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ON A TWO-POINT NEWTON METHOD IN BANACH
SPACES OF ORDER FOUR AND APPLICATIONS *

Ioannis K. Argyrost and Dong Chenty
i Cameron University. Department of Mathematics. LAWTON, OK 73505 U.S.A.

i1 University of Arkansas. Department of Mathematics. FAYETTEVILLE, AR 72701, U.S.A

Abstract

Sufficient conditions are given for the convergence of a two-point Newton method
to a zero of a linear operator equation in a Banach space. The order of convergence

is four.

1. Introduction

In this study we are concerned with the problem of approximating a locally unique zero
z* of the equation
F(z)=0 (1)

in a Banach space E;, where F is a nonlinear operator defined on some convex subset D
of E; with values in another Banach space E,.

The convergence of single-step methods, like Newton’s method as well as Newton-like
methods to a zero z* of equation (1) has been studied extensively in a Banach space
setting [1]-[19]. But the convergence analysis for multipoint methods is less developed,
although the fundamental theory was developed several years ago, (15],(16] and [18]. The
reason is that the expression F(z) cannot easily be dominated by a real scalar function.
It is well known, from the efficiency index point view [15] that multipoint methods are
faster than single-step methods.

Here, in particular we consider a Newton two-step method of the form
Yo =Tn F(za) 3 E(zy) (2)

Tnt1 = Yn — Fl(yﬂ)—lF(yn) (3)

“AMS (MOS) subject classification: 47H17, 65H10, 65J15
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for some arbitrary zo € D and for all » > 0. The linear operator F'(z,) is the Fréchet-
derivative of F evaluated at z = z,,.
Using standard Kantorovich assumptions we will that the two-point method (2)-(3)

converges to a zero z* of equation (1) with order 4.

2. Convergence Analysis

Let zo € D be arbitrary and for R > 0 such that U(zo,R) = {z € Ey/ ||z — o ||< R} C
D. We assume that

| F*(z) IsM (4), IF@)-F@ISK|z-y] ()
for all z,y € D. It is convenient to introduce the constants

n 2| Yo — Zo I, B2l Fl(zo)™ |, to=0, h=MnB8 (6),

e V2Bt S 1++/1-2h T
h n (‘)a o= h_ﬂ (8) 0=—

T2
and the scalar iterations

(9),

Ty =

g(tn) 9(sn) :
Sy =1g— 10), tht1 = Sp — 11),
T T
for all n > 0, where -
1 1
o) = 5~ 5t + % (12).

Note that r; is the smallest zero of the equation
g(t)=0 (if2r<1) (13)

We can now prove the main result:

Theorem. Let F' : D C E; — FE, be a nonlinear operator defined on some convex
subset D of a Banach space F; with values in another Banach space E2 Assume:

(a) F is twice-Fréchet differentiable on U(zo,7;) C D for some zo € D, and satisfies
(4)-(5): ,

(b) The inverse of the linear operator F'(zo) for zo € D, exists and is bounded.

The following estimates are true

=

h < (14), BK(3r1 +13) < 2. (15)

N

8

Then the two-point Newton method generated by (2)-(3) is well defined, remains in
U(zo.r1) for all n > 0 and converges to a unique zero z* of the equation F(z) = 0 in

C"(Il, T'z).



Moreover, the following estimates are true:

| zn=2™||< 71 — tn (16), | yn — 2" |I< 71 — 5n (17),

e
Tt = e 1 8)
for all n > 0.

Proof. We will show that if

” Yn — Tn ”S Sp — tn, ” F(In) ||S g(tn), | F(yn) ”S g(sn), (19)
| Fi(za)7 | —g'(t)™  (20), | F'(ya) 7t IS =g'(sn)™*  (21),
then
” Tnt+1 — Yn ”S tn+1 — Sn : (22): ” Yn4+1 — Tnt1 ”S Sn+1 — tn+1 (23)7
| F(znt1 IS 9(tnt1)  (24), | F(yn4a IS g{sns1)  (25),
for all n > 0.

Using (3), (19) and (21), we get

| 2n41 = ¥ IS F'(ga) ™" Il Fa) 1S —9'(50) 7 9(50) = tnsa = sn.

Hence, (22) is true.
From (2)-(4), (22) and the approximation
F(2n41) = F(2n41) = F(yn) — F'(yn)(Tns1 — ¥n)
= [ Plyat tznss = )l(1 = Odt(znsn — 32
we obtain

1
| F(zn41) IS §M | Znt1 —¥n [IP< S M( n¥1 = 8n)% = g(tns1)-

Hence, (24) is true.
Also by (2), (20) and (25) we get

| Ynt1 = Tnga | < || F'(@ng1) ™2 || || F(@nt1) | € =9 (tnt1) T 9(tns1) = 8ns1 — tasa.

Hence, (23) is also true.

Similarly, from (2), (4), (23) and the approximation
F(yn+1) = F(yn+1) = F'(Tn41) Uns1 — Tnt1)

1
= /0 i [In+1 + t(Yn41 = $n+1)](1 =5 t)dt(yn+l = In+1)2
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vl 1 2
| F(yn+1) | £ M || Znsa — Yo [ S 5M(Sn41 — tns1)” = g(sn41)-

1
2

Hence, (25) is also true.

