RGNC REPORT 1/2011

Ninth Brainstorming Week

on Membrane Computing
Sevilla, January 31 — February 4, 2011

Miguel Angel Martinez del Amor
Gheorghe Paun
Ignacio Pérez Hurtado de Mendoza
Francisco José Romero Campero
Luis Valencia Cabrera

Editors

Research Group on
Natural Computing

REPORTS

RGNG

UNIVERSIDAD DE SEVILLA

Ninth Brainstorming Week
on Membrane Computing

Sevilla, January 31 — February 4, 2011

Miguel Angel Martinez del Amor
Gheorghe Paun
Ignacio Pérez Hurtado de Mendoza
Francisco José Romero Campero
Luis Valencia Cabrera

Editors

Ninth Brainstorming Week
on Membrane Computing

Sevilla, January 31 — February 4, 2011

Miguel Angel Martinez del Amor
Gheorghe Paun
Ignacio Pérez Hurtado de Mendoza
Francisco José Romero Campero
Luis Valencia Cabrera

Editors

RGNC REPORT 1/2011

Research Group on Natural Computing
Sevilla University

Fénix Editora, Sevilla, 2011

(©Autores
ISBN: 777?727
Depésito Legal: SE-77?77-06
Edita: Fénix Editora
Avda. de Cadiz, 7 — 1C
41004 Sevilla

fenixeditora@telefonica.net
Telf. 954 41 29 91

Preface

This volume contains the papers emerged from the Ninth Brainstorming Week on
Membrane Computing (BWMC), held in Sevilla, from January 31 to February 4,
2011, in the organization of the Research Group on Natural Computing from the
Department, of Computer Science and Artificial Intelligence of Sevilla University.
The first edition of BWMC was organized at the beginning of February 2003 in
Rovira i Virgili University, Tarragona, and the next seven editions took place in
Sevilla at the beginning of February 2004, 2005, 2006, 2007, 2008, 2009, and 2010,
respectively.

In the style of previous meetings in this series, the ninth BWMC was conceived
as a period of active interaction among the participants, with the emphasis on
exchanging ideas and on cooperation. Interesting enough, both the number of
presentations and the number of participants have continuously increased in the
last years. (The list of the participants is given in the end of this preface.) However,
in the style of the of this series of meeting, these presentations were “provocative”,
mainly proposing new ideas, open problems, research topics, results which need
further improvements. The efficiency of this type of meetings was again proved to
be very high and the present volume proves this assertion.

The papers included in this volume, arranged in the alphabetic order of the au-
thors, were collected in the form available at a short time after the brainstorming;
several of them are still under elaboration. The idea is that the proceedings are a
working instrument, part of the interaction started during the stay of authors in
Sevilla, meant to make possible a further cooperation, this time having a written
support.

A selection of the papers from this volume will be considered for publication in
a special issues of International Journal of Natural Computing Research. After the
first BWMC, a special issue of Natural Computing — volume 2, number 3, 2003,
and a special issue of New Generation Computing — volume 22, number 4, 2004,
were published; papers from the second BWMC have appeared in a special issue
of Journal of Universal Computer Science — volume 10, number 5, 2004, as well
as in a special issue of Soft Computing — volume 9, number 5, 2005; a selection

viii Preface

of papers written during the third BWMC have appeared in a special issue of
International Journal of Foundations of Computer Science — volume 17, number
1, 2006; after the fourth BWMC a special issue of Theoretical Computer Science
was edited — volume 372, numbers 2-3, 2007; after the fifth edition, a special is-
sue of International Journal of Unconventional Computing was edited — volume 5,
number 5, 2009; a selection of papers elaborated during the sixth BWMC has ap-
peared in a special issue of Fundamenta Informaticae — volume 87, number 1, 2008;
after the seventh BWMC, a special issue of International Journal of Computers,
Control and Communication was published — volume 4, number 3, 2009; finally, a
selection of papers elaborated during the eight BWMC was published as a special
issue of Romanian Journal of Information Science and Technology (published by
the Romanian Academy) — volume 13, number 2, 2010. Other papers elaborated
during the ninth BWMC will be submitted to other journals or to suitable confer-
ences. The reader interested in the final version of these papers is advised to check
the current bibliography of membrane computing available in the domain website
http://ppage.psystems.eu.

Kk %

The list of participants as well as their email addresses are given below, with
the aim of facilitating the further communication and interaction:

1. Arroyo Montoro Fernando, Polytechnical University of Madrid, Spain,
farroyo@eui.upm.es

2. Campora Pérez Daniel Hugo, University of Sevilla, Spain
danielcampora@gmail.com

3. Carmona Pirez Jonds, Andalusian Center of Development in Biology CABD-
CSIC, Seville, Spain
jcarpir@upo.es

4. Carnero Iglesias Javier, University of Sevilla, Spain
javier@carnero.net

5. Cecilia Canales José Maria, University of Murcia, Spain
chema@ditec.um.es

6. Cavaliere Matteo, Spanish National Biotechnology Centre, Madrid, Spain
mcavaliere@cnb.csic.es

7. Cienciala Ludek, Silesian University, Opava, Czech Republic
ludek.cienciala@fpf.slu.cz

8. Ciencialova Lucie, Silesian University, Opava, Czech Republic
lucie.ciencialova@fpf.slu.cz

9. Csuhaj-Varju Erzsébet, Hungarian Academy of Sciences, Budapest, Hungary,
csuhaj@sztaki.hu

10. De-Vega-Rodriguez David, University of Sevilla, Spain,
ddevega@gmail.com
11. Diaz-Pernil Daniel, University of Sevilla, Spain,

sbdaniQus.es

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Preface

Fondevilla Moreu Cristian, University of Lleida, Spain,
cfondevilla@matematica.udl.cat

Franco Giuditta, University of Verona, Italy,
giuditta.franco@univr.it

Garcia-Carrasco José Manuel, University of Murcia, Spain
jmgarcia@ditec.um.es

Garcia-Quismondo Manuel, University of Sevilla, Spain
mgarciaquismondo@us.es

Gazdag Zsolt, Eotvos Lorand University, Budapest, Hungary,
gazdagzsQinf.elte.hu

Gheorghe Marian, University of Sheffield, United Kingdom,
marian@dcs.shef.ac.uk

Giraldez Cru Jesus, University of Sevilla, Spain

giraldez. jesus@gmail.com

Graciani-Diaz Carmen, University of Sevilla, Spain,
cgdiaz@us.es

Guisado-Lizar José Luis, University of Sevilla, Spain,
jlguisadoQus.es

Gutiérrez-Naranjo Miguel Angel, University of Sevilla, Spain,
magutier@us.es

Tonescu Mihai, University of Pitegti, Romania
armandmihai.ionescu@gmail.com

Ipate Florentin Eugen, University of Pitegti, Romania,
florentin.ipate@ifsoft.ro

Kelemenova Alica, Silesian University, Opava, Czech Republic
Alica.Kelemenova@fpf.slu.cz

Krassovitskiy Alexander, Rovira i Virgili University, Tarragona, Spain,
alexander.krassovitskiy@estudiants.urv.cat

Langer Miroslav, Silesian University, Opava, Czech Republic
miroslav.langer@fpf.slu.cz

Lefticaru Raluca, University of Pitesti, Romania,
raluca.lefticaru@gmail.com

Leporati Alberto, University of Milano-Bicocca, Italy,
leporati@disco.unimib.it

Marchetti Luca, University of Verona, Italy,
luca.marchetti@univr.it

Martinez-del-Amor Miguel Angel, University of Sevilla, Spain,
mdelamor@us.es

Millan Alejandro, University of Sevilla, Spain,
amillan@us.es

Mina-Caicedo Julidn Andrés, University of Sevilla, Spain,
julmincai@alum.us.es

Molina Abril, Helena, University of Sevilla, Spain,
habril@Qus.es

ix

X

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44.

45.

46.

47.

48.

49.

30.

ol.

92.

33.

o4.

Preface

Murphy Niall, NUI Maynooth, Ireland

nmurphy@cs.nuim. ie

Nicolescu Radu, University of Auckland, New Zealand
r.nicolescu@auckland.ac.nz

Obtutowicz Adam, Polish Academy of Sciences, Poland,
A.0Obtulowicz@impan.gov.pl

Paun Gheorghe, Institute of Mathematics of the Romanian Academy, Bucharest,
Romania, and University of Sevilla, Spain,
george.paun@imar.ro, gpaun@us.es

Peria, Camacho Miguel Angel, Polytechnical University of Madrid, Spain,
mapc@eui.upm.es

Pérez-Hurtado-de-Mendoza Ignacio, University of Sevilla, Spain,
perezhQus.es

Pérez-Jiménez Mario de Jesis, University of Sevilla, Spain,
marperQ@us.es

Porreca Antonio E., University of Milano-Bicocca, Italy,
porreca@disco.unimib.it

Quirés-Carmona Juan, University of Sevilla, Spain,
quirole@gmail.com

Reina-Molina Rail, University of Sevilla, Spain,

raulrm75@gmail . com

Riscos-Ntifiez Agustin, University of Sevilla, Spain,
ariscosnQus.es

Rodriguez-Patén Aradas Alfonso, Polytechnical University of Madrid, Spain,
arpaton@fi.upm.es

Romero-Campero Francisco José, University of Sevilla, Spain,
franQus.es

Rogozhin Yurii, Institute of Mathematics and Computer Science,
Chisinau, Moldova,

rogozhin@math.md

Romero-Jiménez Alvaro, University of Sevilla, Spain,
romero.alvaroQus.es

Rossellé Llompart Francesc, University of Balearic Islands, Spain,
frossello@mac.com

Sarrion Morillo Enrique, University of Sevilla, Spain,
esmesm@gmail.com

Sempere Luna José Maria, Polytechnical University of Valencia, Spain,
jsempere@dsic.upv.es

Sosik Petr, Silesian University, Opava, Czech Republic
petr.sosik@fpf.slu.cz

Turcanu Adrian, University of Pitegti, Romania,
adrianturcanu85@yahoo.com

Valencia Cabrera Luis, University of Sevilla, Spain,
lvalenciaQus.es

Preface xi

55. Vaszil Gyo6rgy, Hungarian Academy of Sciences, Budapest, Hungary,
vaszil@sztaki.hu

56. Verlan Serghei, Paris XII University, Créteil, France,
verlan@univ-parisl2.fr

57. Viejo Cortés Julidan, University of Sevilla, Spain,
julian@dte.us.es

As mentioned above, the meeting was organized by the Research Group on
Natural Computing from Sevilla University (http://www.gcn.us.es)— and all
the members of this group were enthusiastically involved in this (not always easy)
work. The meeting was supported from various sources: (i) Proyecto de Excelencia
con investigador de reconocida valia, de la Junta de Andalucia, grant P08 — TIC
04200, (ii) Proyecto del Ministerio de Ciencia e Innovacién, grant TIN 2009 -
13192, (iii) Red Temética Nacional en Computacién Biomolecular y Biocelular,
grant TIN 2008 - 04487-E, (iv) IV Plan Propio de la Universidad de Sevilla, (v)
Consejeria de Innovacién, Ciencia y Empresas de la Junta de Andalucia, as well
as by the Department of Computer Science and Artificial Intelligence from Sevilla
University.

Gheorghe Paun
Mario de Jesis Pérez-Jiménez
(Sevilla, May 5, 2011)

Contents

Preface ... e

Asynchronous P Systems (Draft)
T. Balanescu, R. Nicolescu, H. Wuo o ..

Simulating Spiking Neural P Systems Without Delay Using GPUs
F. Cabarle, H. Adorna, M.A. Martinez-del-Amor

Designing Tissue-like P Systems for Image Segmentation
on Parallel Architectures
J. Carnero, D. Diaz-Pernil, M.A. Gutiérrez-Naranjo

P Systems with Replicator Dynamics: A Proposal
M. Cavaliere, M. A. Gutiérrez-Naranjoc.cccoiiuuiieneenn..

P Colonies of Capacity One and Modularity
L. Cienciala, L. Ciencialova, M. Langer............ oo ...

A New P System to Model the Subalpine and Alpine
Plant Communities
M.A. Colomer, C. Fondevilla, L. Valencia-Cabrera......................

P Systems for Social Networks
E. Csuhaj-Varji, M. Gheorghe, G. Vaszil, M. Oswald

Using Central Nodes to Improve P System Synchronization
M.J. Dinneen, Y.-B. Kim, R. Nicolesctc..ccoiiiiio...

Toward a Self-replicating Metabolic P System
G. Franco, V. Mancao oo e

Implementing Local Search with Membrane Computing
M.A. Gutiérrez-Naranjo, M.J. Pérez-Jiménezc..ccooou..

Notes About Spiking Neural P Systems
M. Ionescu, Gh. PAuno i,

xiv

Contents

Spiking Neural P Systems with Several Types of Spikes
M. Ionescu, Gh. Paun, M.J. Pérez-Jiménez, A. Rodriguez-Paton

Spiking Neural dP Systems
M. ITonescu, Gh. Paun, M.J. Pérez-Jiménez, T. Yokomori..............

Modeling, Verification and Testing of P Systems Using Rodin and ProB
F. Ipate, A. TUIrCAMU - ..o oo e e e e

Forward and Backward Chaining with P Systems
S. Ivanov, A. Alhazov, V. Rogojin, M.A. Gutiérrez-Naranjo

Towards Automated Verification of P Systems Using Spin
R. Lefticaru, C. Tudose, F. Ipateo,

MP Modeling of Glucose-Insulin Interactions
in the Intravenous Glucose Tolerance Test
V. Manca, L. Marchetti, R. Pagliaringc...cccoioi...

BFS Solution for Disjoint Paths in P Systems
R. Nicolescu, H. Wb ..o e

On a Contribution of Membrane Computing to a Cultural Synthesis
of Computer Science, Mathematics, and Biological Sciences
Adam Obtulowicz o

Well-Tempered P Systems: Towards a Membrane Computing
Environment for Music Composition
Adam Obtulowicz i e e

dP Automata versus Right-Linear Simple Matrix Grammars
Gh. Paun, M.J. Pérez-Jimenezeeuuiuiuieeunainenaannnn..

Towards Bridging Two Cell-Inspired Models: P Systems and R Systems
Gh. Paun, M.J. Pérez-Jiménezccuuuiuuiiiiiiniiinnenns.

Smoothing Problem in 2D Images with Tissue-like P Systems

and Parallel Implementation

F. Pena-Cantillana, D. Diaz-Pernil, H A. Christinal,

M.A. Gutiérrez-INGranjooeiueiia i,

Elementary Active Membranes Have the Power of Counting
A.E. Porreca, A. Leporati, G. Mauri, C. Zandron

Integer Linear Programming for Tissue-like P Systems
R. Reina-Molina, D. Diaz-Pernil, M.A. Gutiérrez-Naranjo

Linear Time Solution to Prime Factorization by Tissue P Systems
with Cell Division
X. Zhang, Y. Niu, L. Pan, M.J. Pérez-Jiménez

Author Index

183

193

209

221

237

251

265

287

291

293

305

317

329

Asynchronous P Systems (Draft)

Tudor Baldnescu', Radu Nicolescu?, and Huiling Wu?

! Department of Computer Science, University of Pitesti,
Targu din Vale 1, 110040 Pitesti, Romania,
tudor_balanescu@yahoo.com

2 Department of Computer Science, University of Auckland,
Private Bag 92019, Auckland, New Zealand,
r.nicolescu@auckland.ac.nz, hwu065@aucklanduni.ac.nz

Summary. In this paper, we propose a new approach to fully asynchronous P sys-
tems, and a matching complexity measure, both inspired from the field of distributed
algorithms. We validate our approach by implementing several well-known distributed
depth-first search (DFS) and breadth-first search (BFS) algorithms. Empirical results
show that our P algorithms achieve a performance comparable to the standard versions.

Key words: P systems, synchronous, asynchronous, distributed, depth-first search,
breadth-first search

1 Introduction

P systems is bio-inspired computational model, based on the way in which chem-
icals interact and cross cell membranes, introduced by Paun [20]. The essential
specification of a P system includes a membrane structure, objects and rules.
Cells evolve by applying rules in a non-deterministic and (potentially maximally)
parallel manner. These characteristics make P systems a promising candidate as
a model for distributed and parallel computing.

The traditional P system model is synchronous, i.e. all cells evolution is con-
trolled by a single global clock. P systems with various asynchronous features have
been investigated by recent research, such as Casiraghi et al. [3], Cavaliere et al.
[6, 4, 5], Freund et al. [11], Gutiérrez et al. [12], Kleijn et al. [13], Pan et al. [18],
Yuan et al. [24]. Here we are looking for similar but simpler definitions, closer to
the definitions used in the field of distributed algorithms [14, 22], which will enable
us to consider essential distributed feature, such as fairness, safety, liveness and
possibly infinite executions. In our approach, algorithms are non-deterministic, not
necessarily constrained to return exactly the same result.

Fully asynchronous P systems are characterized by the absence of any system
clock, much less a global one; however, an outside observer may very well use a
clock to time the evolutions. Our approach does not require any change in the

2 T. Balanescu, R. Nicolescu and H. Wu

static descriptions of P systems, only their evolutions differ (i.e. the underlying
P engine works differently):

e Local rules execution takes zero time units (i.e. it occurs instantaneously).

e The message delay is unpredictable, so outgoing objects can arrive at the target
cell in any number of time units (after being sent).

For the purpose of time complezity, the time unit is chosen greater than any
message delay, i.e. the delay between sending and receiving a message is any real
number in the closed interval [0, 1].

This paper is organized as follows. Section 2 gives a definition of a simple
P module, as a unified model of various P systems. Section 3 presents asynchronous
P systems and discusses a standard set of time complexity measures. Section 4 and
Section 5 discuss several well-known distributed DFS and BFS algorithms and pro-
pose corresponding asynchronous P system implementations. Section 6 compares
the complexity of our asynchronous P system algorithms with the theoretical com-
plexity of distributed DFS and BFS algorithms. Finally, Section 7 summarizes our
work and highlights future work.

2 Preliminary

In this paper, we use simple P modules, an umbrella concept, which is general
enough to cover several basic P system families, with states, priorities, promoters
and duplex channels. For the full definition of P modules and modular composi-
tions, we refer readers to [10].

Essentially, a simple P module is a system, IT = (O, 01,09, ...,04,,d), where:

1. O is a finite non-empty alphabet of objects;
2. 01,...,0p are cells, of the form o; = (Q4, S50, Wi 0, Ri), 1 <i < n, where:
— @Q; is a finite set of states;
— 84,0 € Q; is the initial state;
—w; 0 € O is the initial multiset of objects;
— R, is a finite ordered set of rewriting/communication rules of the form:
sx —q 8 @' (y)s |z, where: s, € Qq, z,2',y,2 € O*, a € {min,mazx},

ﬁ € {Ta \Lv i}

3. § is a set of digraph arcs on {1,2,...,n}, without reflexive arcs, representing
duplex channels between cells.

The membrane structure is a digraph with duplex channels, so parents can send
messages to children and children to parents. Rules are prioritized and are applied
in weak priority order [19]. The general form of a rule, which transforms state s
to state s', is s * —4 8’ @' (y)p, |.. This rule consumes multiset x, and then (after
all applicable rules have consumed their left-hand objects) produces multiset 2/,
in the same cell (“here”). Also, it produces multiset y and sends it, by replication

Asynchronous P Systems 3

(“repl” mode), to all parents (“up”), to all children (“down”) or to all parents and
children (“up and down”), according to the target indicator 8 € {1,,1}.

We also use a targeted sending, 8 = 1;, |, {;, where j is either an arc label
or a cell ID. If j is an arc label, y is sent via the arc labelled j, provided that
it points, respectively, up (to a parent), down (to a child) or in any direction (to
either a parent or a child). If j is a cell ID of a structural neighbor, y is sent to
that neighbor j, provided that it lies, respectively, up (j is a parent), down (j is a
child) or in any direction (j is either a parent or a child); nothing is sent if cell j
is not a structural neighbor (we do not use teleportation). More about cell IDs in
a following paragraph.

a € {min,mazx} describes the rewriting mode. In the minimal mode, an ap-
plicable rule is applied once. In the mazimal mode, an applicable rule is used as
many times as possible and all rules with the same states s and s’ can be applied
in the maximally parallel manner. Finally, the optional z indicates a multiset of
promoters, which enable rules but are not consumed.

Note

The algorithms presented in this paper make full use of duplex channels and work
regardless of specific arc orientation. Therefore, to avoid superfluous details, the
structure of our sample P systems will be given as undirected graphs, with the
assumption that the results will be the same, regardless of actual arc orientation.

Extensions

In this article, we use an extended version of the basic P module framework,
described above. Specifically, we assume that each cell o; € K was “blessed” from
factory with a unique cell ID symbol ¢;, which is exclusively used as an immutable
promoter. We also allow high-level rules, with a simple form of complex symbols
and free variable matching.

To explain these additional features, consider, for example, rule 3.1 of algorithm
2: S35 a nj —nin S4 a (¢;) 5 |¢;. This rule uses complex symbols n; and ¢;, where
j and 7 are free variables, which, in principle, could match anything, but, in this
case, they will be only required to match cell IDs. Briefly, this rule, promoted by
t;, consumes one a and one n;, produces another a and sends down a ¢;, where 4
is the index of the current cell, to child j, if this child exists.

3 Asynchronous P Systems

In traditional P systems, a universal clock is assumed to control the application
of all rules, i.e. traditional P systems work synchronously, in lock-step. Practically,
such universal clock is unrealistic in many distributed computing applications,
where there is no such global clock and the communication delay is unpredictable.

4 T. Balanescu, R. Nicolescu and H. Wu

Thus, it is interesting to investigate P systems that work in the asynchronous
mode.

We define asynchronous P systems as follows. The rule format of asynchronous
P systems is the same as for synchronous P systems, i.e., s —o s 2’ ()3, |2
However, we focus on typical distributed systems, where communications take
substantially longer than actual local computations, therefore we consider that
the message delay is totally unpredictable. In such systems, we assume that rules
are applied in zero time and each message arrives in its own time ¢, ¢ € [0,1].
Synchronous P systems are a special case of asynchronous P systems, where t =
1, for all evolutions. The runtime complexity of an asynchronous system is the
supremum over all possible executions. We typically assume that messages sent
over the same arc arrive in FIFO order (queue), or, as a possible extension—all
messages sent over the same arc eventually arrive, but in arbitrary order (multiset).

