. (R6)

After m steps, we have 2m copies of membrane e, each one containing a different
truth assignment to the variables x1, . . . , xm of ϕ: the occurrence of ti (resp., fi)
indicates that xi is set to true (resp., false) in that particular assignment.

Simultaneously, the subscript of object wm (standing for “wait m steps”) is
decreased by one each step:

[wi → wi−1]0e for 1 ≤ i ≤ m. (R7)

When the counter reaches 0, the objects w0 are sent out from each copy of mem-
brane e while changing its charge according to the following rule:

[w0]0e → []+e w0. (R8)

When membrane e is positively charged, the objects ti and fi are replaced by the
set of clause-objects corresponding to all the clauses satisfied by that particular
value of variable xi (whether they are actually part of formula ϕ or not):

[ti → ci1 · · ·ci`
]+e for 1 ≤ i ≤ m, where clause ij contains literal xi (R9)

[fi → ci1 · · ·ci`
]+e for 1 ≤ i ≤ m, where clause ij contains literal x̄i. (R10)

Notice that ` = 4
(
m−1

2

)
= 2m2 − 6m + 4, as this is the number of clauses over m

variables where a particular literal occurs.
At the same time, each copy of w0 is brought back as s0 to a copy of membrane

e by using the following rule in a maximally parallel way:

w0 []+e → [s0]+e . (R11)

The total duration of Phase 2 is m + 2 steps.

338 A.E. Porreca et al.

Phase 3 (Check). The occurrence of si inside a copy of membrane e denotes the
fact that the first i clauses (according to the enumeration described above) have
been found to be satisfied by the assignment corresponding to that membrane. We
assume that the clauses which do not appear in ϕ are satisfied by default; indeed,
this is precisely the reason why the corresponding ci objects were placed inside
membrane e in Phase 1.

When membrane e is positively charged, the object c1 is sent out from e (as
the “junk” object #), changing the charge to negative:

[c1]+e → []−e #. (R12)

When e is negative, object si is sent out; at the same time, the objects ci, for
i ≥ 2, are temporarily “primed”, and all remaining copies of c1 are discarded:

[si]−e → []−e si for 0 ≤ i ≤ n−m− 1 (R13)

[ci → c′i]
−
e for 2 ≤ i ≤ n−m (R14)

[c1 → #]−e . (R15)

In the next step, the objects c′i become ci−1; this way, during this phase we only
need to check for the presence of object c1 for n−m times.

[c′i → ci−1]−e for 2 ≤ i ≤ n−m. (R16)

At the same time, the object si is brought back in (if i < n − m), its subscript
incremented by one, while changing the charge of e to positive in order to resume
the checking of clauses:

si []−e → [si+1]+e for 0 ≤ i ≤ n−m− 1. (R17)

If sn−m is finally found inside e, it is sent out to signal that the formula is fully
satisfied under that particular assignment:

[sn−m]+e → []0e sn−m. (R18)

Hence, after the 3n−3m+1 steps of Phase 3, the outermost membrane in contains
a copy of sn−m for each assignment that satisfies ϕ.

Phase 4 (Count). In the next step, k copies of sn−m (or all of them, if less than k
exist) are “deleted” from membrane in by sending them into any of the membranes
having label k0, . . . ,km−1; these membranes are set to negative in the process, to
avoid absorbing multiple objects:

sn−m []+ki
→ [#]−ki

for 0 ≤ i ≤ m− 1. (R19)

Recall that the number of positively charged membrane ki is exactly k. Hence,
after this single step there are one or more copies of sn−m left inside membrane in
if and only if the number of satisfying assignments of ϕ was greater than k.

Elementary Active Membranes Have the Power of Counting 339

Phase 5 (Output). The objects ot and not+2, initially located inside membrane
in, work as counters during Phases 1–4 (whose total duration is precisely t =
4n− 3m + 4 steps) according to the following rules:

[oi → oi−1]0in for 1 ≤ i ≤ t + 1 (R20)

[noi → noi−1]0in for 2 ≤ i ≤ t + 3. (R21)

When the subscript of oi reaches 0, Phase 5 begins and o0 is sent out, thus
“opening” membrane in for output by setting its charge to positive:

[o0]0in → []+in #. (R22)

If any object sn−m is found inside in, it is sent out as yes in the next step, changing
the charge to negative:

[sn−m]+in → []−in yes. (R23)

Otherwise, membrane in remains positive, and the object no0, produced by the
rule

[no1 → no0]+in (R24)

is sent out as no in the following step:

[no0]+in → []−in no. (R25)

The duration of Phase 5 is either 2 or 3 steps, depending on whether the number
of assignments satisfying ϕ is greater than k or not.

This algorithm allows us to solve the Threshold-3SAT problem in linear
time O(n + m) = O(n).

Theorem 1. Threshold-3SAT ∈ PMCAM(−n,−d).

Proof. Let Π be the family of P systems described above. We show that Π can
be constructed in polynomial time by two Turing machines F and E.

The machine F , on input 1n (where n = |(ϕ, k)|) first computes the unique
positive root of the polynomial

p(m) = 8
(
m
3

)
+ m− n

thus establishing the number of variables. This can be done in polynomial time
with respect to n simply by trying all integers up to n.

Then F outputs the initial configuration C0 of Πn, which can be easily com-
puted in polynomial time from n and m. Finally, the set of rules R1 ∪ · · · ∪ R25

is output. Each of the sets Ri can be computed in polynomial time; the most
complicated ones are R9 and R10, which require enumerating the clauses using the
algorithm of Figure 1.

340 A.E. Porreca et al.

The P system Πn itself, on input E(ϕ, k), only requires O(n) time (and O(n2m)
space) to output yes or no, without using any nonelementary division or dissolu-
tion rules; this establishes that the problem is in PMCAM(−n,−d).

If the machines F and E receive a malformed input, i.e., any input having
length n 6= 8

(
m
3

)
+ m for all m ≤ n, then F produces a fixed P system that sends

out the no object immediately (while E produces an empty multiset). ut

4 Solving the other PP problems

Being able to solve one PP-complete problem implies PP ⊆ PMCAM(−n,−d)

if the uniformity condition is defined as in [6], as closure under polynomial-time
reductions is immediate. However, our uniformity condition is possibly weaker, as
the P system associated with each input only depends on its size and not on the
specific input itself, and the class PMCAM(−n,−d) defined this way is currently
not known to be closed under polynomial-time reductions. Hence, to prove the PP
inclusion we operate as follows.

Theorem 2. PP ⊆ PMCAM(−n,−d).

Proof. Let L ∈ PP, and let R be a Turing machine reducing L to the problem
Threshold-3SAT in polynomial time p(n), where n is the length of the instance
of L. We describe two polynomial-time Turing machines F ′ and E′ constructing a
family of P systems Π ′, also running in polynomial time, such that L(Π ′) = L.

The machine F ′, on input 1n (where n = |x|), constructs a P system able to
solve the largest Threshold-3SAT formula that might be produced as the output
of R; if the actual output of R is smaller than that, we can pad it to the correct
length by adding enough zeroes. Let f be defined as follows:

f(n) = min
{
n′ : n′ ≥ n and n′ = 8

(
m′

3

)
+ m′ for some m′}

that is, f(n) is the smallest integer of the form 8
(
m′

3

)
+ m′ greater than or equal

to n. Then, F ′ behaves as follows:

F ′(1n) = F
(
1f(p(n))

)
= Πf(p(n)).

Since R runs in time p(n), the P system Πf(p(n)) is large enough to receive as
input any formula ϕ obtained via the reduction R, as |R(x)| = |(ϕ, k)| ≤ p(|x|),
as long as it is padded to length f(p(n)) as described above.

Notice that the value f(n) can be obtained in polynomial time with respect to
n by simply computing 8

(
m′

3

)
+m′ for all integers m′ until n is reached or exceeded;

furthermore, f(n) itself is at most polynomial in n (e.g., a trivial upper bound is
8
(
n
3

)
+ n).

The encoding machine E′, on input x, produces an output formula encoding ϕ′,
obtained from (ϕ, k) = R(x) as follows:

Elementary Active Membranes Have the Power of Counting 341

ϕ′ = ϕ · 0` where ` = f(p(n))− |ϕ|.

Recall from Section 2 that ϕ · 0` is indeed a valid encoding of a formula, having
exactly the same clauses of ϕ but over m′ variables instead of the original m (where
m′ satisfies f(p(n)) = 8

(
m′

3

)
+ m′). The number of required assignments k has to

be adjusted accordingly: every assignment of the original formula ϕ corresponds
to 2m′−m assignments of ϕ′ (obtained by extending it with arbitrary values to the
new variables) that satisfy it iff the original assignment satisfies ϕ, since the new
m′ −m variables do not actually appear in ϕ′. Hence, we define k′ = 2m′−m · k.

Summarising, the machine E′ behaves as follows:

E′(x) = E
(
ϕ · 0`, 2m′−mk

)
where (ϕ, k) = R(x).

Since (ϕ′, k′) ∈ Threshold-3SAT iff (ϕ, k) ∈ Threshold-3SAT by con-
struction, and the latter is equivalent to x ∈ L by reduction, we obtain L ∈
PMCAM(−n,−d). But L was an arbitrary PP language: hence the inclusion
PP ⊆ PMCAM(−n,−d) holds as required. ut

5 Conclusions

Uniform families of P systems with active membranes without nonelementary di-
vision and dissolution rules have been proved to be able to solve all PP problems
in polynomial time; this property holds even when the uniformity condition is the
same as that used for traditional families of circuits. The current bounds on the
computing power of these P systems, in terms of complexity classes for Turing
machines, are thus

PP ⊆ PMCAM(−n,−d) ⊆ PSPACE = PMCAM,

where neither inclusion is known to be proper. Further improvements on the PP
lower bound are expected, as it is plausible that P systems like those of the fam-
ily Π solving Threshold-3SAT described in this paper can be used as “modules”
in larger P systems, thus providing a way to simulate an oracle for a PP-complete
problem. Furthermore, it is still possible that PMCAM(−n,−d) actually coincides
with PSPACE, thus showing that nonelementary membrane division (and possi-
bly dissolution) do not increase the efficiency of P systems with active membranes.

References

1. Alhazov, A., Burtseva, L., Cojocaru, S., Rogozhin, Y.: Solving PP-complete and #P-
complete problems by P systems with active membranes. In: Corne, D.W., Frisco, P.,
Păun, G., Rozenberg, G., Salomaa, A. (eds.) Membrane Computing 9th International
Workshop, WMC 2008, Lecture Notes in Computer Science, vol. 5931, pp. 108–117.
Springer (2009)

342 A.E. Porreca et al.

2. Alhazov, A., Mart́ın-Vide, C., Pan, L.: Solving a PSPACE-complete problem by
recognizing P systems with restricted active membranes. Fundamenta Informaticae
58(2), 67–77 (2003)

3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co. (1979)

4. Murphy, N., Woods, D.: The computational power of membrane systems under tight
uniformity conditions. Natural Computing 10(1), 613–632 (2011)

5. Papadimitriou, C.H.: Computational Complexity. Addison-Wesley (1993)
6. Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F.: Complexity classes

in models of cellular computing with membranes. Natural Computing 2(3), 265–284
(2003)

7. Porreca, A.E., Leporati, A., Mauri, G., Zandron, C.: P systems with elementary
active membranes: Beyond NP and coNP. In: Gheorghe, M., Hinze, T., Păun, G.,
Rozenberg, G., Salomaa, A. (eds.) Membrane Computing, 11th International Con-
ference, CMC 2010, Lecture Notes in Computer Science, vol. 6501, pp. 338–347.
Springer (2011)

8. Porreca, A.E., Murphy, N.: First steps towards linking membrane depth and the
polynomial hierarchy. In: Mart́ınez-del-Amor, M.A., Păun, G., Pérez-Hurtado, I.,
Riscos-Núñez, A. (eds.) Eight Brainstorming Week on Membrane Computing, RGNC
Reports, vol. 1/2010, pp. 255–266. Fénix Editora (2010)

9. Păun, G.: P systems with active membranes: Attacking NP-complete problems. Jour-
nal of Automata, Languages and Combinatorics 6(1), 75–90 (2001)

10. Sośık, P.: The computational power of cell division in P systems: Beating down
parallel computers? Natural Computing 2(3), 287–298 (2003)

11. Sośık, P., Rodŕıguez-Patón, A.: Membrane computing and complexity theory: A char-
acterization of PSPACE. Journal of Computer and System Sciences 73(1), 137–152
(2007)

12. Zandron, C., Ferretti, C., Mauri, G.: Solving NP-complete problems using P systems
with active membranes. In: Antoniou, I., Calude, C.S., Dinneen, M.J. (eds.) Uncon-
ventional Models of Computation, UMC’2K, Proceedings of the Second International
Conference, pp. 289–301. Springer (2001)

Integer Linear Programming
for Tissue-like P Systems

Raúl Reina-Molina1, Daniel Dı́az-Pernil1, Miguel A. Gutiérrez-Naranjo2

1Research Group on Computational Topology and Applied Mathematics
Department of Applied Mathematics
University of Sevilla
raureimol@alum.us.es, sbdani@us.es

2Research Group on Natural Computing
Department of Computer Science and Artificial Intelligence
University of Sevilla
magutier@us.es

Summary. In this paper we report a work-in-progress whose final target is the imple-
mentation of tissue-like P system in a cluster of computers which solves some instances
of the segmentation problem in 2D Digital Imagery. We focus on the theoretical aspects
and the problem of choosing a maximal number of application of rules by using Integer
Linear Programming techniques. This study is on the basis of a future distribution of the
parallel work among the processors.

