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Classifcation of probability density functions in the 
framework of Bayes spaces: methods and 

applications 

Ivana Pavlů1, Alessandra Menafoglio2, Enea G. Bongiorno3 and Karel Hron4 

Abstract 

The process of supervised classifcation when the data set consists of probability density 
functions is studied. Due to the relative information contained in densities, it is ne-
cessary to convert the functional data analysis methods into an appropriate framework, 
here represented by the Bayes spaces. This work develops Bayes space counterparts 
to a set of commonly used functional methods with a focus on classifcation. Hereby, a 
clear guideline is provided on how some classifcation approaches can be adapted for 
the case of densities. Comparison of the methods is based on simulation studies and 
real-world applications, refecting their respective strengths and weaknesses. 
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1. Introduction 

Classifcation, i.e., assigning observations to classes based on a set of features, is one 
of the most common tasks of mathematical statistics with a strong practical motivation. 
Banks and insurance companies evaluate their potential customers and divide them into 
groups to avoid excessively risky behaviours. Hospitalized patients can be classifed 
into different risk groups based on their symptoms and/or their physical attributes. Dis-
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tributions of fnancial income amongst population can be used to distinguish differences 
between regions. In another context, soil particle-size distributions can be classifed into 
one of potential sampling localities. 

Most classifcation methods originate in the multivariate setting (Hartigan, 1975; 
Hastie, Tibshirani and Friedman, 2009). Here, in many cases, observed data are relative, 
meaning that the relevant information is contained in proportions between components 
rather than in their absolute values interpreted separately. However, this fact is not taken 
into account when using standard multivariate methods, which can, in a sense, over-
lay the geometrical properties resulting from the relative structure (Filzmoser, Hron and 
Templ, 2012). Instead, compositional data analysis (Aitchison, 1986; van den Boogaart, 
Egozcue and Pawlowsky-Glahn, 2014) offers a comprehensive methodology for deal-
ing with such type of data, which can be further extended into the (virtually infnite-
dimensional) case described hereinafter. 

One common way of portraying distributional data is in the form of probability den-
sity functions (PDFs), unit integral non-negative functions defned over a bounded or 
unbounded supporting interval (Egozcue, Dı́az-Barrero and Pawlowsky-Glahn, 2006; 
Hron et al., 2016; van den Boogaart et al., 2014). The proportions between the amounts 
of probability corresponding to certain subdomains of the support then represent coun-
terparts of the proportions between components in the multivariate compositional case 
(Egozcue et al., 2013). Despite being functions, PDFs cannot be straightforwardly pro-
cessed using standard functional data analysis (FDA) methods (Ramsay and Silverman, 
2005; Horváth and Kokoszka, 2012) due to their relative properties (Hron et al., 2016; 
van den Boogaart et al., 2014). Most of the standard functional tools are developed for 
functions belonging to the L2 space, the usual space of square-integrable functions. How-
ever, the L2 geometry should not be blindly used for PDFs, as it does not preserve the com-
positional properties of distributional data – unlike the so-called Bayes space B2 (van 
den Boogaart, Egozcue and Pawlowsky-Glahn, 2010; 2014) considered in this work. 

Due to the recent interest of the scientifc community in functional distributional 
data, the analysis of PDFs including the Bayes space approach has been at the forefront. 
Although a lot of work has been done on classifcation for functional data from the L2 

perspective (Ferraty and Vieu, 2006; Jacques and Preda, 2014; James and Hastie, 2001; 
Nourollah Mousavi and Sørensen, 2017; Ramsay and Silverman, 2005; and more), at the 
moment there is a lack of a comprehensive methodology for dealing with classifcation 
of PDFs. This work aims to fll this gap, by focusing on the framework of supervised 
classifcation (i.e. when class labels of training data are known). In particular, classi-
cal and recent classifcation methods for functional data are discussed when extended 
or adapted to the PDFs setting through the Bayes approach. This paper thus provides a 
clear guideline on how also other possible classifcation methods can be adapted to the 
case of PDFs. Moreover, the selected methods are intentionally chosen with different 
theoretical foundations for a twofold purpose: frst, to cover the most common super-
vised classifcation FDA approaches in the PDF context, and second, to assess whether 
and which effects are emphasized with the different approaches. 
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The structure of the paper is a follows. Section 2 offers a concise summary of the 
Bayes space background as well as a brief recall of the spline representation of PDFs in 
this setting. Section 3 introduces one common way of reducing the dimensionality of 
functional data and summarizes a selection of fve classifcation methods with their rein-
terpretation for PDFs, i.e.: functional logistic regression, functional principal compo-
nent regression, functional linear discriminant analysis, an approach based on small-ball 
probability and the functional k-nearest neighbours. In Sections 4 and 5, these methods 
are applied to both simulated and real-world data sets. Finally, Section 6 offers some 
additional comments and conclusions. 