Putting || Yz [|=/| ¥» — %o || + || %o — zo ||, We have also the estimates
I 2mss = 20 I <l Zs2 =0 Il + 1 90 = 30 1< Il 2mss — g | + | % |
< e € (fng1 — Sn) + (82 — S0) + 80 < tpy1 <1y (26)
and
| yrir = 2o 1 SNl ynt1 = %0 [l + 1 o — o IS Yntr = Tnaa || + | Totr =y | + | Yo |l
< oo € (Sng1 = tag1) + (Bnt1 — Sn) + (Snt1 — Sn) + (80 — 50) + 50 < Spp1 <11 (27)
Moreover, from (4), (6), (26) and the estimate
| F'(zo) ™! 11| F'(zn) = F'(z0) || F'(z0)™" | /01 | F7[zo0 + t(zn — z0)](zn — z0)dt ||
SBM || zn — 2o ||< BM(tn —t0) < BMT <1,  (28)

it follows from the Banach lemma on invertible operators that F'(z,)~! exists and for all
n>1

4 | Fen) | b (55 1)
I T Pt 1T ) = Feo) T = =gtz = )7

I F'(zx) (29)

Similarly, we obtain
I F,(yn)_l IS =g (30)

for all n > 0.

Hence, the iterates (2)-(3) are well defined for all n > 0.

It now follows that the sequence {z,} is Cauchy in a Banach space and as such it
converges to some z* € U(zo,71), which by taking the limit as n — oo in (2) becomes a
zero of F since F'(z*) = 0. Moreover by (26) and (27) zn,yn € U(zo,71). The estimates
(16) and (17) follow easily from

H Tnt+1 — Tp ”S” Tnt1 — Yn ” + ” Yn — ITn ”S tn+1 — Sp + Sp — tn = 2En+1 e tn
and

| ¥n41 = ¥n ISN Yng1—nea | + || Tnt1 — ¥n |< sns = taga + lngl — Sn = Sny1 — Sn

for all n > 0.



Moreover. using (7), (8) and (11) we get

i
kP

Kpg
2 5 i =t / ey 2
(7‘1 _tn) b ™ tn + 1= 2(1 i [\’.Stn)(rl sn)

LR

and

K3

— = —— 5 — 2
s =t = gr gy (T )

Hence, we get

AL <r1 ~sn>2 o (n —tn>* i (fl_—fﬂ) = A3
T9 — tng1 To — Sn T2 —tn r2 —to :

Since,

o ik e e —92)% (32)

the result (18) follows from (31) and (32).
To show uniqueness, let us assume that there exists another zero y* of equation (1) in
U(z*,r2). Then from (5) and (24) we obtain
1
| P[P+t = o)) = P(e7) | dt

8K 1 BK
e T e A e tdt < —m8 —
ST_gkn 1% 7Y ”/o S S pEr) T <!

since || 2= —y ||| z* —zo | + || ™ — 20 |[S 11+ 72

It now follows from the above inequality that the linear operator
/01 Fle” + t(y" — o*))dt
is invertible. From this and the approximation
F(y) - F&") = [ Flem+tly" = ")ty = )

it follows z* = y*, that completes the proof of the theorem.
Remarks

(a) From the estimates
| 2o = Yo ISl 2 —4n | + |9 — 30 [[Sta —Sn+ s —S0 Sta—n ST1—7

and
| Ynt1 — Yo I<I gnt1 = Tngr [l + [ Zrar = Yn [ + | 42 — 0 |l
< Spp1 —tnt1+tapr —SnF+Sn—80 S Spp1 =7 ST1—7

it follows that z,,y, € U(yo,m1 —7) for all n > 0.




(b) We can use the two-point method to approximate nonlinear equations with non-

differentiable operators. Indeed consider the equation
Fi(z) =0, (33)
where Fi(z) = F(z) + Q(z) with F as before and @ satisfying an estimate of the form

Q) -QWIsKillz—yl  (34)

for all z € D.

Note that the differetiabilty of @ is not assumed here. Replace F in (2) and (3) by
F, and leave the Fréchet-derivatives as they are. Define the sequences {%,} and {3,} as
the corresponding {t,} and {s,} given by (10) and (11) respectively. The only change
will be an extra term of the form Ki(s, —t,) and Ki(tn+1 — s,) added at the right hand
sides of (10) and (11) repectively and multiplied by the corresponding fractions. Define
also g, as g in (12) but add the term K¢ at the numerator. Then following the proof of
the above theorem step by step we can show a similar theorem with identical hypotheses
and conclusions, but holding for equation (27). (See, also [4]).