1 Introduction

Membrane systems1 are distributed and parallel computing devices processing
multisets of objects in compartments delimited by membranes. Computation is
carried out by applying given rules to every membrane content, usually in a max-
imal non-deterministic way, although other semantics are being explored.

In spite of some recent efforts (see [6]), there are neither in vivo, in vitro nor in
silico implementations of such devices and the unique way to get a mechanical ap-
plication of the rules is by the development of software tools capable of performing
simulations of such devices on current computers [4, 7].

In this paper we report a work-in-progress about the implementation of tissue-
like P system in a cluster of computers. This is not the first attempt. In 2003,
Ciobanu and Wenyuan presented in [3], a parallel implementation of transition P
systems. The program was designed for a cluster of 64 dual processor nodes and
1 We refer to [13] for basic information in this area, to [14] for a comprehensive presen-

tation and the web site [15] for the up-to-date information.

344 R. Reina-Molina et al.

it was implemented and tested on a Linux cluster at the National University of
Singapore.

We will focus on the problem of finding a maximal amount of applications of
rules from a given configuration in the framework of tissue-like P systems. The
contribution of this paper is the use of a matrix representation for configuratios
and rules and the use of Integer Linear Programming.

In this paper we will consider a matrix representation of tissue-like P systems.
This new representation will be useful for considering Integer Linear Programming
for automatically searching a maximal set of rules.

We also start using Operation Research techniques for calculating the rules to
be applied in each computing step.

A linear program, LP for short, is an Operation Research problem consisting in
optimizing a linear function subject to linear restrictions. Without lost of generality
we may assume that a LP is a problem like the following:

(LP)





maximize:
n∑

k=1

ckxk

subject to:
n∑

k=1

a1kxk ≤ b1

· · ·
n∑

k=1

amkxk ≤ bm

When the additional constraint of integrality of xk, the LP is called Integer
Linear Program, ILP for short.

The paper is organized as follows: First we briefly recall some basic definitions
related to multisets and tissue-like P systems. Next, we show a theoretical study
on how the tissue-like P systems can adopt a matrix representation. We show that
this representation can be useful for using Integer Linear Programming for finding
a maximal set of applications which will be used for a future distribution of the
work among different processors. We illustrates this definition with an explicative
example. Finally, some clues for the future work are presented.

2 Preliminaries

An alphabet, Σ, is a non empty set, whose elements are called symbols. An ordered
sequence of symbols is a string. The number of symbols in a string u is the length
of the string, and it is denoted by |u|. As usual, the empty string (with length 0)
will be denoted by λ. The set of strings of length n built with symbols from the
alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is a subset
from Σ∗.

ILP for tissue-like P Systems 345

A multiset over a set A is a pair (A, f) where f : A → N is a mapping. If
m = (A, f) is a multiset then its support is defined as supp(m) = {x ∈ A | f(x) >
0} and its size is defined as

∑
x∈A f(x). A multiset is empty (resp. finite) if its

support is the empty set (resp. finite).
If m = (A, f) is a finite multiset over A, then it will be denoted as

m = a
f(a1)
1 a

f(a2)
2 · · · af(ak)

k or {{af(aj)
j ; 1 ≤ j ≤ k}} where supp(m) = {a1, . . . , ak},

and for each element ai, f(ai) is called the multiplicity of ai. furthermore the mul-
tiplicity of an element ai ∈ m is denoted as mult(ai,m). In what follows we assume
the reader is already familiar with the basic notions and the terminology underly-
ing P systems. For details, see [14].

In the initial definition of the cell-like model of P systems [12], membranes are
hierarchically arranged in a tree–like structure. Its biological inspiration comes
from the morphology of cells, where small vesicles are surrounded by larger ones.
This biological structure can be abstracted into a tree–like graph, where the root
represents the skin of the cell (i.e., the outermost membrane) and the leaves rep-
resent membranes that do not contain any other membrane.

In tissue P systems, the tree-like membrane structure is replaced by a general
graph. This model has two biological inspirations (see [9, 10]): intercellular com-
munication and cooperation between neurons. The common mathematical model
of these two mechanisms is a net of processors dealing with symbols and commu-
nicating these symbols along channels specified in advance. The communication
among cells is based on symport/antiport rules. In symport rules, objects cooper-
ate to traverse a membrane together in the same direction, whereas in the case of
antiport rules, objects residing at both sides of the membrane cross it simultane-
ously but in opposite directions.

Formally, a tissue-like P system of degree q ≥ 1 with input is a tuple of the
form

Π = (Γ, Σ, E , w1, . . . , wq,R, iΠ , oΠ)

where

1. Γ is a finite alphabet, whose symbols will be called objects;
2. Σ(⊂ Γ) is the input alphabet;
3. E ⊆ Γ (the objects in the environment);
4. w1, . . . , wq are strings over Γ representing the multisets of objects associated

with the cells at the initial configuration;
5. R is a finite set of communication rules of the following form: (i, u/v, j), for

i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;
6. iΠ ∈ {1, 2, . . . , q} is the input cell;
7. oΠ ∈ {0, 1, 2, . . . , q} is the output cell.

A tissue-like P system of degree q ≥ 1 can be seen as a set of q cells labeled
by 1, 2, . . . , q. We will use 0 to refer to the label of the environment, iΠ and oΠ

denote the input region and the output region (which can be the region inside a
cell or the environment) respectively.

346 R. Reina-Molina et al.

The strings w1, . . . , wq describe the multisets of objects placed in the q cells of
the system. We interpret that E ⊆ Γ is the set of objects placed in the environment,
each one of them available in an arbitrary large amount of copies.

The communication rule (i, u/v, j) can be applied over two cells labeled by i
and j such that u is contained in cell i and v is contained in cell j. The application
of this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells. Note that if either i = 0 or j = 0 then the
objects are interchanged between a cell and the environment.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object than can participate in a rule of any
form must do it, i.e., at each step a maximal set of rules is applied.

A configuration is an instantenous description of the system Π, and it is repre-
sented as a tuple 〈w0, w1, . . . , wq〉. Given a configuration, we can perform a com-
putational step and obtain a new configuration by applying the rules in a parallel
manner as it is shown above. A sequence of computation steps is called a compu-
tation. A configuration is halting when no rules can be applied to it. The output
of a computation is collected from its halting configuration by reading the objects
contained in the output cell.

3 Encoding Tissue-like P Systems by Using Matrices

In this section we define the formal framework for a new way of calculating maximal
set of rules to be applied in tissue-like P systems. First of all let us suppose that
we have the alphabet indexed, so Γ = {γj : 1 ≤ j ≤ |Γ |}. In the same sense
let R = {rk : 1 ≤ k ≤ |R|} be the set of communication rules. By using the
order in Γ settled by the indexation, we can consider the vector representation [1],
u ∈ N|Γ | of the multiset u as the |Γ |-dimensional vector u with uj = mult(γj , u)
for each j = 1, 2, . . . , |Γ |. Moreover, for technical reasons, we will extend this
vectorial representation to the environment by including the symbol ∞ for the
objects with an arbitrary amount of copies. In this way, we will consider a vector
u with coordinates in N∞ = N ∪ {∞} with

uj =
{

mult(γj , u) if γj ∈ E
∞ if γj ∈ E

We can extend elementary operations in N to N∞ with

∞± n = ∞, ∀n ∈ N
∞ · n = ∞, ∀n ∈ N, n 6= 0

By using this extension to N∞, we can use a vector representation for the
multisets inside the cell as as well as the multiset in the environment in each
configuration.

ILP for tissue-like P Systems 347

The configuration matrix is the (q + 1) × |Γ | matrix of non-negative integers
whose i-th row is the vector representation of the multiset wi. Let us recall that
the rows is indexed from 0, to take in count the multiset for environment.

In the following, we do not lose generality if we consider the communication
rule (i, u/v, j) written with i < j.

Let r = (iu, u/v, iv) be a communication rule interchanging the elements in u
with the elements in v. From this characterizaction we define two matrices:

M−
r =




...
iu : u

...
iv : v

...




,M+
r =




...
iu : v

...
iv : u

...




(1)

for 0 ≤ i ≤ q, 1 ≤ j ≤ |Γ |, where M−
r has all the rows 0 ∈ N|Γ | except the iu-th

and iv-th, which are, respectively, u and v, and so on. Both matrices defined above
makes the matrix representation for rule r, M(r) = 〈M−

r ,M+
r 〉.

For example, let Γ = {a, b, c, d} be an alphabet with environment E = {c, d}.
The multiset u = {{a2, c, d3}} is encoded by u = (2, 0, 1, 3). The rule r =
(1, ab2/c, 0) in a tissue-like P system with three cells (and the environment) is
encoded by

M−
r =




0 : (0, 0, 1, 0)
1 : (1, 2, 0, 0)
2 : (0, 0, 0, 0)
3 : (0, 0, 0, 0)


 ,M+

r =




0 : (1, 2, 0, 0)
1 : (0, 0, 1, 0)
2 : (0, 0, 0, 0)
3 : (0, 0, 0, 0)




If we have a configuration matrix given by, for example,

M =




0 : (0, 0,∞,∞)
1 : (3, 2, 0, 0)
2 : (0, 0, 1, 0)
3 : (0, 1, 0, 3)




then the application of rule r gives the configuration matrix given by

M ′ = M + M+
r −M−

r =



0 : (0, 0,∞,∞)
1 : (3, 2, 0, 0)
2 : (0, 0, 1, 0)
3 : (0, 1, 0, 3)


 +




0 : (1, 2, 0, 0)
1 : (0, 0, 1, 0)
2 : (0, 0, 0, 0)
3 : (0, 0, 0, 0)


−




0 : (0, 0, 1, 0)
1 : (1, 2, 0, 0)
2 : (0, 0, 0, 0)
3 : (0, 0, 0, 0)


 =




0 : (1, 2,∞,∞)
1 : (2, 0, 1, 0)
2 : (0, 0, 1, 0)
3 : (0, 1, 0, 3)




348 R. Reina-Molina et al.

If a computation step consists on applying the rule rk for mk times, 1 ≤ k ≤
|R|, M is the configuration matrix for a given configuration of the system and
M−

k ,M+
k are the matrices defined in Equation 1 for rule rk then

M +
|R|∑

k=1

mk(M+
k −M−

k)

is the configuration matrix for the configuration after the computation step. Hence,
if M is a multiset of rules, the result of applying all the rules in M to the configu-
ration given by M , is the configuration obtained from matrix

M ′ = M +M = M +
∑

r∈M
mult(r,M)Mr

where Mr = M−
r + M+

r

A rule r can be applied if there are enough objects in each cell to be com-
municated. Thus, if M is a configuration matrix and 〈M−

r ,M+
r 〉 is the matrix

representation of the communication rule r, it is clear that the rule can be applied
if and only if M + M(r)− ≥ 0, where 0 is the null matrix and ≥ is considered
elementwise. Thus, if M is a multiset of rules, then

M can be applied ⇔ M +
∑

r∈M
mult(r,M)M−

r ≥ 0 (2)

We will consider the following definition of maximality. A maximal multiset of
rules is a multiset M of communication rules such that no other applicable rule
can be added. Hence we have

M is maximal ⇔ ∀r ∈ R \M,M +M− + M−
r � 0 (3)

where M− is the multiset {{M+
r

mr : r ∈M ∧mr = mult(r,M)}}.
Given a configuration matrix M , finding a maximal set of rules is equivalent

to finding non-negative integers, mk, 1 ≤ k ≤ |R|, such that the multiset {{rmk

k :
rk ∈ R∧mk > 0}} is applicable and it cannot be extended by another applicable
rule. In membrane computer literature there are many approaches to the way
maximality is defined. As we are trying to apply membrane computing techniques
to silicon computers, we are interested in a definition of maximality that fits well
to this kind of devices. Therefore, we choose maximality in the sense of number of
rules applied.