We illustrate these concepts by means of a basic algorithm, Echo [22], in two
distributed scenarios: (1) synchronous and (2) asynchronous, with a different (and
less expected) evolution. Essentially, the Echo algorithm starts from a source cell,
which broadcasts forward messages. These forward messages transitively reach
all cells and, at the end, are reflected back to the initial source. The forward
phase establishes a wirtual spanning tree and the return phase is supposed to
follow up its branches. The tree is only virtual, because it does not involve any
structural changes; instead, virtual child-parent links are established by way of
pointer objects.

Scenario 1 in Figure 1 assumes that all messages arrive in one time unit, i.e. in
the synchronous mode. The forward and return phases take the same time, i.e. D
time units each, where D is diameter of the undirected graph, G. Scenario 2 in
Figure 2 assumes that some messages travel much faster than others, which is
bad, but possible in asynchronous mode: ¢ = €, where 0 < ¢ < 1. In this case,
the forward and return phases take very different times, D and N — 1 time units,
respectively, where N is the number of nodes of the undirected graph, G. The
P system rules of the Echo algorithm are presented in Section 5.3.

\ /\\
@O EILD
() ©

Time Unit = 0 Time Unit = 1 Time Unit = 2 Time Unit = 3
() (b) (c) (d)

Fig. 1. Echo algorithm in synchronous mode—or in a “lucky” asynchronous mode, when
all messages are propagated with the same delay (1). Arcs with arrows indicate child-
parent arcs in the virtual spanning tree built by the algorithm. Thick arrows near arcs
indicate messages.

Asynchronous P Systems 5

Time Unit = € Tim Unit = 2¢ Time Unit = 3¢ Time Unit = 4e

Time Unit = 1 TIIDC Unlt =2 Time Unit = 3 Tlmc Unit = 4

(e) (2) (h)

Fig. 2. Echo algorithm in asynchronous mode—one possible “bad” execution, among
the many possible. Dotted thick arrows near arcs indicate messages still in transit.

4 Distributed Depth-First Search (DFS)

Depth-first search (DFS) and breadth-first search (BFS) are graph traversal al-
gorithms, which construct a DFS spanning tree and a BFS spanning tree, re-
spectively. Figure 3 shows the structure of a sample P system, II, based on an
“undirected” graph, GG, and one possible virtual DFS spanning tree, T. We use
quotation marks to indicate that G actually is a directed graph, but we do not
care about arc orientation. The spanning tree is virtual, as it is described by “soft”
pointer objects, not by “hard” structural arcs.

Fig. 3. P system Il based on an “undirected” graph and one possible virtual DFS

spanning tree. Thick arrows indicate virtual child-parent arcs in this tree, linked by
pointer objects.

DFS is a fundamental technique, inherently sequential, or so it appears. Several
distributed DFS algorithms have been proposed, which attempt to make DFS run
faster on distributed systems, such as the classical DFS [22], Awerbuch’s DFS
[1], Cidon’s DFS [7], Sharma et al’s DFS [21], Makki et al’s DFS [15], Sense of
Direction (SOD) DFS [22]. This is vast topic, which is impossible to present here

6 T. Balanescu, R. Nicolescu and H. Wu

at the required length. Therefore, we refer the reader to the original articles, or to
a fundamental text, which covers all these algorithms, [22].

Several articles have proposed various synchronous P algorithms for DFS.
Gutiérrez-Naranjo et al. proposed a DFS algorithm [12], using inhibitors to avoid
visiting already-visited neighbor cells. Dinneen et al. [8] proposed a P algorithm
to find disjoint paths in a digraph, using a distributed DFS strategy, which avoids
visiting already-visited cells by changing the state of visited cells [9]. Bernardini et
al. proposed a DFS algorithm in the P system synchronization problem [2]. This
approach uses an operator, mark,., to select one not-yet-visited cell, indicated by
a 0 polarity, and then mark the cell as visited, by changing the polarity to +. In
this case, the cell that performs a mark, operation, actually “knows” which child
cell has been visited or not, without any message exchanges. In fact, all above
mentioned P algorithms implement the classical DFS, which is discussed later in
Section 4.2.

In the following sections, we present asynchronous P system implementations
of the well-known distributed DFS algorithms, which leverage the parallel and
distributed characteristics of P systems.

4.1 Discovering Neighbors

All our distributed DFS and BFS P algorithms, except the SoD algorithm, can,
if needed, start with the same preliminary Phase I, in which cells discover their
neighbors, i.e. their local topology. Nicolescu et al. have developed P algorithms
to discover local topology and local neighbors [16, 9]. In this paper, we propose a
crisper algorithm, Algorithm 1, with fewer symbols.

Algorithm 1 (Discovering cell neighbors)

Input: All cells start in the same initial state, Sy, with the same set of rules.
Initially, each cell, o;, contains a cell ID object, ¢;, which is immutable and used
as a promoter. Additionally, the source cell, o, is decorated with one object a.

Output: All cells end in the same state, S3. On completion, each cell contains
the cell ID object, ¢;, and objects n;, pointing to their neighbors. The source cell,
0s, is still decorated with object a. Table 1 shows the neighborhoods of Figure 3,
computed by Algorithm 1, in three P steps.

Table 1. Partial Trace of Algorithm 1 for Figure 3.

Step# |01 o2 o3 o4 o5 o6
0 So t1a So 2 So 3 So L4 So 5 So L6
3 Sg Liananag S3 L2M1M3MN4g S3 L3N2MN4N5MN6 S3 LaMn1Mn2n3ns Sg L5MN3MN4Ne Sg LeMN3ns

Asynchronous P Systems 7

0. Rules in state Sy: 1 STy —min S2 (i) T .
1 So @ —nin S1 ay (2) 2 51 2 —pax 52
2 SO Z —’min Sl Y (Z)i

3 So 2 —vmax S1 2. Rules for state Ss:

1 S2 ~—’min 53
1. Rules in state Si: 2 55 2z —pax S3

In state Sy, the source cell, o, which is decorated by object a, broadcasts signal
z, to all cells, and enters state S;. Each cell receiving z produces one object y, and
changes to state S;. Superfluous signals z are discarded. Then, in state S, each
cell that has object ¥y, sends its own ID, which appears as subscript in complex
object n;, to all its neighbors. In state Ss, cells accumulate the received neighbor
objects, discard superfluous objects z, and enter Ss.

4.2 Classical DFS

The classical DFS algorithm is based on Tarry’s traversal algorithm, which tra-
verses all arcs sequentially, in both directions, using a visiting token [22]. Because
it traverses all arcs twice, serially, the classical DFS algorithm is not the most
efficient distributed DFS algorithm.

Algorithm 2 (Classical DFS)

Input: All cells start in the same quiescent state, S3, and with the same set of
rules. Each cell, o;, contains an immutable cell ID object, ¢;. All cells know their
neighbors, i.e. they have topological awareness, which are indicated by pointer
objects, n; (as built by Algorithm 1). The source cell, o, is additionally decorated
with one object, a, which triggers the search.

Output: All cells end in the same final state (S5). On completion, the cell IDs
are intact. Cell o, is still decorated with one a and all other cells contain DFS
spanning tree pointer objects, indicating predecessors, p;.

Table 2 shows one possible DF'S spanning tree, built by this algorithm, for the
P system II of Figure 3.

Table 2. Partial Trace of Algorithm 2 for Figure 3.

Step# |01 o2 o3 04 o5 6
0 Ss Liananag 53 L2M1M3MN4g S3 L3N2MN4N5N6 53 LaMn1M2Mn3Ns Sg L5MN3MN4Ne 53 LeN3Nns
19 Sg, Lia 55 LaP1 S{, L3P2 Ss LaPs Ss L5P3 Ss LePs

8 T. Balanescu, R. Nicolescu and H. Wu

3. Rules in state Ss: 1S4 ¢jnj —min Sa () 45 |

1 S5 an; —nin Sa a (¢;) 45 | 2 Sy Ny —rnin Sa (ci) dn |

2 S5 CjNiNEk —min Sy Dy (Cz) i L 3 Sy ZjPk —min S5 pr (Iz) Lk ‘Li
4. Rules for state Sj: 4 Sy xj —nin S

4.3 Awerbuch DFS

Awerbuch’s algorithm [1] and other more efficient algorithms improve time com-
plexity by having the visiting token traversing tree arcs only, all other arcs are
traversed in parallel, by auxiliary messages. Specifically, in Awerbuch’s algorithm,
when the node is visited for the first time, it notifies all neighbors that it has been
visited and waits until it receives all neighbors’ acknowledgments. After that, the
node can visit one of its unvisited neighbors. Thus, the node knows exactly which
of its neighbors have been visited and avoids visiting the already-visited neighbors,
which saves time.

Algorithm 3 (Awerbuch DFS)

Input: Same as in Algorithm 2.

Output: Similar to Algorithm 2, but the final state is S7. Also, cells may
contain “garbage” objects, which can be cleared, by using a few more steps.

Table 3 shows the resulting DFS spanning tree, for Figure 3. Table 16 from
Appendix A contains full traces for this algorithm, including the preliminary phase,
of Algorithm 1.

Table 3. Partial Trace of Algorithm 3 for Figure 3.

Step# |01 o2 o3 o4 o5 J6
0 S3 t1an2n4|S3 tan1n3na|S3 L3nanansne|Ss taninansns|S3 tsnanane|Ss tenans
24 S7 tia ... |S7 tep1 ... |S7 13p2 ... S7 taps ... S7 t5ps ... |S7Leps ...
3. Rules in state Ss: 6. Rules for state Sg:

1 S5 nj —nin S4 njm; 1 S6 wj —rnin S7 |b,

. 2 S¢ wjpk —rmin S7 WPk |y,

4. Rules in state Sy: 3 S6 bj —min S7

1 54 Uj —*min Sa Uj (bl) ij Li 4 Sg U;Mj —Pnin S Uj

2 54 Nj —min S5 n; (’Ul) 1 |‘1Li 5 Sg aMm; —Fpin S au; (Cit) J,j L

3 54 CjMjN; —rmin Ss DPj 6 Sg PLMj —Fnin S7 PrU;j (Cit) ij L

4 Sy Nj —7min Ss g (UZ) \Lj |tbi 7 Sg Pj —Pmin S7 Py (.’L‘J) i/j L

8 S6 t —min S7

5. Rules for state Ss:

1 S5 nj —nin Se njw; 7. Rules for state S7:

157 Wj —rmin S7 |bj
2 S7 wjpk —*nin S7 WPk
3 S7 Pk™Mj —min
S7 prug (i) 45 lbe;
4 Sy Pj —7min S7 Dj (xit) ~lfj |blLi

Asynchronous P Systems 9

6 S METj —nin S7 uy (Cit) bk |Li
7 S7 prxj —nin S7 Pk (Tit) Lk o,
8 S7 Uj — min S7 Uj (bl) \Lj
9 S UM —rmin S Uj
10 57 aT;j —7min S7 a

Li

5 S7 bj —min S7 11 S? t —min S?

4.4 Cidon DFS

Cidon’s algorithm [7] improves Awerbuch’s algorithm by not using acknowledg-
ments, therefore removing a delay. The token holding cell does not wait for the
neighbors’ acknowledgments, but immediately visits a neighbor. However, it needs
to record the most recent neighbor used, to solve cases when visiting notifications

arrive after the visiting token.
Algorithm 4 (Cidon DFS)

Input: Same as in Algorithm 2.

Output: Similar to Algorithm 2, but the final state is S;. Also, cells may
contain “garbage” objects, which can be cleared, by using a few more steps.
Table 4 shows one possible DFS spanning tree, built by this algorithm, for the

P system II of Figure 3.

Table 4. Partial Trace of Algorithm 4 for Figure 3.

Step# |01 o2 o3 04 o5 06
0 53 L1anang S3 L2n1N3nag 53 L3N2MN4M5MN6 Sg LaM1M2M3Ns5 53 L5MN3M4Ne Sg leMN3Ns
12 S5 ua ... 55 Lap1 ... S5 L3p2 ... 55 LaPs ... S5 LsP3 ... 55 LepPs ...

3. Rules in state Ss:
1 53 Nj —7min 54 n;m;
2 Sg a4 —min S4 at

4. Rules in state Sy:
1 .54 an;m; —min
S5 avj (vicit) 1y |,
2 Sy cpnpmpnimy —nin
Ss prrjmy (vicit) 1y |,
3 Sy cpmpn;m; —pin
Ss prrjmg (vicit) 4 lu
4 S4 CjN;Mj —rmin 55 Dj (l‘ﬂf) \l/j
S4 ¢;mj —nin S5 pj (zit) 15
6 Sy mj —min S5 my (V) 1 |u,

teg

ot

teg

7 54 VjMj —7min 54 Vj
8 54 t —nin 55

. Rules for state Ss:

1 55 TEUENj —min 55 T (Cit) i,j |Li
2 S5 rRUED; —min S5 P; (Tit) 14
3 S5 TiNEMEg —nin
Ss rmy (vicit) Lk
S5 T;PrTj —nin

Ss piery (wit) Lk |e,
S5 Pk —rmin S5 PrV;
55 VjNj —7min S5 Vj
S5 aT;j —min S5 a

55 t ~7min S5

Li

tig

N

o~ O Ot

10 T. Balanescu, R. Nicolescu and H. Wu

4.5 Sharma DFS

Sharma et al.’s algorithm [21] further improves time complexity, at the cost of
increasing the message size, by including a list of visited nodes when passing the
visiting token [23]. Thus, it eliminates unnecessary message exchanges to inform
neighbors of visited status.

Algorithm 5 (Sharma DFS)

Input: Same as in Algorithm 2.

Output: Similar to Algorithm 2, but the final state is S4. Also, cells may
contain “garbage” objects, which can be cleared, by using a few more steps.

Table 5 shows one possible DFS spanning tree, built by this algorithm, for the
P system II of Figure 3.

Table 5. Partial Trace of Algorithm 5 for Figure 3.

Step# |o1 o2 o3 o4 o5 o6

0 S3 t1am2n4|S3 t2n1n3N4|S3 L3n2nansNe| S3 Lan1nanzns| Sz tsn3Nane|S3 Lenans
11 S4 ua ... 54 L2p1 ... S4 L3p2 ... S4 LaPs ... S4 LsP3 ... S4L6p54..
3. Rules in state Ss: 4. Rules for state Sy:

1 S4 Mj —Pmin 54 v

S4 Tj —min 54 (szz) \I/k |’nkLi
S4 .T] —min 54 (xlvl) »J/k |pkL7',
S4 Uj *>m1n 4 Uy ()\l/k |tnk
S4 Vj —?min 54 Uy (7]) \l/k |tpk
S4 t ~7min S4

54 aTj —7min 54 a

1 S5 an; —pin Sa a (cuit) 1
2 S3 1 —nin S4 o,

3 S35 ¢j —min Sa pj (Civit) Lk |nyes
4 S5 ¢j —min S1 pj (@ivivit) 15 |,
5 S3 vj —rnin S v; (V5) b& |tny

6 S3 t —uin S4

Li

N O U W N

4.6 Makki DFS

Makki et al.’s algorithm [15] improves Sharma et al.’s algorithm by using a dynamic
backtracking technique. It keeps track of the most recent split point, i.e. the lowest
ancestor node. When the search path backtracks to a node, if the node has a non-
tree edge to its split point, it backtracks to the split point directly via that edge,
rather than following the longer tree path to its split point.

Algorithm 6 (Makki DFS)

Input: Same as in Algorithm 2.

Output: Similar to Algorithm 2, but the final state is S;. Also, cells may
contain “garbage” objects, which can be cleared, by using a few more steps.

Table 6 shows one possible DFS spanning tree, built by this algorithm, for the
P system II of Figure 3.

Asynchronous P Systems 11

Table 6. Partial Trace of Algorithm 6 for Figure 3.

Step# |01 o2 o3 o4 o5 o6
0 53 L1anang 53 L2M1N3n4g 53 L3N2MN4M5MN6 Sg LaM1M2M3Ns5 S3 L5MN3M4Ne Sg LleMN3Ns
10 54 La ... S4 Lop1 ... S4 L3p2 ... S4 LaPs ... 54 LsP3 ... S4L6p5
3. Rules in state Ss: 4. Rules for state Sy:

1 Sg an;j —rmin 54 a (civisit) »l/j L 1 S4 Nj —’min 54 Vj

2 S3 1 —nin S4 o, 2 Sy xj —min S1 (€iviSit) Lk Ingnges

3 Sg CjSm —7min 3 S4 ZjTl —’min

Sa pjrm (Civisit) Lk |ngni; Sy (civisisit) i lngs

4 Sd CjSl —min 4 S4 xj ~min S4 (‘Tzvzt) \I/k |’l"kbi
Sy piri (civisit) di nges 5 S4 & = min S (Ti0it) bk |prus
S5 ¢ —min Sa DT (Tivit) Lk |spu 6 Sy vj —nin S1 V5 (V) bk Jtne
S3 ¢ —min S1 DTk (Ti0it) L |spes 7 Sy vj —rmin Sa v (V) bk |ers
S3 Vj —nin Sa V5 (V) Lk |ing 8 S4 vj —rmin S1 vj (V5) bk |eps
S3 Vj —?min S4 Vj (vj) »Lk |ts;C 9 S4 t —nin S4
53 t —min 54 10 S4 aT;j —min 54 a

© 00 ~J O Ot

4.7 Sense of Direction DFS

With Sense of Direction (SOD), the node labeling is not required. Instead, arc
labeling is used, with the following properties:

o FEdges are labeled with elements of a group G, typically G = Z,,, where Z,, =
{0,1,...,n—1}.

e Given labeled arcs ag Y ay,ay = ag,...Ak_1 5 ag, the path ag N B
as...an_1 -5 aj has label 1 + 25 + ... + 2.

e Given labelled paths a = b and ¢ = d, a = ¢ if and only if b = d.

Thus, in search algorithms, path labels can very handily indicate the already-
visited nodes. Path labels are kept as a growing list and are appended when the
search path passes a node.

If the search path reaching the node, ax, wants to visit the node, ag1, it first
checks whether a1 is an already-visited node, e.g., a;, 0 < ¢ < n. The node ag
checks whether one of the partial path labels, e.g., ;41 + ... + x + 41, equals
zero. If yes, then axi11 = a;, thus agqq is an already-visited node. We refer the
readers to [22] for more details about SOD.

Figure 4 shows a sample P system based on directed graph with SOD arc labels.

Algorithm 7 (Sense of Direction DFS)

For this particular algorithm, here, we only present a P system-like high-level
pseudo-code. Additional investigation is required to achieve an efficient translation
to usual rewriting rules.

12 T. Balanescu, R. Nicolescu and H. Wu

BO O
6{321\@

RoSNod

Fig. 4. A sample P system based on a SOD structure, with arc labelling, indicated by
gray arrows. Thick arc arrows indicate a possible virtual DFS tree.

Input: All cells start with the same set of rules and start in the same quiescent
state, Sp. Initially, all cells contain objects indicating the labels of neighbor arcs:
objects o; for outgoing arcs and objects e; for incoming arcs. The source cell, o,
is additionally decorated with one trigger object, a.

Output: All cells end in the same final state, S;. On completion, cell o, is still
decorated with one a. All other cells contain DFS spanning tree pointer objects,
indicating its tree predecessors: p;, for incoming arcs and g;, for outgoing arcs.
Also, cells may contain “garbage” objects, which can be cleared, in a few more
steps.

Table 7 shows one possible DFS spanning tree, built by this algorithm, for the
P system of Figure 4.

Table 7. Partial Trace of Algorithm 7 for Figure 4.

Step# |01 o2 o3 o4 o5 o6
0 Soao104 Soe10103 S0€1010203 [Spe10102 Soeiezeszes |Soezes
11 Sla... S1p1... S1p1... S1p1... Slpl... Slpg...

The ruleset below uses a few additional “magical” algebraic operators and
prompters, which do fit properly into the basic framework outlined in Section 2
(or not yet).

appends n — j (i.e. —j modulo n) to list .

Complex promoters m @ j? and m © j7 enable the associated rule only if the

resulting list does not contain any 0.

0. Rules in state Sg:
1 SO a0j —7min 51 a (Cjb@j) Tj
2 Sp brojcrer —min

S1 p(cibrag) T |rase

3 So brejcrer —min
S1 pr(libroj) 4j |xejr
4 SO bﬂ—OjlkOk —min
S1 qr(cjbrgs) Tj |naje

e Operation 7 @ j adds j, modulo n, to every element in list 7 and also appends
+j to list .
e Operation 7 © j subtracts j, modulo n, from every element in list 7 and also

Asynchronous P Systems 13

5 SO bﬂejlkok —min 15 bﬂxkOj —min
51 e(librej) i |reje 51 (¢jbra;) 15 |najo
6 S() bﬂ-Cjej —Pmin Sl pj(l‘jbﬂ-@j) \Jrj 2 Sl b‘“'xkej “min

S1 (Librej) 4 lrejo
3 51 brxpp; —min S1 05 (Tjbroj) 1;
4 51 brxrq; —min S1 45 (Tjbra;) Ty
1. Rules in state Si: 5 51 axj —pin S1 @

7 So bxljoj —min S1 pj(Tibre;) 1

5 Distributed Breadth-First Search (BFS)

BFS is a fundamental technique, inherently parallel, or so it appears. There are
a number of distributed BFS algorithms to make BFS run faster on parallel and
distributed systems, such as Synchronous BFS [22], Asynchronous BFS [22], an
improved Asynchronous BFS with known graph diameter [22], Layered BFS [22],
Hybrid BFS [22].

Our previous research proposed a P algorithm to find disjoint paths using BFS,
and empirical results show that BFS can leverage the parallel and distributed
characteristics of P systems [17]. In this paper, we first present a P implementa-
tion of synchronous BFS (SyncBFS) and discuss how SyncBFS succeeds in the
synchronous mode but fails in the asynchronous mode. Next, we propose a P im-
plementation of an algorithm which works correctly in the asynchronous mode,
the simple Asynchronous BFS (AsyncBFS) algorithm, and we show how it works
in both synchronous and asynchronous scenarios.

5.1 Synchronous BFS

Initially, the source cell broadcasts out a search token. On receiving the search
token, an unmarked cell marks itself and chooses one of the cells from which
the search token arrived as its parent. Then in the first round after the cell gets
marked, it broadcasts a search token to all its neighbors [14]. SyncBFS is a “wave”
algorithm and it produces a BFS spanning tree in synchronous mode, as shown in
Figure 5. However, it often fails in asynchronous mode, as shown in Figure 6.

Algorithm 8 (Synchronous BFS)

Input: Same as in Algorithm 2.