(c) Similar theorems can be proved if relation (5) is replaced by a weaker Holder
estimate of the form

| F(-F@) ISKllz~y |

for all z,y € D and some p € [0,1]. (See, also [3]).
(d) Note that using the approximation

1 - 1 rz*+t(y*—z*)
/0 (Flle” + t(y" — o¥)] = F'(z")}dt = /0 / _ F?(2)dz
we can show that (15) can be replaced by MB(3r; + ry) < 2, which may be useful,
especially when M < K.
3. Applications

In this section we use the theorem to suggest new approaches to the solution of quadratic
integral equations of the form

1

2(s) = y(s) + Az(s) /0 (s, t)z(t)dt  (35)

in the space E; = C[0,1] of all functions continuous on the interval [0,], with norm

== maxizs)]
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Here we assume that A is a real number called albedo for scattering and the kernel
q(s,t) is a continuous function of two variables s, with 0 < s, < 1 and satisfying the
conditions

(1) 0 < g(s,t) <1,0< 5,8 <1,

(i) g(s,t) +q(t,s) =1,0< 5,8 < 1.

The function y(s) is a given continuous function defined on [0,1], and finally z(s) is
the unknown function sought in [0,1].

Equations of this type are closely related with the work of S. Chandrasekhar [7], (Nobel
prize of physics 1983), and arise in the theories of radiative transfer, neutron transport
and in the kinetic theory of gasses, [1], [2], [7].

There exists an extensive literature on equations like (35) under various assumptions
on the kernel ¢(s,t) and A is a real or complex number. One can refer to the recent work
in [1], [2] and the references there. Here we demonstrate that the theorem via the two-
point Newton method (2)-(3) provides existence results for (R%}. Moreover the two-point
Newton iterative method (2)-(3) converges faster to the solution than all the previous
known ones. Furthermore a better information on the location of the solutions is given.
Note that the computational cost is not higher than the corresponding one of previous
methods.

For simplicity, without loss of generality, we will assume that

s
s+t

q(s,t) =

for all 0 < s5,t < 1.

Note that g so defined satisfies (i) and (ii) above.

Let us now choose A = .25, y(s) = 1 for all s € [0,1]; and define the operator F' on E;
by

S

F(z)= Az(s)/ol —

Note that every zero of the equation F(z) = 0 satisfies the equation (35).

ta:(t)dt —z(s) + 1.

Set zo(s) = 1, use the definition of the first and second Fréchet-derivatives of the
operator F' to obtain using and the theorem.

K = M = 2|)\| max

0<s<1

1
/ —s-dt‘ — 9|\|In2 = .34657359),
0o s+1

B =| F'(1)! ||= 1.53039421,
n > F'(1)2FQ) ||> BIA|in2 = .265197107,
= 140659011 < é r = 28704852,  r, = 3.4837317,

6 = .08239685, 2BKr; = .304497749 < 1,

11




wich shows that z* is unique in U(z*,7;) and not in U(z™, r;); since (15) is violated. (For
detailed computations, see also [1], [2]).

Therefore according to the theorem equation (35) has a solution z* and the two-point
Newton method (2)-(3) converges to z* faster than any other method used so far according
to (14) and (16). (See also, [1], [2], [T]). Moreover the information on the location of the

solution given here is better than the ones given before.
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IMPROVED ERROR BOUNDS FOR FAST TWO-POINT
NEWTON METHODS OF ORDER THREE *

Ioannis K. Argyros

Cameron University. Department of Mathematics. LAWTON, OK 73505 U.S.A.

Abstract

Using standard Newton-Kantorovich assumptions as well as the method of con-

tinuous induction we provide an error analysis for two point Newton methods.

1. Introduction

In h's note we are concerned with the problem of approximating a locally unique zero z*
of the equation

F(z)=0 (1)

v here F is a nonlinear operator defined on some convex subset D of a Banach space £,

witl values in a Banach space E,. We use two-step: Newton method of the form
Yn = Tn — FI(ZH)_IF(:EH) (2)

Tot1 = Yo — F'(22) 7 F(yn) (3)
fo. some arbitrary zo € D and for all n > 0. The linear operator F'(z,) is the Frechet
derivative of F' evaluated at z = z,. Let U(zo, R) denote the closed ball centered at zq
and of radius R > 0, and assume U(zg, R) C D, and || F'(z0)™" ||< B. Moreover, assume

that the following conditions are satisfied.

| F'(z) - F@) IS K|z -y (4)
for all z,y € U(xo, R), and some K > 0,

| F'z) = F'(y) IS ar) Iz =y |l (5)
for Mz elU(zor),0<r<ROL|R|ISR-T, '

| F'(z + k) — F'(z) [|< D(r, || & ||) (6)

*AMS (MOS) subject classification: 47H17. 65H10, 65J15
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for all z € U(zo,7), 0 <r < R,0L|| RS R=T.
Conditions (4), (5) and (6) have been used in [1], [3], [6], respectively for single step
methods. Here, g is a nondecreasing function on [0,R]. Moreover, D is a nonnegative and

continuous function of two variables such that if one of the variables is fixed then D is a
D(0,1)
ot

nondecreasing function of the other on the interval [0,R]. Also, the function is
positive, continuous and nondecreasing on [0,R-t] with D(0,0) = 0.