In this way, we find one of the possible maximal sets of rules from all of the
available. For example, given Γ = {a, b}, the rules r1 = (1, a/b, 2) and r2 =
(1, a/b2) with multisets w1 = {{a2}} and w2 = {{b2}}, the multisets M1 = {{r2

1}}
andM2 = {{r2}} are both maximals. However, we preferM1 because of the higher
number of rule applications.

Hence our problem can be reduced to find non-negative integers mk (thought
to be multiplicities of rules) such that they maximize the sum

∑
k mk (which is

ILP for tissue-like P Systems 349

the total number of rule applications) subject to applicability condition. Therefore,
this problem can be exposed as the following Integer Linear Programming problem





maximize:
|R|∑

k=1

mk

subject to:
|R|∑

k=1

|M−
k [i, j]|mk ≤ M [i, j], for 0 ≤ i ≤ q, 1 ≤ j ≤ |Γ |

(4)

Although the Integer Linear Programming (ILP) problem in Equation 4 can be
solved in parallel, it is a well known that it is a NP problem (with respect to the
number of decision variables) [5, 8]. However, it can be solved with a reasonable
speed in ordinary computers when the number of variables is relatively small.
Hence it is important to decrease the number of decision variables. In order to
do that we will divide the entire ILP problem in Equation 4 is several smaller
problems. However, we must bear in mind the dependence between communication
rules. Hence, we say that two communication rules r = (iu, u/v, iv) and r′ =
(i′u, u′/v′, i′v) are dependent if they share some cells and, in the common ones, the
multisets being communicated have non empty intersection. It is equivalent to the
following condition

iu = i′u ∧ u ∩ u′ 6= ∅
∨

iv = i′v ∧ v ∩ v′ 6= ∅
∨

iu = i′v ∧ u ∩ v′ 6= ∅
∨

iv = i′u ∧ v ∩ u′ 6= ∅

(5)

We can define a partition of the set of communication rules, R, in several sets
such that every two rules in distinct sets are independent. More formally, let ∼
be the relation in R given by r ∼ r′ if and only if r and r′ are dependent rules.
Clearly ∼ is reflexive and symmetric. Let ' be the transitive closure of ∼. With the
definitions above, ' is an equivalence relation and the quotient set R/ ' defines
a partition in the set of rules such that each rule in any set is independent with
any rule in other partition set.

For each partition set defined above, we can define an ILP problem for rule
selection as in Equation 4. Hence, we have a solution of the problem for the whole
set of rules by considering the partial solution of each subproblem. This technique,
together with an appropriate design of the rules, ensures an upper bound on the
number of decision variables for each partial ILP making them available to be
solved in reasonable time.

350 R. Reina-Molina et al.

4 Example

In the following section, we will illustrate the techniques shown in section 3 (En-
coding tissue-like P Systems using matrices) by the application of them to an
example.

Let consider the following tissue-like P System with two cells

Π = (Γ,Σ, E , w1, w2,R, iΠ , oΠ)

where

1. Γ = {a, b, c, d} is the alphabet of objects;
2. Σ = ∅ is the input alphabet;
3. E = {a, c, d} represents the objects in the environment;
4. w1 = {{a10, b5, d}}, w2 = {{a4, c7}} are strings over Γ representing the multi-

sets of objects associated with the cells at the initial configuration;
5. R is the finite set of communication rules below:

a) r1 = (0, c/ab, 1)
b) r2 = (0, c5/a, 2)
c) r3 = (0, c2/a2b3, 1)
d) r4 = (1, d/c3, 2)
e) r5 = (0, a2d3/d, 1)

6. iΠ = 1 is the input cell;
7. oΠ = 2 is the output cell.

Let Mk denote the configuration matrix of the k-th configuration of Π. Triv-
ially,

M0 =



∞ 0 ∞∞
10 5 0 1
4 0 7 0




If 〈M−
k ,M+

k 〉 denotes the matricial form for rule rk, for k = 1, 2, 3, 4, 5, then

M−
1 =




0 0 1 0
1 1 0 0
0 0 0 0


M+

1 =




1 1 0 0
0 0 1 0
0 0 0 0


M−

2 =




0 0 5 0
0 0 0 0
1 0 0 0


 M+

2 =




1 0 0 0
0 0 1 0
0 0 5 0




M−
3 =




0 0 2 0
2 3 0 0
0 0 0 0


M+

3 =




2 3 0 0
0 0 2 0
0 0 0 0


M−

4 =




0 0 0 0
0 0 0 1
0 0 3 0


 M+

4 =




0 0 0 0
0 0 3 0
0 0 5 1




M−
5 =




2 0 0 3
0 0 0 1
0 0 0 0


 M+

5 =




0 0 0 1
2 0 0 3
0 0 0 0




Rule dependency must be studied before ILP problem definition. Hence, the
rule–dependency equivalence relation ' decomposes R in two sets, being [r1] =
{r1, r2, r3} and [r4] = {r4, r5}. Therefore, two ILP must be solved in order to find

ILP for tissue-like P Systems 351

a maximal set of rules to be applied for going from configuration i to i + 1. These
ILP will be respectively denoted as ILP

(1)
i→ı+1 and ILP

(4)
i→ı+1, and are represented

below.

ILP
(1)
i→i+1





maximize:m1 + m2 + m3

subject to:
m1 + 2m3 ≤ mult(a,w1)
m1 + 3m3 ≤ mult(b, w1)
m2 ≤ mult(a, w2)

(6)

ILP
(4)
i→i+1





maximize:m4 + m5

subject to:
m4 + m5 ≤ mult(d,w1)
m4 ≤ mult(c, w2)

(7)

We firstly solve ILP
(1)
0→1, obtaining the solution m2 = 1, m2 = 4 and m3 = 1.

The problem ILP
(4)
0→1 has two maximal solutions, being m4 = 0,m5 = 1 and

m4 = 1,m5 = 0. In such cases, we will choose one non deterministically. For
example, let m4 = 0,m5 = 1 be the solution selected.

Both partial solutions make a maximal multiset M0→1 = {{r2
1, r

4
2, r3, r5}},

whose application arises the configuration given by matrix

M1 =



∞ 5 ∞∞
8 0 4 3
0 0 35 0




Analogously, at this step ILP
(1)
1→2 has only the solution m1 = m2 = m3 = 0,

while ILP
(4)
1→2 has multiple solutions given in the set {(0, 3), (1, 2), (2, 1), (3, 0)},

where the first one is m4 and the last one is m5. Again, one solution is non
deterministically choosen, for example, m4 = 2,m5 = 1. Hence, the multiset of
rules to be applied is M1→2 = {{r2

4, r5}}, and the new configuration is given by
matrix

M2 =



∞ 5 ∞∞
10 0 10 3
0 0 29 2




Next computation step involves solving ILP
(1)
2→3 and ILP

(4)
2→3. These Integer

Linear Programs have the same solutions as previous ones. Again, in the second
ILP one only solution must be non deterministically choosen. Let m4 = 2,m5 = 1
be that solution. Application of the multiset of rules M2→3 = {{r2

4, r5}} gives next
configuration, settled as

M3 =



∞ 5 ∞∞
12 0 16 3
0 0 23 4




352 R. Reina-Molina et al.

Next computation step is similar to the previous one and a solution from
{(3, 0), (2, 1), (1, 2), (0, 3)} must be non determistically choosen. Let it be m4 =
3,m5 = 0, for example. Therefore, the configuration matrix obtained is

M4 =



∞ 5 ∞∞
12 0 25 0
0 0 14 7




On the next step, the only solution is the trivial one, settled as mk = 0, k =
1, 2, 3, 4, 5, which is interpreted as halting condition.

5 Final Remarks

Parallelism is on the basis of Membrane Computing. All the theoretical efforts for
designing membrane computing algorithms which use parallelism in an efficient
way has the same problem in realistic simulations. Most of the current computers
are sequential the simulations performed in such computers have the same bottle-
neck.

In this paper we report a preliminary work focused on a distributed simulation
of tissue-like P systems in a cluster of computers. In a general view, if the number
of cells does not increase along the computation it seems quite natural to plan a
distribution of the work among several processors. The first steps in this line have
led us to consider new representations (matrix representation) and new techniques
(Integer Linear Programming) to solve the problems.

Many open research lines are open form this preliminary work. One of them is
to consider different notions of parallelism [2], or introducing new features to our
P system model in order to make it suitable for the hardware implementation.

Acknowledgements

DDP and MAGN acknowledge the support of the projects TIN2008-04487-E and
TIN-2009-13192 of the Ministerio de Ciencia e Innovación of Spain and the support
of the Project of Excellence with Investigador de Reconocida Vaĺıa of the Junta
de Andalućıa, grant P08-TIC-04200.

References

1. Busi, N., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Efficient computation in
rational-valued P systems. Mathematical Structures in Computer Science 19, 1125–
1139 (2009), http://dx.doi.org/10.1017/S0960129509990144

2. Ciobanu, G., Marcus, S., Păun, Gh.: New strategies of using the rules of a P system
in a maximal way. Power and complexity. Romanian Journal of Information Science
and Technology (ROMJIST) 12, 157–173 (2009)

ILP for tissue-like P Systems 353

3. Ciobanu, G., Wenyuan, G.: P systems running on a cluster of computers. In: Mart́ın-
Vide, C., Mauri, G., Păun, Gh., Rozenberg, G., Salomaa, A. (eds.) Workshop on
Membrane Computing. Lecture Notes in Computer Science, vol. 2933, pp. 123–139.
Springer (2003)

4. Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Pérez-Hurtado, I., Mario J.
Pérez-Jiménez, M.: Software for P systems. In: Păun et al. [14], pp. 437–454.

5. Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York (1979)

6. Gershoni, R., Keinan, E., Păun, Gh., Piran, R., Ratner, T., Shoshani, S.: Research
topics arising from the (planned) P systems implementation experiment in Tech-
nion. In: Dı́az-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Păun, Gh., Pérez-
Hurtado, I., Riscos-Núñez, A. (eds.) Sixth Brainstorming Week on Membrane Com-
puting. pp. 183–192. Fénix Editora, Sevilla, Spain (2008)

7. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A.: Available mem-
brane computing software. In: Ciobanu, G., Pérez-Jiménez, M.J., Păun, Gh. (eds.)
Applications of Membrane Computing, pp. 411–436. Natural Computing Series,
Springer (2006)

8. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E., Thatcher,
J.W. (eds.) Complexity of Computer Computations. pp. 85 – 104. Plenum Press
(1972)

9. Mart́ın-Vide, C., Pazos, J., Păun, Gh., Rodŕıguez-Patón, A.: A new class of symbolic
abstract neural nets: Tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON.
Lecture Notes in Computer Science, vol. 2387, pp. 290–299. Springer (2002)

10. Mart́ın-Vide, C., Păun, G., Pazos, J., Rodŕıguez-Patón, A.: Tissue P systems. The-
oretical Computer Science 296(2), 295–326 (2003)

11. Păun, Gh.: Computing with membranes. Tech. Rep. 208, Turku Centre for Computer
Science, Turku, Finland (November 1998)

12. Păun, Gh.: Computing with membranes. Journal of Computer and System Sciences
61(1), 108–143 (2000), see also [11]

13. Păun, Gh.: Membrane Computing. An Introduction. Springer-Verlag, Berlin, Ger-
many (2002)

14. Păun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

15. P system web page. http://ppage.psystems.eu

Linear Time Solution to Prime Factorization by
Tissue P Systems with Cell Division

Xingyi Zhang1, Yunyun Niu2, Linqiang Pan2, Mario J. Pérez-Jiménez3

1 School of Computer Science and Technology
Anhui University, 230039 Hefei, China
xyzhanghust@gmail.com

2 Key Laboratory of Image Processing and Intelligent Control
Department of Control Science and Engineering
Huazhong University of Science and Technology, 430074 Wuhan, China
niuyunyun1003@163.com, lqpan@mail.hust.edu.cn

3 Department of Computer Science and Artificial Intelligence
University of Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain
marper@us.es

Summary. Prime factorization is useful and crucial for public-key cryptography, and its
application in public-key cryptography is possible only because prime factorization has
been presumed to be difficult. A polynomial-time algorithm for prime factorization on a
quantum computer is given by P. W. Shor in 1997. In this work, a linear-time solution
for prime factorization is given on a kind of biochemical computational devices – tissue
P systems with cell division, instead of physical computational devices.