2. Representation of PDFs in Bayes spaces 

The Bayes spaces B2 serve as a unifying framework for working with functional dis-
tributional data, expressed often in the form of PDFs. Their geometric structure is 
based on the generalization of the Aitchison geometry (Pawlowsky-Glahn and Egozcue, 
2001) which is commonly used in the context of compositional data analysis (Aitchi-
son, 1986; Pawlowsky-Glahn and Buccianti, 2011; Pawlowsky-Glahn, Egozcue and 
Tolosana-Delgado, 2015). Formally, the Bayes space B2(I) is set to be a space of 
positive functions with square integrable logarithm carrying relative information (also 
known as functional compositions), defned on the bounded interval I = [a,b] (Egozcue 
et al., 2006). This is the most common choice of the domain in FDA (often further 
restricted to [0,1]), however, the Bayes space theory can be developed also for possi-
bly unbounded domains (van den Boogaart et al., 2010). Similarly, one can consider 
different reference measures - in this work, the uniform measure on I strictly plays the 
role of reference measure. To avoid confusion, only integrable densities are discussed 
in further text, although Bayes spaces cover the non-integrable densitites as well. In B2 

one can defne an equivalence relation, based on the scale invariance principle. Indeed, 
by rescaling a density function, its relative information – as defned by the proportions 
between the measure of intervals contained in I – does not change. As a consequence, 
one can consider non-negative unit-integral density functions (PDFs) as representatives 
of equivalence classes defned by the relation f = B g if f = cg, for a given c > 0, making 
it a subspace of B2. 

In B2, operations of sum of two functions, multiplication of a function by a scalar 
and inner product of two functions are replaced by perturbation ⊕, powering ⊙ and inner 
product ⟨·, ·⟩B in Bayes Hilbert space, respectively. These are defned for a uniform 
reference measure for densities f and g in B2 and a real constant α, by 

( f ⊕ g)(t) = B f (t) · g(t), (α ⊙ f )(t) = B f (t)α , (1) Z Z1 f (t) g(t)⟨ f ,g⟩B = B ln ln dtdu, (2)
2(b− a) I I f (u) g(u) 

where t,u ∈ I = [a,b]. The construction of operations (1) and (2) ensures that the re-
sulting function maintains the relative properties of a density as well as the unit-integral 
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representation (if needed for interpretation purposes). Using (1), one can also defne the 

distance between f and g as 

dB( f1, f2) = B || f1 ⊖ f2||B 
2 
, where ( f1 ⊖ f2)(t) = B f1 ⊕ [−1⊙ f2(t)] , t ∈ I. (3) 

In further text, the subscript in = B will be dropped - however, it should be always clear 

whether the equation holds in B or L2. 

To proceed with the statistical processing of densities, two ways can be pursued. 

Indeed, methods can be either developed directly in the B2 setting, or PDFs can be 

mapped into L2 to make use of existing FDA methods. The latter approach is appealing 

due to the existence of an isometric mapping from B2(I) into a subspace of L2(I) of 

zero-integral functions - frequently denoted as L2(I). This mapping, called the centred0 

logratio (clr) transformation (van den Boogaart et al., 2014) 

1 
Z 

clr( f )(t) = ln f (t) − ln f (u)du , t ∈ I (4)
b − a I 

then results in a zero-integral real function on the same domain I. Using these clr-

transformed densities (see Figure 1 for an illustration), the standard functional approaches 

can be considered, thus avoiding the computational inconveniences related to processing 

directly in Bayes spaces, and maintaining the relative information of the original data. 
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Figure 1. Example of a four-class functional data set: densities in B2 (left) with their clr-

transformed counterparts (right). Gray dashed lines represent the position of the knots used 
for their ZB-spline representation. It is obvious that clr transformation enables to highlight 
variation related to small functional values as compared to the original PDFs. This data set is 
further discussed in Section 5.2. 

Another important aspect to be mentioned is that, despite the increasing quality of 

measuring devices and data collection, it is rarely possible to observe functional data 
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as a whole continuous curve. Instead, the raw data usually consist of a discrete set of 
measures dispersed over the supporting domain. This obstacle can be overcome dur-
ing the preprocessing stage. Commonly, for L2 data, the B-spline representation (De 
Boor, 1978; Machalová, Hron and Monti, 2016) is used to smooth the discrete data by 
piece-wise polynomial functions, with Fourier bases and wawelets serving as examples 
of other basis choices. Using a common spline basis – defned by I, a sequence of knots 
and the order of polynomial k – each observation is uniquely described as a linear combi-
nation of basis functions. Commonly, knots are placed more densely in areas where data 
are more varying to capture this variability. In the context of clr densities, compositional 
splines (ZB-splines, Machalová et al. (2016, 2021)) were introduced where, as opposed 
to the usual B-splines, the basis functions are already constructed as zero-integral curves. 
Intuitively, each function constructed by using the compositional spline basis is indeed 
also a clr density with a zero integral and the basis itself is uniquely defned through the 
same parameters as in the general B-spline setting. 