It is convenient to introduce the constans
T]Z” Yo — Zo ”> 07 t0=té=t(2)=0, SOas(l)vngns

t}>sp+p1, St +py, 1 >s3+ps, :] 21 +py,
i 8 i B
PL = T Bu) T 1—Bu(t)

B 5 pacy B &
S B el L L Ay
Ps=1"3D0.8) /:g (5, t)dt,  pa T=3D(0.8) /sg D(s,t)dt,

‘the functions

B(w,t,50): P2 A(w, 5, 50,11),

K 1 ] T
o) =5 —gt+g,  wi)= [ qd,
B

T 3 T
’ i = 2 !
rl(r)_so+——1_’3w(r)/o w(t)dt, Tr) so+—1_5D(0’r)/0 D(r,t)dt,

and for all » > 0 the scalar iterations

g(ta) 1 1 B T
PR il S =1t ——A(w,t,,s,,t
i " ugl(ts) i nt1 T 1—Buw(ti,) (12, 1, ﬂH)’
B 9(sa) 1 1 B T
tht1 = Sn — g,(tn)7 atl = Sp T= ,Bw(t}l)B(w’t’”s"’ );

i
A(w:tit‘s-}wt}i-i-l) = </sl w(t)dt = w(si)(t}z+l TS S}L)?

1

STI.

B(w, tn, sn) =/

123

w(t)di —w(ty)(sn — 1),

IB n+1
=t Toppg | D0

8 i
2= i / 2Ny
ST
Moreover, assume:
(i) The condition
hi=Knf-<c= 24
Gl tsie SIE o+ IR
where .
o 1+E=7h 12 /5298
d = 23 (B e e e s

3 m,

is satisfied.



(i) There exists a minimum nonnegative number r} satisfying 73(r}) < ri.
Moreover. the following estimates are true:

Py Bk AR < %

(iii) There exists a minimum nonnegative number r} satisfying Tp(r}) < r}.

Furthermore the following estimates are true
r2 <R, 8D(0,R) < 1.

(iv) The following conditions

. [/’ w(t)dt + w(r)r} St oS g(r) ;

T= ) | )
1_—§u—(r) [/Orw(t)dt + w(r)r] <t;—sg, or< —gg,((:)),

are satisfied for all r € [0, R], provided that so = sg, for all r € [0, R].

(v) The following conditions:
D(0,t) < w(t), D(r3,t) < w(t),

are satisfied for all ¢ € [0, R], provided that s§ = s3. Then we can prove the following
result (see also [2], [6] and the references there).

Theorem: Let F : D C E; — E, be a nonlinear operator defined on some convex
subset D of a Banach space E; with values in a Banach space E,. Assume (4)-(6) and
(i)-(v) above are true. Then:

(a) The sequences {t,}, {t1}, {t2}, (similarly for the sequences {s,}, {sL}, {s2}) are
monotonically increasing and bounded above by their limits r, rj and rZ, respectively.

(b) The two point step Newton method generated by (2)-(3) is well defined, remains
in U(zo,v) (v = ra,orri,orr3) for all n > 0, and converges to a unique solution z* of
equation F(z) = 0 in U(zo,v1) (v1 = r,0r7},0r77).

Moreover the following estiinates are true:

” Yn — Tn || S S tn: “ Tnt1l — Yn ” S tn+1 — Sny *
(7)
”xn_z‘ller'_tnv ||yn—;r"||Sr2-—Sn
with 02\ (4011
s =
rg—tn=( )n( ) S
1— (d9)> "
|| Yn — Tn ” S 331 T t}n “ Tnt1 — Yn “ S t}z+1 T ‘5111:
(8)
[2n—2z | Sr3=t,  llgn—2" [ Sr3—s;

17




” Yn — ZTn “ < 531 = ti: ” Tnt+1 — Yn “ < t31.+1 e 5311

(9)

”In—f'llﬁrg—fis |ly,_—a:‘||§r§—si

sl il e b, dagi—ise S DS Ty —th <ro—t,, 7y—sk<rp—s, (10)

n

and
el R e ti+1_3i§t}x+1_5}n Ty S S T (1)
for all n > 0.
Note that conditions (i), or (ii), or (111) or (i), (ii) and (iv), or (ii), (iil) and (v) imply
the results (7), or (8), or (9), or (7), (8) and (10), or (8), (9) and (11).

Remarks:

1. The function D can be chosen to be

r+|[A]l
D(ryhl)= [ a(t)at
Another choice for D can be
D(r|[h])=  sup | F(z + h) — F'(=) ||
z,y€U(zo,7),||h||<R-T
We will then have
D(r,[R|l) S K |[ A

and
T+|[R|
D(rllhl)= [ aat
forall0<r<ROZ|A|SR-7
All of the above improve the corresponding results in [1]-[6]. Other choices are also
possible. One can refer to [2] for applications of these ideas to the solution of integral
equations.
2. Under the hypotheses of the theorem, conditions (v) can be replaced by the weaker
m}m [ bty < #w(r) [ ety
for all r € [0, R].
3. A choice for the function g can be given by
o= | £'(=) = F'(y) |l
zyeU(zor) |2 -y
in which case ¢(t) < K for all z,y € U(zo,7)
4. If the right hand side of condition (6) changes to D(r,r+ || & ||), then a new result
involving this condition can easily follow. Moreover the particular choice of D given by
remark 1 above (first choice), will then reduce these results to the corresponding ones

involving condition (5). The details are left to the motivated reader.
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Abstract.
Weisner's group-theoretic method of obtaining generating
functions is applied in the study of extended Jacobi polynomials. The

main result of this paper is derived in section 3. Some particular cases of
interest are also discussed.