1 Introduction

In math, prime factorization is the breaking down of a composite number into
smaller primes, which when multiplied together equal the original integer. Cur-
rently, though the prime factorization problem is not known to be NP-hand, no
efficient algorithm is publicly known. It is generally considered intractable. The
presumed computational hardness of this problem is at the heart of several algo-
rithms in cryptography such as RSA [15].

Many areas of mathematics and computer science have been brought to bear on
the prime factorization problem, including elliptic curves, algebraic number theory,
and quantum computing. A polynomial-time algorithm for prime factorization on
a quantum computer is given by P. W. Shor in 1997 [16]. This will have significant
implications for cryptography if a large quantum computer is ever built. However,
before a practical quantum computer appears, it is still of interest to find any
reasonable computational devices for solving prime factorization problem. In this
work, we shall give a linear-time solution to prime factorization on a class of

356 X. Zhang et al.

biochemical computational devices – tissue P systems with cell division, instead of
physical computational devices.

Tissue P systems with cell division is a class of computational devices in mem-
brane computing. Membrane computing is an emergent branch of natural com-
puting, which is inspired by the structure and the functioning of living cells, as
well as the organization of cells in tissues, organs, and other higher order struc-
tures. The devices in membrane computing, called P systems, provide distributed
parallel and non-deterministic computing models. Since Gh. Păun introduced the
first P system in [12], this area is heavily investigated. Please refer to [13] for an
introduction of membrane computing, and refer to [17] for further bibliography.

Informally, a P system consists of a membrane structure, in the compartments
of which one places multisets of objects which evolve according to given rules in
a synchronous, non-deterministic, maximally parallel manner. Tissue P systems
are a class of P systems, where membranes are placed in the nodes of a graph.
It is a net of processors dealing with symbols and communicating these symbols
along channels specified in advance. The communication among cells is based on
symport/antiport rules, which was introduced to P systems in [11]. Symport rules
move objects across a membrane together in one direction, whereas antiport rules
move objects across a membrane in opposite directions. This model has two bio-
logical inspirations (see [9]): intercellular communication and cooperation between
neurons. In [14], tissue P systems are endowed with the ability of getting new cells
based on the mitosis or cellular division, thus obtaining the ability of generating
an exponential amount of workspace in polynomial time. Such variant of tissue P
systems is called tissue P systems with cell division.

Tissue P systems with cell division were widely investigated for solving NP-
complete problems. Some of them deal with non-numerical NP-complete decision
problems, such as SAT problem [14], 3-coloring problem [2], vertex cover [4]. Others
deal with numerical NP-complete decision problems, that is, decision problems
whose instances consist of sets or sequences of integer numbers, such as subset
sum [3], partition problem [5]. Although prime factorization we shall consider is a
numerical problem, it is neither a decision problem nor an optimization problem.
In this work, we shall construct a family of tissue P systems with cell division,
which can decompose integer numbers in a linear time with respect to the length
of binary representation of the integer to be factored. As a result of computation,
a prime number is sent to a prefixed output membrane, instead of yes or no.

Up to now, besides there are two polynomial-time solutions to prime factor-
ization by P systems with active membranes [6, 10], one well known polynomial
algorithm that solves factorization problem is based on quantum computer [16]. As
the case of quantum computer, the solution given in this work indicates how pow-
erful tissue P systems with cell division can be, although at this moment nobody
knows how to build a biochemical computer.

The paper is organized as follows. In Section 2, some preliminaries are recalled.
The formal definition of tissue P systems with cell division is given in Section
3. A family of tissue P systems that uniformly solve the factorization problem is

Factorization by Tissue P Systems with Cell Division 357

presented in Section 4, with a short overview of the computation and the necessary
resources. Conclusions and comments are presented in Section 5.

2 Preliminaries

An alphabet Σ is a non-empty set, whose elements are called symbols. An ordered
sequence of symbols is a string. The number of symbols in a string u is the length
of the string, and it is denoted by |u|. As usual, the empty string (with length 0)
will be denoted by λ. The set of strings of length n built with symbols from the
alphabet Σ is denoted by Σn and Σ∗ = ∪n≥0Σ

n. A language over Σ is a subset
from Σ∗.

A multiset m over a set A is a pair (A, f), where f : A → N is a mapping. If
m = (A, f) is a multiset, then its support is defined as supp(m) = {x ∈ A | f(x) >
0} and its size is defined as

∑
x∈A f(x). A multiset is empty (resp. finite) if its

support is the empty set (resp. finite).
If m = (A, f) is a finite multiset over A, and supp(m) = {a1, . . . , ak}, then

it will be denoted as m = {{af(a1)
1 , . . . , a

f(ak)
k }}. That is, superscripts indicate

the multiplicity of each element. If f(x) = 0 for any x ∈ A, then this element is
omitted.

3 Tissue P Systems with Cell Division

In [8, 9], the first definition of the model of tissue P systems was proposed, where
the membrane structure did not change along the computation. We now shall
introduce a model of tissue P systems with cell division based on the cell-like
model of P systems with membranes division [14]. The biological inspiration of
this model is clear: alive tissues are not static network of cells, since new cells are
generated by membrane fission in a natural way.

The main features of this model, from the computational point of view, are
that cells are not polarized (the contrary holds in the cell-like model of P systems
with active membranes, see [13]); the cells obtained by division have the same
labels as the original cell and if a cell is divided, its interaction with other cells or
with the environment is blocked during the division process. In some sense, this
means that while a cell is dividing it closes its communication channels with other
cells and with the environment.

Formally, a (function) computing tissue P system with cell division of degree
q ≥ 1 and order (m,n), m ≥ 1, n ≥ 1, is a tuple of the form

Π = (Γ, Σ,Λ, w1, . . . , wq, E ,R, iin, iout),

where:

1. Γ is the alphabet of objects;

358 X. Zhang et al.

2. Σ = {a1, . . . , am} is an ordered input alphabet strictly contained in Γ ;
3. Λ = {b1, . . . , bn} is an ordered output alphabet contained in Γ ;
4. w1, . . . , wq are strings over Γ , describing the initial multisets of objects placed

in the cells of the system at the beginning of the computation;
5. E ⊆ Γ is the set of objects in the environment in arbitrarily copies each;
6. R is a finite set of rules of the following forms:

(a) (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;
Communication rules; 1, 2, · · · , q identify the cells of the system, 0 is the
environment; when applying a rule (i, u/v, j), the objects of the multiset
represented by u are sent from region i to region j and simultaneously the
objects of the multiset v are sent from region j to region i (|u| + |v| is
called the length of the communication rule (i, u/v, j));

(b) [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q}, a, b, c ∈ Γ , and i 6= iout;
Division rules; in reaction with an object a, the cell is divided into two
cells with the same label; all the objects in the original cells are replicated
and copies of them are placed in each of the new cells, with the exception
of the object a, which is replaced by the object b in the first new cell and
by c in the second one; the output cell cannot be divided;

7. iin ∈ {1, 2, . . . , q} is the input cell;
8. iout ∈ {0, 1, 2, . . . , q} is the output cell.

The rules of a system as above are used in the non-deterministic maximally
parallel manner. In each step, all cells which can evolve must evolve in a maximally
parallel way (in each step we apply a multiset of rules which is maximal, no further
rule can be added). This way of applying rules has only one restriction when a cell
is divided, the division rule is the only one which is applied for that cell in that
step; the objects inside that cell do not evolve by means of communication rules.
Their labels precisely identify the rules which can be applied to them.

A configuration of tissue P system with cell division is described by all multi-
sets of objects over Γ associated with all the cells present in the system and the
multiset of objects over Γ −E associated with environment. The initial configura-
tion of the system Π with input w ∈ Σ∗ is the tuple (w1, w2, . . . , wiinw, . . . , wq;
∅); that is, the corresponding configuration after adding the multiset w to the
content of the input cell iin. The computation starts from the initial configura-
tion and proceeds as defined above. When there is no rule can be applied, the
computation stops. Only halting computations give a result. If C = {Ci}i<r is
a halting computation, where Ci are configurations, then the result of compu-
tation Output(C) = (Cr−1

b1
(iout), Cr−1

b2
(iout), . . . , Cr−1

bn
(iout)), where Cr−1

bj
(iout),

1 ≤ j ≤ n, is the multiplicity of object bj in the region iout in the halting configu-
ration Cr−1.

For a function f , we denote the domain of f by D(f) and the range of f by
R(f). For a tissue P system with cell division Π having ordered input alphabet
Σ = {a1, a2, . . . , am} and ordered output alphabet Λ = {b1, b2, . . . , bn}, and partial
function f : Nm → Nn, function f is encoded in a unary notation in the following

Factorization by Tissue P Systems with Cell Division 359

way: (α1, . . . , αm) ∈ D(f) is expressed by aα1
1 aα2

2 . . . aαm
m ; (β1, . . . , βn) ∈ R(f) is

expressed by bβ1
1 bβ2

2 . . . bβn
n .

Definition 1. We say that a partial function f : Nm → Nn is computed in poly-
nomial time by a family Π = {Π(t) | t ∈ N} of tissue P systems with cell division
in unary encoding if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(t) from t ∈ N.

• There exist a polynomial-time computable function s over the domain D(f) of
function f such that:
− for each u = (α1, . . . , αm) ∈ D(f), s(u) is a natural number and aα1

1 . . . aαm
m

is an input multiset of the system Π(s(u));
− the family Π is polynomially bounded with regard to (f, s), that is, there

exists a polynomial function p, such that for each u = (α1, . . . , αm) ∈ D(f)
every computation of Π(s(u)) with input aα1

1 . . . aαm
m is halting and, more-

over, it performs at most p(|u|) steps;
− the family Π is sound with regard to (f, s), that is, for each u = (α1, . . . ,

αm) ∈ D(f), if there exists a computation C of Π(s(u)) with input
aα1
1 . . . aαm

m such that Output(C) = (β1, . . . , βn), then f(u) = (β1, · · · , βn);
− the family Π is complete with regard to (f, s), that is, for each u = (α1, . . . ,

αm) ∈ D(f), if f(u) = (β1, · · · , βn), then every computation C of Π(s(u))
with input aα1

1 . . . aαm
m has Output(C) = {β1, . . . , βn}.

In the Definition 1, the input and output are encoded in unary notation. How-
ever, in classical complexity theory, based upon Turing machine, switching from
binary to unary encoding generally corresponds to simplify the problem. In this
work, binary encoding is used for integer factorization problem. In what follows,
we will give the definition that a function is computed by a family of P systems
with cell division in binary encoding. In the case of binary encoding, the input
alphabet is not asked to be ordered, and no output alphabet is fixed.

A (function) computing tissue P system with cell division with input of degree
q ≥ 1 is a tuple of the form

Π = (Γ,Σ,w1, . . . , wq, E ,R, iin, iout),

where:

1. Γ is the alphabet of objects;
2. Σ is an (un-ordered) input alphabet strictly contained in Γ ;
3. w1, . . . , wq are strings over Γ , describing the initial multisets of objects placed

in the cells of the system at the beginning of the computation;
4. E ⊆ Γ is the set of objects in the environment in arbitrarily copies each;
5. R is a finite set of rules of the following forms:

(a) (i, u/v, j), for i, j ∈ {0, 1, 2, . . . , q}, i 6= j, u, v ∈ Γ ∗;

360 X. Zhang et al.

(b) [a]i → [b]i[c]i, where i ∈ {1, 2, . . . , q}, a, b, c ∈ Γ , and i 6= iout;
6. iin ∈ {1, 2, . . . , q} is the input cell;
7. iout ∈ {0, 1, 2, . . . , q} is the output cell.