Synchronous output: All cells end in the same final state, S5. On completion,
each cell, o;, still contains its cell ID object, ¢;. The source cell, o, is still decorated
with one a. All other cells contain BFS spanning tree pointer objects, indicating
predecessors, p;. Also, cells may contain “garbage” objects, which can be cleared,
by using a few more steps.

Table 8 shows the BFS spanning tree built by this algorithm (in the syn-
chronous mode), for the P system of Figure 5 (there is only one BFS tree in this
case).

14

T. Balanescu, R. Nicolescu and H. Wu

©

©)

Fig. 5. BFS spanning tree.

Table 8. Partial Trace of Algorithm 8 for Figure 5 in synchronous mode.

Step# |01 o2 o3 o4 o5

0 S3 1112 S3 tan1nans|S3 t3ng S3 tanansny|Ss tsnanens
8 S5 L1p2...S5 L2a . .. S5 L3p4 ... S5 LaPp2 . .. S5L5p2...
Step# |06 o7 o8 g9 10

0 S3 e S3 t7nangng|Ss tsnsnrnio|Ss tonz S3 L1ong

8 S5 LePs . . . S5 L7p4 ... 55 L8ps . .. 55 Lop7 ... S5 L1opPs - - -

3. Rules in state Ss:
1 53 a4 —Fmin 54 a

2 53 CjNj —7min S4 Dj

4. Rules for state Sy:

However, if Algorithm 8 runs in asynchronous mode, the result is still a span-
ning tree, but not necessarily a BFS spanning tree, as illustrated in Table 9 and
Figure 6. The search token from cell o5 to o5 is delayed and arrives in cell o5 after
o5 records its parent as og. The resulting spanning tree is not a BFS spanning

tree.

1 S4nj —nin S5 (ci) 45

2 54 —min SS

Li

5. Rules for state Ss:
1 55 Cj —7min 55

Table 9. Partial Trace of Algorithm 8 for Figure 6 in asynchronous mode.
Step# |o1 o2 o3 o4 o5
0 S3 t1n2 |S3 taninans|Ss t3ng S3 tanangnz|Ss tsnanens
14 55 Lip1 ... 55 Laa . .. S5 L3pP4 ... S5 L4apP2 ... 55 L5Pg] ...
Step# |06 o7 os 09 010
0 S3 t6ns |S3 t7nangng|Ss tsnsnrnio|Ss Lony S3 t10ms
14 S5 LePs . .. 55 L7p4 ... S5 L8p7 ... 55 Lop7 ... 55 L10Ps8 - - -

Asynchronous P Systems 15

Fig. 6. BFS spanning tree output of Algorithm 8 in an asynchronous scenario.

5.2 Asynchronous BFS

Asynchronous BFS (AsyncBFS) algorithm is not just a asynchronous version of
SyncBFS [14], as previously discussed in the asynchronous mode of SyncBFS. It
has modifications to correct the parent destination, therefore obtaining a BFS
spanning tree.

Although the known problem of AsyncBFS is that there is no way to know
when there are no further parent corrections to make, i.e. it never produces the
tree structure output. However, in P systems, there is no such problem, because
the objects in cells are actually the tree link output. Thus, P systems provides a fa-
vorable way to implement this algorithm, which does not require other augmenting
approaches, such as adding acknowledgments, convergecasting acknowledgments,
bookkeeping, etc [14].

Algorithm 9 (Asynchronous BFS)

Input: Same as in Algorithms 2 (and 8).

Output: Similar to Algorithm 8 (running in synchronous mode), but the final
state is S4. Also, cells may contain “garbage” objects, which can be cleared, by
using a few more steps.

Table 10 shows the BF'S spanning tree built by this algorithm, for the P system
of Figure 5 (there is only one BFS tree in this case).

Table 10. Partial Trace of Algorithm 9 for Figure 5.

Step# |o1 o2 o3 o4 o5

0 S3 11n2 S3 toninans|S3 t3ng S3 tananzny|S3 tsnanens
5 S4p2... S4CL... S4p4... S4p2... S4p2...
Step# |os o7 os 09 010

0 S3 t6ms |93 tynangng|S3 tgnsnrnio| S tony S3 t10m8

5 S4 LePs - . - 54 Lrp4 ... S4 L8ps .. . 54 Lop7 ... S4 Liops - - -

16 T. Balanescu, R. Nicolescu and H. Wu

3. Rules in state Ss:
1 SS —?min S4 h‘a
2 Sg Nj —min
Sy myj (citgguu) 1y |au,

S4 gh —nax Sa ¢

S4 Pj —min Sa |ne

Sy €M —nin Si Djlnt
S4 € —min S4 |t

© 00 O Ui Wi =

3 53 ¢jnj —min S pimyle Sy My —nin Sa (cit) L5 |nt,
4 83 —min Sa (cit) 4j ltn;u S4 U —pin Sa b (gguu) T |ne
5 S3 gt —rmin S4 h (gguu) i |t S4 U —7max S4 h (gu) i ‘ht
6 Sg gUu —max S4 h (gu) i |t 54 h —pax 54 |t
7 SS " “min S4 mj|t S4 gU —max S4
8 53 ¢ ~’max S4 10 S4 gUu —rpax S4|t

4. Rules for state Sy: 11 Syt —pax Sa

5.3 Echo Algorithm

The Echo algorithm shares the similar “wave” characteristics of distributed BFS
algorithms, but, as discussed in Section 3, it only builds a spanning tree, not
necessarily a BFS spanning tree.

Algorithm 10 (Echo Algorithm)

Input: Same as in Algorithms 2 (and 8).

Output: All cells end in the same final state, Sy. On completion, each cell,
o, still contains its cell ID object, ¢;. he source cell, o, is still decorated with
an object, a. All other cells contain a spanning tree pointer objects, indicating
predecessors, p;.

Table 11 and 12 show two spanning trees, built by this algorithm, for the
P system of Figures 1 and 2, in synchronous and asynchronous modes, respectively.

Table 11. Partial Trace of Algorithm 10 for Figure 1 in synchronous mode.

Step# |o1 o2 o3 04
0 Sg L1ana2ns3nag S3 LoaM1n3ng 53 L3M1N2MN4 53 laninansg
4 Sy via S4 L2p1 S4 L3p1 Sq Lap1

Table 12. Partial Trace of Algorithm 10 for Figure 2 in asynchronous mode.

Step# |01 o2 o3 o4
0 S3 t1anansng Sz taninana|Ss taninang|Ss Laninans
4 Sy t1a Sy tap1 Sy t3p2 Sy taps3

Asynchronous P Systems 17

3. Rules in state Ss: 4. Rules for state Sy:
1S3 nj —rmin Sa wj (cit) 45 law 1 Sy wj —rnin Sa ¢
2 S3 ¢jnjng —nin 2 Sy wipK —mnin Sa W;Pk
Sy Pjwg (Cit) b Li 3 Sy W;Q —min Sy wW;a
3 S3 ¢jng —nin Sapj (cit) 1 | 4 Sy ¢j —pin S
4 S5 nj —nin Sa wj (cit) 15 |u, 5 Sy pj —rmin Sa pj (¢it) 5 s
5 Sg t —max S4 6 S4 t —nax S4

6 Complexity

All our distributed DFS and BFS implementations, except the SoD implementa-
tion, assume that each cells knows the IDs of its neighbors (parents and children).
Our SoD implementation assumes that each cell knows the labels of its adjacent
arcs (incoming and outgoing). In the complexity analysis, we skip over a prelimi-
nary phase which could build such knowledge, see Algorithm 1.

All our P system DFS implementations take one final step, to prompt the
source cell to discard the token; we also omit this step in the complexity analysis.
Moreover, there is one beginning step in our implementations for Awerbuch (rule
3.1) and Cidon (rules 3.1, 3.2), which instantiates initial list objects. These steps
can be included in Algorithm 1. However, we do not follow this approach, because
we want to keep Algorithm 1 a common preliminary phase for all our algorithms.
We also skip these beginning steps, in the complexity analysis.

Table 13 shows the resulting complexity of our P system DFS implementations,
in terms of P steps. The runtime complexity of our P system implementations is
exactly the same as for the standard distributed DFS algorithms. The complexity
of our SOD algorithm must be considered with a big grain of salt, for the reasons
explained in the description of Algorithm 7 (high-level pseudo-code).

Table 13. DFS algorithms comparisons and complexity (P steps) of Figure 3.

Algorithm|P Steps|Time units| Messages Notes
Classical 18 2M 2M Local cell IDs
Awerbuch| 22 4N — 2 4M Local cell IDs
Cidon 10 2N —2 <4M Local cell IDs

Sharma 10 2N —2 |<2N -2 Global cell IDs
SOD 107 2N —2 |< 2N — 2| Sense of Direction (Z)
Makki 9 (I+7)N |(14r)N |Global cell IDs (or SOD)

Table 14 shows the runtime complexity of our P system SyncBFS and AsyncBFS
implementations, which is consistent with the runtime complexity of the standard
algorithms.

18 T. Balanescu, R. Nicolescu and H. Wu

Table 14. BFS algorithms comparisons and complexity (P steps) of Figure 5.

Hybrid Async

Algorithm [P Steps| Time units Messages Notes
Sync 8 O(D) O(M) Local IDs
Simple Async 5 O(DN) O(NM) Local IDs
Simple Async? ? O(D?) O(DM) D and Local IDs
Layered Async| 7 O(D?) O(M + DN) Local IDs
? |O(Dk+ D?/k)|O(Mk + DN/k)| Local IDs

7 Conclusions

We proposed a new approach to fully asynchronous P systems, and a matching
complexity measure, both inspired from the field of distributed algorithms. We val-
idated our approach by implementing several well-known distributed depth-first
search (DFS) and breadth-first search (BFS) algorithms. We believe that these
are the first P implementations of the standard distributed DFS and BFS algo-
rithms. Empirical results show that, in terms of P steps, the runtime complexity
of our distributed P algorithms is the same as the runtime complexity of standard
distributed DFS and BFS.

Several interesting questions remain open. We intend to complete this quest
by completing the implementation of the SOD algorithm and by implementing
three other, more sophisticated, distributed BFS algorithms and compare their
performance against the standard versions. We also intend to elaborate the foun-
dations of fully asynchronous P systems and further validate this, by investigating
a few famous critical problems, such as building minimal spanning trees. Finally,
we intend to formulate fundamental distributed asynchronous concepts, such as
fairness, safety and liveness, and investigate methods for their proofs.

References

1. Awerbuch, B.: A new distributed depth-first-search algorithm. Information Pro-
cessing Letters 20(3), 147 — 150 (1985), http://www.sciencedirect.com/science/
article/B6VOF-482R9G2-S/2/22537b651ddd5¢c1a0e3ae5d5ba723079

2. Bernardini, F., Gheorghe, M., Margenstern, M., Verlan, S.: How to synchronize the
activity of all components of a P system? Int. J. Found. Comput. Sci. 19(5), 1183-
1198 (2008)

3. Casiraghi, G., Ferretti, C., Gallini, A., Mauri, G.: A membrane computing system
mapped on an asynchronous, distributed computational environment. In: Freund, R.,
Paun, G., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane Computing.
Lecture Notes in Computer Science, vol. 3850, pp. 159-164. Springer (2005)

4. Cavaliere, M., Egecioglu, O., Ibarra, O., Ionescu, M., Pun, G., Woodworth, S.: Asyn-
chronous spiking neural p systems: Decidability and undecidability. In: Garzon, M.,
Yan, H. (eds.) DNA Computing, Lecture Notes in Computer Science, vol. 4848,
pp. 246-255. Springer Berlin / Heidelberg (2008), http://dx.doi.org/10.1007/
978-3-540-77962-9_26

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Asynchronous P Systems 19

Cavaliere, M., Ibarra, O.H., Pun, G., Egecioglu, O., Ionescu, M., Woodworth, S.:
Asynchronous spiking neural p systems. Theor. Comput. Sci. 410, 2352-2364 (May
2009), http://portal.acm.org/citation.cfm?id=1539070.1540146

Cavaliere, M., Sburlan, D.: Time and synchronization in membrane systems. Fundam.
Inf. 64, 65-77 (July 2004), http://portal.acm.org/citation.cfm?id=1227085.
1227092

Cidon, I.: Yet another distributed depth-first-search algorithm. Inf. Process. Lett.
26, 301-305 (1988)

Dinneen, M.J., Kim, Y.B., Nicolescu, R.: Edge- and node-disjoint paths in P systems.
Electronic Proceedings in Theoretical Computer Science 40, 121-141 (2010)
Dinneen, M.J., Kim, Y.B., Nicolescu, R.: Edge- and vertex-disjoint paths in P mod-
ules. In: Ciobanu, G., Koutny, M. (eds.) Workshop on Membrane Computing and
Biologically Inspired Process Calculi. pp. 117-136 (2010)

Dinneen, M.J., Kim, Y.B., Nicolescu, R.: P systems and the Byzan-
tine agreement. Journal of Logic and Algebraic Programming 79(6), 334-
349 (2010), http://www.sciencedirect.com/science/article/B6W8D-4YPPPW1-2/
2/17b82b2cdd8f159b7fea380939193e4d

Freund, R.: Asynchronous p systems and p systems working in the sequential mode.
In: Mauri, G., Paun, G., Prez-Jimnez, M., Rozenberg, G., Salomaa, A. (eds.) Mem-
brane Computing, Lecture Notes in Computer Science, vol. 3365, pp. 36—62. Springer
Berlin / Heidelberg (2005), http://dx.doi .org/10.1007/978-3-540-31837-8_3
Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J.: Depth-first search with p systems.
In: Proceedings of the 11th international conference on Membrane computing. pp.
257-264. CMC’10, Springer-Verlag, Berlin, Heidelberg (2010), http://portal.acm.
org/citation.cfm?id=1946067.1946090

Kleijn, J., Koutny, M.: Synchrony and asynchrony in membrane systems. In: Mem-
brane Computing, WMC2006, Leiden, Revised, Selected and Invited Papers, LNCS
4361. pp. 66-85. Springer (2006)

Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Fran-
cisco, CA, USA (1996)

Makki, S.A.M., Havas, G.: Distributed algorithms for depth-first search. Inf. Process.
Lett. 60, 7-12 (October 1996), http://portal.acm.org/citation.cfm?id=244081.
244085

Nicolescu, R., Dinneen, M.J., Kim, Y.B.: Discovering the membrane topology of
hyperdag P systems. In: Paun, G., Pérez-Jiménez, M.J., Riscos-Nuifiez, A., Rozen-
berg, G., Salomaa, A. (eds.) Workshop on Membrane Computing. Lecture Notes in
Computer Science, vol. 5957, pp. 410-435. Springer-Verlag (2009)

Nicolescu, R., Wu, H.: BFS solution for disjoint paths in P systems. Report
CDMTCS-399, Centre for Discrete Mathematics and Theoretical Computer Sci-
ence, The University of Auckland, Auckland, New Zealand (March 2011), http:
//www.cs.auckland.ac.nz/CDMTCS//researchreports/399radu. pdf

Pan, L., Zeng, X., Zhang, X.: Time-free spiking neural p systems. Neural Com-
putation 0(0), 1-23 (2011), http://www.mitpressjournals.org/doi/abs/10.1162/
NECO_a_00115

Paun, G.: Introduction to membrane computing. In: Ciobanu, G., Pérez-Jiménez,
M.J., Pdun, G. (eds.) Applications of Membrane Computing, pp. 1-42. Natural Com-
puting Series, Springer-Verlag (2006)

Paun, G., Centre, T., Science, C.: Computing with membranes. Journal of Computer
and System Sciences 61, 108-143 (1998)

20

21.

22.
23.

24.

T. Balanescu, R. Nicolescu and H. Wu

Sharma, M.B., Iyengar, S.S.: An efficient distributed depth-first-search algorithm. Inf.
Process. Lett. 32, 183-186 (September 1989), http://portal.acm.org/citation.
cfm?id=69686.69691

Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press (2000)
Tsin, Y.H.: Some remarks on distributed depth-first search. Inf. Process. Lett. 82,
173-178 (May 2002), http://portal.acm.org/citation.cfm?id=585580.585581
Yuan, Z., Zhang, Z.: Asynchronous spiking neural p system with promoters. In:
Proceedings of the 7th international conference on Advanced parallel processing
technologies. pp. 693-702. APPT’07, Springer-Verlag, Berlin, Heidelberg (2007),
http://portal.acm.org/citation.cfm?id=1785246.1785331

A Appendix

21

Asynchronous P Systems

Imvmenyed “nenininSutu nen
Snendutufw w9y uUTuUIwW T 91997q9g | CuluSwewsw twv1vg edouSuvudwrwer Ly eninldvutuvwsrly nyucurw 1y GT
SaetnininSutu inin
Satnutudww vy | €n 8douUrudwirw 1Sy | cutuSwetwsw twvvg edouSuvudwrwer Ly eninldvutuvwsrly cnvutuvwinly jal
€nq9u €neninSutu fnen
enSutuswew vy Futudwrwew 1€0¥g| culuswswiwTwrivg edouSuvudwrwer Ly eninldvutuvwsrly nyuurw I1mig e1
en eneninfutu| Im SmrminyedousSuvu
mﬁ\mﬁmﬁmsmswew.@ wﬁwﬁmﬁ\wswsm‘:swx\ﬁw Nﬁﬁﬁmsmsmﬁsﬁswqwm‘ @EmEﬁﬁquwemewawm MS\HS\HRwﬁm:dENqu‘ NS\w:NQvEqubrﬂ 4
€a gatninfutu Znyed
€aSutuswew vy urutudwrw tw 1¥g | sutuSwewiwlwvivg ousSurudw Swrwer¢g eninldvutuvwsrly envutuvw iy 11
ZnInsSutu Zngousuvu
mﬁmﬁmsmsmeﬂm‘ wﬁwﬁmﬁwswsmsmgww Nﬁaﬁmsmgmsﬁsdqw.@ Nﬁ@EmeENEQOuwW mﬁﬁﬂsﬁ&wﬁmﬁwsmqu Nﬁwﬁmﬁvsﬁ<dbm 0T
ZnInSutu Zn9usSu Ymemingid
SutuSwEW G urutudwrw tw $1¥g | sulTuSwewdwlwvvg | rutudwSwruwsuwervg Tutubwswe17qeq9g cnyucurw livig 6
calnSutyu Za9usu
Sutusw w9 rg ututudwrwewsrvg | culuSwwewlwrvg | YutudwSwrwewervg| In t&«:mﬁwsmsmemm‘ envucurwlinig]
nSutu usSu ngvu
SutuSwEw9rg SuTutudwvwew 91vg | culuSwewdwlwvivg | rusudwSwvuswervg fuluvwewlwerovrg cnvucurwlinig L
InSucu IusSu in YmZmvu
mﬁmﬁmqm_m‘ wﬁvﬁmﬁwsvsmsmeﬁm NQHQmEmENEHEdqvm‘ ﬂﬁﬂﬁ@EmeENEMQwW wﬁmﬁaﬁvsmsasmqvm Nﬁwsmsﬁqdamoﬁmm 9
TnSucu Ta
Sufu91eg urutus1€g| duluSwewswrwrvg usSurutuI€g Tutulubwew lwervg Yuturwew i eg (&)
mm:m:mi% zVutus1tg Sutusutuvieg zSurutu€ieg Tutului€g Futurwew vy i
279108 zfivusilg JZeuturitg zAvutuellg zvtulutieg Tutuliweg ¢
.o;om waom N\M:@wgﬂm‘ NNm\\om N\M:sNQﬂmu NNﬁﬁBNm_ z
970g S10g z¥10g €70g 2810g fitinlg 1
970g S10g v10g €10g 210G Tip0g 0
90 So Yo €0 () To| degg

"[[92 90IN0s o1} ST 1.0 SI9YM ‘OPOW SNOUOIYDUAS UT ¢ oInSr Jo (GT ¢**° ‘(sdegs) seoery wjLIose QI YONqIomy

‘ST 9l9q&L

nen Iinsn

SnensSdeu9rLg myneEnedouvrusrlyg enindeucutuvilyg ynenedouurucrly neninidrutucily rnenvucutinlyg LT
nen Iinsn

SnenSdeudrly mynenedourusiLy eninfdeucutuvilyg ynenedouurucrly neninidrutucilyg ¢x vnengvululinlg 9%
snen Insn

mﬁmﬁngnﬁwqu wzdﬁmﬁwgwﬁvﬁmqu Nﬁﬁ‘;n&nﬁwﬁﬁ:wqu vﬁwﬁmgwﬁmﬁw:mem exvn w‘;ﬁﬁwﬁ@wﬁmﬁwqu wﬁmﬁwﬁwﬁsdbm (74
“nen fxrInsnin

mﬁmﬁngnﬁwqb.@ wdwﬁn@wgwﬁvﬁmqbw Nﬁﬁﬁngnﬁwﬁﬁﬁasbm Nﬁwm&wﬁmﬁwﬁmebm wﬁwzﬁzﬁ&wﬁmﬁwqu‘ wj\mzdﬁwﬁ:de ¥C
Snen Insn

SnENSdEu97Lg | Yxon YnEngedourusily ZnInsdeusutuvily rnened9usurutiLy nenIntdvutusily rmenvutulinig €T

ememimsn

eniningSdéudulu InsSn¥n

m@m@m&mﬁmabm wﬁv@m@m&mﬁvﬁmghm‘ €L 1w v1€qeq199g NﬁNR@CmﬁwﬁwEmth n mﬁﬁﬁﬁgwﬁmﬁﬁsmqhm‘ ynenvucurwlinig (44
m@mﬁmﬁﬁj\wmﬁu Ya9nsSn

m@mﬁm&mﬁmahm @ﬁvﬁmﬁmﬁmﬁvﬁmehm futututwew Tuv1¢g NﬁNR@QﬂQ#QﬂEMqNW Ya mﬁﬁﬁﬁgwﬁmﬁﬁsmqu Yaenvucurwlinig 1%
SnENTNIngSuULUIU Insn

mﬁmﬁm&mﬁmqhm @ﬁvﬁmﬁmﬁmﬁvﬁmehm ﬁQmEmENEHqumUvW NﬁmﬁmﬁmﬁwﬁvEMQNW mﬁﬁﬁﬁgwﬁmﬁvsmqhm Nﬁﬂ?NCvEHQShW 0%
9x9In SneénininSutu Insn

mﬁmﬁmRmimim mﬁwmnwzvzwsmﬁw culuSwewewlwvvg m:mRm:mﬁwﬁvEmﬁm mﬁﬁﬁﬁgwﬁmﬁvsmim enyucurw linig 61
emen fnenininfutu menn

mﬁwm&mﬁmgmqmawm ®3m§m&®§wﬁﬁsmehm CuTuSwEwew Twrivg N&®§m§¢§©E¢Em<bm mﬁﬁﬁﬁm&wﬁm?wsmqhm enyucurwlinig ST
fneneninSutu 909nn

mﬁmﬁwm&mﬁmsmgmm oﬁmﬁm&oﬁw:?&mﬁw culuSwswewlwvvg Nmozmﬁwﬁwsvgmim mﬁﬁﬁﬁmwﬁmﬁwsmim enyucurw iy L1
anen Sne€nininSutu inin

29UEUSWEW I 9OVG menedoururwsrLy| culuSwwwtwrivg edouSuvudwrwerLly enInldvutuvwerlg enyucurw linig 91

90 So Yo €0 () To| degg

"[[92 90IN0S o1[} ST Lo oI9YM ‘OPOUW SNOUOIYDOUAS UT ¢ oINS Jo (Lg ¢ ‘9T sdegs) seorr) wyyIos[e (] Yonqiomy "9 a[qe],

Simulating Spiking Neural P Systems Without
Delays Using GPUs

Francis Cabarle!, Henry Adornal, Miguel A. Martinez—del-Amor?