1. Introduction.

The extended Jacobi polynomial Fp(a,B;x) is defined by [1] :

_1)n A
Fa(ouBix) =1~ (z-a)® (b-x)8 (z=2) Dr [(x-a)mve(b-x)nb]  (L.1)

d
where Dde E

The object of the present paper is to derive some novel
generating functions of Fp(o,B-a;x) , a modification of Fp(o,B;x) , which
satisfies the following ordinary differential equation [2] :

[(x-a)(b-x) D2+ {(a+1)(b-x) - (B—o+1)(x-2)} D + n(1+B+n)]v = 0, E152)

by using Weisner's group-theoretic ‘'method [3] which is vividly
presented in the monograph of E.B. McBride [4].
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works see [2,5,6].

2. Group-theoretic discussion.

obtain the following partial differential equation:

operators:

d
Aq =
1 Yg
Ay = ba 2.9
2‘(X')ya_x‘yay+YB
A3

Il

00
(x-a)y 3% +ay

such that
Al [Fn(o,B-0;x)y*] = oFp(ot,p-0;x)y*
Ag[Fn(0,B-0;x)y%] = (B-crtn)Fp(a+1,B-0+1;%)yo!
A3[Fn(o,p-05x)y%] = (n+0)Fp(a-1,p-0-1;x)y*-1

Now we have the following commutator realtions:

[A1, A2l = Az
[A1, A3l =- A3
[Ar, A2l = 2A,-B

where

[A,B]Ju=(AB-BA)u

The main result of our investigation is given in (3.3). For previous

d ad )
Replacing 55 : bY:izony ®bYa Yar: (@ndqv by u(x.y)
dx X ay

in (1.2), we

; 2 2
[ (x-a)(b-x) a%i““ (b-a)yai—ay - {a+b-2x-B(x—a)}aa—x +n(l+p+n)Ju=0 (1.2)

We now define the following first order linear partial differential

(2.2)

(2-3)

(2.4)



So from (2.4), we arrive at the following theorem:

Theorem : The set of operators {1, Aj: i = 1,2,3} , where 1 stands for the
identity operator, generates a Lie algebra Z.

The partial differential operator L , given by

- 22 92 ad
L = (x-a)(b-x) 874- (b'a)yéxTy + {a+b-2x-B(x-a) }g + n(1+B+n)

can be expressed as follows:
L= AbA: A+ (1+B)A; s

one can easily verify that L commutes with each A;(@i = 1,2,3) , i.e
[L,A]=0 (2.6)

The extended form of the group, generated by A;( = 1,2,3) , are
given below

e 1A fxy) = f(xe”ly)

2 f(x,y) = (1+axy)P f[x+(x-b)a2y e y]

a3A3 f(x,y) = flx+(x- a) , y+a3] ,

where all a; (i = 1,2,3) are arbitrary constants.
Thus we have

A1 azA a A

eal 1,32 2 3A3

f(x,y) = {1 + ax(y + as)} Bf[x+(x a)— +

ai
e (Y+a3)]

* T+ay(y+az) (2.8)

+ {x+(x—a)% -b} az(y+as3)

3. Generating functions.




From the above discussion, we see that u(x,y) = Fy(o,B-o;x)y% is
a solution, of the system:

Lu=0, (Aij-a)u=0

Also from (2.6), we observe that

SL[Fn(o,B-0;x)y?] = LS[Fp(a.p-0:x)y*] = 0
where

azA3 azA; aijA;
S=e3 3¢ 2.4

So the transformation S[Fj(o,B—o;x)y®] is annihilated by L.

Now, substituting a; = 0 and writing f(x,y) = Fp(a,f—0;x)y® in
(2.8), we get

ea3A3 ea2A2 [Fa(o,B—o;x)y] = [1 + ax(y + aa)]ﬁ_a Fn[a,B—a;x +

+ (x-a)§3+ [x + (x-a)% - b} as(y+as)](y+as)e (3.1)

A
33 2282 (R (4 B-aix)ye] =

=§ i azY) Casly)P

p! (a—B-n)x (-o-k-n)p Fp(o+k-p,B-k+p;x)y™

(3.2)
Equating (3.1) and (3.2), we get

[1+a2(y+a3)]B_a Fn[a,B—a;x+(x-a)%+{x+(x—af:73' -b} az(y+a3)](y+a3)°‘ =

S /
=2 2 32}’) (-83/y)? (0—B-n)k (-o-k-n)p Fa(o+k-p,B-k+p;x)y*

pl
(3.3)
We now consider the following cases:

Case 1 : Putting a3=0 and -ay =t, we get



(1-t)-o+B Fyla,B-o;x-(x-b)t] = 3 (—O%L Fa(o+k,B—a—k;x) tk (3.4)
k=0

Special Case 1: Ifweput b=-a=1, A=1, we get

1-08PP¥x - x-11) = 2 = Bk! PPt ) (3.5)
k=0

which is found derived in [6].