In semantics, P systems having un-ordered alphabets is the same with P sys-
tems with ordered input and output alphabets except for the way of encoding
input and output. In the unary encoding, the sizes of ordered input and output
alphabets are related with the dimensions of domain and range of function that
is computed. Specifically, an ordered input alphabet {a1, . . . , am} and an ordered
output alphabet {b1, . . . , bn} can encode each function whose domain (resp. range)
is a subset of Nm′

(m′ ≤ m) (resp. Nn′ (n′ ≤ n)). In the binary encoding, the size
of alphabet is related with both input value and output value. For example, for
the function f(x) = 22x

(x ∈ N) and an input n, the length of input n in binary
expression is blg nc + 1, and the length of output f(n) in binary expressions is
2n + 1, which is an exponential function with respect to blg nc+ 1. For functions
such as f(x) = 22x

, maybe, we need exponential (with respect to the input size)
large alphabet to encode the function in P systems, hence we cannot construct
a family of P systems with cell division in polynomial time by Turing machine
to compute functions such as f(x) = 22x

. It depends on the property of function
whether a function can be computed by tissue P systems with cell division in
binary encoding.

For prime factorization problem, the factors are less than the integer to be
factored. In fact enables us to find a reasonable binary encoding for prime factor-
ization problem. Specifically, we shall use the method from [7] to encode binary
numbers by multisets of objects. Let xk−1, · · · , x1, x0 (with k ≥ 1) be the binary
representation of integer x ≥ 0, that is, x =

∑k−1
i=0 xi2i. We use the objects from

the following alphabet Ak, for k ≥ 1:

Ak = {〈b, j〉 | b ∈ {0, 1}, j ∈ {1, 2, · · · , k}}.
Objects 〈b, j〉 is used to represent bit b in position j in the binary encoding of an
integer number. Hence, to represent the above number x we will use the following
multiset (actually, a set) of objects:

〈xk−1, k − 1〉, · · · , 〈x1, 1〉, 〈x0, 0〉.
Let us remark that the alphabet Ak depends on the length of the binary repre-
sentation of the number x. Moreover, it is clear that with Ak we can represent all
integer numbers in the range 0, 1, · · · , 2k − 1. In order to distinguish between the
objects that represent the bits of different integers A and B, a leading label A,B
are used to mark each element in the multiset. To this aim, the alphabet Ak is
modified as follows:

A′k = {〈l, b, j〉 | l ∈ {A, B}, b ∈ {0, 1}, j ∈ {1, 2, · · · , k}}.
In this way, the i-th bit of A (that is, ai) and the j-th bit of B (that is, bj) are
represented by the objects 〈A, ai, i〉 and 〈B, bj , j〉, respectively.

Factorization by Tissue P Systems with Cell Division 361

In general, we give the following definition that a function is computed by P
systems with cell division in binary encoding.

Definition 2. We say that a partial function f : N→ N is computed in polynomial
time by a family Π = {Π(t) | t ∈ N} of tissue P systems with cell division in binary
encoding if the following holds:

• The family Π is polynomially uniform by Turing machines, that is, there exists
a deterministic Turing machine working in polynomial time which constructs
the system Π(t) from t ∈ N.

• There exists a pair (cod, s) of polynomial-time computable functions over the
domain D(f) of function f such that:
− for each u ∈ D(f), s(u) is a natural number and cod(u) is an input multiset

of the system Π(s(u));
− the family Π is polynomially bounded with regard to (f, cod, s), that is,

there exists a polynomial function p, such that for each u ∈ D(f) every
computation of Π(s(u)) with input cod(u) is halting and, moreover, it per-
forms at most p(|u|) steps;

− the family Π is sound with regard to (f, cod, s), that is, for each u ∈ D(f),
if there exists a computation C of Π(s(u)) with input cod(u) and the objects
in region iout in the last configuration of C encode (β1, · · · , βq) ∈ Nq, then
f(u) = (β1, · · · , βq);

− the family Π is complete with regard to (f, cod, s), that is, for each u ∈
D(f), if f(u) = (β1, · · · , βq) ∈ Nq, then in every computation of Π(s(u))
with input cod(u), the objects in region iout in the last configuration encode
(β1, · · · , βq).

4 A Linear Time Solution to the Factorization Problem

When we discuss the prime factorization problem, it is necessary to distinguish two
different versions of the problem: decision problem version and function problem
version.

The decision problem version of prime factorization can be formulated as “is
n a composite number?” (or equivalently: “is n a prime number?”). This version
is natural and useful because most well-studied complexity classes are defined
as classes of decision problems, not function problems. But the decision problem
version of prime factorization is much easier than the problem of finding the factors
of n. Specifically, it can be solved in polynomial time (with respect to the number
of digits of n) with the AKS primality test [1].

The function problem version of prime factorization: given an integer n, find
an integer d with 1 < d < n that divides n (or conclude that n is prime). It is
trivially in the class FNP, but we do not known whether it lies in class FP or not.
This version is generally considered intractable, which means that no polynomial-
time (with respect to the instance size) algorithm is known that solves it on every

362 X. Zhang et al.

instance; and it is the version solved by most practical implementations. In this
work, we shall consider a restricted version of prime factorization problem, based
on the following two facts. (1) Given an algorithm for integer factorization, one
can factor any integer down to its constituent prime factors by repeated applica-
tion of this algorithm. (2) Not all numbers of a given length are equally hard to
factor. Semiprimes (the product of two prime numbers) are believed as the hardest
instances of integer factorization for currently known techniques.

Problem 1. NAME: factorization.
– INSTANCE: a positive integer number which is the product of two prime num-
bers.
– OUTPUT: the prime factor that is not greater than another one.

Next, we shall construct a family {Π(k)}k∈N of tissue P systems with cell
division to factor integers, where each system Π(k) can decompose all numbers of
length k in binary form, provided that an appropriate input multiset is given. The
resolution is a brute force algorithm, which consists of the following stages:

• Generation Stage: By division, all the possible pairs of integer numbers of
length k in binary form are produced (one pair for each membrane with label
2).

• Pre-checking Stage: In this stage, the product of each pair of integer numbers
of length k is calculated.

• Checking Stage: The system checks whether or not there exists a pair of integer
numbers such that their product equals to the number n to be composed.

• Output Stage: The system sends to the output region a prime number.

For each k ∈ N,

Π(k) = (Γ (k), Σ(k), w1, w2,R(k), E(k), iin, iout),

with the following components:

• Γ (k) = Σ(k) ∪ {ai, bi, 〈X, 0, i〉, fi, gi | 0 ≤ i ≤ k − 1}∪
{〈A, j, i〉, 〈B, j, i〉, 〈A′, j, i〉, 〈B′, j, i〉 | 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1}∪
{〈Aj , l, i〉, 〈Bj , l, i〉 | 0 ≤ i ≤ k − 1, 0 ≤ j ≤ dlg ke+ 1, 0 ≤ l ≤ 1}∪
{ci | 0 ≤ i ≤ 4k + dlg 2ke+ dlg ke+ 5} ∪ {c′i | 1 ≤ i ≤ dlg ke+ 2k + 3}∪
{〈C, 0, i〉, 〈C, 1, i〉 | 0 ≤ i ≤ 2k − 1} ∪ {〈i, j〉 | 0 ≤ i, j ≤ k − 1}∪
{di | −1 ≤ i ≤ k − 2} ∪ {ei | −1 ≤ i ≤ k − 1} ∪ {z}.

• Σ(k) = {〈n, 0, i〉, 〈n, 1, i〉 | 0 ≤ i ≤ k − 1}.
• w1 = {{c0}}.
• w2 = {{a0a1 · · · ak−1b0b1 · · · bk−1z}} ∪ {{〈i, j〉 | 0 ≤ i, j ≤ k − 1}}.
• R(k) is the set of rules:

1. Division rule:
r1,i ≡ [ai]2 → [〈A, 0, i〉]2[〈A, 1, i〉]2, for 0 ≤ i ≤ k − 1;
r2,i ≡ [bi]2 → [〈B, 0, i〉]2[〈B, 1, i〉]2, for 0 ≤ i ≤ k − 1.

Factorization by Tissue P Systems with Cell Division 363

2. Communication rules:
r3,i ≡ (1, ci/c2

i+1, 0), for 0 ≤ i ≤ 2k − 1;
r4 ≡ (1, c2k/z, 2);
r5,i ≡ (2, c2k+i/c2

2k+i+1, 0), for 0 ≤ i ≤ dlg 2ke − 1;
r6,i,j ≡ (2, c2k+dlg 2ke〈A, j, i〉/c2k+dlg 2ke+1〈A0, j, i〉, 0),

for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1;
r7,i,j ≡ (2, c2k+dlg 2ke〈B, j, i〉/c2k+dlg 2ke+1〈B0, j, i〉, 0),

for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1;
r8 ≡ (2, c2k+dlg 2ke+1/c′1c2k+dlg 2ke+2, 0);
r9,i ≡ (2, c2k+dlg 2ke+i/c2k+dlg 2ke+i+1, 0), for 2 ≤ i ≤ dlg ke+ 2k + 4;
r10,i ≡ (2, c′i/c′i+1, 0), for 1 ≤ i ≤ dlg ke+ 2k + 2;
r11,i,j,l ≡ (2, 〈Aj , l, i〉/〈Aj+1, l, i〉2, 0),

for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ dlg ke, 0 ≤ l ≤ 1;
r12,i,j,l ≡ (2, 〈Bj , l, i〉/〈Bj+1, l, i〉2, 0),

for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ dlg ke, 0 ≤ l ≤ 1;
r13,i,j ≡ (2, 〈Adlg ke+1, 0, i〉〈Bdlg ke+1, 0, j〉〈i, j〉/〈C, 0, i + j〉, 0),

for 0 ≤ i, j ≤ k − 1;
r14,i,j ≡ (2, 〈Adlg ke+1, 0, i〉〈Bdlg ke+1, 1, j〉〈i, j〉/〈C, 0, i + j〉, 0),

for 0 ≤ i, j ≤ k − 1;
r15,i,j ≡ (2, 〈Adlg ke+1, 1, i〉〈Bdlg ke+1, 0, j〉〈i, j〉/〈C, 0, i + j〉, 0),

for 0 ≤ i, j ≤ k − 1;
r16,i,j ≡ (2, 〈Adlg ke+1, 1, i〉〈Bdlg ke+1, 1, j〉〈i, j〉/〈C, 1, i + j〉, 0),

for 0 ≤ i, j ≤ k − 1;
r17,i ≡ (2, 〈C, 0, i〉〈C, 0, i〉/〈C, 0, i〉, 0), for 0 ≤ i ≤ 2k − 2;
r18,i ≡ (2, 〈C, 0, i〉〈C, 1, i〉/〈C, 1, i〉, 0), for 0 ≤ i ≤ 2k − 2;
r19,i ≡ (2, 〈C, 1, i〉〈C, 1, i〉/〈C, 0, i〉〈C, 1, i + 1〉, 0), for 0 ≤ i ≤ 2k − 2;
r20,i,j ≡ (2, c′dlg ke+2k+3〈C, 1, i〉〈n, j, k − 1〉/λ, 0),

for k ≤ i ≤ 2k − 2, 0 ≤ j ≤ 1;
r21,i,j ≡ (2, c4k+dlg 2ke+dlg ke+5〈C, j, i〉〈n, j, i〉/〈X, 0, i〉, 0),

for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1;
r22 ≡ (2, 〈X, 0, k − 1〉/dk−2, 0);
r23,i ≡ (2, di〈X, 0, i〉/di−1, 0), for 0 ≤ i ≤ k − 2;
r24 ≡ (2, d−1/ek−1, 0);
r25,i,j ≡ (2, 〈Adlg ke+1, j, i〉〈Bdlg ke+1, j, i〉ei/〈Adlg ke+1, j, i〉

〈Bdlg ke+1, j, i〉ei−1, 0), for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1;
r26 ≡ (2, e−1/f0, 0);
r27,i ≡ (2, 〈Adlg ke+1, 1, i〉〈Bdlg ke+1, 0, i〉ei/〈Adlg ke+1, 1, i〉

〈Bdlg ke+1, 0, i〉f0, 0), for 0 ≤ i ≤ k − 1;
r28,i,j ≡ (2, fi〈Bdlg ke+1, j, i〉/fi+1〈B′, j, i〉, 0), for 0 ≤ i ≤ k − 2, 0 ≤ j ≤ 1;
r29,j ≡ (2, fk−1〈Bdlg ke+1, j, k − 1〉/〈B′, j, k − 1〉, 0), for 0 ≤ j ≤ 1;
r30,i,j ≡ (2, 〈B′, j, i〉/λ, 3), for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1;
r31,i ≡ (2, 〈Adlg ke+1, 0, i〉〈Bdlg ke+1, 1, i〉ei/〈Adlg ke+1, 0, i〉

〈Bdlg ke+1, 1, i〉g0, 0), for 0 ≤ i ≤ k − 1;
r32,i,j ≡ (2, gi〈Adlg ke+1, j, i〉/gi+1〈A′, j, i〉, 0), for 0 ≤ i ≤ k − 2, 0 ≤ j ≤ 1;

364 X. Zhang et al.

r33,j ≡ (2, gk−1〈Adlg ke+1, j, k − 1〉/〈A′, j, k − 1〉, 0), for 0 ≤ j ≤ 1;
r34,i,j ≡ (2, 〈A′, j, i〉/λ, 3), for 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1.