1 Algorithms & Complexity Lab

Department of Computer Science

University of the Philippines Diliman

Diliman 1101 Quezon City, Philippines

E-mail: fccabarle@up.edu.ph, hnadorna@dcs.upd.edu.ph
Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Seville

Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

E-mail: mdelamor@us.es

Summary. We present in this paper our work regarding simulating a type of P sys-
tem known as a spiking neural P system (SNP system) using graphics processing units
(GPUs). GPUs, because of their architectural optimization for parallel computations,
are well-suited for highly parallelizable problems. Due to the advent of general purpose
GPU computing in recent years, GPUs are not limited to graphics and video processing
alone, but include computationally intensive scientific and mathematical applications as
well. Moreover P systems, including SNP systems, are inherently and maximally parallel
computing models whose inspirations are taken from the functioning and dynamics of a
living cell. In particular, SNP systems try to give a modest but formal representation of
a special type of cell known as the neuron and their interactions with one another. The
nature of SNP systems allowed their representation as matrices, which is a crucial step
in simulating them on highly parallel devices such as GPUs. The highly parallel nature
of SNP systems necessitate the use of hardware intended for parallel computations. The
simulation algorithms, design considerations, and implementation are presented. Finally,
simulation results, observations, and analyses using an SNP system that generates all
numbers in N - {1} are discussed, as well as recommendations for future work.

Key words: Membrane computing, Parallel computing, GPU computing

1 Introduction

1.1 Parallel computing: Via graphics processing units (GPUs)

The trend for massively parallel computation is moving from the more common
multi-core CPUs towards GPUs for several significant reasons [13, 14]. One impor-

24 F. Cabarle, H. Adorna, M. Martinez—del-Amor

tant reason for such a trend in recent years include the low consumption in terms
of power of GPUs compared to setting up machines and infrastructure which will
utilize multiple CPUs in order to obtain the same level of parallelization and per-
formance [15]. Another more important reason is that GPUs are architectured
for massively parallel computations since unlike most general purpose multicore
CPUs, a large part of the architecture of GPUs are devoted to parallel execu-
tion of arithmetic operations, and not on control and caching just like in CPUs
[13, 14]. Arithmetic operations are at the heart of many basic operations as well
as scientific computations, and these are performed with larger speedups when
done in parallel as compared to performing them sequentially. In order to per-
form these arithmetic operations on the GPU, there is a set of techniques called
GPGPU (General Purpose computations on the GPU) coined by Mark Harris in
2002 which allows programmers to do computations on GPUs and not be limited
to just graphics and video processing alone [1].

1.2 Parallel computing: Via Membranes

Membrane computing or its more specific counterpart, a P system, is a Turing
complete computing model (for several P system variants) that perform computa-
tions nondeterministically, exhausting all possible computations at any given time.
This type of unconventional model of computation was introduced by Gheorghe
Paun in 1998 and takes inspiration and abstraction, similar to other members
of Natural computing (e.g. DNA /molecular computing, neural networks, quantum
computing), from nature [6, 7]. Specifically, P systems try to mimic the consti-
tution and dynamics of the living cell: the multitude of elements inside it, and
their interactions within themselves and their environment, or outside the cell’s
skin (the cell’s outermost membrane). Before proceeding, it is important to clarify
what is meant when it is said that nature computes, particularly life or the cell:
computation in this case involves reading information from memory from past or
present stimuli, rewrite and retrieve this data as a stimuli from the environment,
process the gathered data and act accordingly due to this processing [2]. Thus, we
try to extend the classical meaning of computation presented by Allan Turing.

SN P systems differ from other types of P systems precisely because they
are mono — membranar and the working alphabet contains only one object type.
These characteristics, among others, are meant to capture the workings of a special
type of cell known as the neuron. Neurons, such as those in the human brain,
communicate or ’compute’ by sending indistinct signals more commonly known
as action potential or spikes [3]. Information is then communicated and encoded
not by the spikes themselves, since the spikes are unrecognizable from one another,
but by (a) the time elapsed between spikes, as well as (b) the number of spikes
sent /received from one neuron to another, oftentimes under a certain time interval
3]

It has been shown that SN P systems, given their nature, are representable by
matrices [4, 5]. This representation allows design and implementation of an SN P
system simulator using parallel devices such as GPUs.

Simulating Spiking Neural P Systems Without Delays Using GPUs 25
1.3 Simulating SNP systems in GPUs

Since the time P systems were presented, many simulators and software applica-
tions have been produced [10]. In terms of High Performance Computing, many
P system simulators have been also designed for clusters of computers [11], for
reconfigurable hardware as in FPGAs [12], and even for GPUs [9, 8]. All of these
efforts have shown that parallel architectures are well-suited in performance to
simulate P systems. However, these previous works on hardware are designed to
simulate cell-like P system variants, which are among the first P system variants
to have been introduced. Thus, the efficient simulation of SNP systems is a new
challenge that requires novel attempts.

A matrix representation of SN P systems is quite intuitive and natural due
to their graph-like configurations and properties (as will be further shown in the
succeeding sections such as in subsection 2.1).

On the other hand, linear algebra operations have been efficiently implemented
on parallel platforms and devices in the past years. For instance, there is a large
number of algorithms implementing matriz — matriz and vector — matrix oper-
ations on the GPU. These algorithms offer huge performance since dense linear
algebra readily maps to the data-parallel architecture of GPUs [16, 17].

It would thus seem then that a matrix represented SN P system simulator
implementation on highly parallel computing devices such as GPUs be a natural
confluence of the earlier points made. The matrix representation of SN P systems
bridges the gap between the theoretical yet still computationally powerful SN
P systems and the applicative and more tangible GPUs, via an SN P system
simulator.

The design and implementation of the simulator, including the algorithms
deviced, architectural considerations, are then implemented using CUDA. The
Compute Unified Device Architecture (CUDA) programming model, launched by
NVIDIA in mid-2007, is a hardware and software architecture for issuing and man-
aging computations on their most recent GPU families (G80 family onward), mak-
ing the GPU operate as a highly parallel computing device [15]. CUDA program-
ming model extends the widely known ANSI C programming language (among
other languages which can interface with CUDA), allowing programmers to easily
design the code to be executed on the GPU, avoiding the use of low-level graph-
ical primitives. CUDA also provides other benefits for the programmer such as
abstracted and automated scaling of the parallel executed code.

This paper starts out by introducing and defining the type of SNP system
that will be simulated. Afterwards the NVIDIA CUDA model and architecture
are discussed, baring the scalability and parallelization CUDA offers. Next, the
design of the simulator, constraints and considerations, as well as the details of
the algorithms used to realize the SNP system are discussed. The simulation results
are presented next, as well as observations and analysis of these results. The paper
ends by providing the conclusions and future work.

The objective of this work is to continue the creation of P system simulators ,
in this particular case an SN P system, using highly parallel devices such as GPUs.

26 F. Cabarle, H. Adorna, M. Martinez—del-Amor

Fidelity to the computing model (the type of SNP system in this paper) is a part
of this objective.

2 Spiking neural p systems
2.1 Computing with SN P systems

The type of SNP systems focused on by this paper (scope) are those without delays
i.e. those that spike or transmit signals the moment they are able to do so [4, 5].
Variants which allow for delays before a neuron produces a spike, are also available
[3]. An SNP system without delay is of the form:

Definition 1.
II=(0,01,...,0m,syn,in,out),

where:

1. O = {a} is the alphabet made up of only one object, the system spike a.
2.01,...,0, are m number of neurons of the form

g; = (’I’Li,Ri),l S 7 S m,

where:
a)n; > 0 gives the initial number of as i.e. spikes contained in neuron o;
b) R; is a finite set of rules of with two forms:

(b-1) E/a® — aP, are known as Spiking rules, where E is a reqular expression
over a, and ¢ > 1, such that p > 1 number of spikes are produced,
one for each adjacent meuron with o; as the originating neuron and
a® € L(E).

(b-2) a®* — X, are known as Forgetting rules, for s > 1, such that for each
rule E/a® — a of type (b-1) from R;, a® ¢ L(E).

(b-8) a* — a, a special case of (b-1) where E = a®, k > c.

3. syn = {(i,4)|1 < 4,5 < m, i # j} are the synapses i.e. connection between
neurons.
4.in,out € {1,2,...,m} are the input and output neurons, respectively.

Furthermore, rules of type (b-1) are applied if o; contains k spikes, a* € L(E)
and k > c. Using this type of rule uses up or consumes k spikes from the neuron,
producing a spike to each of the neurons connected to it via a forward pointing
arrow i.e. away from the neuron. In this manner, for rules of type (b-2) if o;
contains s spikes, then s spikes are forgotten or removed once the rule is used.

The non-determinism of SN P systems comes with the fact that more than
one rule of the several types are applicable at a given time, given enough spikes.
The rule to be used is chosen non-deterministically in the neuron. However, only
one rule can be applied or used at a given time [3, 4, 5]. The neurons in an SN
P system operate in parallel and in unison, under a global clock [3]. For Figure 1

Simulating Spiking Neural P Systems Without Delays Using GPUs 27

no input neuron is present, but neuron 3 is the output neuron, hence the arrow
pointing towards the environment, outside the SNP system.

The SN P system in Figure 1 is IT, a 3 neuron system whose neurons are labeled
(neuron 1/07 to neuron 3/03) and whose rules have a total system ordering from
(1) to (5). Neuron 1/07 can be seen to have an initial number of spikes equal to
2 (hence the a? seen inside it). There is no input neuron, but o3 is the output
neuron, as seen by the arrow pointing towards the environment (not to another
neuron). More formally, IT can be represented as follows:

II = ({a},01,09,03, syn,out) where oy = (2,Ry1), n; = 2, Ry = {a*/a —
a}, (neurons 2 to 3 and their n;s and R;s can be similarly shown), syn =
{(1,2),(1,3),(2,1),(2,3)} are the synapses for IT, out = o3. This SN P system
generates all numbers in the set N - {1}, hence it doesn’t halt, which can be eas-
ily verified by applying the rules in II, and checking the spikes produced by the
output neuron o3. This generated set is the result of the computation in I7.

ala=a (1) 3
N a=a (2), o |
; | | |
a-a (4) B
L
s

Fig. 1. An SNP P system II, generating all numbers in N - {1}, from [5].

2.2 Matrix representation of SNP systems

A matrix representation of an SN P system makes use of the following vectors and
matrix definitions [4, 5] . It is important to note that, just as in Figure 1, a total
ordering of rules is considered.

Configuration vector Cj, is the vector containing all spikes in every neuron on
the kth computation step/time, where Cy is the initial vector containing all spikes
in the system at the beginning of the computation. For IT (in Figure 1) the initial
configuration vector is Cp =< 2,1,1 >.

Spiking vector shows at a given configuration Cy, if a rule is applicable (has
value 1) or not (has value 0 instead). For IT we have the spiking vector S =<
1,0,1,1,0 > given Cy. Note that a 2nd spiking vector, S =< 0,1,1,1,0 >, is
possible if we use rule (2) over rule (1) instead (but not both at the same time,
hence we cannot have a vector equal to < 1,1,1,1,0 >, so this Sy is invalid).
Validity in this case means that only one among several applicable rules is used
and thus represented in the spiking vector. We can have all the possible vectors

28 F. Cabarle, H. Adorna, M. Martinez—del-Amor

composed of Os and 1s with length equal to the number of rules, but have only
some of them be valid, given by ¥ later at subsection 4.2.

Spiking transition matriz My is a matrix comprised of a;; elements where a;;
is given as

Definition 2.

—c, rule r; is in o and is applied consuming c spikes;
p, rule r; is in os (s # j and (s,7) € syn)
and is applied producing p spikes in total;
0, rule r; is in o5 (s # j and (s,j) ¢ syn).

aij =

For II, the M7 is as follows:

-11 1
21 1

Mp=|1-11 (1)
0 0 -1
0 0 -2

In such a scheme, rows represent rules and columns represent neurons.
Finally, the following equation provides the configuration vector at the (k+1)th
step, given the configuration vector and spiking vector at the kth step, and Myy:

Ci+1=Cx + Sk - Mjp. (2)

3 The NVIDIA CUDA architecture

NVIDIA, a well known manufacturer of GPUs, released in 2007 the CUDA pro-
gramming model and architecture [15]. Using extensions of the widely known C
language, a programmer can write parallel code which will then execute in multi-
ple threads within multiple thread blocks, each contained within a grid of (thread)
blocks. These grids belong to a single device i.e. a single GPU. Each device/ GPU
has multiple cores, each capable of running its own block of threads The program
run in the CUDA model scales up or down, depending on the number of cores
the programmer currently has in a device. This scaling is done in a manner that
is abstracted from the user, and is efficiently handled by the architecture as well.
Automatic and efficient scaling is shown in Figure 2. Parallelized code will run
faster with more cores than with fewer ones [14].

Figure 3 shows another important feature of the CUDA model: the host and
the device parts. The host controls the execution flow while the device is a highly-
parallel co-processor. Device pertains to the GPU/s of the system, while the host
pertains to the CPU/s. A function known as a kernel function, is a function called
from the host but executed in the device.

A general model for creating a CUDA enabled program is shown in Listing 1.

Simulating Spiking Neural P Systems Without Delays Using GPUs

29

Multithreaded CUDA Program
Block0 Block1 Block2 Block3.
Blockd Blocks Blocks Block?.

h 4 v
GPU with 2 Cores GPU with 4 Cores
‘ Core 0 H Core 1 ‘ Core 0 ‘ Core 1 H Core 2 ‘ Core 3 ‘

L1 -3] |

-

y

Fig. 2. NVIDIA CUDA automatic scaling, hence more cores result to faster execution,
from [14].

warp

Host Device
Grid 1
— — !
Kernel 1 Block Block Block
(.0 ., 0) (2, 0)
Block,;” Block % Block
(0,1 1, 1) (2,1)
T erid2’ T
T b r }" o g
Kernel —<—0p @ ; ‘ ‘ ',. § ‘
PR N N o | |
Block (1, 1)
/", Thread | Thread | Thread | Thread | Thread
i 0,0 1,0 (20 (3,0) (4, 0)
Thread | Thread | Thread | Thread | Thread
©.1) L1 2.1 (3. 1) (4.1 —
Thread | Thread | Thread | Thread | Thread
0, 2) (1, 2) (2, 2) (3, 2) (4 2)

Fig. 3. NVIDIA CUDA programming model showing the sequential execution of the
host code alongside the parallel execution of the kernel function on the device side, from
[9].

30 F. Cabarle, H. Adorna, M. Martinez—del-Amor

Listing 1. General code flow for CUDA programming written in the CUDA extended C
language

//allocate memory on GPU e.g.
cudaMalloc((voids#x)&dev_a, N % sizeof(int)

//populate arrays

//copy arrays from host to device e.g.
cudaMemcpy(dev_a, a, N x sizeof(int),
cudaMemcpyHostToDevice)

//call kernel (GPU) function e.g.
add<<<N, 1>>>(dev.a, dev_b, dev_c);

// copy arrays from device to host e.g.
cudaMemcpy(¢, dev_c, N x sizeof(int),
cudaMemcpyDeviceToHost)

//display results

//free memory e.g.
cudaFree(dev_.a);

Lines 2 and 21, implement CUDA versions of the standard C language functions
e.g. the standard C function malloc has the CUDA C function counterpart being
cudaMalloc, and the standard C function free has cudaFree as its CUDA C
counterpart.

Lines 8 and 15 show a CUDA C specific function, namely cudaM emcpy, which,
given an input of pointers (from Listing 1 host code pointers are single letter vari-
ables such as a and c,while device code variable counterparts are prefixed by dev_
such as dev_a and dev_c) and the size to copy (as computed by the sizeof func-
tion), moves data from host to device (parameter cudaMemcpyHostToDevice)
or device to host (parameter cudaMemepyDeviceToH ost).

A kernel function call uses the triple < and > operator, in this case the kernel
function

add <<< N,1 >>>(dev_a,dev_b,dev_c).

This function adds the values, per element (and each element is associated to
1 thread), of the variables dev_a and dev_-b sent to the device, collected in variable
dev_c before being sent back to the host/CPU. The variable N in this case allows
the programmer to specify N number of threads which will execute the add kernel
function in parallel, with 1 specifying only one block of thread for all NV threads.

Simulating Spiking Neural P Systems Without Delays Using GPUs 31
3.1 Design considerations for the hardware and software setup

Since the kernel function is executed in parallel in the device, the function needs
to have its inputs initially moved from the CPU /host to the device, and then back
from the device to the host after computation for the results. This movement
of data back and forth should be minimized in order to obtain more efficient, in
terms of time, execution. Implementing an equation such as (2), which involves
multiplication and addition between vectors and a matrix, can be done in parallel
with the previous considerations in mind. In this case, Cj, Sk, and M7 are loaded,
manipulated, and pre-processed within the host code, before being sent to the
kernel function which will perform computations on these function arguments in
parallel. To represent Cy, Sk, and My, text files are created to house each input,
whereby each element of the vector or matrix is entered in the file in order, from
left to right, with a blank space in between as a delimiter. The matrix however is
entered in row-major (a linear array of all the elements, rows first, then columns)
order format i.e. for the matrix My seen in (1), the row-major order version is
simply

-1,1,1,-2,1,1,1,-1,1,0,0,—1,0,0, -2 (3)

Row major ordering is a well-known ordering and representation of matrices for
their linear as well as parallel manipulation in corresponding algorithms [13]. Once
all computations are done for the (k + 1)th configuration, the result of equation
(2) are then collected and moved from the device back to the host, where they can
once again be operated on by the host/CPU. It is also important to note that these
operations in the host/CPU provide logic and control of the data/inputs, while
the device/GPU provides the arithmetic or computational ‘'muscle’, the laborious
task of working on multiple data at a given time in parallel, hence the current
dichotomy of the CUDA programming model [9]. The GPU acts as a co-processor
of the central processor. This division of labor is observed in Listing 1 .

3.2 Matrix computations and CPU-GPU interactions

Once all 3 initial and necessary inputs are loaded, as is to be expected from equa-
tion 2, the device is first instructed to perform multiplication between the spiking
vector S; and the matrix M. To further simplify computations at this point,
the vectors are treated and automatically formatted by the host code to appear
as single row matrices, since vectors can be considered as such. Multiplication is
done per element (one element is in one thread of the device/GPU), and then the
products are collected and summed to produce a single element of the resulting
vector/single row matrix.

Once multiplication of the Sy and M is done, the result is added to the
C}, once again element per element, with each element belonging to one thread,
executed at the same time as the others.

For this simulator, the host code consists largely of the programming language
Python, a well-known high- level, object oriented programming (OOP) language.

32 F. Cabarle, H. Adorna, M. Martinez—del-Amor

The reason for using a high-level language such as Python is because the initial
inputs, as well as succeeding ones resulting from exhaustively applying the rules
and equation (2) require manipulation of the vector/matrix elements or values as
strings. The strings are then concatenated, checked on (if they conform to the
form (b-3) for example) by the host, as well as manipulated in ways which will
be elaborated in the following sections along with the discussion of the algorithm
for producing all possible and valid Sjs and Cys given initial conditions. The host
code/Python part thus implements the logic and control as mentioned earlier,
while in it, the device/GPU code which is written in C executes the parallel parts
of the simulator for CUDA to be utilized.

4 Simulator design and implementation

The current SNP simulator, which is based on the type of SNP systems without
time delays, is capable of implementing rules of the form (b-3) i.e. whenever the
regular expression F is equivalent to the regular expression a* in that rule. Rules
are entered in the same manner as the earlier mentioned vectors and matrix, as
blank space delimited values (from one rule to the other, belonging to the same
neuron) and $ delimited (from one neuron to the other). Thus for the SNP system
IT shown earlier, the file r containing the blank space and $ delimited values is as

follows:
22$18$12 (4)

That is, rule (1) from Figure 1 has the value 2 in the file r (though rule (1)
isn’t of the form (b-3) it nevertheless consumes a spike since its regular expression
is of the same regular expression type as the rest of the rules of II). Another
implementation consideration was the use of lists in Python, since unlike dic-
tionaries or tuples, lists in Python are mutable, which is a direct requirement of
the vector/matrix element manipulation to be performed later on (concatenation
mostly). Hence a C, =< 2,1,1 > is represented as [2,1, 1] in Python. That is, at
the kth configuration of the system, the number of spikes of neuron 1 are given
by accessing the index (starting at zero) of the configuration vector Python list
variable confVec, in this case if

confVec=[2,1,1] (5)

then confVec[0] = 2 gives the number of spikes available at that time for
neuron 1, confVec[l] = 1 for neuron 2, and so on. The file r, which contains the
ordered list of neurons and the rules that comprise each of them, is represented as
a list of sub- lists in the Python/host code. For SNP system IT and from (4) we
have the following;:
r= [[27 2]7 [1]7 [17 2}] (6)
Neuron 1’s rules are given by accessing the sub-lists of r (again, starting at
index zero) i.e. rule (1) is given by r[0][0] = 2 and rule (4) is given by r[2][1] = 1.
Finally, we have the input file M, which holds the Python list version of (3).

