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A curious infinite product

Fernando Chamizo

1 The product

Behold the following result!

Theorem 1.1. Let B1 and B2 be integers and let
a1 and a2 be positive divisors of B2

1 +1 and B2
2 +1,

respectively. Then
∞∏
n=1

e2πn/a2
(
cosh 2πn

a1
− cos 2πnB1

a1

)
e2πn/a1

(
cosh 2πn

a2
− cos 2πnB2

a2

) =
eπ/(6a1)

√
a1

eπ/(6a2)
√
a2

.

Note that each factor tends exponentially to 1, then the convergence is
assured.

The curious point is that there is something arithmetic involved. It is in
general false without the divisibility condition. The following figures show
the difference between the left hand side and the right hand side of the
formula for a2 = B2 = 1 and the values of a1 indicated in the captions when
B1 takes real values in [0, 10]. In the first figure we see that the identity acts
as a perfect detector of integers, 1 | B2

1 + 1, or odd integers, 2 | B2
1 + 1. The

second figure reveals a more complicate truth because 3 ∤ B2
1 + 1 for B1 ∈ Z

but clearly the plot crosses the OX axis for some non integral values of B1.
On the other hand, 10 | B2

1 + 1 implies B1 = 3, 7 if B1 ∈ [0, 10] ∩ Z and we
see also some other real zeros. Summing up, occasionally the identity can
be also true “by chance” for some real values.
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2 A curious infinite product

a1 = 1, a1 = 2, B1 ∈ [0, 10] a1 = 3, a1 = 10, B1 ∈ [0, 10]

If you are a modular person, after reading the following lines showing the
relation with η, you will be able to find a quick proof by yourself, perhaps
adding a teaspoon of class number one or a grain of complex multiplication.
If you are modular but not to the bone, you will have a chance of reading §3.
Anyway, the challenge here is to provide a proof simpler enough to fit in a
lecture, only one, of an undergraduate course. This is done in §2 assuming
an analytic result known as Kronecker limit formula which is proved in [2]
with little more than the residue theorem. The proof is reproduced in §4
adapted to a special case, for the sake of clarity, and with complementary
comments to convince you that it generalizes finely.

We start defining the Dedekind η function on the upper half complex
plane as

η(z) = eπiz/12
∞∏
n=1

(
1− e2πinz

)
.

It converges quickly if z is far apart from the real axis because 2πinz amplifies
the imaginary part of z giving a negative exponential.

We have
∣∣1 − eu+iv

∣∣2 = eu
∣∣e−u/2 − e(u/2)+iv

∣∣2 = 2eu(coshu− cos v), for
u, v ∈ R. Taking u + iv = 2πi(Bj + i)/aj , we see that the infinite product
in Theorem 1.1 is

∞∏
n=1

∣∣1− e2πi(B1+i)/a1
∣∣2∣∣1− e2πi(B2+i)/a2
∣∣2 =

eπ/6a1
∣∣η((B1 + i)/a1

)∣∣2
eπ/6a2

∣∣η((B2 + i)/a2
)∣∣2

Then Theorem 1.1 is equivalent to say that
∣∣η((Bj+i)/aj

)∣∣2/√aj is constant.
It does not depend on the choice of aj and Bj fulfilling the hypotheses.

Modular people know how to relate the values of η(z) at different points
connected by some symmetries and then they may find the previous claim
fairly easy. We pedestrians aspire for a proof not requiring any knowledge
about those relations and symmetries. At the same time, we can learn a
formula, the aforementioned Kronecker limit formula, which plays a role in
some explicit evaluations.
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2 A proof for everybody (summoning Kronecker)

The binary quadratic forms Q(x, y) = a x2 + b x y + c y2 may seem very
simple for a linear algebra student but they become a deep and classic topic
in number theory when we impose a, b, c ∈ Z and we want to determine
Q(Z2) or the prime numbers in this image [3]. Here we do not dwell on these
difficult topics and indeed in the first part of this section we only need Q to
be a real form i.e., a, b, c ∈ R. On the other hand, we assume all the time Q
to be positive definite, equivalently a > 0 and 4 a c− b2 > 0.

The Riemann zeta function and the Epstein zeta function ζ(s,Q), where
Q is a positive definite binary quadratic form, are defined for s > 1 by

ζ(s) =

∞∑
n=1

n−s and ζ(s,Q) =
∑

n⃗∈Z2\{0⃗}

(
Q(n⃗)

)−s
.