• E(k) = Γ (k).
• iin = 2 is the input cell.
• iout = 3 is the output cell.

4.1 An Overview of the Computation

A family of tissue P systems with cell division is constructed as above. Let n be
an instance of the prime factorization problem, where n is the integer number to
be decomposed and k is the total number of binary bits to represent n. Then we
consider a size mapping on the set of instances defined as s(u) = k. The coding
of the instance is the multiset cod(u) = 〈n, ik−1, k − 1〉〈n, ik−2, k − 2〉 · · · 〈n, i0, 0〉,
where ij = 0 or 1 (0 ≤ j ≤ k− 1) is the bit at position j in the binary encoding of
n. In what follows, we will informally describe how the tissue P system with cell
division Π(s(u)) with input cod(u) works.

Let us start with the generation stage. This stage has two parallel processes,
which is described in two items.

• On one hand, in the cell with label 1 by using the rule r3,i the object ci is
multiplied until step 2k; starting from c0 object ci grows its subscript by one
in each step. Therefore, 4k copies of c2k are obtained in the cell with label 1
at step 2k.

• On the other hand, in the cell with label 2 the division rules r1,i and r2,i are
applied. For each object ai (which is used to generate the two possible bits at
position i in the binary encoding of integer number A), two cells labeled by
2 are produced, one of them containing a new object 〈A, 0, i〉 and the other
one containing another new object 〈A, 1, i〉. Object 〈A, 0, i〉 (resp. 〈A, 1, i〉)
represents the fact that the bit at position i in the binary encoding of A
is 0 (resp. 1). Similarly, for each object bi (which is used to generate the two
possible bits at position i in the binary encoding of integer number B), two cells
labeled by 2 are also produced, one of them containing a new object 〈B, 0, i〉
and the other one containing another new object 〈B, 1, i〉. The objects ai, bi are
non-deterministically chosen, after 2k steps of division we obtain exactly 4k

cells with label 2, each of them encoding one possible pair of integer numbers
A and B whose values range from 0 to 2k − 1. The object z is duplicated,
hence a copy of z appears in each cell with label 2. Note that after step 2k the
cells with label 2 cannot divide any more, because the objects ai and bi are
exhausted.

The pre-checking stage starts from step 2k + 1, in this stage, the product of
each pair of integer numbers in cell with label 2 is calculated. At the step 2k + 1,
there are 4k copies of c2k in the cell with label 1, and there are 4k cells with label
2, each of them containing a copy of z, so the rule r4 is enabled and applied.

Factorization by Tissue P Systems with Cell Division 365

Due to the maximality of the parallelism of using the rule r4, each cell with label
2 gets precisely one copy of c2k. In the next dlg 2ke steps, by the rule r5,i, the
object c2k+i is duplicated and its subscript increases by one in each step; so at
step 2k + dlg 2ke + 1, there are at least 2k copies of c2k+dlg 2ke in each cell with
label 2. Once object c2k+dlg 2ke is generated, by the rules r6,i,j – r7,i,j , each copy
of objects 〈A, j, i〉 and 〈B, j, i〉, 0 ≤ i ≤ k − 1, 0 ≤ j ≤ 1, together with a copy
of object c2k+dlg 2ke, is traded for one copy of objects 〈A0, j, i〉, 〈B0, j, i〉, and one
copy of object c2k+dlg 2ke+1 at step 2k + dlg 2ke+ 2.

From step 2k + dlg 2ke+ 3 to step 2k + dlg 2ke+ dlg ke+ 3, by the rules r11,i,j,l

and r12,i,j,l, the objects 〈Aj , l, i〉 and 〈Bj , l, i〉 duplicate themselves until getting
at least k + 1 copies of objects 〈Adlg ke+1, l, i〉 and 〈Bdlg ke+1, l, i〉. In the following
computation, k copies of these objects are used to obtain the product of integer
numbers A and B, the other one copy of these objects is used to output the
computing result.

For any two k-bits integer numbers A =
∑k−1

i=0 xi2i (xi = 0 or 1) and
B =

∑k−1
i=0 yi2i (yi = 0 or 1), the product of A and B can be written as

A×B =
∑k−1

i=0

∑k−1
j=0 xiyj2i+j . In order to get the product, we will first compute

the contribution of each pair of bits xi and yj , and then sum all the contributions.
Specifically, the rules r13,i,j – r16,i,j are used to get the contribution of each pair
of bits; the rules r17,i – r19,i are used to get the sum of all contributions. Since
each cell with label 2 contains at least k + 1 copies of objects 〈Adlg ke+1, j, i〉 and
〈Bdlg ke+1, j, i〉, j = 1 or 0, the process of computing the product of each pair of
bits ai and bj only needs one step, which produces some bits of the result C as
well as the carry bits. It takes at most 2k steps to sum all the bits by the rules
r17,i – r19,i. In this way, after step 4k + dlg 2ke + dlg ke + 4 the product of two
integer numbers in each cell with label 2 is computed and the pre-checking stage is
finished. At this moment, the subscript of object cj reaches 4k+dlg 2ke+dlg ke+4
by the rules r8 and r9,i, while the subscript of object c′i reaches dlg ke+ 2k + 3 by
the rule r10,i.

The checking stage starts from step 4k+dlg 2ke+dlg ke+5 with the application
of the rules r20,i,j , r21,i,j , r22 and r23,i. The rules r20,i,j are used to check whether
the “efficient” length of bits of the product is greater than k − 1, thus whether
there exists at least one position i, k ≤ i ≤ 2k − 2, in the product having bit 1. If
there exists such position in the binary encoding of the product, then the product
must be greater than n. In this case, at least one of objects 〈C, 1, i〉, k ≤ i ≤ 2k−2,
must appear in this cell. By the rule r20,i,j , objects 〈n, j, k − 1〉, j = 0 or 1, are
removed. The rules r21,j,k−1 and r20 cannot be used without object 〈n, j, k − 1〉,
thus this cell with label 2 will not send objects to the output cell. If the bit on each
position i such that k ≤ i ≤ 2k− 2 equals to 0, then at that step only the rule can
be used by which object c4k+dlg 2ke+dlg ke+4 is traded for c4k+dlg 2ke+dlg ke+5. The
rues r21,i,j , r22 and r23,i are used to check whether the product equals to n.

• If the product equals to n in a cell with label 2, then all objects 〈X, 0, i〉,
0 ≤ i ≤ k − 1, should be produced in this cell by the rule r21,i,j . The rules
r22 and r23,i are used to check whether all objects 〈X, 0, i〉, 0 ≤ i ≤ k − 1, are

366 X. Zhang et al.

produced. It is performed one bit by one bit, starting from the most significant
bit. The object 〈X, 0, k − 1〉 is traded for dk−2, then dk−2 and 〈X, 0, k − 2〉
are traded for dk−3, the process continues until the position 0 is checked and
the object d−1 is produced. Since the length of the integer number n is k, this
process takes k steps. The computation passes to the output stage from step
5k + dlg 2ke+ dlg ke+ 7.

• If the product does not equal to n in a cell with label 2, then at least one
object 〈X, 0, i〉, 0 ≤ i ≤ k − 1, does not be produced in this cell. Without
loss of generality, we assume that the first object without appearing in this
cell is 〈X, 0, s〉, starting from the most significant bit, where 0 ≤ s ≤ k − 1.
By the rules r22 and r23,i, it is not difficult to find that object ds−1 will not
be produced and the computation of the system halts at that moment. That
means that this cell will not send any objects to the output cell.

The output stage starts from step 5k + dlg 2ke+ dlg ke+ 7. In this stage, if the
product of two integer numbers equals to n and the two numbers are also equal,
then one of them will be outputted to the output cell; if the product of two integer
numbers equals to n and the two numbers are not equal, then the smaller one will
be outputted to the output cell. According to the checking stage, if the product
of two integer numbers equals to n in a cell with label 2, then the object d−1

appears in this cell. The object d−1 is traded for ek−1. The rules r25,i,j , r26 and
r31,i are used to check which integer number is smaller or whether they are equal.
If object e−1 appears, then it means the fact that two integer numbers are equal,
and the integer number corresponding to objects 〈Bdlg ke+1, j, i〉 is outputted to
the output cell labeled by 3 by the rules r26, r28,i,j , r29,j , and r30,i,j . If two integer
numbers are not equal, then object f0 or g0 should appear and object e−1 does
not appear. If object f0 appears in the cell with label 2, it means the fact that
the integer number corresponding to objects 〈Adlg ke+1, j, i〉 is greater than the
integer number corresponding to objects 〈Bdlg ke+1, j, i〉, and the integer number
corresponding to objects 〈Bdlg ke+1, j, i〉 is outputted to the output cell with label 3
by the rules r26, r28,i,j , r29,j , and r30,i,j . If object g0 appears in the cell with label 2,
it means the fact that the integer number corresponding to objects 〈Adlg ke+1, j, i〉
is less than the number corresponding to objects 〈Bdlg ke+1, j, i〉, and the integer
number corresponding to objects 〈Adlg ke+1, j, i〉 is outputted to the output cell
with label 3 by the rules r32,i,j r33,j , and r34,i,j . This stage takes not more than
2k + 3 steps, and in the case that two integer numbers are equal, the output stage
takes exactly 2k + 3 steps. So the computation of the system stops after step
7k + dlg 2ke+ dlg ke+9, and the computation result can read out from the objects
in the output cell with label 3.

4.2 A Simple Example

In order to show how the tissue P systems with cell division constructed in Section
4.1 work, let us consider the factorization of integer number 2. Hence, we have
n = 2 and k = 2. The initial configuration of tissue P system with cell division

Factorization by Tissue P Systems with Cell Division 367

Π(2) for the factorization of integer number 2 is illustrated in Figure 1. From the
figure, it can be found that 2 is represented by objects 〈n, 1, 1〉 and 〈n, 0, 0〉.

1

c0

2

a
0

z

b1b0

a
1

〈0,0 〉〈0,1 〉

〈1,0 〉〈1,1 〉

〈n ,1,1〉 〈n ,0,0 〉

Fig. 1. The initial configuration of system Π(2) for factoring integer number 2

1

c1
2

2

z

b1b0

a1

〈0,0 〉〈0,1 〉

〈1,0 〉〈1,1 〉
〈n ,1,1〉

〈 A ,0,0〉

2

z

b1b0

a
1

〈0,0 〉〈0,1 〉

〈1,0 〉〈1,1 〉
〈n ,1,1〉 〈n ,0,0 〉

〈 A ,1,0〉

〈n ,0,0 〉

Fig. 2. The configuration of system Π(2) for factoring integer number 2 at step 1

At step 1, both the cell with label 1 and the cell with label 2 have rules which
can be used. In the cell with label 1, by the rule r3,0 object c0 evolves to c1 and
its number is doubled; in the cell with label 2, objects a0, a1, b0 and b1 are non-
deterministically chosen to divide this cell. Without loss of generality, we assume
that a0 is used to divide the cell with label 2. Object a0 is consumed and two
objects 〈A, 0, 0〉 and 〈A, 1, 0〉 are generated, with one object appearing in a cell
with label 2 and another one appearing in the other cell with label 2. The other
objects in the cell with label 2 are duplicated in the two new cell with label 2. The
configuration of the system at this step is shown in Figure 2.

Similar to the work of object a0, objects a1, b0 and b1 can continue to divide
the cells with label 2 in the following three steps, with one object dividing its
corresponding cell one time. At the same time, in cell with label 1 the number of
object c4 becomes 16. The configuration of the system at step 4 is shown in Figure
3. Note that at this moment all pairs of integer numbers of length 2 are generated,
with one cell with label 2 containing a pair.