Simulating Spiking Neural P Systems Without Delays Using GPUs 33
4.1 Simulation algorithm implementation

The general algorithm is shown in Algorithm 1. Each line in Algorithm 1 mentions
which part/s the simulator code runs in, either in the device (DEVICE) or in
the host (HOST) part. Step IV of Algorithm 1 makes the algorithm stop with 2
stopping criteria to do this:

One is when there are no more available spikes in the system (hence a zero
value for a configuration vector), and the second one being the fact that all pre-
viously generated configuration vectors have been produced in an earlier time or
computation, hence using them again in part I of Algorithm 1 would be pointless,
since a redundant, infinite loop will only be formed.

Algorithm 1 Overview of the algorithm for the SNP system simulator

Require: Input files: confVec, M,r.
I. (HOST) Load input files. Note that M and r need only be loaded once since they
are unchanging, Cy is loaded once, and then Cys are loaded afterwards.
II. (HOST) Determine if a rule/element in r is applicable based on its corresponding
spike value in confVec, and then generate all valid and possible spiking vectors in a
list of lists spikVec given the 3 initial inputs.
III. (DEVICE) From part II., run the kernel function on spikVec, which contains all
the valid and possible spiking vectors for the current con fVec and r. This will generate
the succeeding Cys and their corresponding Sgs.
IV. (HOST+DEVICE) Repeat steps I to IV (except instead of loading Co as
confVec, use the generated Cys in III) until a zero configuration vector (vector with
only zeros as elements) or further Cys produced are repetitions of a Cj produced at
an earlier time. (Stopping criteria in subsection 4.1)

Another important point to notice is that either of the stopping criterion from
4.1 could allow for a deeply nested computation tree, one that can continue exe-
cuting for a significantly lengthy amount of time even with a multi-core CPU and
even the more parallelized GPU.

4.2 Closer inspection of the SN P system simulator

The more detailed algorithm for part I1 of Algorithm 1 is as follows.

Recall from the definition of an SNP system (Definitin 1) that we have m
number of os. We related m to our implementation by noticing the cardinality of
the Python list r.

| =m (7)

V= lov,|lov,|--[ov,| (®)

where

34 F. Cabarle, H. Adorna, M. Martinez—del-Amor

lov,,.|

means the total number of rules in the mth neuron which satisfy the regular
expresion F in (b-3). m gives the total number of neurons, while ¥ gives the
expected number of valid and possible Sis which should be produced in a given
configuration. We also define w as both the largest and last integer value in the sub-
list (neuron) created in step II of Algorithm 1 and further detailed in Algorithm
2, which tells us how many elements of that neuron satisfy E.

During the exposition of the algorithm, the previous Python lists (from their
vector/matrix counterparts in earlier sections) (5) and (6) will be utilized. For part
IT Algorithm 1 we have a sub-algorithm (Algorithm 2) for generating all valid and
possible spiking vectors given input files M, confVec, and 7.

Algorithm 2 Algorithm further detailing part II in Algorithm 1

II-1. Create a list tmp, a copy of r, marking each element of tmp in increasing order of
N, as long as the element/s satisfy the rule’s regular expression E of a rule (given by
list r). Elements that don’t satisfy E are marked with 0.

II-2. To generate all possible and valid spiking vectors from tmp, we go through each neu-
ron i.e. all elements of tmp, since we know a priori m as well as the number of elements
per neuron which satisfy E. We only need to iterate through each neuron/element of
tmp, w times. (from II-1). We then produce a new list, tmp2, which is made up of
a sub-list of strings from all possible and valid {1,0} strings i.e. spiking vectors per
neuron.

II-3. To obtain all possible and valid {1,0} strings (Sks), given that there are multiple
strings to be concatenated (as in tmp2’s case), pairing up the neurons first, in order,
and then exhaustively distributing every element of the first neuron to the elements of
the 2nd one in the pair. These paired-distributed strings will be stored in a new list,
tmp3.

Algorithm 2 ends once all {1,0} have been paired up to one another. As an
illustration of Algorithm 2, consider (5), (6), and (1) as inputs to our SNP system
simulator. The following details the production of all valid and possible spiking
vectors using Algorithm 2.

Initially from II-1 of Algorithm 2, we have

r=tmp = [[2,2],[1],[1,2]].

Proceeding to illustrate II-2 we have the following passes.

1st pass: tmp = [[1, 2], [1], [1,2]]

Remark/s: previously, tmp[0][0] was equal to 2, but now has been changed to 1,
since it satisfies E (configVec[0] = 2 w/c is equal to 2, the number of spikes
consumed by that rule).X

2nd pass: tmp = [[1,2], 1], [1, 2]]
Remark/s: previously tmp[0][1] = 2, which has now been changed (incidentally)
to 2 as well, since it’s the 2nd element of oy which satisfies F.

3rd pass: tmp = [[1,2], 1], [1, 2]]
Remark/s: 1st (and only) element of neuron 2 which satisfies E.

Simulating Spiking Neural P Systems Without Delays Using GPUs 35

4th pass: tmp = [[1,2],[1], 1, 2]]
Remark/s: Same as the 1st pass

5th pass: tmp = ([1,2], (1], [1,0]
Remark/s: element tmp[1[1], or the 2nd element/rule of neuron 3 doesn’t satisfy
E.

Final result: tmp = [[1, 2], [1],[1,0]]

At this point we have the following, based on the earlier definitions:

m = 3 (3 neurons in total, one per element/value of confVec)

v = |O’V1H0'V2||O'V3| =2%x1x1=2

¥ tells us the number of valid strings of Is and 0s i.e. Sis, which need to be
produced later, for a given Cj, which in this case is con fvec. There are only 2 valid
Sks/spiking vectors from (5) and the rules given in (6) encoded in the Python list
r. These Sis are

<0,1,1,1,0 > 9)

<1,0,1,1,0 > (10)

In order to produce all Sgs in an algorithmic way as is done in Algorithm 2 , it’s
important to notice that first, all possible and valid Sgs (made up of 1s and 0s)
per o have to be produced first, which is facilitated by II-1 of Algorithm 2 and its
output (the current value of the list tmp).

Continuing the illustration of II-1, and illustrating II-2 this time, we iterate
over neuron 1 twice, since its w = 2, i.e. neuron 1 has only 2 elements which
satisfy F, and consequently, it is its 2nd element,

tmpl0][1] = 2.

For neuron 1, our first pass along its elements/list is as follows. Its 1st element,

tmp[0][0] = 1

is the first element to satisfy E, hence it requires a 1 in its place, and 0 in the
others. We therefore produce the string 10’ for it. Next, the 2nd element satisfies
E and it too, deserves a 1, while the rest get 0s. We produce the string ’01’ for it.

The new list, tmp2, collecting the strings produced for neuron 1 therefore
becomes

tmp2 = [[10, 01]]

Following these procedures, for neuron 2 we get tmp2 to be as follows:

tmp2 = [[10,01], [1]]

Since neuron 2 which has only one element only has 1 possible and valid string,
the string 1. Finally, for neuron 3, we get tmp2 to be

tmp2 = [[10,01], [1], [10]]

In neuron 3, we iterated over it only once because w, the number of elements
it has which satisfy F, is equal to 1 only. Observe that the sublist

tmp2[0] = [10, 01]

is equal to all possible and valid {1,0} strings for neuron 1, given rules in (6)
and the number of spikes in con figVec.

Tustrating II-3 of Algorithm 2, given the valid and possible {1,0} strings
(spiking vectors) for neurons 1, 2, and 3 (separated per neuron-column) from (5)

36 F. Cabarle, H. Adorna, M. Martinez—del-Amor

and (6) and from the illustration of II-2, all possible and valid list of { 1,0} string/s
for neuron 1: ['10°,’01’], neuron 2: ['1’], and neuron 3: ['107].

First, pair the strings of neurons 1 and 2, and then distribute them exhaustively
to the other neuron’s possible and valid strings, concatenating them in the process
(since they are considered as strings in Python).

10" + 1" — 107’

7017
and

7107

01 + 1" — 011

now we have to create a new list from ¢tmp2, which will house the concatenations
we’ll be doing. In this case,

tmp3 = [101,011]

next, we pair up tmp3 and the possible and valid strings of neuron 3

1017 4+ ’10° — ’10110°

011’
and

101’

0117 4+ ’10° — *01110°

eventually turning tmp3 into

tmp3 = [10110, 01110]

The final output of the sub-algorithm for the generation of all valid and possible
spiking vectors is a list,

tmp3 = [10110,01110]

As mentioned earlier, ¥ = 2 is the number of valid and possible Sis to be
expected from r, My, and Cy = [2,1,1] in II. Thus tmp3 is the list of all possible
and valid spiking vectors given (5) and (6) in this illustration. Furthermore, tmp3
includes all possible and valid spiking vectors for a given neuron in a given con-
figuration of an SN P system with all its rules and synapses (interconnections).
Part II-3 is done (m — 1) times, albeit exhaustively still so, between the two
lists/neurons in the pair.

5 Simulation results, observations, and analyses

The SNP system simulator (combination of Python and CUDA C) implements the
algorithms in section 4 earlier. A sample simulation run with the SNP system I
is shown below (most of the output has been truncated due to space constraints)
with Cp = [2,1,1]

*x*x*SN P system simulation run STARTS herexx*x*
Spiking transition Matrix:

Rules of the form a"n/a™m -> a or a"n —>a loaded:

Simulating Spiking Neural P Systems Without Delays Using GPUs
[727, 72), :$7, :1), :$7, :17’ :27]
Initial configuration vector: 211

Number of neurons for the SN P system is 3
Neuron 1 rules criterion/criteria and total order

tmpList = [[’10°, ’01’], [’1°’], [’10°]]

All valid spiking vectors: allValidSpikVec =
[[>10110°, ’01110°]]
A1l generated Cks are allGenCk =

[’2-1-1>, ’2-1-2°, ’1-1-2’]

End of CO
*%
*%
*k

initial total Ck list is

[’2-1-1°, ’2-1-27, ’1-1-2’]

Current confVec: 212
All generated Cks are allGenCk =

[’2-1-1>, °2-1-2°, ’1-1-2°, ’2-1-3’, ’1-1-3’]
Kok
*ok
*x
Current confVec: 112
All generated Cks are allGenCk =

[’2-1-1>, °2-1-2°, ’1-1-2°, ’2-1-3°, ’1-1-3°,
’2-0-27, ’2-0-1’]
*k
*%

Current confVec: 109
All generated Cks are allGenCk = [’2-1-1’, ’2-1-2’,

’1-0-77, ’0-1-97, ’1-0-8’, ’1-0-9]
* %

* %
* %

No more Cks to use (infinite loop/s otherwise). Stop.
*xx*xSN P system simulation run ENDS herex***

37

38 F. Cabarle, H. Adorna, M. Martinez—del-Amor

That is, the computation tree for SNP system IT with Cy = [2,1,1] went down
as deep as confVec = 109. At that point, all configuration vectors for all possible
and valid spiking vectors have been produced. The Python list variable allGenCk
collects all the Cgs produced. In Algorithm 2 all the values of tmp3 are added to
allGenCk. The final value of allGenCk for the above simulation run is

allGenClk = [2-1-17, °2-1-2°, "1-1-2°, "2-1-8’, "1-1-3’, '2-0-2", "2-0-1", '2-1-4", "1-1-
47 08-0-8°, "1-1-17, 0-1-2°, "0-1-1°, '2-1-57, *1-1-5°, '2-0-}", "0-1-3°, "1-0-2", "1-0-1",
0-1-6°, "1-1-6°, '2-0-5°, "0-1-4’, '1-0-8’, "1-0-0°, 2-1-7", 1-1-7", *2-0-6", "0-1-5",
1-0-47, 12-1-8°, '1-1-8°, 2-0-7", '0-1-6°, ’1-0-57, '2-1-9°, '1-1-9°, '2-0-8’, '0-1-7’,
1-0-67, 2-1-10°, "1-1-10, '2-0-9°, '0-1-8’, *1-0-7", 0-1-9", "1-0-8’, *1-0-9]

It’s also noteworthy that the simulation for IT didn’t stop at the 1st stopping
criteria (arriving at a zero vector i.e. Cj, = [0,0,0]) since II generates all natural
counting numbers greater than 1, hence a loop (an infinite one) is to be expected.
The simulation run shown above stopped with the 2nd stopping criteria from Sec-
tion 4. Thus the simulation was able to exhaust all possible configuration vectors
and their spiking vectors, stopping only since a repetition of an earlier generated
confVec/Cy would introduce a loop (triggering the 2nd stopping criteria in sub-
section 4.1). Graphically (though not shown exhaustively) the computation tree
for IT is shown in Figure 4.

The con fVecs followed by (...) are the con fVecs that went deeper i.e. produced
more Cs than Figure 4 has shown.

6 Conclusions and future work

Using a highly parallel computing device such as a GPU, and the NVIDIA CUDA
programming model, an SNP system simulator was successfully designed and im-
plemented as per the objective of this work. The simulator was shown to model
the workings of an SN P system without delay using the system’s matrix rep-
resentation. The use of a high level programming language such as Python for
host tasks, mainly for logic and string representation and manipulation of values
(vector/matrix elements) has provided the necessary expressivity to implement
the algorithms created to produce and exhaust all possible and valid configuration
and spiking vectors. For the device tasks, CUDA allowed the manipulation of the
NVIDIA CUDA enabled GPU which took care of repetitive and highly parallel
computations (vector-matrix addition and multiplication essentially).

Future versions of the SNP system simulator will focus on several improve-
ments. These improvements include the use of an optimized algorithm for matrix
computations on the GPU without requiring the input matrix to be transformed
into a square matrix (this is currently handled by the simulator by padding ze-
ros to an otherwise non-square matrix input). Another improvement would be
the simulation of systems not of the form (b-3). Byte-compiling the Python/host

Simulating Spiking Neural P Systems Without Delays Using GPUs 39

211
— 112

201
|: a1l
111

L— 201

011
012

101

— 100

102

l: 180
181

— 111
L— 112

202

il
— 112

|: 262
203
012
013
162
103
101
102

|— 212
. 213

Fig. 4. The computation tree graphically representing the output of the simulator run
over IT with Co = [2, 1, 1]

part of the code to improve performance as well as metrics to further enhance
and measure execution time are desirable as well. Finally, deeper understanding
of the CUDA architecture, such as inter- thread/block communication, for very
large systems with equally large matrices, is required. These improvements as well
as the current version of the simulator should also be run in a machine or setup

with higher versions of GPUs supporting NVIDIA CUDA.

7 Acknowledgments

Francis Cabarle is supported by the DOST-ERDT scholarship program. Henry
Adorna is funded by the DOST-ERDT research grant and the Alexan professo-
rial chair of the UP Diliman Department of Computer Science, University of the
Philippines Diliman. They would also like to acknowledge the Algorithms and

40

F. Cabarle, H. Adorna, M. Martinez—del-Amor

Complexity laboratory for the use of Apple iMacs with NVIDIA CUDA enabled
GPUs for this work. Miguel A. Martinez—del-Amor is supported by “Proyecto de
Excelencia con Investigador de Reconocida Valia” of the “Junta de Andalucia”
under grant PO8-TIC04200, and the support of the project TIN2009-13192 of the
“Ministerio de Educacién y Ciencia” of Spain, both co-financed by FEDER funds.
Finally, they would also like to thank the valuable insights of Mr. Neil Ibo.

References

1.

2.

10.

11.

12.

13.

14.

15.

M. Harris, “Mapping computational concepts to GPUs”, ACM SIGGRAPH 2005
Courses, NY, USA, 2005.

M. Gross, “Molecular computation”, Chapter 2 of Non-Standard Computation, (T.
Gramss, S. Bornholdt, M. Gross, M. Mitchel, Th. Pellizzari, eds.), Wiley-VCH, Wein-
heim, 1998.

M. Ionescu, Gh. Paun, T. Yokomori, “Spiking Neural P Systems”, Journal Funda-
menta Informaticae , vol. 71, issue 2,3 pp. 279-308, Feb. 2006.

X. Zeng, H. Adorna, M. A. Martinez-del-Amor, L. Pan, “When Matrices Meet
Brains”, Proceedings of the FEighth Brainstorming Week on Membrane Computing
, Sevilla, Spain, Feb. 2010.

X. Zeng, H. Adorna, M. A. Martinez-del-Amor, L. Pan, M. Pérez-Jiménez, “Ma-
trix Representation of Spiking Neural P Systems”, 11th International Conference on
Membrane Computing , Jena, Germany, Aug. 2010.

Gh. Pdun, G. Ciobanu, M. Pérez-Jiménez (Eds), “Applications of Membrane Com-
puting” , Natural Computing Series, Springer, 2006.

P systems resource website. (2011, Jan) [Online]. Available: www.ppage . psystems. eu.
J.M. Cecilia, J.M. Garcia, G.D. Guerrero, M.A. Martinez-del-Amor, 1. Pérez-
Hurtado, M.J. Pérez-Jiménez, “Simulating a P system based efficient solution to
SAT by using GPUSs”, Journal of Logic and Algebraic Programming, Vol 79, issue 6,
pp. 317-325, Apr. 2010.

J.M. Cecilia, J.M. Garcia, G.D. Guerrero, M.A. Martinez-del-Amor, 1. Pérez-
Hurtado, M.J. Pérez-Jiménez, “Simulation of P systems with active membranes on
CUDA”, Briefings in Bioinformatics, Vol 11, issue 3, pp. 313-322, Mar. 2010.

D. Diaz, C. Graciani, M.A. Gutiérrez, 1. Pérez-Hurtado, M.J. Pérez-Jiménez. Soft-
ware for P systems. In Gh. Piun, G. Rozenberg, A. Salomaa (eds.) The Ozford
Handbook of Membrane Computing, Oxford University Press, Oxford (U.K.), Chap-
ter 17, pp. 437-454, 2009.

G. Ciobanu, G. Wenyuan. P Systems Running on a Cluster of Computers. Lecture
Notes in Computer Science, 2933, 123-139, 2004.

V. Nguyen, D. Kearney, G. Gioiosa. A Region-Oriented Hardware Implementation
for Membrane Computing Applications and Its Integration into Reconfig-P. Lecture
Notes in Computer Science, 5957, 385-409, 2010.

D. Kirk, W. Hwu, “Programming Massively Parallel Processors: A Hands On Ap-
proach” | 1st ed. MA, USA: Morgan Kaufmann, 2010.

NVIDIA corporation, “NVIDIA CUDA C programming guide” , version 3.0, CA,
USA: NVIDIA, 2010.

NVIDIA CUDA developers resources page: tools, presentations, whitepapers. (2010,
Jan) [Online]. Available: http://developer.nvidia.com/page/home.html

16.

17.

Simulating Spiking Neural P Systems Without Delays Using GPUs 41

V. Volkov, J. Demmel, “Benchmarking GPUs to tune dense linear algebra”, Proceed-
ings of the 2008 ACM/IEEE conference on Supercomputing, NJ, USA, 2008.

K. Fatahalian, J. Sugerman, P. Hanrahan, “Understanding the efficiency of GPU
algorithms for matrix-matrix multiplication”, In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware (HWWS ’04) , ACM,
NY, USA, pp. 133-137, 2004

Designing Tissue-like P Systems for Image
Segmentation on Parallel Architectures

Javier Carnero', Daniel Diaz-Pernil', Miguel A. Gutiérrez-Naranjo?

1 Computational Algebraic Topology and Applied Mathematics Research Group

Department of Applied Mathematics I

University of Sevilla

Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
javier@carnero.net, sbdani@us.es

Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutierQus.es

Summary. Problems associated with the treatment of digital images have several in-
teresting features from a bio-inspired point of view. One of them is that they can be
suitable for parallel processing, since the same sequential algorithm is usually applied in
different regions of the image. In this paper we report a work-in-progress of a hardware
implementation in Field Programmable Gate Arrays (FPGAs) of a family of tissue-like
P systems which solves the segmentation problem in digital images.

1 Introduction

Membrane Computing is a computational paradigm inspired in the functioning of
living cells and tissues. One of its characteristic features is the use of parallelism as
a computation tool. In many of the models, the devices perform the computation
by applying parallelization in a double sense: on the one hand, several rules can be
applied simultaneously in each membrane; on the other hand, all the membranes
perform the computation at the same time.

In spite of recent efforts [15], it seems that in the next future there will not be
an implementation of P systems in vivo or in vitro. All the possible approaches to
the theoretical model lean on the current computer architectures.

In this line, many efforts have been made for obtaining a simulation of the
P system behavior with current computers [13, 16]. Most of these simulators are
thought for running on one-processor computers. These sequential machines only
perform one action per time unit and the parallelism of the membrane computing
devices is lost. This bottle-neck produces a serious discrepancy between the theo-

44 J. Carnero et al.

retical efficiency of the P systems and the realistic resources needed for performing
a computation.

In the last years, according with the development of new parallel architectures,
new attempts have been made for approaching the computation of P systems by
performing several actions in the same step. This does not mean a real implemen-
tation of the P system, but it can be considered as a new step toward a more
realistic simulation.

The first parallel and distributed simulators were presented in 2003. In [12],
a parallel implementation of transition P systems was presented. The program
was designed for a cluster of 64 dual processor nodes and it was implemented
and tested on a Linux cluster at the National University of Singapore. In [32],
a purely distributive simulator of P systems was presented. It was implemented
using Java’s Remote Methods Invocation to connect a number of computers that
interchange data. The class of P systems that the simulator can accept is a subset
of the NOP,(coo, tar) family of systems, which have the computational power of
Turing machines.

Also in 2003, Petreska and Teuscher [29] presented a parallel hardware im-
plementation of a special class of membrane systems. The implementation was
based on a universal membrane hardware component that allows efficiently run P
system on a reconfigurable hardware known as Field Programmable Gate Arrays
(FPGAs) [35]. Recently, a new research line has arisen due to a novel device ar-
chitecture called CUDATM (Compute Unified Device Architecture) [39]. It is a
general purpose parallel computing architecture that allows the parallel compute
engine in NVIDIA Graphic Processor Units (GPUs) to solve many complex com-
putational problems in a more efficient way than on a CPU [5, 6, 7]. Following the
research line started in [29], Van Nguyen et al. have proposed the use hardware
implementation for membrane computing applications [22, 23, 24, 25] based on
reconfigurable computing technology called Reconfig-P.

In this paper, we also explore the possibilities of the Field Programmable Gate
Arrays (FPGAs) for building a hardware implementation of P systems. The P
system model chosen for the implementation has been tissue-like P systems and
as a case study we consider the segmentation problem in 2D images.