Subcase : Putting o =0, we get

(1-t)8 P(ﬁ ik - xR 3 (—Blz'n)k nB kk)( )tk
k=0 s

Case 2 : Putting ap; = 0 and replacing -as/y by t, we get

Folo,B-u;x-(x-a)t(1-t)¢] = Y, (o=p)p

Dl Fp(o-p,p—o+p;x) tP (3.6)
k=0

Case 3 : Putting ap=l/w, a3 =1, l/y=t, we get

p-a 1+t

e {1+ o7} Falap-os xr(alt + {xe(x-ayt bt

=Z 2 = .t) (t)p(aBn)k(akn)p Fo(o+k-p,B-o-k+p;x)

3-7)
Special Case : Putting -a=b=1, A=1, we get

k
(-1/wt)* 1/Wt) (-t)p [)p (B o-k+p,o+k- p)( ) (3.8)

(0=B-n)i (-a-k-n), P

Writing B+o. in place of B and then interchanging o and B, we

get

(1+08 {1 Ty {1455 } B -




i ke
( 1{(\?,) (-1)p (cot-n) (-B-k-n), P(na-k+p.B+k-p)(X) tp-k

|
p=0 k=0 P

which is the correct version of the result (1.4) of B. Ghosh [7].
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FUNCTIONS OF EXTENDED JACOBI POLYNOMIALS.

A. K. Chongdar

Department of Mathematics,
Bangabasi Evening College,
19, R.K. Chakraborti Sarani,
Calcutta - 700009, INDIA.

Abstract

In this article, the author obtains an extension of his result on
mixed trilateral generating functions with the help of group-theoretic
method. Some special cases of interest are also discussed.

1. Introduction.

The extended Jacobi polynomial as designated by N.K. Thakare [1]
is given by

-1)n A \h
Faloufim) =20 () (x—a)-a(b-xrBDn[(x-a)m(b-x)B+n] (1.1)
: n ‘b-a
where D=a—x.
In a recent paper [2] , the present author has proved the

following theorem in connection with mixed trilateral generating
functions of modified extended Jacobi polynomials Fp(o-np:X) .

] X-a
Puthngs 1 =" i We have

Theorem 1 . If
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G(x,u,0) = > an Fy(0-n,B:x) ga(u) on (1.2)
n=0

where gnp(u) is an arbitrary polynomial of degree n , then

-Aubt
(1-At)® (1-Apt)-o—B-1 G(xl_}f:lt oW, T M) ZFn(a -n,B;X)0q(z,u)tn (1.3)
where

Gu(zW)i=e). ax (2) gi(u) zk (1.4)

k=0

Here we have obtained an extension of the above result which do
not seem to have appeared in the earlier works. The main result is as
follows:

Theorem 2 . If

G(x,1,0) = > ap Fpim(0-n,B;x) go(u) on (1.5)
n=0
then
X-Aubt
(1-A0)e (1-hpt)a—b-1 G( mi i M) 2Fn+m(a n,B:x)oaz)tn  (1.6)
n=0
where
L n+m
onzw) = ¥ ax (o, ) gk z& (1.7)
k=0 =

It is of interest to mention that theorem 2, in special cases, yields
some interesting results (Theorem 3 to Theorem 6 of this paper) on
mixed trilateral generating functions involving Hermite, modified
Laguerre, modified Bessel and modified Jacobi polynomials.

2. Proof of the Theorem.
We first define the following linear partial differential operator R:
d
R = Ap(b- x)y— Kyz + [(b-x)ot — (B+m+1)(x- a)]b
such that

R(Fn+m(a—n,B;X)y“) = -(n+m+1)Fpims1(a-n-1,;x)yn+!



and

s 4 gt X+Aopby y
exp(@R)E(x,y) = (1+A@y)® [1 + Aopy] f( o ,1+my) (2.2)

We now consider the following generating relation:
G(x,u,®) = ¥ Frsm(0-0,B;X)gn(u)@? (2.3)

n=0

Now replacing ® by woyz in (2.3) and then operating exp(@R)
on both sides, we get

exp(oR) G(x,u,0yz) = exp(®R) Zan(mz)“ [Foim(o-n,B;x)y"]gq(u) (2.4)
n=0 '

The left member of (2.4) is

x+Alopby wyz )

1+Aopy * 1+Aoy (@:9)

(1+A0y)* [1 + Aopy]-e-B-m-1 £(

The right member of (2.4) is

Y I ap(ez)" k, - R [Fasm(o-n,px)y"Dgn(u) =
n=0 k=0

Y Y ap(ez)" k, ( 1)k (n+m+1)k Foem+k(0-n-k, B5x)yn+kgn(u) =
n=0 k=0

oo oo e n+k
BiaX an(-Z)Riema L (n+m+1)g Frym+k(0-n-k,B;x)gn(u) = (2.6)

n=0 k=0

Sap T i Cown
ZO kZ an-kx(-z)m K (n-k+m+1)x Fnim(o-n,B;5x)gn-k(u) =
n=0 k=0 i

S -k 1
5 (3 an OB @) (2% )Fpum(oenix) (oY)
n=0 k=0 E

Equating the above two members (2.5) and (2.6) we get

X+Aopby Wyz )

(1+A@y)* [1 + Awpy]-o-f-m-1 G( oy kY




reen -k 1
=3 (3 o @Bk g @) (7% Faym(@-nBix) Coyn  (2.7)

Replacing oy by -t and z by -z in (2.7), we get

i x-Apbt zt -
(1-A)e (1-Apt)-oB-1 G( L 57) = YFum(e-npixoazum  (2.8)
n=0

where og4(z,u) is defined in (1.7) and this completes the proof of the
theorem.