After step 4, the system enters to the pre-checking stage. In this stage, the
product of each pair of integer numbers is calculated. This process is done in
parallel in the cells with label 2. The product of each pair of integer numbers is
represented by objects 〈C, i, j〉, i = 0 or 1, 0 ≤ j ≤ 3. Figure 4 gives the configura-
tion of the system when the pre-checking stage is finished. The pre-checking stage
finishes at step 15.

368 X. Zhang et al.

1

c4
16

2

z〈0,0〉〈0,1〉
〈1,0 〉〈1,1 〉

〈n ,1,1 〉〈n ,0,0 〉

〈 A ,0,0 〉

2

z〈0,0〉〈0,1〉
〈1,0 〉〈1,1 〉

〈n ,1,1〉〈n ,0,0 〉

〈 A ,1,0〉〈 A ,0,1〉 〈 A ,0,1〉

〈 B ,0,0 〉〈 B ,0,1 〉 〈 B ,0,0 〉〈 B ,0,1 〉

2

z〈0,0 〉〈0,1 〉
〈1,0〉〈1,1 〉

〈n ,1,1〉 〈n ,0,0 〉

〈 A ,0,0 〉

2

z〈0,0 〉〈0,1 〉

〈1,0〉〈1,1 〉

〈n ,1,1〉 〈n ,0,0 〉

〈 A ,1,1 〉〈 A ,1,1 〉 〈 A ,1,0 〉
〈 B ,0,0 〉〈 B ,0,1 〉 〈 B ,0,0 〉〈 B ,0,1 〉

2

z〈0,1〉 〈0,0〉

〈1,1 〉 〈1,0 〉
〈n ,1,1〉 〈n ,0,0 〉

〈 A ,0,0 〉

2

z
〈0,0〉〈0,1〉

〈1,0 〉〈1,1 〉
〈n ,1,1 〉 〈n ,0,0 〉

〈 A ,0,1〉〈 A ,0,1〉 〈 A ,1,0 〉
〈 B ,0,1 〉 〈 B ,1,0〉 〈 B ,0,1 〉〈 B ,1,0 〉

2

z
〈0,0 〉〈0,1〉

〈1,0 〉〈1,1〉

〈n ,1,1〉 〈n ,0,0 〉

〈 A ,1,1 〉

2

z
〈0,0 〉〈0,1 〉

〈1,0〉〈1,1 〉

〈n ,1,1〉 〈n ,0,0 〉

〈 A ,1,1 〉〈 A,0,0 〉 〈 A ,1,0 〉
〈 B ,0,1 〉 〈 B ,1,0 〉 〈 B ,0,1 〉 〈 B ,1,0〉

2

z〈0,0〉〈0,1〉
〈1,0 〉〈1,1 〉

〈n ,1,1 〉 〈n ,0,0 〉

〈 A ,0,1〉

2

z〈0,0〉〈0,1〉

〈1,0 〉〈1,1 〉

〈n ,1,1 〉 〈n ,0,0 〉

〈 A ,0,1 〉〈 A ,0,0 〉 〈 A ,1,0 〉
〈 B ,1,1 〉 〈 B ,0,0 〉 〈 B ,1,1 〉〈 B ,0,0 〉

2

z〈0,0 〉〈0,1〉

〈1,0 〉〈1,1〉

〈n ,1,1〉 〈n ,0,0 〉

〈 A ,1,1 〉

2

z〈0,0 〉〈0,1 〉

〈1,0 〉〈1,1 〉

〈n ,1,1〉 〈n ,0,0 〉

〈 A ,1,1 〉〈 A,0,0 〉 〈 A ,1,0 〉
〈 B ,1,1 〉 〈 B ,0,0 〉 〈 B ,1,1 〉 〈 B ,0,0 〉

2

z
〈0,0〉〈0,1〉

〈1,0 〉〈1,1 〉

〈n ,1,1 〉 〈n ,0,0 〉

〈 A ,0,1〉

2

z〈0,0〉〈0,1〉

〈1,0 〉〈1,1 〉
〈n ,1,1 〉 〈n ,0,0 〉

〈 A ,0,1〉〈 A ,0,0 〉 〈 A ,1,0 〉
〈 B ,1,1 〉 〈 B ,1,0 〉 〈 B ,1,1 〉〈 B ,1,0〉

2

z
〈0,0 〉〈0,1 〉

〈1,0〉〈1,1 〉

〈n ,1,1〉 〈n ,0,0 〉

〈 A ,1,1 〉

2

z〈0,0 〉〈0,1 〉

〈1,0〉〈1,1 〉
〈n ,1,1〉 〈n ,0,0 〉

〈 A,1,1 〉〈 A ,0,0 〉 〈 A ,1,0〉
〈 B ,1,1 〉 〈 B ,1,0〉 〈 B ,1,1 〉 〈 B ,1,0 〉

Fig. 3. The configuration of system Π(2) for factoring integer number 2 at step 4

The checking stage starts at step 16. In this stage, the system compares each
product represented by objects 〈C, i, j〉, i = 0 or 1, 0 ≤ j ≤ 3, with the integer
number 2 represented by objects 〈n, 1, 1〉 and 〈n, 0, 0〉. If there exists at least one
position i, 2 ≤ i ≤ 3, at which the bit of a product equals to 1 (that is, there exists
object 〈C, 1, 2〉 or 〈C, 1, 2〉), then this object together with objects 〈n, 1, 1〉 and c′8
is removed from the corresponding cell with label 2. If the product equals to the
integer number 2, then both object 〈X, 0, 1〉 and object 〈X, 0, 0〉 will appear in
the corresponding cell with label 2. Figure 5 gives the configuration of the system
when the checking stage is finished.

The output stage starts at step 20. In this stage, each cell with label 2 which
contains the product that equals to the integer number 2, outputs the integer
number that is not greater than another one. Such integer number is represented
by objects of the form 〈A′, i, j〉 or 〈B′, i, j〉, i, j = 0, 1. The configuration of the
system at step 25 is shown in Figure 6. From Figure 6, it is not difficult to find
that, among 16 cells with label 2 there are two cells having objects of those forms.
In a cell with label 2 the objects are 〈A′, 0, 1〉, 〈A′, 1, 0〉, in another cell with label
2 the objects are 〈B′, 0, 1〉, 〈B′, 1, 0〉. These objects will be sent to the output cell
from cells with label 2. In fact, they represent the same integer number 1.

Factorization by Tissue P Systems with Cell Division 369

1

z
16

2

c15
4

〈C ,0,0〉〈C ,0,1〉
〈C ,0,2〉
〈n ,1,1 〉〈n ,0,0 〉

〈A2, 0,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,0,1〉
〈C ,0,2〉

〈n ,1,1〉〈n ,0,0 〉

〈A2,1,0 〉
2〈A2, 0,1〉

2

〈A2, 0,1〉
2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

2

c15
4

〈C ,0,0〉〈C ,0,1〉
〈C ,0,2 〉
〈n ,1,1〉 〈n ,0,0 〉

〈A2, 0,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,0,1〉
〈C ,0,2〉

〈n ,1,1〉 〈n ,0,0 〉

〈A2,1,1〉
2〈A2,1,1〉

2

〈A2,1,0 〉
2

〈B2, 0,0 〉
2〈B2, 0,1〉

2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

2

c15
4

〈C ,0,1〉 〈C ,0,0〉
〈C ,0,2〉
〈n ,1,1〉 〈n ,0,0 〉

〈A2, 0,0 〉
2

2

c15
4

〈C ,1,0 〉〈C ,0,1〉

〈C ,0,2〉
〈n ,1,1 〉 〈n ,0,0 〉

〈A2, 0,1〉
2〈A2, 0,1〉

2

〈A2,1,0 〉
2

〈B2, 0,1〉
2 〈B2,1,0 〉

2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,1,1 〉
〈C ,0,2〉

〈n ,1,1〉 〈n ,0,0 〉

〈A2,1,1〉
2

2

c15
4

〈C ,1,0 〉〈C ,1,1 〉
〈C ,0,2〉

〈n ,1,1〉 〈n ,0,0 〉

〈A2,1,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,0,1〉

〈n ,0,0 〉

〈A2, 0,1〉
2

2

c15
4

〈C ,0,0〉〈C ,1,1 〉

〈C ,0,2〉

〈n ,1,1 〉〈n ,0,0 〉

〈A2, 0,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,0,1〉

〈n ,0,0 〉

〈A2,1,1〉
2

2

c15
4

〈C ,0,0〉〈C ,1,1 〉

〈n ,0,0 〉

〈A2,1,1〉
2〈A2, 0,0 〉

2

〈A2,1,0 〉
2

〈B2,1,1〉
2 〈B2, 0,0 〉

2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,0,1〉

〈C ,0,2 〉

〈n ,1,1 〉 〈n ,0,0 〉

〈A2, 0,1〉
2

2

c15
4

〈C ,1,0 〉〈C ,1,1 〉
〈C ,0,2 〉

〈n ,1,1 〉 〈n ,0,0 〉

〈A2, 0,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2,1,1〉
2

〈B2,1,0 〉
2

〈B2,1,1〉
2

〈B2,1,0 〉
2

2

c15
4

〈C ,0,0〉〈C ,1,1 〉

〈n ,0,0 〉

〈A2,1,1〉
2

2

c15
4

〈C ,1,0 〉〈C ,0,1〉
〈C ,0,2 〉

〈n ,0,0 〉

〈A2,1,1〉
2〈A2, 0,0 〉

2

〈A2,1,0 〉
2

〈B2,1,1〉
2〈B2,1,0 〉

2

〈B2,1,1〉
2

〈B2,1,0 〉
2

c ' 8c '
8

c ' 8

c ' 8c ' 8c ' 8
c ' 8

c ' 8c '
8c ' 8

c ' 8

〈C ,0,2〉 c ' 8

〈n ,1,1〉

c ' 8〈C ,1,2 〉

〈n ,1,1 〉

〈C ,1,2 〉 c ' 8

〈n ,1,1 〉

〈C ,1,2 〉 c ' 8

〈n ,1,1 〉

〈C ,1,3 〉
〈n ,1,1 〉

c ' 8

Fig. 4. The configuration of system Π(2) for factoring integer number 2 at step 15

4.3 Necessary Resources

From the overview of the computation, it can be found that the family {Π(k)}k∈N
constructed above can solve the factorization problem in a linear time with respect
to the size of the integer to be factored. In what follows, we point out this family
of tissue P systems with cell division can be constructed in polynomial time by
deterministic Turing machine.

It is easy to check that the rules of a system Π(k) of the family are defined
recursively from the value k. The necessary resources to build an element of the
family are of a polynomial order, as shown below:

• Size of the alphabet: k2 + 35k + (4k + 2)dlg ke+ dlg 2ke+ 11 ∈ O(k2).
• Initial number of cells: 3 ∈ O(1).
• Initial number of objects: k2 + 2k + 2 ∈ O(k2).
• Number of rules: 4k2 + 39k + dlg 2ke+ (4k + 2)dlg ke+ 4 ∈ O(k2).
• Maximal length of a rule: 6 ∈ O(1).

Therefore, a deterministic Turing machine can build the tissue P system Π(k)
in a polynomial time with respect to k.