Segmentation in computer vision (see [31]), refers to the process of partitioning
a digital image into multiple segments (sets of pixels). The goal of segmentation
is to simplify and/or change the representation of an image into something that
is more meaningful and easier to analyze. Image segmentation is typically used to
locate objects and boundaries (lines, curves, etc.) in images. More precisely, image
segmentation is the process of assigning a label to every pixel in an image such
that pixels with the same label share certain visual characteristics. Technically,
the process consists on assigning a label to each pixel, in such way that pixels
with the same label form a meaningful region. There exist different techniques to
segment an image. Some techniques are clustering methods [1, 36], histogram-based
methods [34], Watershed transformation methods [33], image pyramids methods

Designing Tissue-like P Systems to Parallel Architectures 45

[18] or graph partitioning methods [37, 38]. Some of the practical applications of
image segmentation are medical imaging [36] or face recognition [17].

Segmentation in Digital Imagery has several features which make it suitable
for techniques inspired by nature. One of them is that it can be paralleled and
locally solved. Regardless how large is the picture, the segmentation process can
be performed in parallel in different local areas of it. Another interesting feature
is that the basic necessary information can be easily encoded by bio-inspired rep-
resentations.

In the literature, one can find several attempts for bridging problems from
Digital Imagery with Natural Computing as the works by K.G. Subramanian et
al. [8, 9] or the work by Chao and Nakayama where Natural Computing and Al-
gebraic Topology are linked by using Neural Networks [10] (extended Kohonen
mapping). In this paper, we will use an information encoding and techniques bor-
rowed from Membrane Computing. This paper is a new step in the research started
at [4], where the authors present an implementation of a membrane solution of a
segmentation problem using hardware programming. In this paper, we present a
different family of tissue-like P systems to solve the problem and report the hard-
ware implementation. In what follows we assume the reader is already familiar
with the basic notions and the terminology underlying P systems?>.

The paper is organized as follows: firstly, we present our bio-inspired formal
framework. Next, we present a family of tissue-like P systems designed to obtain
an edge-based segmentation of a 2D digital image. Then, general considerations
about designing hardware P systems are studied, focusing on the segmentation
problem. The paper finishes with some conclusions and future work.

2 Formal Framework: Tissue-like P Systems

Tissue-like P systems were presented by Martin—Vide et al. in [21]. They have
two biological inspirations (see [20]): intercellular communication and cooperation
between neurons. The common mathematical model of these two mechanisms is
a network of processors dealing with symbols and communicating these symbols
along channels specified in advance.

The main features of this model, from the computational point of view, are
that cells do not have polarization and the membrane structure is a general graph.

Formally, a tissue-like P system with input of degree ¢ > 1 is a tuple

II=(X,&w,...,wg, R,im,0m),

where
1. I' is a finite alphabet, whose symbols will be called objects;
2. X(cC I') is the input alphabet;

3 We refer to [26] for basic information in this area, to [28] for a comprehensive presen-
tation and the web site [40] for the up-to-date information.

46 J. Carnero et al.

w

. € C I (the objects in the environment);

4. wy,...,wy are strings over I' representing the multisets of objects associated
with the cells at the initial configuration;

5. R is a finite set of communication rules of the following form:

(i, u/v, j)

fori7j6{07172,""q}7i#j’u7vel—’*;
6. iy € {1,2,...,q} is the input cell;
7. oy € {0,1,2,...,q} is the output cells

A tissue-like P system of degree ¢ > 1 can be seen as a set of ¢ cells (each one
consisting of an elementary membrane) labelled by 1,2,...,q. We will use 0 to
refer to the label of the environment, i;; denotes the input region and oj; denotes
the output region (which can be the region inside a cell or the environment).

The strings wy, ..., w, describe the multisets of objects placed in the g cells
of the P system. We interpret that & C I is the set of objects placed in the
environment, each one of them available in an arbitrary large amount of copies.

The communication rule (,u/v,j) can be applied over two cells labelled by 4
and j such that u is contained in cell ¢ and v is contained in cell j. The application
of this rule means that the objects of the multisets represented by u and v are
interchanged between the two cells. Note that if either ¢ = 0 or j = 0 then the
objects are interchanged between a cell and the environment.

Rules are used as usual in the framework of membrane computing, that is, in a
maximally parallel way (a universal clock is considered). In one step, each object
in a membrane can only be used for one rule (non-deterministically chosen when
there are several possibilities), but any object which can participate in a rule of
any form must do it, i.e., in each step we apply a maximal set of rules.

A configuration is an instantaneous description of the P system IT. Given a
configuration, we can perform a computation step and obtain a new configuration
by applying the rules in a parallel manner as it is shown above. A sequence of
computation steps is called a computation. A configuration is halting when no
rules can be applied to it. Then, a computation halts when the P system reaches
a halting configuration.

3 Segmenting Digital Images

A point set is simply a topological space consisting of a collection of objects called
points and a topology which provides for such notions as nearness of two points,
the connectivity of a subset of the point set, the neighborhood of a point, boundary
points, and curves and arcs.

The most common point sets occurring in image processing are discrete subsets
of N-dimensional Euclidean space R™ with n = 1,2 or 3 together with the discrete
topology. There is no restriction on the shape of the discrete subsets of R™ used
in applications of image algebra to solve vision problems.

Designing Tissue-like P Systems to Parallel Architectures 47

For a point set X in Z, a neighborhood function from X in Z, is a function
N : X — 2% For each point z € X, N(z) C Z. The set N(z) is called a
neighborhood for x.

There are two neighborhood function on subsets of Z? which are of particular
importance in image processing, the von Neumann neighborhood and the Moore
neighborhood. The first one N : X — 22° is defined by N@)={y : y =
(r1 £ j,22) or y = (w1,22 £ k), j,k € {0,1}}, where z = (z1,22) € X C Z%
While the Moore neighborhood M : X — 2Z° is defined by ME)={y : y=
(x1£7, x2%k), j,k € {0,1}}, where x = (71, 22) € X C Z2. The von Neumann and
Moore neighborhood are also called the four neighborhood (4-adjacency) and eight
neighborhood (8-adjacency), respectively. In this paper, we work with 4-adjacency.
The point sets with the usual operations has an algebra structure (see [30]).

An Z-valued image on X is any element of ZX. Given an Z-valued image
Ic 27X, ie. I : X — Z, then Z is called the set of possible range values of I
and X the spatial domain of I. The graph of an image is also referred to as the
data structure representation of the image. Given the data structure representation
I={(z,I(x)) : = € X}, then an element (z,I(x)) is called a picture element or
pizel. The first coordinate = of a pixel is called the pizel location or image point,
and the second coordinate I(x) is called the pizel value of I at location x.

For example, X could be a subset of Z2 where x = (i, j) denotes spatial location,
and Z could be a subset of N, N3, etc. So, given an image I € ZZZ’7 a pixel of I
is the form ((4, 5), I(x)), which will be denoted by I(x);;. We call the set of colors
or alphabet of colors to the image set of the function I with domain X and the
image point of each pixel is called associated color. We can consider an order in
this set. In this paper, we denote Z as C;. Usually, we consider in digital image a
predefined alphabet of colors C. We define h = |C| as the size (number of colors) of
C. In this paper, we work with images in grey scale, then C = {0, ...,255}, where
0 codify the black color and 255 the white color.

By technical reasons, we use below different ways to codify a same pixel. For ex-
ample, if we take the pixel ((Z, j), a) we could codify with the following expressions:
Qij, Aij; a;j, 5, (a,l)ij with [€ N, etc.

A region could be defined by a subset of the domain of I whose points are all
mapped to the same (or similar) pixel value by I. So, we can consider the region
R; as the set {x € X : I(x) = i} but this kind of regions has not to be connected.
We prefer to consider a region r as a maximal connected subset of a set like R;.
We say two regions r1,ry are adjacent when at less a pair of pixel 1 € r; and
X9 € 7o are adjacent. We say x1 and xo are border pizels. If I(z1) < I(z2) we say
x1 is an edge pizel. The set of connected edge pixels with the same pixel value is
called a boundary between two regions.

From a general point of view, segmentation refers to the process of partitioning
a digital image into multiple regions. Thresholding is a method of image segmenta-
tion whose basic aim is to obtain a binary image from a colour one. The idea is to
split the set of pixels into two sets (black and white) depending on its bright and a
fixed valued, the threshold. If the bright of the pixel is greater than the threshold,

48 J. Carnero et al.

then the pixel is labelled as object. Otherwise, it is labelled as background. After
labelling, a new binary image is created by colouring each pixel white or black,
depending on the label.

The basic thresholding method can be generalized in a natural way. Instead
of getting a binary image by labelling the original set of pixels by {0,1}, we can
consider a larger set of labels, {1,...,k} so we obtain a final image with k levels.
Another natural generalization is to replace the colour information by another
scale on the features of the pixel (bright, intensity, gray scale, etc.).

Edge detection is an important operation in a large number of image processing
applications, such as image segmentation, character recognition and scene analysis.

In this paper we work with the first one, the edge-based segmentation of 2D
digital images problem (2D-ES problem), which is described as follows: Given a
digital 2D image with pizels of (possibly) different colors, obtain the boundaries of
regions in that image.

In order to provide a logarithmic-time uniform solution to our problem, we
design a family of tissue-like P systems, IT. Given an image I of size n?, we take
the P system IT(n, k) of the family to work with I. The input data (image I) is
codified by a set of objects a;j, with a € C and 1 < 4,5 < n and k is referred to
the number of processing cells. So, when we work with a parallel architecture we
do not have to know previously an exact number of processors to work. Then, we
introduce the parameter k to solve this problem.

The functioning of a P system of the family consists of the following stages:

e First of all, the P system generates 8 auxiliary copies of the input data. Then,
we have 9 codifications of the input image, but one of them is distinguished
of the rest. So, we can work with each pixel without taking into account what
happens with the rest of the image.

e Second, the P system applies a basic noise filter in order to eliminate some
pickle noise that could affect the segmentation process. The P system will
apply the largely used average filter because of its simplicity and good results.
For each pixel, the process consists of calculating the average average of its
adjacent pixels. If the distance between the pixel and its average is greater
than a threshold p, the pixel will be considered as noise and it will be replaced
by its average colour.

e Next, the P system performs a thresholding of the image to solve the problem
of degradation of colours of pixels in the boundary of adjacent regions with
different colours.

e Once this process is finished, the P system applies a translation of rules defined
in [11] obtaining an edge-based segmentation of the image took of the previous
stage.

The family II = {II(n, k) : n,k € N} of tissue-like P systems of degree k + 1 is
defined as follows:
For each n,k € N,

H(n k)= (1Y, w,..., w1, R,im,0m1),

Designing Tissue-like P Systems to Parallel Architectures 49

defined as follows:
I' = Y U{aij, afy, aiz, Aij, Ay, AL Aig, Aig, (@, 1), (a,2)i5, (a,3)5 0 1 <4, j <
n, a € C} is the working alphabet;
the input alphabet is X' = {a;; : 1 <4,j <n,a €C,1(i,j) = a};
the environment alphabet is £ = "\ X;
the multisets of the cells are w; = {{1/;3], z/jl :1=0n+1,0<j<n+1}},
Wy =+ = Wit = T[”z/k], respectively. We call to the last k cells as processing
cells;
R is the following set of communication rules:
1. (]., a;j/a%Aij, 0)
for 1 <i,j <n.
These rules are used to generate new elements, so the P system can work in
parallel with each pixel and forget what happen with the rest of the image.
The P system first uses these elements to work with the noise of our image.

Ci—1j-1 di—15 €i—1541
2. | Lbij1 Ay fijr) Tt
li-i—lj—l hi+1j Gi+15+1
for
- 1 S 27.7 S n,
- a,b,c,dye, f,g,h,l €CU{v}.
This type of rules are used to translate each object A;; and one copy of their
neighbours (objects) to a processing cell. We are sure that all the pixels not
go to the same cell, because our P system has n? or n%+1 objects T spread
over processing cells, each one with a similar number of copies of T'.
Ci—1j—1 diflj €i—1j+1
30|t bij—1 Ay fijy) a0
Liv1j—1 hiv1j Gir1j1
for
-]- S 7/7.7 S n,
- a,b,c,dye, f,g,h,l €CU{v},
— We take p as the number of pixels with colors in C and v = 0. Then,
av(a)=(b+c+d+e+f+g+h+i)/u,
— o is the nearest colour in C to the average colour av(a) with |a—av(a)| >
p, with p € R.

Ci—1j—1 di—1j €i—1j41
4| tbij—1 Ay fy /a0
Tit1j—1 hiv1j Git1j4+1
for
-1 S 27] S n,
- a,b,c,de, f,g,h,i € CU{v},

50

J. Carnero et al.

— We take p as the number of pixels with colors in C and v = 0. Then,
av(a) = (b+c+d+e+ f+g+h+i)/p,
- |a—av(a)| < p, where p; € R.

This set of rules is used to detect the noise and correct it with the average
colour of its adjacent pixels. We find here a local thresholding (with respect
to the colors) with predefined threshold p. In fact, we are simulating one
of the more typical algorithms to remove noise. The P system changes the
notation of the objects which are codifying pixels and they adopt the form

a;;, with a € C.

(b /AL,0)

) Yig
for

- 1<4,5<n,

- T:(|C|/p2)7l:071727~~'7PQa

— IfbeCthenaeC (a<b<a+(r—1)anda=7-l)or (b=a=71-1),
If b=v then A =v.

These rules are used to discretize the colors dividing the set of colors in ps
subsets of length v. We find here a general thresholding (with respect to
the colors) with predefined threshold v.

. (ta A;]/Ta 1)

for

- 0<43<n+1,2<t<k+1,

- a€C.

This set of rules are used to send our transformed image to the cell 1. Now,
the objects Aj; encode the pixels of our image.

: (17 A;j/A;/jZZ]af_]’ 0)

for

- 0<i,57<n+1,

- ac€CU{v}

The P system uses these rules to generate enough copies of our image to
perform the segmentation process in the cells 2, ..., k and k+1. The objects

A;’j are used in the second part of the segmentation. The rest of the objects
are used in the first part of the segmentation.

Ci—1j-1 @71]' €i—1j+1
t, ?ijq flij fijor /Tt
tit1j-1 Nit1j Gip1j41
for
-1 S Zv] S n,
— and a,b,c,d,e, f,g,h,i € CU{v}.
These rules are defined to send new objects to the processing cells to do
the first part of the segmentation. We look for edge pixels.

Designing Tissue-like P Systems to Parallel Architectures 51

9. (t, Zijgk;l/jijgkh 0)7

10.

11.

12.

13.

14.

for
- 1<4,5,k1<n, (i,7), (k,1) adjacent pixels,
a,beC and a <b.

These rules are used to mark edge pixels. In fact, the the P system brings
from the environment an object of the form A;; for each edge pixel. Our
problem is the edge pixels not always are adjacent. So, we do not have an
only one set of connected edge pixel forming a boundary. Then, we should
add the necessary pixel to connect all the edge pixels of a boundary.
(t,Ai;/T,1)

for

-]- S 7/7.7 S n,

- a€C.

These rules send the edge pixels to the cell 1.

(1 Al]/(a 1)1,]70)

for

- 0<i,5<n+1,

- acCU{v}

The P system uses these rules to generate two copies of our edge pixels to
perform the second part of the segmentation in processing cells.

(17 A;/j/((% 2)?]" 0)

for

- 0<i,j<n+1,

- a€CU{v}

The P system uses these rules to generate enough copies of our image to
perform the second part of the segmentation in processing cells.

(1 (@, 1)im1j-1 (a,2)im1; T,t) (1’ (0:2)icjo1 (&, i1y t)

(b 2)74 1 ((l 1)1] (aﬂl)ijfl (a72)1j
(a,1)i—1j-1 (b,2)i—1; > < (a,2)i—1j-1 (a,1)i—1; >
L, T,t) |1, T,t
< (@,2)ij—1 (a, 1)y / (a,1)ij—1 (,2)y; /
for
- 1<4,5 <n,
- a,beC

These rules are defined to send new objects to the processing cells to do
the second part of the segmentation. We look for new edge pixels.

(a,1)i1j-1 (a,2)i—1; , (@,3)i—15-1 (a,3)i1;
(1 (0,2)ij-1 (a, 1) / (0:2)ij-1 (a,3); t)
(b,2)i—1j-1 (a,1)i—1; (b,2)i—1j-1 (a,3)i—1j
(1t ! (1)

a,l)ij—1 a,2)j a,3)ij—1 (a,3)i

52 J. Carnero et al.

(1 (0, 1)im1jm1 (0:2)iaj) (0 8)ic1jo1 (0:2)in; t)

"(a,2)ij-1 (a, 1)y (@,3)ij—1 (a,3)i;

(1 (@,2)i—1j-1 (a,1)i-1; / (a,3)i—1j-1 (a,3)i1; t)
"(a, 1)1 (b,2)s (a,3)ij—1 (0,2)i;

for

- 1<4,5 <n,

- a,beC

These rules are used to complete the set of edge pixels of our image.

15. (t, (a, 3)1']‘//\, 1)
for
-1 S 17.7 S n,
- a€C.
These rules send to the cell 1 the edge pixels.

16. We can find more than one copy of an specific edge pixel, so if we wish only
one copy of each edge pixel we can add a new type of rules:
(t, (a,3)ij(a,3)ij/(a,3)i;,1)
for
- 1 S Zv] S n,
- a€C.
° iH =05 = 1.

4 The Hardware Design

In [11], some preliminary segmentation results were obtained using the tissue sim-
ulator developed in [3]. Such a tissue simulator follows one of the common features
of the first generation of simulators of P systems (see [13]): the lack of efficiency
in favor of expressiveness. Therefore, experiments performed using this tool were
extremely slow, and it could only use synthetic images of at most 30 x 30 pix-
els. Recently, a new sequential software was presented in [14], implementing ideas
borrowed from [11].

In order to make the hardware design of a tissue-like P system there are several
considerations that must be considered:

1. On a tissue-like P system, not only each cell evolve in a parallel manner. Every
rule in every cell must be executed as many times as possible at each step.
Thus, if we want that the hardware system to work exactly like the theoretical
model, the system has to implement as many minimal computation units as
the maximum number of rules in all the cells that could be executed in the
same step in order to be fully parallel. If we are designing a general tissue-like
P system which we want to use to configure different tissue-like P systems that
solve specific problems, this is probably the main problem, as this number is
defined by each P system configuration. In this case, the only way to do this is

Designing Tissue-like P Systems to Parallel Architectures 53

to design the minimal computation units as small as possible in terms of chip
area, in order to have the maximum number of them. Then, if this number is
not enough to solve our problem, the system can be designed in order to do
the following:

e Separate each conflicting step, into two or more sub-steps. So, in the first
sub-step the system executes all the possible rules, using a piece of memory
to save the results, and then it continues executing the rest of the rules that
could not be executed before due to insufficient minimal computation units

e Connect with other clone system(s) to solve the hole problem using more
computation capacity. This options is not always possible and, in general,
it is more difficult to design that the first one, but it can be the best choice
dealing with hard computation problems.

On the other hand, if we want to design a specific P system, usually the best
choice to deal with this issue is finding sets of rules that are mutually exclusive,
that is, rules that we know that if the executing condition is true for one of
them, then we know that the other ones in the same set cannot be executed.
Thus, in fact we have only to design one minimal computation unit for each
set of rules, optimizing the system area. This is the case of the described
segmentation problem, in which we know that we can define only one set of
rules mutually exclusive for each pixel, so in fact the system will have as many
minimal computation units as the biggest segmentation. So the computational
order will be constant, and the spatial order will be lineal.

. The copy rules are necessary in the theoretical tissue-like P system, but in the
hardware design it is not necessary in general to implement them as rules like
the other ones, since they can be seen as parallel readings of some informa-
tion.

So usually those rules can be ignored in the design, seeing them as multi-
lectures of the data that is trying to copy the rule. Also is easily to transform
those rules into asynchronous rules. That is the segmentation case that we
present, where main rules are synchronized by the clock system represent-
ing the synchronous P system, and the copy rules are asynchronous and are
implicit in the interconnection circuit of the design.

. Depending on the variant of tissue-like P systems we work with, cells could
create or remove other cells during the execution in order to solve the problem.
This is one of the biggest problems when simulating tissue-like P systems in
software in a efficient way, but could not be the case in hardware. The FPGAs
can be reconfigured while the system is still working. This feature help us to
design the addition or removal cell rules as partial on air reconfigurations of
the system on air easily. The only thing that we have to worry about is that
those operations are not fast in terms of time, so the steps with those rules will
be slower than the other ones. Because of that, trying to avoid those kind of
rules while defining the P system is a good practice. The segmentation problem
described has no rule of this kind.

54 J. Carnero et al.

4. The halting condition can be redefined in order to save some final computation
step. This is the case of rule 9 on the segmentation problem. In most of
synchronous P systems, we can know that the system has finished without
make an explicit operation. For example, in our design we know that the
system stops three clock cycles after the beginning. Another simple option
can be found by observing the system behavior.

5. The system has to be always running while there are instances of the problem
that does not have been solved yet. In fact that is a consideration that have to
be done every time a hardware design is made, besides designing the P system
it is important that it can return the results whereas the system is starting
with a new problem. So, perhaps this is a consideration that has to be only
considered not only in the design step, but in the previous theoretical P system
definition before.

4.1 Segmentation Problem Design Based on FPGA

Following the segmentation example, an formal hardware system design based on
the tissue-like P system described above is shown in Figures 1, 2, 3 and 4. It
has been done by following the previous considerations. The system consists on
processing units capable of dealing with 4 x 4 images. These units can be combined
like a puzzle in order to process n x m images.

Each pixel in the image is codified with 56 bits in order to represent the theo-
retical objects (it contains color information, original color information, and type
of object). Using this codification, a 4 x 4 section of the initial image is passed
through the image port of each processing unit. Also additional information about
the neighborhood of the 4 x 4 is required in order to work correctly, using the
blec, blrec, trec, tlec, and bb, rb, tb, Ib buses for that. If the neighborhood (or a part
of it), does not exist those inputs will be at high impedance (ghost pizel).

The ¢t and k ports specify the maximum distance between the pixel and its
average (noise filter), and the number of different levels for the thresholding re-
spectively. The different system steps are controlled by the clock signal (CLK).

As it is shown in figure 1, inside the processing unit are 16 pizel processing
units capable of execute any rule for each pixel and each step (using the tech-
niques described before in the first point.). The signal change is used to feed this
units with the input data (the original image), or feed them with its own output
(representing in that way the copy rules as described before in item two).