Both definitions can be extended analytically to real and complex values
beyond s > 1. It is well known that for the Riemann zeta function there is
an obstacle at s = 1. Some insight about this point comes from the identity

(1 − 21−s)ζ(s) =
∞∑
n=1

(−1)n+1n−s, which reduces to multiplication term by

term. Recalling
∞∑
n=1

(−1)n+1n−1 = log 2, we have

lim
s→1+

(s− 1)ζ(s) = (log 2) lim
s→1+

s− 1

1− 21−s
= 1 (1)

by L’Hôpital’s rule. This means that ζ(s) is approximately (s−1)−1 for s > 1
close to 1. The Kronecker limit formula implies that ζ(s,Q) is approximately
2π√
D
(s − 1)−1 near 1 (this is not a big deal and it can be done with fairly

elementary methods) and shows that the difference tends to a constant that
can be expressed in terms of the Dedekind η function (this is the difficult
part). Kronecker show yourself, we beckon you!

Proposition 2.1 (Kronecker limit formula). Let Q(x, y) = ax2 + bxy + cy2

be a real quadratic form with D = 4ac− b2 > 0 and a > 0. Then

lim
s→1+

(√D

4π
ζ(s,Q)− ζ(2s− 1)

)
= log

√
a/D

|η(zQ)|2
with zQ =

−b+ i
√
D

2a
.

I have downgraded this theorem to proposition to emphasize that it is
not so hard to prove. In [2] there is a proof that requires little more than the
residue theorem. To not repeat myself, if you are interested I have adapted it
in §4 to Q(x, y) = x2+y2 which allows more reductions and any hard working
reader should be able to obtain the general case from it, perhaps following
the hints included there. A last comment is that if you look up authorized
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1 Trigonometria esfèrica

Aquells lectors que ja sàpiguen què és un triangle esfèric i com es mesuren els
seus costats i els seus angles poden saltar-se les subseccions 1.1 i 1.2 i passar
directament a la subsecció 1.3.

1.1 Arc de circumferència determinat per dos punts

A cada dos punts A i B de la circumferència unitat, no diametralment opo-
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π, (vegeu la figura 1) tal com explicarem a continuació.
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4 A curious infinite product

sources (for instance [7] or [11, §1.1]) Proposition 2.1 does not seem like the
standard Kronecker limit formula. Take my word, it is a compact equivalent
version.

Proposition 2.1 is purely analytic, a limit, while Theorem 1.1 is some-
how arithmetic. The integers enter into the game through the humble but
important group of matrices

SL2(Z) =
{
M =

(
m11 m12

m21 m22

)
: mjk ∈ Z, det(M) = 1

}
.

It is a group, with the product of matrices, because the inverse of an integral
matrix of determinant 1 is also a matrix of the same type.

The key result to deduce Theorem 1.1 from the Kronecker limit formula
is that for the integral case with D = 4 there is only a possible Epstein zeta
function!

Lemma 2.2. If Q(x, y) = ax2+ bxy+ cy2 is a quadratic form with b, c ∈ Z,
a ∈ Z+ and 4ac− b2 = 4 then there exists M ∈ SL2(Z) such that Q(Mv⃗) =
x2 + y2 where v⃗ = (x, y). In particular, for any of these forms we have
ζ(s,Q) = ζ(s, x2 + y2).

Of course, here it is in use the typical typographical abuse in linear
algebra: We have to think v⃗ as a vertical vector to multiply Mv⃗. This
lemma is based on an elementary reduction algorithm due to Lagrange and
Gauss for general binary quadratic forms with a, b, c ∈ Z. If you want to
trumpet proudly “I read Gauss”, go to his masterpiece [4, Art.171].

Proof. Note that the last part follows from the first part because M ∈ SL2(Z)
only rearranges the elements of Z2. In other words, M defines a bijective
map Z2 −→ Z2.

If b = 0 then clearly the result is true with M the identity matrix. If
b ̸= 0 we are going to show that there is a “reduction matrix” R ∈ SL2(Z)
such that Q′(v⃗) = Q(Rv⃗) has a smaller value of |b|. Repeating the process a
number of times we get x2 + y2 = Q(Mv⃗) with M = RnRn−1 · · ·R1 and we
are done.

Let us see how to construct R. If ⟨x⟩ is the nearest integer function
(define it as you want at half-integers), we choose R as

R =

(
⟨b/(2a)⟩ 1

−1 0

)
if a < c and R =

(
0 −1
1 ⟨b/(2c)⟩

)
if a > c.