Corollary 1 : Now if put m = 0 in theorem 2, we get the theorem 1.

3. Some Special Cases.
We now discuss some special cases of our result.

Special Case 1 : Putting ao=B, -a=b= \/; , recalling A — % and

finally taking limit when o — o , we get the following extension of
mixed trilateral generating relation involving Hermite polynomial:

Result 1: If
A 2 (Dl'l
G(x,u,0) = 2 an Hpem(X) gn(uw) F (3.1)
n=0 3
then
oo - tn
exp(2xt - 2) G(x-tu,tz) = Y Hpym(X) on(u,2) = (3.2)

n=0
where oy(z,u) is defined in (1.7) and which is note worthy.
Now putting m = 0 'in the above theorem, we get

Corollary 2 : If

— ®n :
G(x,u,m) = 2 ap Hp(x) gn(w) F (3.3)
n=0
then
exp(2xt - 12) G(x-tutz) = Y, Hp(x) oq(u,2) 5“—, (3.4)

n!
n=0



where op(z,u) is defined in (1.4) and which is found derived in [3,4].

Special Case 2 : Putting a=0,B=b,A=1, and then taking limit when
b - o , we get the following theorem on the extension of mixed
trilateral generating relation involving Laguerre polynomials:

Result 2 : If
Gruo) = ¥ an L) gi) oo (3.5)
n=0
then
tz & d
(+peexp(xt) G(x1+), 1, 7o) = L D®) oawz) v (3.6)

n=0

where op(z,u) is defined in (1.7) and which is noteworthy.
Now putting m = O in theorem 4, we get

Corollary 3 : If

Gxuo = Y an L) galw) oo | (3.7)
n=0
then
tz s = (a-n)
(1+t)eexp(-xt) G(x(1+0, u, 7.7) = XLy () oa(wz) 8 (3.8)
n=0

where op(z,u) is defined in (1.4) and which is found derived ian [5].

Special Case 3 : At first we write t in place of ® in the relation (1.5).
Then putting -a=b=A=1, a=v-e-1, B=e-1, and replacing x by
2X€ s®

Lytes o wo b DY -g“ , and finally taking limit as & — oo , we get the

following result on Bessel polynomials:

Result 3 : If
(&a)n

n!

Gxu,m) = Y, an Yosm(X, V-0, &) ga(u) (3.9)

n=0
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A Study on the Order of Convergence of a
Rational Iteration for’ Solving Quadratic
Operator Equations in a Banach Space

D. Chen * LK. Argyros fand Q. Qian?

Abstract

We introduce a new rational iteration, called the super-Halley method to
solve nonlinear operator equations in a Banach space. The order of conver-
gence of this method is four for quadratic operator equations. The order found
by others (including the famous conjecture by Traub) for the methods that
compare with ours is only three.

Key words: Banach space, quadratic operator, Super-Halley method.

AMS(MOS) Classification: 65H10, 65J15, 47TH17

1 Introduction

In this study, we are concerned with approximating a solution z~ of the operator

equation

F(z) =0, (1)

where F : D C X — Y is a nonlinear operator defined on some convex subset D of
a Banacn space X with values in a Banach space Y. Problems of this type appear
frequently in many modern fields (see Ortega and Rheinboldt [1970], Dennis and
Schnabel [1983], Cuyt and Rall (1985], Laub (1991], Argyros and Szidarovszky [1993],
etc.) One of the well-known iterations for solving e‘juation (1) is the third-order

Halley. Given an approximation z, compute z.+; by

“Department of Mathematical Sciences, University of Arkansas, Fayetteville, Arkansas 72701,
USA

TDepartment of Mathematics, Cameron University, Lawton, Oklahoma 73505, USA

*Department of Mathematics, University of Kentucky, Lexington, Kentucky 40506, USA
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ther = 2k~ [F/(z) = 5 F"(20) P/ (20) ™ F(aol ™ F (=), )

for all k£ > 0. or Here F'(zi), F”(z+) denote the first and second Frechet derivatives
of F evaluated at = = zi. Several authors have already studied the convergence of
iteration (2) in a Banach space setting, Yamamoto [1988], Candela and Marquina
[1990], Kanno [1992], Argyros and Szidarovszky [1993]. Recent applications of this
method in various fields can be found in Davis [1983], Cuyt and Rall [1985], Petkovic
[1989] and Kenney and Laub [1992]. By introducing a Newton step, we define a now

iteration, called the super-Halley method:
ye = 2k — F'(2) 7 F (k)

e e e e
1
Thar = Y — 50 + He] 7 He(ye — z4), (3)

for all k£ > 0, and some initial guess zo € D. The famous conjecture by Traub for
general iterations states that their maximum order of convergence is three, when the
function is of one variable ( see Traub [1974]). Here we restrict ourselves to quadratic

operator equations of the form

P(z) =0, (4)

where

P(z) = Q(z,z) + L(=) + 2, ©)

where @Q is a bounded symmetric bilinear operator on X , L is a a bounded linear
operator on X and zp € Y is a fixed. We show that the super-Halley method is of
order four, whereas all previously mentioned authors have showed that it is only of

order three
2 A Local Convergence

We can now prove the following result:

Theorem 2.1 Let P be a quadratic operator defined on an open convez domain D

of in a Banach space X with values in Banach space Y. Assume:




a.- there ezists a simple solution =" of the equation P(z) = 0;
b.- the inverse of the Frechet-derivative of P'(z™) ezists, and || Bz < B5;

c.- there ezists a § > 0 such that || Q || B8 < t and C& < ¢(8) < 1 with C =

3 . y ¢
L1+ 876 || Q )48 rmransaaiamae » where ©o € D with || zo — 2" [|< 8

and for some fized a > 0.

Then the iteration {zx} generated by (3) is well defined, remains in U(z™,§) for all

k>0, and converges to z* with
| zes1 =2 IS Cllze — =" [,k 2 0, (6)

Proof: Using assumption (c) we deduce that zo € U(z",6). From (5), we can show
that
| P'(zx) = P'(z) IS2 ]| QI ze — =" lI< 2| Q [l 6,

and

| P'(z")7 Il P'=ze) = P(=7) IS 2876 [ Q < 1

by (c) Hence by the Banach lemma an invertible operator P’(zx)~" exists and

1P | S e PP Y
< ﬁm—” (8)
< 985 (9)
Flor the apprositnaioh (ee WD eatis anaiSehnabel (1083])
e s IRl /01 P![z" + t(zk — 2°)]tdt(z" = z2)?, (10)
el e
lye—z"IS28 | QI Nl ze =z > <2876 | Q Il zx — =™ |I< 6. (11)

Hence we get yr € U(z",6). We now assume that z,.; € U(z",§), and consequently
(11) can now be proved again but holding for £+ 1. Moreover, from (3) aad (7)-(11),

we obtain in turn
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48711 Q il ye — = l

IA

QN Nye—=" I+l zc—=" 1)

IA

eI QI+Dé<1T,

Therefore, (I — Hy)™! exists, and

1

(= B < -
By the continuity of P’(z*)~%, there is an & > 0 such that
| P(zr41) — P(z7) |12 @ || zkr — 27 |,

which can yield to the following estimate

| P(ze4a) |l L | Plzrsr) — P(z7) |l
lye—ze |l ~ | e —zi |I*

all zeg — 2z ||
Il v — =z |I*
a| e —z" ||
hze—z= L+ Il ye — == I)*

and
| ye — =7 || all Plzisa) |l

[fzen === 1[

= s

lze—z=|* “ea  lze—=l" |lye—ze |I*

Using (3) and (5) we can obtain the following approximation

Ele ) = / Flu £t — v (e D et —yn)

1

—4p QI (1+28 [ QI 8)6

—'2'/0 F'[z + t(ye — z0))(2t — Vt(ye — z)(] + He) " Hi(ye — 28)

+ [ Pkt tue = 20)(1 =) = 5F (@l = 20)(I + He) ey = ).

We apply this approximation for ' = P to obtain

P(zi+1) = Q(zrs1 — vx)%,

and then we deduce in turn, using also (3) and (5) that



I PG | < QN g | P ™ = 2 I

A

el
1-48- | QI (A+286 || QI

< 487 )5]2“ e — 2 ||

which estimate combined with (14) and (16) shows (6). Forthermore from (c) and (6)
we have that || zpp1 —z° [< ¢ || ze —z" || and || ze — =" ||< ¢* || zo — 2" || for k£ > 0
which show that zx € U(z", §) for all k¥ > 0 and limy_zx = z*. That completes the
proof of the theorem.

Applications (1) Our method can be applied to solve quadratic integral equations
arising in radiative transfer [4]. See Argyros [1] and Argyros and Szidarovszky (2] for
details.

(2) Our method can be used to solve quadratic operator equations in a Banach space
[1].

(3) Our méthod can be used to solve autonomous differential equations [2] and [10].

This is equations satifying (5), and operator equations of the form
P'(z) = R(P(z)),

where R is a known continuous operator. Since P'(z*) = R(P(z")) = R(0), and R(0)
is known, it follows that P’(z*) is known, without actually knowing z~.

(4) Furthermore, our method can be used to solve quadratic algebraic systems [5], [6]
and [9].

(5) Tha basic hypothesis in most convergence theorems developed so far (see, Kanno

(8], Yamamoto [12], and the reference there) has been that
| F=z) = F' @IS Nl 2=y |,

for all z,y € D, and for some constant N > 0. But for F = P, we obtain N =
0. Consequently the convergence theorems mentioned above cannot apply to solve
quadratic operator equations of the form (5) at least directly. In the limiting case
if the proofs of those theorems are reworked then the case N = 0 can be included.
But those even then will guarantee only quadratic order of convergence. However the

results obtained here require V> 0 only.
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