These pizel processing units shown in figure 2 receives a pixel and its neighbor-
hood, and the ¢, k and C' LK signals, and send this information to four units that
implements the four sets of rules mutually exclusive mentioned before. The results
are collected and processed as output. In general a fixed group of pizel processing
units will represent a fixed group of cells in the theoretical model. But looking
at the described tissue-like P, we have that each cell except cells zero and one is
representing the computation of one pixel, so there is exactly one pizel processing

Designing Tissue-like P Systems to Parallel Architectures 55

blee, bb,

brec, rb,

trec, tb, dxd

tlec (] t K pixels CLK change

o e e g

PRU
x16
v
Results

| e MRS e St e ety s |
tlec ! 1} - trec !
=7 '_'II
1
i
1
ra Image b
i
= ; L2
biec bb ' brec

Fig. 1. Processing unit, and neighborhood of an image

unit for each cell. Then we can say that these units represents each cell in the
theoretical model except zero and one.

The four units that implement the four sets of rules mutually exclusive are
shown in figure 3: removing noise rules (types 3 and 4), thresholding rules (type
5), rules of the first part of the segmentation (type 9) and rules of the second
part of the segmentation (type 14). The rest of rules of the theoretical family of
systems are rules of coping and sending objects. These units detect automatically
if the input data is a corner, an edge, or an interior pixel. Finally, in order to
deal with bigger images, we can use the blec, blrec, trec, tlec, and bb, rb, tb, [b buses
to interconnect as many as processing units we need (figure 4). A very simple
interconnection circuit is necessary in order to give the input data to the different
processing units.

The implementation of this hardware tool allows the system to apply the max-
imum number of rules at each moment, using the pizel units to solve the whole
problem. Therefore, the system works exactly like the theoretical model in terms
of complexity, time, concurrency and results. As said before, the implementation

56 J. Carnero et al.

pixel and its
neigborhood

Noise Thresh

Filter olding

Border Baorder
1 2

Fig. 2. Pixel Processing Unit

pixelandits t CLK pixel and its kCLK
neigborhood l l neigborhood ‘L l
Noise Filter Thresholding

data read_data data read_data
plxel and its CLK pixel and its CLK
neigborhood l neigborhood l

Border 1 Border 2
data read_data data read_data

Fig. 3. Chips that implements the sets of rules mutually exclusive

of this design reveals that in fact the system is able to process any image of size
n X m by using at most four clock cycles.

In figure 5, it is shown a simulation of the code following the described design
that deals with 16 x 16 images, and some simple results using a SP605 Xilinx board
with a Spartan 6 XC6SLX45T FPGA chip.

Designing Tissue-like P Systems to Parallel Architectures 57

blec, bb,

brec, rb,

trec, th, 8x8

tlee Ib t k pixels CLK change

PU [b PU

Results

Fig. 4. Processing Units Interconnection

Fig. 5. Hardware design

1 Ik

Fig. 6. 16x16 black and white image segmentation

N G

Fig. 7. 16x16 black and white image segmentation

58 J. Carnero et al.

Fig. 8. 16x16 color image segmentation

5 Conclusions and Future Works

Problems associated with the treatment of Digital Images have several interesting
features from a bio-inspired point of view. One of them is that they can be suitable
for parallel processing, since the same sequential algorithm is usually applied in
different regions of the image.

In this paper, we study the advantages and drawbacks of considering a hard-
ware implementation of tissue-like P systems solving the segmentation problem on
a hardware programming tool (FPGA). The theoretical study has been made via
the language programming VHDL [2] and cuwrrently we are in the process of the
real hardware implementation.

In addition, although the segmentation example showed here is a synchronous
tissue-like P system, we want in the next future to work with asynchronous tissue-
like P systems in order to optimize performance.

Many questions remains open as future work. One of them is the treatment
of the noise in images with Membrane Computing techniques, or the paralleliza-
tion and automatization of the choice of the threshold by artificial intelligence
techniques.

Acknowledgements

DDP and MAGN acknowledge the support of the projects TIN-2009-13192 of the
Ministerio de Ciencia e Innovacién of Spain and the support of the Project of
Excellence of the Junta de Andalucia, grant PO8-TIC-04200. JC acknowledges the
support of the project MTM2009-12716 of the Ministerio espanol de Educacion
y Ciencia, the project PO6-TIC-02268 of Excellence of Junta de Andalucia, and
the Computational Topology and Applied Mathematics PAICYT research group
FQM-296.

References

1. Abdala, D.D., Jiang, X.: Fiber segmentation using constrained clustering. In: Zhang,
D., Sonka, M. (eds.) ICMB. Lecture Notes in Computer Science, vol. 6165, pp. 1-10.
Springer (2010)

10.

11.

12.

13.

14.

15.

16.

Designing Tissue-like P Systems to Parallel Architectures 59

Ashenden, P.J.: The Designer’s Guide to VHDL. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA, 2nd edn. (2001)

Borrego-Ropero, R., Diaz-Pernil, D., Pérez-Jiménez, M.J.: Tissue simulator: A graph-
ical tool for tissue P systems. In: Vaszil, G. (ed.) Proceedings of the International
Workshop Automata for Cellular and Molecular Computing. pp. 23-34. MTA SZ-
TAKI, Budapest, Hungary (August 2007), satellite of the 16th International Sympo-
sium on Fundamentals of Computational Theory

Carnero, J., Diaz-Pernil, D., Molina-Abril, H., Real, P.: Image segmentation inspired
by cellular models using hardware programming. Image-A 1(3), 143-150 (2010)
Cecilia, J.M., Garcia, J.M., Guerrero, G.D., Martinez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Implementing P systems parallelism by means
of GPUs. In: Paun et al. [27], pp. 227-241

Cecilia, J.M., Garcia, J.M., Guerrero, G.D., Martinez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Simulating a P system based efficient solution
to SAT by using GPUs. Journal of Logic and Algebraic Programming 79(6), 317-325
(2010)

Cecilia, J.M., Garcia, J.M., Guerrero, G.D., Matinez-de-Amor, M.A., Pérez-Hurtado,
1., Pérez-Jiménez, M.J.: Simulation of P systems with active membranes on CUDA.
Briefings in Bioinformatics 11(3), 313-322 (2010)

Ceterchi, R., Gramatovici, R., Jonoska, N., Subramanian, K.G.: Tissue-like P systems
with active membranes for picture generation. Fundamenta Informaticae 56(4), 311—
328 (2003)

Ceterchi, R., Mutyam, M., Paun, Gh., Subramanian, K.G.: Array-rewriting P sys-
tems. Natural Computing 2(3), 229-249 (2003)

Chao, J., Nakayama, J.: Cubical singular simplex model for 3D objects and fast com-
putation of homology groups. In: 13th International Conference on Pattern Recog-
nition (ICPR’96). vol. IV, pp. 190-194. IEEE Computer Society, IEEE Computer
Society, Los Alamitos, CA, USA (1996)

Christinal, H.A., Diaz-Pernil, D., Real, P.: Segmentation in 2D and 3D image using
tissue-like P system. In: Bayro-Corrochano, E., Eklundh, J.O. (eds.) CIARP. Lecture
Notes in Computer Science, vol. 5856, pp. 169-176. Springer (2009)

Ciobanu, G., Wenyuan, G.: P systems running on a cluster of computers. In: Martin-
Vide et al. [19], pp. 123-139

Diaz-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Pérez-Hurtado, I., Mario J.
Pérez-Jiménez, M.: Software for P systems. In: Piun et al. [28], pp. 437-454
Diaz-Pernil, D., Gutiérrez-Naranjo, M.A., Molina-Abril, H., Real, P.: A bio-inspired
software for segmenting digital images. In: Nagar, A.K., Thamburaj, R., Li, K.,
Tang, Z., Li, R. (eds.) Proceedings of the 2010 IEEE Fifth International Conference
on Bio-Inspired Computing: Theories and Applications BIC-TA. vol. 2, pp. 1377 —
1381. IEEE Computer Society (2010)

Gershoni, R., Keinan, E., Paun, Gh., Piran, R., Ratner, T., Shoshani, S.: Research
topics arising from the (planned) P systems implementation experiment in Tech-
nion. In: Diaz-Pernil, D., Graciani, C., Gutiérrez-Naranjo, M.A., Paun, Gh., Pérez-
Hurtado, I., Riscos-Nunez, A. (eds.) Sixth Brainstorming Week on Membrane Com-
puting. pp. 183-192. Fénix Editora, Sevilla, Spain (2008)

Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Nufiez, A.: Available mem-
brane computing software. In: Ciobanu, G., Pérez-Jiménez, M.J., Pdun, Gh. (eds.)
Applications of Membrane Computing, pp. 411-436. Natural Computing Series,
Springer (2006)

60

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

J. Carnero et al.

Kim, S.H., Kim, H.G., Tchah, K.H.: Object oriented face detection using colour trans-
formation and range segmentation. Electronics Letters, IEEE 34, 979-980 (1998)
Kropatsch, W.G., Haxhimusa, Y., Ion, A.: Multiresolution image segmentations in
graph pyramids. In: Kandel, A., Bunke, H., Last, M. (eds.) Applied Graph Theory
in Computer Vision and Pattern Recognition, Studies in Computational Intelligence,
vol. 52, pp. 3-41. Springer (2007)

Martin-Vide, C., Mauri, G., Pdun, Gh., Rozenberg, G., Salomaa, A. (eds.): Mem-
brane Computing, International Workshop, WMC 2003, Tarragona, Spain, July 17-
22, 2003, Revised Papers, Lecture Notes in Computer Science, vol. 2933. Springer
(2004)

Martin-Vide, C., Pdun, Gh., Pazos, J., Rodriguez-Patén, A.: Tissue P systems. The-
oretical Computer Science 296(2), 295-326 (2003)

Martin-Vide, C., Pazos, J., Paun, Gh., Rodriguez-Patén, A.: A new class of symbolic
abstract neural nets: Tissue P systems. In: Ibarra, O.H., Zhang, L. (eds.) COCOON.
Lecture Notes in Computer Science, vol. 2387, pp. 290-299. Springer (2002)
Nguyen, V., Kearney, D., Gioiosa, G.: Balancing performance, flexibility, and scal-
ability in a parallel computing platform for membrane computing applications. In:
Eleftherakis, G., Kefalas, P., Pdun, Gh., Rozenberg, G., Salomaa, A. (eds.) Work-
shop on Membrane Computing. Lecture Notes in Computer Science, vol. 4860, pp.
385—413. Springer (2007)

Nguyen, V., Kearney, D., Gioiosa, G.: An algorithm for non-deterministic object
distribution in p systems and its implementation in hardware. In: Corne, D.W.,
Frisco, P., Paun, Gh., Rozenberg, G., Salomaa, A. (eds.) Workshop on Membrane
Computing. Lecture Notes in Computer Science, vol. 5391, pp. 325-354. Springer
(2008)

Nguyen, V., Kearney, D., Gioiosa, G.: A region-oriented hardware implementation
for membrane computing applications. In: P&un et al. [27], pp. 385-409

Nguyen, V., Kearney, D., Gioiosa, G.: An extensible, maintainable and elegant ap-
proach to hardware source code generation in reconfig-P. Journal of Logic and Alge-
braic Programming 79(6), 383-396 (2010)

Paun, Gh.: Membrane Computing. An Introduction. Springer-Verlag, Berlin, Ger-
many (2002)

Paun, Gh., Pérez-Jiménez, M.J., Riscos-Nunez, A., Rozenberg, G., Salomaa, A.
(eds.): Membrane Computing, 10th International Workshop, WMC 2009, Curtea de
Arges, Romania, August 24-27, 2009. Revised Selected and Invited Papers, Lecture
Notes in Computer Science, vol. 5957. Springer (2010)

P#aun, Gh., Rozenberg, G., Salomaa, A. (eds.): The Oxford Handbook of Membrane
Computing. Oxford University Press (2010)

Petreska, B., Teuscher, C.: A reconfigurable hardware membrane system. In: Martin-
Vide et al. [19], pp. 269-285

Ritter, G.X., Wilson, J.N., Davidson, J.L.: Image algebra: An overview. Computer
Vision, Graphics, and Image Processing 49(3), 297-331 (1990)

Shapiro, L.G., Stockman, G.C.: Computer Vision. Prentice Hall PTR, Upper Saddle
River, NJ, USA (2001)

Syropoulos, A., Mamatas, L., Allilomes, P.C., Sotiriades, K.T.: A distributed simu-
lation of transition P systems. In: Martin-Vide et al. [19], pp. 357-368

Tarabalka, Y., Chanussot, J., Benediktsson, J.A.: Segmentation and classification of
hyperspectral images using Watershed transformation. Pattern Recognition 43(7),
2367-2379 (2010)

34.

35.

36.

37.

38.

39.

40.

Designing Tissue-like P Systems to Parallel Architectures 61

Tobias, O.J., Seara, R.: Image segmentation by histogram thresholding using fuzzy
sets. IEEE Transactions on Image Processing 11(12), 1457-1465 (2002)

Trimberger, S.M.: Field-Programmable Gate Array Technology. Kluwer Academic
Publishers, Norwell, MA, USA (1994)

Wang, D., Lu, H., Zhang, J., Liang, J.Z.: A knowledge-based fuzzy clustering method
with adaptation penalty for bone segmentation of ct images. In: Proceedings of the
2005 IEEE Engineering in Medicine and Biology 27th Annual Conference. pp. 6488
6491 (2005)

Yazid, H., Arof, H.: Image segmentation using watershed transformation for facial
expression recognition. In: IFMBE Proceedings, 4th Kuala Lumpur International
Conference on Biomedical Engineering. pp. 575-578 (2008)

Yuan, X., Situ, N., Zouridakis, G.: A narrow band graph partitioning method for
skin lesion segmentation. Pattern Recognition 42(6), 1017-1028 (2009)

NVIDIA Corporation. NVIDIA CUDATM Programming Guide.
http://www.nvidia.com/object/cuda_home new.html

P system web page. http://ppage.psystems.eu

P Systems with Replicator Dynamics: A Proposal

Matteo Cavaliere!, Miguel A. Gutiérrez-Naranjo?

! Spanish National Biotechnology Centre

(CNB-CSIC), Madrid 28049, Spain
mcavaliere@cnb.csic.es

Research Group on Natural Computing

Department of Computer Science and Artificial Intelligence
University of Sevilla

Avda. Reina Mercedes s/n, 41012, Sevilla, Spain
magutierQus.es

Summary. This short note proposes some ideas for considering evolutionary game the-
ory in the area of membrane computing.

1 Introduction

Evolutionary game theory is a field started by J. Maynard Smith [4] with the
aim of modelling the evolution of animal behavior by using game theory. Repli-
cator dynamics [2] is a specific type of evolutionary dynamics where individuals,
called replicators, exist in several different types. Each type of individual uses
a pre-programmed strategy and passes this behavior to its descendants without
modification. Replicator dynamics is one of the is one of most used approach to
define the evolutionary dynamics of a population.

The main idea of the mechanism the following one. One assumes a population of
players (individuals/organisms) interacting in a game composed by several possible
strategies. Individuals have fixed strategies. The players randomly interact with
other individuals (if space is considered, then the interactions are done according
to the defined structure). Each of these encounters produces a payoff for the two
individuals that depend on their strategies and on the payoff matrix that defines
the game. The payoff of all these encounters are added up. Payoff is interpreted as
fitness (reproductive success). Strategies that do well reproduce faster. Strategies
that do poorly are outcompeted.

In this note we propose the possibilities of consider replicator dynamics in the
framework of Membrane Computing (P Systems), [3].

We imagine two possibilities. The first one is using replication dynamics as
“evolution” rules of a membrane system. A second possibility consists in “simu-
lating” replication dynamics by using the tools and the notions provided by the
membrane computing paradigms.

64 M. Cavaliere, M.A. Gutiérrez-Naranjo

We believe that both possibilities could be sources of new kinds of problems
for the area.

2 Using Replicator Dynamics in P Systems

As a simple example of replication dynamics let us consider the following payoff
matrix of a well-known game, the prisoner’s dilemma, [2].

cooperate|defect
cooperate| 4,4 1,5
defect| 5,1 2,2

This is read in the following way. When a cooperator meets another cooperator,
they both gets 4. If a cooperator meets a defector, the cooperator gets 1 and the
defector 5. If two defectors meet, they both gets 2. If we have a population of
n individuals, k of them being cooperators (symbol ¢) and n — k being defectors
(symbol d) then the population is updated in the following manner (one step of
the evolutionary dynamics).

Each object ¢ receives a payoff that is the sum of all the payoffs obtained by
considering the meetings with all other players. In this case the payoff accumulated
by each single ¢ is: 4(k — 1) + 1(n — k). In the same manner, each d receives
2(n — k — 1) + 5k. The replication dynamics impose that each object (¢ or d)
replicates (produce off-springs) with a rate function of the obtained payoff (in
other words, the payof!f is interpreted as fitness, [4]).

The simplest approach could then assume that each object ¢ divides in 4(k —
1) 4+ 1(n — k) copies (off-springs), while each d divides in 2(n — k — 1) + 5k copies.
This means that each ¢ produces 4(k—1)+1(n—k) copies of ¢ and each d produces
2(n — k — 1) + 5k copies of d.

Moreover, one can also assume that, at each step, a certain number of objects is
removed from the population. The simplest scenario is to assume a death/removal
rate that indicates the number of objects (constant) removed at each step. In a
more complex scenario, the removal, as the replication, could depend on the accu-
mulated payoff (e.g., the players with worst fitness are removed). Many variants
have been considered [2].

In P systems, there is the notion of compartment that has been shown to be
relevant for the evolutionary dynamics of a population [2]. In this respect, there
are many examples that show that the evolutionary dynamics can be very different
when observed in structured populations and in homogeneous populations (e.g.,
[2]). One could then consider a P system where the objects in the compartments
represent the individuals (players) of a population. Each object indicates (is asso-
ciated to) the strategy of a certain chosen game (for instance, in the case of the
prisoner’s dilemma (PD), we have objects ¢ and d).

The population (e.g, a multiset over the alphabet ¢ and d in the PD game)
evolves, in parallel, in the compartments, according to the replicator dynamics.

P Systems with Replicator Dynamics: A Proposal 65

Specifically, the payoff matrix is used to calculate the payoff for each individual
object (as described above), by considering all other objects present in the same
compartment. Then, based on these obtained payoffs, one decides which objects
to replicate and which objects to remove. For instance, this could be done us-
ing thresholds (e.g., if payoff > ..then replicates, if payoff < ..then the object is
removed). Each object is then replicated (e.g., a ¢ creates more copies of ¢, a d
creates more copies of d) or is removed based on such threshold and on its obtained
payoff. Target indications could be used to move the created objects across com-
partments. The number of objects in a certain compartment could be naturally
interpreted as output produced. However, the programmability of such device re-
mains an open issue. In fact, notice that, differently from standard P systems, the
rules here cannot be programmed — they are “naturally” assigned by the evolu-
tionary dynamics.

3 Simulating Replicator Dynamics

The second possibility is to program the replication dynamics using the tools
available in the membrane computing area. The task is non-trivial, in particular
to implement the payoff-based replication that is naturally present in the replicator
dynamics.

We propose a first solution where any individual produces a new set of individ-
uals identical to the original, at each time unit according to a discrete global clock.
The number of off-spring depends on the number of encounters with defectors and
cooperators and their corresponding payoffs.

We suggest a family of P systems for dealing with prisoner’s dilemmas in its
most general form (however, the approach proposed here can be generalized to
different games). The family of P systems considers the following initial situation:
A population of n individuals, k of them being cooperators (¢) and n — k being
defectors (d). Let us consider four non negative integers R, S, T and P and the
following general payoff matrix for the prisoner’s dilemma.

cooperate|defect
cooperate| R,R S, T
defect| T.S pP.P

As standard in the area, [2], we use the terms R, reward, P, punishment, T,
temptation and S, sucker’s payoff. Hence, the 4-uple PD = (R, S, T, P) can encode
the game.

We assume the simplest replication mechanism where each individual ¢ or d is
substituted in the next stage (by using mitosis or whatever replication mode) by
as many objects of the same type as its payoff. In other words, if ¢,, and d,, is the
number of individuals of type ¢ and d in the stage n, then

66 M. Cavaliere, M.A. Gutiérrez-Naranjo

C():k‘

dozn—k
cpy1=R(c, — 1)+ Sd,
dnyr =Ty + P (dy — 1)

In the membrane computing framework one can consider rules of type ¢ — ¢
and d — d°. This reproduces the idea of replication of the original individuals.
The drawback is, of course, than a and § depends on the number of individuals
of the current configuration. This idea leads us to consider a set of rules ¢ — ¢*1,
c— c*,¢c— ¢, ..., but even in case of having an oracle which decides the right
rule in each configuration, we will need a potentially infinite amount of rules.

We propose an alternative solution that uses a P systems family (a P system
for each 4-uple (R, S, T, P) in the framework of P systems with active membranes,
[3], that computes {c,,dn tnen). The proposed systems have been checked with
the SCPS simulator [1]. As usual in this P system model, each membrane can be
crossed out by a unique object (at most) in each computation step. This feature
will be used to control the flow of objects between regions.

Given a 4-uple PD = (R, S, T, P) encoding a prisoner’s dilemma, let us consider
the following P system

HPD = <F7 Ha E07 Hy we,w5,R>

where

The alphabet of objects is I' = {c¢, ¢, Ca, €1, C2, 3, d, ds, da, d1,d2, d3, 2, 21, 22, 23, 24 };
H = {e, s} is the set of labels;

EC = {q0,q1, q2,¢3, ¢4, qc, qd, gcc, qdd} is the set of electrical charges;

the membrane structure has only two membranes, the skin with label s an an
elementary membrane with label e, u = [[]49]4%;
e the initial multisets are w. = 2z and ws = &. We also consider as input, the
population of objects c* and d"~*. They will be placed in membrane e in the
initial configuration.

We will also consider the following sets of rules

Ry = [2]2 = [z]2 [z]2
Ry = [z — A&

Rg = [Zl _))\]22

Ry =[] —c[]#

Ry = [d]' — d[]

In the initial configuration we have only one membrane e with the population
of objects ¢ and d and one extra object z. This extra object z produces the division
(R;) of the membrane. We have two copies of the population: one with charge g1
and the second one with charge ¢2.

The main idea is that all the objects in the membrane e with charge ¢1 will pass
sequentially to membrane with charge ¢2. In this second membrane the payoffs will

P Systems with Replicator Dynamics: A Proposal 67

be computed. The charges will be used as traffic-lights in order to control the flow
of objects.