There is not an a = c case with b ̸= 0 because 4 = 4a2−b2 = (2a−b)(2a+b)
implies 2a− b = 2a+ b = 2. Both cases are similar changing the role of the
variables. Let us check for instance the second one:

Q(Rv⃗) = a y2 − b y
(
x+

〈 b

2 c

〉
y
)
+ c

(
x+

〈 b

2 c

〉
y
)2

= Ax2 +
(
2 c

〈 b

2 c

〉
− b

)
x y + C y2.
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The absolute value of the new xy coefficient is clearly less than |b| when
|b| > c and |b| ≤ c is impossible because it would imply 4ac − b2 ≥ 4(c +
1)c− c2 > 4.

Proof of Theorem 1.1. Consider the quadratic forms Qj = ajx
2 − 2Bjxy +

(B2
j + 1)y2/aj for j = 1, 2. By the last part of Lemma 2.2 the limits in

Proposition 2.1 corresponding to both quadratic forms are identical. Then
we conclude

log

√
a1 /2∣∣η((B1 + i)/a1

)∣∣2 = log

√
a2 /2∣∣η((B2 + i)/a2

)∣∣2
and, as mentioned before, the constancy of

∣∣η((Bj+i)/aj
)∣∣2/√aj establishes

the result.

3 The quick proof for modular people

Even if you are not a modular person surely you have heard about modular
forms by their relation with the proof of Fermat’s last theorem (by the way,
[6] is an excellent reference if you do not dare to face the readings for the
experts). Roughly speaking, modularity implies a kind of symmetry under
the changes z 7→ z + 1 and z 7→ −1/z of a holomorphic function defined
on the upper half plane. The essence of the modular proof below is that
if aj | B2

j + 1 for j = 1, 2 then (B1 + i)/a1 can be transformed into (B2 +
i)/a2 by successive applications of these changes and the symmetries provide
the needed cancellation between the numerator and the denominator of the
product.

In the case of the Dedekind η function, the modularity means

η(z + 1) = eπi/12η(z) and η(−1/z) =
√
−iz η(z). (2)

Of course, the first formula is trivial from the definition. Absolutely, the
second is not. To my knowledge the simplest proof is still one due to Siegel
[10] (see also [7, §9.2]) based on the residue theorem. Let us go fancy pro-
claiming that |ℑ(z)|1/2|η(z)|2 is invariant under z 7→ z + 1 and z 7→ −1/z,
where ℑ(z) is the imaginary part of z. This follows immediately from (2)
using ℑ(z + 1) = ℑ(z) and ℑ(−1/z) = |z|−2ℑ(z).

If you are really a modular person you know that z 7→ z+1 and z 7→ −1/z
generate all the maps z 7→ (m11z +m12)/(m21z +m22) with M = (mjk) ∈
SL2(Z), these maps are the modular group. Hence |ℑ(z)|1/2|η(z)|2 is also
invariant by them. In the particular case z = i we get∣∣η(i)∣∣2 = ∣∣ℑ(γM (i)

)∣∣1/2∣∣η(γM (i)
)∣∣2 with γM (i) =

m11i+m12

m21i+m22
.
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6 A curious infinite product

It only remains to check that if 0 < a | B2 + 1 then there exists a matrix
M ∈ SL2(Z) such that γM (i) = (B+ i)/a. Actually, we have already done it
because taking Q(x, y) = ax2−2Bxy+(B2+1)y2/a in Lemma 2.2, as before,
and choosing v⃗ = (i, 1), we have 0 = Q(Mv⃗) =

(
m21i +m22

)2
Q
(
γM (i), 1

)
.

The roots of Q(z, 1) = 0 are (B ± i)/a, just solving the second degree equa-
tion, and ℑ

(
γM (i)

)
> 0 (check it!), therefore necessarily γM (i) = (B + i)/a,

as expected.

4 Who fears the Kronecker limit formula?

The case Q(x, y) = x2 + y2 of Proposition 2.1 reads

lim
s→1+

( 1

2π
ζ(s, x2 + y2)− ζ(2s− 1)

)
= − log

(
2|η(i)|2

)
. (3)

Let us see how to get it using only undergraduate tools. After it, there
are some indications about the variations to obtain the full proof of the
Kronecker limit formula.

Proof of Proposition 2.1 for Q(x, y) = x2 + y2. Define gs(x) = 2(x2 + 1)−s

and G(s) = −
∫ ∞

−∞
gs(x) dx. The limit in (3) equals L1 − L2 with

L1 = lim
s→1+

1

2π

(
ζ(s,Q)+ζ(2s−1)G(s)

)
, L2 = lim

s→1+
ζ(2s−1)

( 1

2π
G(s)+1

)
.