370 X. Zhang et al.

1

z
16

2

c16
3

〈C ,0,1〉〈C ,0,2〉
〈n ,1,1 〉 〈 X ,0,0〉

〈A2, 0,0 〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉
〈n ,1,1 〉 〈 X ,0,0〉

〈A2,1,0 〉
2〈A2, 0,1〉

2

〈A2, 0,1〉
2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

2
c16
3

〈C ,0,1〉〈C ,0,2〉

〈n ,1,1〉 〈 X ,0,0〉

〈A2, 0,0 〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉
〈n ,1,1〉 〈 X ,0,0〉

〈A2,1,1〉
2〈A2,1,1〉

2

〈A2,1,0 〉
2

〈B2, 0,0 〉
2〈B2, 0,1〉

2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉

〈n ,1,1 〉 〈 X ,0,0〉

〈A2, 0,0 〉
2

2

c16
4

〈C ,1,0 〉〈C ,0,1〉

〈C ,0,2〉
〈n ,1,1 〉 〈n ,0,0 〉

〈A2, 0,1〉
2〈A2, 0,1〉

2

〈A2,1,0 〉
2

〈B2, 0,1〉
2 〈B2,1,0 〉

2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

2

c16
2

〈C ,0,2〉

〈 X ,0,1〉 〈 X ,0,0〉

〈A2,1,1〉
2

2

c16
3

〈C ,0,2 〉
〈 X ,0,1〉

〈A2,1,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

2

c16
3

〈C ,0,2〉

〈 X ,0,0〉

〈A2, 0,1〉
2

2

c16
2

〈C ,0,2〉
〈 X ,0,1〉 〈 X ,0,0〉

〈A2, 0,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

2
c16
3

〈C ,0,1 〉

〈 X ,0,0〉

〈A2,1,1〉
2

2
c16
3

〈C ,1,1 〉

〈 X ,0,0〉

〈A2,1,1〉
2〈A2, 0,0 〉

2

〈A2,1,0 〉
2

〈B2,1,1〉
2 〈B2, 0,0 〉

2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉

〈n ,1,1 〉 〈 X ,0,0〉

〈A2, 0,1〉
2

2
c16
3

〈C ,1,0 〉〈C ,0,2〉

〈 X ,0,1〉 〈n ,0,0 〉

〈A2, 0,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2,1,1〉
2

〈B2,1,0 〉
2

〈B2,1,1〉
2

〈B2,1,0 〉
2

2

c16
3

〈C ,1,1 〉
〈 X ,0,0〉

〈A2,1,1〉
2

2

c16
4

〈C ,1,0 〉〈C ,0,1〉
〈C ,0,2 〉

〈n ,0,0 〉

〈A2,1,1〉
2〈A2, 0,0 〉

2

〈A2,1,0 〉
2

〈B2,1,1〉
2〈B2,1,0 〉

2

〈B2,1,1〉
2

〈B2,1,0 〉
2

c '
8

c ' 8

c ' 8

c ' 8c '
8

c ' 8

c ' 8

c ' 8c ' 8c ' 8
c ' 8

〈C ,1,0 〉

〈n ,0,0 〉

〈C ,0,1〉
〈n ,1,1〉

c ' 8

Fig. 5. The configuration of system Π(2) for factoring integer number 2 at step 19

5 Conclusions and Comments

Prime factorization problem is not in itself widely useful problem. It has become
useful only because it has been found to be crucial for public-key cryptography,
and this application is in turn possible only because they have been presumed to be
difficult. Currently, no deterministic polynomial-time algorithm is known, which
can be executed on Turing machines, that solves the problem for every possible
instance. It is of interest to explore any possible and reasonable way to solve prime
factorization problem because of its importance in public-key cryptography.

Prime factorization problem is neither decision problem nor optimization prob-
lem. In this work, it is considered as a function problem, and in the framework
of tissue P systems with cell division, a linear-time solution to prime factorization
problem is given. The initial structure of the systems is very simple, which consists
of three cells. The system is initialized with inputting into the fixed input cell the
multiset that expresses the integer number n to be factored. After a linear time
with respect to the size of n (i. e., blg kc+ 1), we can read out one factor of n in
the output cell.

Factorization by Tissue P Systems with Cell Division 371

1

z
16

2

c16
3

〈C ,0,1〉〈C ,0,2〉
〈n ,1,1〉 〈 X ,0,0〉

〈A2, 0,0 〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉
〈n ,1,1〉 〈 X ,0,0〉

〈A2,1,0 〉
2〈A2, 0,1〉

2

〈A2, 0,1〉
2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

2
c16
3

〈C ,0,1〉〈C ,0,2〉

〈n ,1,1〉 〈 X ,0,0〉

〈A2, 0,0 〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉
〈n ,1,1〉 〈 X ,0,0〉

〈A2,1,1〉
2〈A2,1,1〉

2

〈A2,1,0 〉
2

〈B2, 0,0 〉
2〈B2, 0,1〉

2

〈B2, 0,0 〉
2

〈B2, 0,1〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉

〈n ,1,1 〉 〈 X ,0,0〉

〈A2, 0,0 〉
2

2

c16
4

〈C ,1,0 〉〈C ,0,1〉

〈C ,0,2〉
〈n ,1,1 〉 〈n ,0,0 〉

〈A2, 0,1〉
2〈A2, 0,1〉

2

〈A2,1,0 〉
2

〈B2, 0,1〉
2 〈B2,1,0 〉

2

〈B2, 0,1〉
2

〈B2,1,0 〉
2

2
c16
2

〈C ,0,2〉

〈A2,1,1〉
2

2

c16
3

〈C ,0,2 〉

〈A2,1,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2, 0,1〉 〈B2,1,0 〉 〈B2, 0,1〉
2

〈B2,1,0 〉
2

2

c16
3

〈C ,0,1〉

〈 X ,0,0〉

〈A2, 0,1〉
2

2

c16
2

〈C ,0,2〉

〈A2, 0,1〉〈A2, 0,0 〉
2 〈A2,1,0 〉

〈B2,1,1〉
2

〈B2, 0,0 〉
2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

2
c16
3

〈C ,0,1〉

〈 X ,0,0〉

〈A2,1,1〉
2

2
c16
3

〈C ,1,1 〉

〈 X ,0,0〉

〈A2,1,1〉
2〈A2, 0,0 〉

2

〈A2,1,0 〉
2

〈B2,1,1〉
2 〈B2, 0,0 〉

2

〈B2,1,1〉
2

〈B2, 0,0 〉
2

2

c16
3

〈C ,0,1〉〈C ,0,2〉

〈n ,1,1 〉 〈 X ,0,0〉

〈A2, 0,1〉
2

2
c16
3

〈C ,1,0 〉〈C ,0,2〉

〈n ,0,0 〉

〈A2, 0,1〉
2

〈A2, 0,0 〉
2

〈A2,1,0 〉
2

〈B2,1,1〉
2

〈B2,1,0 〉
2

〈B2,1,1〉
2

〈B2,1,0 〉
2

2

c16
3

〈C ,1,1 〉
〈 X ,0,0〉

〈A2,1,1〉
2

2

c16
4

〈C ,1,0 〉〈C ,0,1〉
〈C ,0,2 〉

〈n ,0,0 〉

〈A2,1,1〉
2〈A2, 0,0 〉

2

〈A2,1,0 〉
2

〈B2,1,1〉
2〈B2,1,0 〉

2

〈B2,1,1〉
2

〈B2,1,0 〉
2

c '
8

c ' 8

c '
8

c ' 8

c ' 8

c ' 8

c ' 8

c ' 8c ' 8c ' 8
c ' 8

d
0

d 0

〈C ,1,0 〉

〈n ,0,0 〉

〈 B' ,0,1 〉 〈 B' ,1,0 〉

〈 A' ,0,1 〉 〈 A' ,1,0 〉

〈C ,0,2〉

〈n ,1,1 〉
c ' 8

Fig. 6. The configuration of system Π(2) for factoring integer number 2 at step 25

P system is a highly distributed parallel model of computation. Currently,
nobody knows how to build a biochemical computer/an artificial tissue-like com-
puter. P systems may be implemented using molecules, cells or a large computer
network such as the Internet. Although it goes beyond the scope of this work to
discuss the implementation of P systems, clearly, it is of particular interest and it
is a big challenging topic.

Acknowledgements

The work was supported by National Natural Science Foundation of China
(61033003, 61003038 and 30870826), Ph.D. Programs Foundation of Ministry of
Education of China (20100142110072), Fundamental Research Funds for the Cen-
tral Universities (2010ZD001), and Natural Science Foundation of Hubei Province
(2008CDB113 and 2008CDB180). Mario J. Pérez-Jiménez also acknowledges the
support of the project TIN2009-13192 of the Ministerio de Ciencia e Innovación of
Spain, cofinanced by FEDER funds, and the “Proyecto de Excelencia con Investi-
gador de Reconocida Vaĺıa” of the Junta de Andalućıa under grant P08-TIC04200.

372 X. Zhang et al.

References

1. M. Agrawal, N. Kayal, N. Saxena, PRIMES is in P, Annals of Mathematics 160(2)
(2004) 781–793.

2. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.A. Pérez-Jiménez, A. Riscos-Núñez, A
uniform family of tissue P system with cell division solving 3-COL in a linear time,
Theoretical Computer Science 404 (2008) 76–87.

3. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.A. Pérez-Jiménez, A. Riscos-Núñez, Solv-
ing subset sum in linear time by using tissue P system with cell division, in: Lecture
Notes in Computer Science, vol. 4527, 2007, pp. 170–179.

4. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.A. Pérez-Jiménez, A. Riscos-Núñez,
Computational efficiency of cellular division in tissue-like membrane systems, Ro-
manian Journal of Information Science and Technology 11 (3) (2008) 229–241.

5. D. Dı́az-Pernil, M.A. Gutiérrez-Naranjo, M.A. Pérez-Jiménez, A. Riscos-Núñez, Solv-
ing the partition problem by using tissue-like P systems with cell division, in: D.
Kearney, V. Nguyen, G. Gioiosa, T. Hendtlass (Eds.), Third International Confer-
ence on Bio-Inspired Computing: Theories and Applications, Adelaide, 2008, pp.
43-48.

6. A. Leporati, C. Zandron, G. Mauri, Solving the factorization problem with P systems,
Progress in Natural Science, 17 (4) (2007) 471–478.

7. A. Leporati, C. Zandron, M.A. Gutiérrez-Naranjo, P systems with input in binary
form, International Journal of Foundation of Computer Science, 17(1) (2006) 127–
146.

8. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón, A new class of symbolic
abstract neural nets: tissue P systems, in: Lecture Notes in Computer Science, vol.
2387, 2002, pp. 290–299.

9. C. Mart́ın Vide, J. Pazos, Gh. Păun, A. Rodŕıguez Patón, Tissue P systems, Theo-
retical Computer Science 296 (2003) 295–326.

10. A. Obtulowicz, On P systems with active membranes solving the integer factorization
problem in a polynomial time, in: Lecture Notes in Computer Science, vol. 2235, 2001,
pp. 267–285.

11. A. Păun, Gh. Păun, The power of communication: P systems with symport/antiport,
New Generation Computing 20 (3) (2002) 295–305.

12. Gh. Păun, Computing with membranes, Journal of Computer and System Sciences
61(1) (2000) 108–143.

13. Gh. Păun, Membrane Computing. An Introduction, Springer–Verlag, Berlin, 2002.
14. Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez, Tissue P system with cell division,

International Journal of Computers, Communications & Control III (3) (2008) 295–
302

15. R.L. Rivest, A. Shamir, L.M. Adleman, A method for obtaining digital signatures
and public-key cryptosystems, Comunications of the ACM 21 (2) (2006) 120–126.

16. P.W. Shor, Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer, SIAM Journal on Computing 26 (5) (1997) 1484–
1509

17. P systems web page http://ppage.psystems.eu/

Author Index

Adorna, Henry, 23
Alhazov, Artiom, 221

Bălănescu, Tudor, 1

Cabarle, Francis, 23
Carnero, Javier, 43
Cavaliere, Matteo, 63
Christinal, Hepzibah A., 317
Cienciala, Ludek, 71
Ciencialová, Lucie, 71
Colomer, Maria Angels, 91
Csuhaj-Varjú, Erzsébet, 113

Dı́az-Pernil, Daniel, 43, 317, 343
Dinneen, Michael J., 125

Fondevilla, Cristian, 91
Franco, Giuditta, 151

Gheorghe, Marian, 113
Gutiérrez-Naranjo, Miguel A., 43, 63, 159, 221, 317, 343

Ionescu, Mihai, 169, 183, 193
Ipate, Florentin, 209, 237
Ivanov, Sergiu, 221

Kim, Yun-Bum, 125

Langer, Miroslav, 71
Lefticaru, Raluca, 237
Leporati, Alberto, 329

Manca, Vincenzo, 151, 251
Marchetti, Luca, 251
Mart́ınez-del-Amor, Miguel A., 23

374

Mauri, Giancarlo, 329

Nicolescu, Radu, 1, 125, 265
Niu, Yunyun, 355

ObtuÃlowicz, Adam, 287, 291
Oswald, Marion, 113

Pagliarini, Roberto, 251
Pan, Linqiang, 355
Păun, Gheorghe, 169, 183, 193, 293, 305
Peña-Cantillana, Francisco, 317
Pérez-Jiménez, Mario J., 159, 183, 193, 293, 305, 355
Porreca, Antonio E., 329

Reina-Molina, Raúl, 343
Rodŕıguez-Patón, Alfonso, 183
Rogojin, Vladimir, 221

Tudose, Cristina, 237

Ţurcanu, Adrian, 209

Valencia-Cabrera, Luis, 91
Vaszil, György, 113

Wu, Huiling, 1, 265

Yokomori, Takashi, 193

Zandron, Claudio, 329
Zhang, Xingyi, 355