Rg = c[]? — [er]E

Ry = d[]# — [dl]qd
Ry = [c]i® — 2 [J2*
Ry = [d]i? — z4[]2%

When an object ¢ or d arrives to the membrane with label ¢2 with Rg or Ry,
the calculation of the payoff starts. Since an individual does not meet itself in
order to get a payoff, an object ¢ or d is sent out of the membrane (Rg or Ry).

Ry = [c1 — cac3)¢
Rll = [dl — dgdg]g
R12 = [24 —)\]go

These rules Ryg — Rj2 are technical rules in order to adjust the proposed
P system to the model of active membranes, where rules ¢[]%? — [cac3]9¢ or
[c]2¢ — A[]2°¢ are not allowed. The computation of the payoff is performed by the
following rules:

Riz = [c— cfc]ie
Rus = [d— 5 d]ie
Ris = [c¢ — dT c]2dd
Rig = [d — df d]¢

The charge qcc can be interpreted as the visit of an individual ¢. The objects
¢ in the membrane produce R copies of ¢, and all the objects d produce S copies
of d.. Analogously, the charge gdd can be interpreted as the visit of an individual
d. In this case, the objects ¢ in the membrane produce T' copies of ¢, and all the
objects d produce P copies of d,.

The path to complete the cycle and to start again begins with the following
rules. An object zo is sent to the first membrane labeled with e in order to get a
new individual for the calculation of the payoff.

Ri7 = [CQ}ZCCH@H 2
Rig = [dp]2 — 2]2
Rig = 2 (]2 — [2]0

The object ¢ or d sent out by the rule Rg or Ry is placed again on the corre-
sponding membrane by rule Ryy or Roj.

Rag
Roy

[cs — ¢]E®

[ds — d]?*

68 M. Cavaliere, M.A. Gutiérrez-Naranjo

Sending 25 into the corresponding membrane opens the traffic light by changing
the charge to ¢;. The cycle starts again and rules R4 and R5 can be triggered again,
if any object ¢ or d remains in the membrane. In order to control the behavior
of the membrane when all the objects ¢ and d have been sent out, we add some
technical rules.

Ra»
Ros

= [29 — 239!
= [23 = AP

If z3 appears in a membrane, it means that all objects ¢ or d have been sent
out in previous steps. In this case, the membrane can be dissolved and the cycle
of computing the payoffs is completed.

Roy
Ras

[23]2" — 23
23 (1% — [23]¢*

When an object z3 goes into the membrane with label e, the old objects ¢ and
d are removed and the objects ¢, and d, become the new population.

R26 = [C* _>ca]g4
R27 = [d* —)da]g4
Rog = [23 — 224 |8
Rog = [cq —)94
R30 = [da —>d]g4
Ry = [e— A
Ry = [d— A2

Finally, we change the charge of the membrane e and a new stage can start

R3z = [z4]1* — 24 []P°

3.1 Overview of the Computation

The main idea of the design is to consider two copies of the population. The first
copy (which acts as a counter) sends individuals to the second one: when all the
objects have been sent, the computation of all payoffs is completed and we finish
a cycle. In the second copy, the payoffs are computed and stored. For each object,
the P system takes five computational steps in order to calculate its payoff.

We start with the initial configuration Cp = [[zcFd"~%]90]40. Initially,
the two copies of the population are created by applying the rule Ry, C; =
[[21c8d"F]9 [21c8d" 19290, The first new membrane, with label g1 will send
objects to the second one with label ¢2. At this moment, rules R4 and Rs5 can be
non-deterministically applied, but, due to the semantics of active membranes, only
one of them is chosen. Let us suppose that R3 is taken (the other case is analo-
gous) and we reach Cy = [[cF~1dn=*]93 [cFd" 192 |90, Notice that the label in

P Systems with Replicator Dynamics: A Proposal 69

the first membrane has been changed to ¢3. Intuitively, this membrane is closed
till the arrival of the object 29 at step 6. Objects z; are removed.

In the next step, the object ¢ in the skin is sent as ¢; into the second elemen-
tary membrane and changes the polarization, C3 = [[cF~1d" %23 [Fdn—Fc, |1¢)20.
The process of computing the payoff of this object ¢ starts: ¢; is replaced
by cacs and one object ¢ is sent to the skin, changing again the polariza-
tion, Cy = [[cF=1dn=F]2 [cF—1d"Fcyes]9 24199, The computation of the pay-
off is made now by application in parallel of the rules Ry;3 and Ris. In or-
der to avoid that this rule can be applied in the next step, the object ¢y is
sent out (as z3) and the polarization changes again. According to Rj3 and
Ry4, R objects ¢, are produced for each ¢ and S objects ¢, for each d, C5 =
[[cF—Ltan—F]a3 [ck_ld"_k03cf(k_1)+s(n_k) 192 25]9°. Finally, c3 goes to ¢ in the sec-
ond elementary membrane and 2o goes into the first one, changes the polarization
and opens the membrane, Cg = [[cF~1d" 2,]9t [ckd"’kcf(k_1)+s(n_k) 192 25]4°.
Notice that we have again two membranes, one of them with charge q1 and the
other one with charge ¢2 as in the configuration Cj. In the next steps the process
goes on by sending all the objects from the first membrane to the second one,
where the payoffs will be stored.

After 5n + 1 steps we arrive at the configuration

Csnsr = [[22]7 [den—kcf(R(k—l)-%S(n—k))dfkn—k)(Tk-%P(n—k—l)) 42120

No more objects are left in the first membrane. In C5, 12 we have an object z3
inside a membrane with label e and charge ¢;. In the next step, the rule 794 is
applied and the membrane is dissolved,

[[denkaI:(R(k—l)—i-S(n—k))d&n—k)(Tk—i—P(n—k—l)) }QQ q0

C5n+3 = e Z3]s

The object z3 goes into the elementary membrane and changes the polarization to

44,

CSn+4 = [[Ck’dn_kclj(R(k—1)+S(n_k))d&"_k)(Tk+P(7l—k—l))23]g4]go

This new polarization produces the updating of the payoff to a new population in
two steps, so

CEm+6 _ [[Ck(R(k—l)-l—S(n—lc))d(n—k)(Tk:-l—P(n—k—l)) }24 24]gO

which is analogous to the configuration Cp, so a new stage starts (the object z4
disappears in the next step by using the rule Rjs).

4 Conclusions and Future Work

Replicator dynamics in one of most used mechanisms in evolutionary game theory.
In this context, several papers have shown the relevance of compartments and
structures. On the other hand, membrane computing explicitly investigates the

70 M. Cavaliere, M.A. Gutiérrez-Naranjo

relevances of compartments for computation. A natural possibility, proposed in
this note, is to bridge these two areas. We have sketched two possibilities. The
first one consists in using rules inspired from the replicator dynamics. A second
one consists in programming the replicator dynamics using the tools of membrane
computing. In this case, we have presented a possible solution using membrane
systems with active membranes. However several other solutions can be imagined,
in particular replacing the cell-like membrane structure by a tissue-like structure
could allow a simpler version of the simulations.

Acknowledgments

MAGN acknowledges the support of the projects TIN-2009-13192 of the Ministerio
de Ciencia e Innovacién of Spain and the support of the Project of Excellence of
the Junta de Andalucia, grant PO8-TIC-04200. M. C. acknowledges the support of
the program JAEDocl5 (”Programa junta para la ampliacion de estudios”) and
of the Research Group on Natural Computing of the University of Sevilla.

References

1. Gutiérrez-Naranjo, M.A., Riscos-Nunez, A., Pérez-Jiménez, M.J.: A simulator for con-
fluent P systems. In: Gutiérrez-Naranjo, M.A., Riscos-Nuifez, A., Romero-Campero,
F.J., Sburlan, D. (eds.) Third Brainstorming Week on Membrane Computing. pp.
169-184. Fénix Editora, Sevilla, Spain (2005)

2. Hofbauer, J., Sigmund, K.: Evolutionary Games and Population Dynamics. Cambridge
University Press (Jun 1998)

3. Paun Gh., Rozenberg G., Salomaa A. Eds.: The Ozford Handbook of Membrane Com-
puting. Oxford University Press, 2010.

4. Smith, J.M.: Evolution and the Theory of Games. Cambridge University Press, 1st
edition edn. (Dec 1982)

P Colonies of Capacity One and Modularity

Ludék Cienciala, Lucie Ciencialova, and Miroslav Langer

Institute of Computer Science, Silesian University in Opava, Czech Republic
{ludek.cienciala, lucie.ciencialova, miroslav.langer}@fpf.slu.cz

Summary. We continue the investigation of P colonies introduced in [8], a class of
abstract computing devices composed of independent agents, acting and evolving in a
shared environment. The first part is devoted to the P colonies of the capacity one. We
present improved allready presented results concerning the computional power of the
P colonies. The second part is devoted to the modularity of the P colonies. We deal with
dividing the agents into modules.

1 Introduction

P colonies were introduced in the paper [7] as formal models of a computing
device inspired by membrane systems and formal grammars called colonies. This
model is inspired by structure and functioning of a community of living organisms
in a shared environment.

The independent organisms living in a P colony are called agents or cells. Each
agent is represented by a collection of objects embedded in a membrane.

The number of objects inside each agent is the same and constant during
computation.

The environment contains several copies of the basic environmental object de-
noted by e. The number of the copies of e in the environment is sufficient.

With each agent a set of programs is associated. The program, which deter-
mines the activity of the agent, is very simple and depends on content of the agent
and on multiset of objects placed in the environment. Agent can change content
of the environment by programs and through the environment it can affect the be-
havior of other agents.

This influence between agents is a key factor in functioning of the P colony. In
each moment each object inside the agent is affected by executing the program.

For more information about P systems see [12] or [13].

72 L. Cienciala, L. Ciencialova, M. Langer

2 Definitions

Throughout the paper we assume that the reader is familiar with the basics of the
formal language theory.

We use N RE to denote the family of the recursively enumerable sets of natural
numbers. Let X be the alphabet. Let X* be the set of all words over X' (includ-
ing the empty word). We denote the length of the word w € X* by |w| and
the number of occurrences of the symbol a € X in w by |w],.

A multiset of objects M is a pair M = (V, f), where V is an arbitrary (not
necessarily finite) set of objects and f is a mapping f: V — N; f assigns to each
object in V its multiplicity in M. The set of all multisets with the set of objects
V is denoted by V°. The set V' is called the support of M and is denoted by
supp(M) if for all z € V' f(x) # 0 holds. The cardinality of M, denoted by
|M]|, is defined by |[M| = }_ . f(a). Each multiset of objects M with the set of
objects V! = {a1,...a,} can be represented as a string w over alphabet V', where
lwl|,, = f(a;); 1 < i < n. Obviously, all words obtained from w by permuting
the letters represent the same multiset M. The e represents the empty multiset.

2.1 P colonies

We briefly recall the notion of P colonies. A P colony consists of agents and an
environment. Both the agents and the environment contain objects. With each
agent a set of programs is associated. There are two types of rules in the programs.
The first type of rules, called the evolution rules, are of the form ¢ — b. It means
that the object a inside the agent is rewritten (evolved) to the object b. The second
type of rules, called the communication rules, are of the form ¢ «» d. When the
comunication rule is performed, the object ¢ inside the agent and the object d
outside the agent swap their places. Thus after execution of the rule, the object d
appears inside the agent and the object c is placed outside the agent.

In [7] the set of programs was extended by the checking rules. These rules give
an opportunity to the agents to opt between two possibilities. The rules are in the
form ry/ry. If the checking rule is performed, then the rule 1 has higher priority
to be executed over the rule ro. It means that the agent checks whether the rule
r1 is applicable. If the rule can be executed, then the agent is compulsory to use
it. If the rule ry cannot be applied, then the agent uses the rule ro.

Definition 1. The P colony of the capacity k is a construct
T = (Ae, f,Vg,B1,...,By), where

A is an alphabet of the colony, its elements are called objects,

e € A is the basic object of the colony,

f € A is the final object of the colony,

VE is a multiset over A — {e},

B;, 1 <i<mn, are agents, each agent is a construct B; = (O;, P;), where

P Colonies of Capacity One and Modularity 73

O; is a multiset over A, it determines the initial state (content) of the agent,
01| = k,
P, ={pi1,.--,Dik; } s a finite multiset of programs, where each program
contains exactly k rules, which are in one of the following forms each:
a — b, called the evolution rule,
c < d, called the communication rule,
r1/re, called the checking rule; r1, 1o are the evolution rules or the com-
munication rules.

An initial configuration of the P colony is an (n + 1)-tuple of strings of objects
present in the P colony at the beginning of the computation. It is given by the
multiset O; for 1 < i < n and by the set Vg. Formally, the configuration of the P
colony IT is given by (wy,...,w,, wg), where |w;| =k, 1 < i < n, w; represents
all the objects placed inside the i-th agent, and wg € (A — {e})° represents all the
objects in the environment different from the object e.

In the paper parallel model of P colonies will be studied. At each step of the
parallel computation each agent tries to find one usable program. If the number
of applicable programs are higher than one, then the agent chooses one of the rule
nondeterministically. At one step of the computation the maximal possible number
of agents are active.

Let the programs of each P; be labeled in a one-to-one manner by labels in a
set lab (P;) in such a way that lab (P;) Nlab(P;) =0 for i # j, 1 <i,j <n.

To express derivation step formally, we introduce following four functions for
the agent using the rule r of program p € P with objects w in the environment:

For the rule r which is a — b,c <> d and ¢ < d/¢’ < d’ respectively, and for
multiset w € V° we define:

left(a — bw)=a left(c = d,w)=c¢
right (a — b,w) =b right (¢ & d,w) = ¢
export (a — b,w) = ¢ export (¢ « d,w) = ¢
import (a — b,w) = ¢ import (¢ < d,w) =d

left(c—d/d —d w)=¢
right (c = d/d — d',w)=¢
export (¢ < d/c — d' w)=c

import (c < d/c’ < d',w) = d} for Jwlq > 1

export (¢ — d/c — d' w) =

import (¢ — d/d — d' w)=d }for [wla =0 and fwla > 1

For a program p and any a € {left, right, export,import}, let be
a (pa w) = Urepar (Tv ’LU)
A transition from a configuration to another is denoted as
(wi,...,wp;wg) = (w],...,w;wy), where the following conditions
are satisfied:

74 L. Cienciala, L. Ciencialova, M. Langer

e There is a set of program labels P with |P| < n such that
- p,pe€P,p#p, pelab(P;) implies p’ ¢ lab(P;),
— for each p € P, p € lab(P;), left(p,wg) U export (p,wg) = w;, and

U import (p, w) C wp.
peEP
e Furthermore, the chosen set P is maximal, i.e. if any other program r &

Ur<i<nlab (P;), 7 ¢ P is added to P, then the conditions listed above are
not satisfied.

Now, for each j, 1 < j < n, for which there exists a p € P with p € lab(F;),
let be w}; = right (p,wg) U import (p,wg) . If there is no p € P with p € lab(P;)

for some j, 1 < j < n, then let be w; = w; and moreover, let be

wy =wg — |J import (p,wg) U U export (p,wg).
pEP peP
A configuration is halting if the set of program labels P satisfying the conditions

above cannot vary from the empty set. A set of all possible halting configurations
is denoted by H. A halting computation can be associated with the result of the
computation. It is given by the number of copies of the special symbol f present
in the environment. The set of numbers computed by a P colony IT is defined as

N(H> = {'UElf | (wla"'7wn7VE) =% (Ul,...,Un,UE) EH}7

where (wi,...,w,, Vg) is the initial configuration, (vi,...,v,,vg) is a halting
configuration, and =* denotes the reflexive and transitive closure of =.
Consider a P colony IT = (A4, e, f, Vg, By, ..., Bp). The maximal number

of programs associated with the agents in the P colony II are called the height
of the P colony II. The degree of the P colony II is the number of agents in it.
The third parameter characterizing the P colony is the capacity of the P colony
IT describing the number of the objects inside each agent.

Let us use the following notations:
NPCOLpq(k,n,h) for the family of all sets of numbers computed by the P
colonies working in a parallel, using no checking rules and with:

- the capacity at most k,

- the degree at most n and

- the height at most h.
If we allow the checking rules, then the family of all sets of numbers computed by
the P colonies is denoted by NPCOLy,, K. If the P colonies are restricted, we use
the notation NPCOLy,, R, respectively NPCOLp. KR.

2.2 Register machines

The aim of the paper is to characterize the size of the families NPCOLyq, (k,n, h)
comparing them with the recursively enumerable sets of numbers. To meet the
target, we use the notion of a register machine.

P Colonies of Capacity One and Modularity 75

Definition 2. [9] A register machine is the construct M = (m, H,ly, l,, P) where:
- m is the number of registers,
- H is the set of instruction labels,
-l is the start label, ly, is the final label,
- P is a finite set of instructions injectively labeled with the elements
from the set H.

The instructions of the register machine are of the following forms:
l1 : (ADD(r),l2,13) Add 1 to the content of the register » and proceed to the
instruction (labeled with) ls or I3.
ly : (SUB(r),la,13) If the register r stores the value different from zero, then
subtract 1 from its content and go to instruction ls, other-

wise proceed to instruction [3.
lp: HALT Stop the machine. The final label [;, is only assigned to this

instruction.

Without loss of generality, it can be assumed that in each AD D-instruction
l1 : (ADD(r),ls,13) and in each conditional SU B-instruction 1y : (SUB(r),la,13),
the labels l1, o, [3 are mutually distinct.

The register machine M computes a set N(M) of numbers in the following
way: the computation starts with all registers empty (hence storing the number
zero) and with the instruction labeled ly. The computation proceeds by applying
the instructions indicated by the labels (and the content of registers allows its
application). If it reaches the halt instruction, then the number stored at that
time in the register 1 is said to be computed by M and hence it is introduced
in N(M). (Because of the nondeterminism in choosing the continuation of the
computation in the case of AD D-instructions, N(M) can be an infinite set.) It is
known (see e.g.[9]) that in this way we can compute all sets of numbers which are
Turing computable.

Moreover, we call a register machine partially blind [6] if we interpret a subtract
instruction in the following way: I; : (SUB(r);la;13) - if there is a value different
from zero in the register r, then subtract one from its contents and go to instruction
l> or to instruction [3; if there is stored zero in the register r when attempting to
decrement the register r, then the program ends without yielding a result.

When the register machine reaches the final state, the result obtained in the
first register is only taken into account if the remaining registers store value zero.
The family of sets of non-negative integers generated by partially blind register
machines is denoted by NRM,,. The partially blind register machine accepts a
proper subset of NRE.

3 P colonies with one object inside the agent

In this Section we analyze the behavior of P colonies with only one object inside
each agent of P colonies. It means that each program is formed by only one rule,

76 L. Cienciala, L. Ciencialova, M. Langer

either the evolution rule or the communication rule. If all agents have their pro-
grams with the evolution rules, the agents ”live only for themselves” and do not
communicate with the environment.

Following results were proved:

— NPCOLp, K (1,%,7) = NRE in [1],

—~ NPCOLp.-K(1,4,%) = NRE in [2]

~ NPCOLper(1,2,%) = NPBRM in [2].

Theorem 1. NPCOL,q,(1,4,%) = NRE

Proof. We construct a P colony simulating the computation of the register ma-
chine. Because there are only copies of e in the environment and inside the agents,
we have to initialize a computation by generating the initial label ly. After gen-
erating the symbol [y, the agent stops. It can continue its activity only by using
a program with the communication rule. Two agents will cooperate in order to
simulate the ADD and SUB instructions. Let us consider an m-register machine
M = (m, H,lo,ln, P) and present the content of the register ¢ by the number
of copies of a specific object a; in the environment. We construct the P colony
II=(Ae, f,0,By,...,By) with:

— alphabet A = {l;, L;, @,, , mi, m}, @,, vi,ni, | 0<i<|H|}U
U {a;|1 <i<m}U{AL | for every I; : (SUB(r),l;,l;) € H}U
U {e,d,C},
- f = ai,
-B;=(e,P), 1<i<A4.
(1) To initialize simulation of computation of M we define the agent By = (e, P;)
with a set of programs:
P1 .
1:{e—lp);
(2) We need an additional agent to generate a special object d. This agent will be
working during whole computation. In each pair of steps the agent Bs places a copy
of d to the environment. This agent stops working when it consumes the symbol
which is generated by the simulation of the instruction [; from the environment.
P2 :
2:(e—d),3:(d—e),4:(d—lp);
The P colony IT starts its computation in the initial configuration (e, e, e, e, ¢).
In the first subsequence of steps of the P colony II only agents By, By can apply
their programs.

configuration of IT

step Bl BQ B3 B4 Env P1 P2 P3 P4
1. e e e e 1 2
2. lo d 3
2

3. lo e e e d

P Colonies of Capacity One and Modularity 77

(3) To simulate the ADD-instruction Iy : (ADD(r),ls,13), we define two agents
Bs and By in the P colony II. These agents help each other to add a copy of

the object a, and the object 5 or I3 into the environment.
Py Py P P

(Iy < Dy), 9: H> 13: (e < Dy), 16:<8H@>
(D1 <« d), 10 : HL1>, 14 : D1HH> @Har,
(d— @), 11:(Ly — lo), 15: <—>e>, 18: (a, <€),
;<QD<—>>7 12:<L1—>l3>,

This pair of agents generate two objects. One object increments value of the
particular register and the second one defines of which instruction will simulation
continue. One agent is not able to generate both objects corresponding to the sim-
ulation of one instruction, because at the moment of placing all of its content into
the environment via the communication rules, it does not know which instruction
it simulates. It nondeterministically chooses one of the possible instructions. Now
it is necessary to check whether the agent has chosen the right instruction. For this
purpose the second agent slightly changes first generated object. The first agent
swaps this changed object for the new one generated only if it belongs to the same
instruction. If this is not done succesfully, the computation never stops because of
absence of the halting object for the agent Bs.

An instruction Iy : (ADD(r),ls,l3) is simulated by the following sequence
of steps. Let the content of the agent Bs be d.

5
6:
7:
8

configuration of IT
step Bl BQ B3 B4 Env P1 P2 P3 P4
1. l1 d e e ard’ 5 3
2. | Dy e e e atdvt! 6 2
3. d d e e Diard’ 7 3 13
4.1 @ e Dy e atdvt? 2 14
5.0 W d e atd"t! 3 15
6. | (1) e e e [ulapd't?| 8 2
7. d e e a}fd”‘|r2 9 3 16
8. e @ e a4t | 10 2 17
9. | Ly d ar e atd'*t? |11or12 3 18
10. | 1o e e e avtlgett

(4) For each SUB-instruction l; : (SUB(r