By a direct computation, G(1) = −2π and L’Hôpital’s rule shows L2 =
(4π)−1G′(1) because, by (1), (2s− 2)ζ(2s− 1) → 1. Then the result follows
if we prove

L1 = − log |η(i)|2 and G′(1) = 4π log 2 with G′(1) = 2

∫ ∞

−∞

log(x2 + 1)

x2 + 1
dx.

(4)
To compute this integral the easy way is to look up a table (e.g. [5, 4.295.1]).
If you want to be fully in charge, check the following formula performing the
change of variables x = tan(t/2) and the application of Cauchy’s integral
formula on the unit circle C parametrized as z = eit

G′(1) = −
∫ π

−π
log | cos(t/2)|2 dt = −ℜ

∫
C
log

(1 + z

2

)dz
iz

= 4π log 2.

For the first formula in (4) we separate from ζ(s, x2+y2) =
∑
m,n

(m2+n2)−s

the terms with n = 0 which contribute 2ζ(2s). By the residue theorem in



Fernando Chamizo 7

the band Bϵ = {|ℑz| < ϵ} with 0 < ϵ < 1,

ζ(s, x2 + y2) = 2ζ(2s) +

∞∑
n=1

1

n2s

∑
m∈Z

gs
(m
n

)
= 2ζ(2s) +

∞∑
n=1

−1

2n2s−1

∫
∂Bϵ

gs(z)i cot(πnz) dz,

because 2π i nRes
(
i cot(πnz),m/n

)
= −2. As gs is even,

∫
∂Bϵ

= −2

∫
Lϵ

with Lϵ = {ℑz = ϵ} oriented to the right and the sum is
∑
n
n1−2s

∫
Lϵ

. Note

that
∫
Lϵ

gs =

∫
L0

gs = −G(s). Then adding ζ(2s − 1)G(s) is equivalent to

replace i cot(πnz) by i cot(πnz) − 1 in
∫
Lϵ

. The expansion i cotw − 1 =

2e2iw/(1− e2iw) = 2(e2iw + e4iw + . . . ) assures an exponential decay and we
have, substituting ζ(2) = π2/6,

L1 =
1

2π

(π2

3
+

∞∑
n,k=1

2

n

∫
Lϵ

g1(z)e
2πinkz dz

)
.

As an aside, a harmonic analyst might prefer to arrive to this formula using
Fourier series or the Poisson summation formula. We continue with the
complex analysis approach. The residue theorem in {ℑz > ϵ} gives promptly,
noting (z − i)(z + i)g1(z) = 2,

L1 =
π

6
+

∞∑
n,k=1

2

n
e−2πnk =

π

6
−

∞∑
k=1

log
(
1− e−2πk

)2
where we have employed the Taylor expansion log(1−x)2 = −2(x/1+x2/2+
. . . ). The sum is log

(
eπ/6|η(i)|2

)
and the proof of (4) is complete.

The question is how close is this to a full proof of Proposition 2.1. Ac-
tually, it is quite close. Essentially, the whole point is to replace x2 + 1 by
Q(x, 1) = ax2+ bx+ c, restoring the constants coming from Proposition 2.1.
Read [2, §3] for the full details. Here there are some hints for an intermediate

level of details. In the general case, G(s) = −2

∫ ∞

−∞
Q(x, 1)−s dx,

L1 = lim
s→1+

√
D

4π

(
ζ(s,Q) + ζ(2s− 1)G(s)

)
and

L2 = lim
s→1+

ζ(2s− 1)
(√D

4π
G(s) + 1

)
.
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sats, els hi associarem un únic arc de circumferència, de longitud menor que
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8 A curious infinite product

Again the limit in the statement is L1 − L2. The computation of G′(1) to
evaluate L2 is as before because we can transform Q(x, 1) into a multiple of
x2 + 1 completing squares. This leads to

√
D

4π
G′(1) = log

√
D

a
.

The evaluation of L1 follows the same lines. The only noticeable issue is that
at some point we used that gs was even and Q(x, 1) is not in general. The
simple solution is to substitute gs(x) by Q(x, 1)−1 +Q(x,−1)−1. With this
change, we get

L1 = − log η(zQ)− log η(−z̄Q) = − log
∣∣η(zQ)∣∣2.

The values zQ and −z̄Q come from the fact that gs(z) has simple poles at
these points in the upper half plane.

5 A sharper result

Theorem 1.1 is a direct consequence of the stronger less symmetric result:

Theorem 5.1. Let a be a positive divisor of B2 + 1, B ∈ Z. Then

∞∏
n=1

2e−2πn/a
(
cosh

2πn

a
− cos

2πnB

a

)
=

1

4
Γ2

(1
4

)
eπ/(6a)

√
a

π3

where Γ indicates the classical Gamma function.

The last sentence is not very informative if you have not heard about the
Gamma function. In this case, you only need to learn that

Γ
(1
4

)
= 4

∫ ∞

0
e−t4 dt = 3.6256099 . . .

and it is not known a closed expression for this constant in term of high
school mathematical constants.

Dividing the formula of Theorem 5.1 for two choices of the parameters,
we get Theorem 1.1. Then both results become equivalent if we assume
Theorem 5.1 for a single couple (a,B). For instance (1, 0), which gives

∞∏
n=1

2e−2πn
(
cosh(2πn)− 1

)
=

eπ/6

4π3/2
Γ2

(1
4

)
.

This follows immediately squaring the evaluation

η(i) =
Γ(1/4)

2π3/4
. (5)
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An strategy to get it (see [2] and [7]) is to use the nontrivial factorization

ζ(s, x2 + y2) = 4ζ(s)

∞∑
n=0

(−1)n

(2n+ 1)s
,

which allows to compute the limit in the Kronecker limit formula in an
alternative way.

The evaluation (5) relates to the classical problem of the inversion of
elliptic integrals with theta functions [1] led by Jacobi and preceded by Gauss
[8]. Even if you do not know what I am talking about, you will enjoy the
impressive and highly nontrivial equalities

√
2 η(i) =

∞∑
n=−∞

e−πn2
=

(
2

π

∫ π/2

0

√
2 dt√

2− sin2 t

)1/2

.

The identity (5) is also a special case of the Chowla-Selberg formula [9].
This is a curious formula evaluating a product of η at several quadratic val-
ues. In some cases, including (5), these values reduce to only one producing
an individual evaluation. It was announced by its authors almost 20 years
before they published the proof. The Fields medalist Selberg did not like to
collaborate with other colleagues. In the nowadays ultra-connected scientific
world, it sounds astonishing that Chowla-Selberg formula was the only joint
work that Selberg published during his long and fruitful mathematical life.

Acknowledgments. I appreciate the suggestions provided by the reviewer.
I am indebted to E. Valenti for the conversations and the endurance in these
hard times.
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Trigonometria esfèrica i hiperbòlica
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L’objectiu d’aquestes notes és establir de forma curta i elegant les fórmules
fonamentals de la trigonometria esfèrica i de la trigonometria hiperbòlica.
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A

B

O

figura 1

https://arxiv.org/abs/2107.07245


10 A curious infinite product

[5] I. S. Gradshteyn and I. M. Ryzhik. Table of integrals, series, and
products. Elsevier/Academic Press, Amsterdam, seventh edition, 2007.
Translated from the Russian. Translation edited and with a preface by
A. Jeffrey and D. Zwillinger.

[6] Y. Hellegouarch. Invitation to the mathematics of Fermat-Wiles. Aca-
demic Press, Inc., San Diego, CA, 2002. Translated from the second
(2001) French edition by L. Schneps.

[7] N. Kurokawa, M. Kurihara, and T. Saito. Number theory. 3, volume
242 of Translations of Mathematical Monographs. American Mathemat-
ical Society, Providence, RI, 2012. Iwasawa theory and modular forms,
Translated from the Japanese by M. Kuwata, Iwanami Series in Modern
Mathematics.

[8] B. L. Laptev, B. A. Rozenfel′d, and A. I. Markushevich. Mathematics
of the 19th century. Birkhäuser Verlag, Basel, 1996. Geometry, analytic
function theory, With a bibliography by F. A. Medvedev, Edited and
with a preface by A. N. Kolmogorov and A. P. Yushkevich, Translated
from the 1981 Russian original by R. Cooke.

[9] A. Selberg and S. Chowla. On Epstein’s zeta-function. J. Reine Angew.
Math., 227:86–110, 1967.

[10] C. L. Siegel. A simple proof of η(−1/τ) = η(τ)
√

τ/i . Mathematika,
1:4, 1954.

[11] C. L. Siegel. Advanced analytic number theory, volume 9 of Tata Institute
of Fundamental Research Studies in Mathematics. Tata Institute of
Fundamental Research, Bombay, second edition, 1980.

Departamento de Matemàticas e ICMAT
Universidad Autónoma de Madrid
fernando.chamizo@uam.es

Publicat el 14 de gener de 2022

mailto:fernando.chamizo@uam.es

	The product
	A proof for everybody (summoning Kronecker)
	The quick proof for modular people
	Who fears the Kronecker limit formula?
	A sharper result