Similarly as for B-splines, the compositional ZB-spline functions Zi
k(t) are k-degree 

piecewise polynomials with k − 1 continuous derivatives defned on t ∈ I. Examples 
of both the ZB-spline (right) and the B-spline bases (left), defned using cubic basis 
functions over the same set of 16 non-equispaced knots, are illustrated in Figure 2. When 
considering the ZB-spline basis, the observations are represented as a linear combination 
of the basis functions 

l−1 
xk(t) = ∑ ziZi

k+1(t), t ∈ I, (5) 
i=−k 

where l defnes the length of the vector of inner knots and zi represents the spline coef-
fcient corresponding to the i−th basis function. By linearity, each observation derived 
from (5) is guaranteed to still belong to the clr space. This essential step of the data 
preprocessing stage will be considered further in the descriptive text as well as during 
the data processing in both simulated and real data sets. 

3. Classifcation techniques for PDFs 

The techniques considered in this work cover (i) three of the most popular and com-
monly used parametric classifcation methods available in FDA; (ii) a semi-parametric 
approach based on the idea of the small-ball probability (see Bongiorno and Goia (2016)); 
and (iii) the non-parametric method of k-nearest neighbours. This section offers an 
overview of these methods, when adapted to the case of densities. To start, however, an 
insight to a functional principal component analysis (FPCA) is offered, as dimensional-
ity reduction is a common and necessary step in data analysis of both multivariate and 
functional data. 

For further reference, a brief summary of notation is offered here. In the following, 
X is a random element defned on the probability space (Ω,F,P), taking values in B2(I) 
and x is its observed value. Assume that Ω is partitioned by G subsets Ωg ⊂ Ω with 
g ∈ {0, . . . ,G− 1} and let Y be the random variable identifying the group label of ω and 
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Figure 2. B-spline (left) and ZB-spline basis (right) corresponding to the data set displayed in 
Figure 1. 

defned by 
G−1 

Y (w) = å p(g)IWg (w), ∀w ∈ W, (6) 
g=0 

where IA denotes the indicator of A, p(g) = P(Y = g) > 0 and å
G−1 p(g) = 1. If not g=0 

specifed, functional objects from B2(I) will be solely considered further in the text. 

3.1. Dimension reduction in functional data analysis 

When considering functions in the Bayes space, reducing dimensionality involves pro-

jecting the data over a basis of the underlying Hilbert space and keeping a small number 

of the obtained basis coeffcients. As an instance in the PDF setting, it is possible to 

consider the compositional spline basis as presented in the previous section, or the basis 

obtained from the functional principal component analysis (FPCA, Ramsay and Silver-

man (2005); Horváth and Kokoszka (2012); Hron et al. (2016)). The latter allows one, in 

addition to the dimensionality reduction, to maintain a signifcant proportion of variabi-

lity from the original data set and for this reason is introduced in what follows. FPCA 

can be formulated directly for data belonging to B2(I); in this case, which will be of 

interest for this work, it is named simplicial functional principal component analysis 

(SFPCA, Hron et al. (2016)). 

In particular, for a random function X(t) ∈ B2(I) with mean function µ(t) = E [X(t)] 
and the covariance operator S(·) = E [⟨X ⊖ µ, ·⟩(X ⊖ µ)], it is possible to consider the 

Karhunen-Loève expansion (Eaton, 1983; Horváth and Kokoszka, 2012) 

¥ M 
X(t) = µ(t) ⊕ q j ⊙ x j(t) (7) 

j=1 
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˜ ° 
where θ j = X ⊖µ,ξ j satisfes E[θ j] = 0, Var(θ j) = λ j and E[θ jθi] = 0 for any i ̸= 
j, and stands for the scores along the j-th simplicial functional principal component˛ ˝ 
(SFPC), whereas ξ j(t) are the loadings obtained as the orthonormal eigenfunctions˛ ˝ 
of Σ ordered according to the decreasing values of the associated eigenvalues λ j . As 
a consequence, ∑d

k=1 λk/∑∞ 
k=1 λk indicates the fraction of variability of ̇

 
X

d 
explained by 

the frst d SFPCs, that is, by the d-dimensional process X (d)(t) = µ(t)⊕ j=1 θ j ⊙ξ j(t) 
obtained by truncating (7). When working with a sample of N observations x1, . . . ,xN , 
the theoretical quantities are replaced with their empirical counterparts, namely the 

1 ˙Nsample mean x = 1 xi and the corresponding sample covariance operator V (·) =N i= 
1 ˙N 

1 ⟨xi ⊖ x, ·⟩(xi ⊖ x).N ⊙ i= 
From a computational point of view, it has been shown that the easiest and most 

straightforward way to perform SFPCA is to transform the densities using (4) and to pro-
ceed within the L2 space (Hron et al., 2016). Using a sample of zero-integral functional 
observations, the common FPCA setting – which is widely explored in the literature 
(Ramsay and Silverman, 2005) – is obtained. 

We fnally remark that, as in FPCA, there is no universal answer for which fraction 
of explained variability in SFPCA is suffcient for proceeding further with data analysis. 
It is important to account for the specifc features of the data and the scope of the data 
analysis, to fnd a dimension d of functional principal components suffciently high to 
appropriately describe the data. In this work, SFPCA will come into play in Sections 3.2, 
3.3 and 3.5, and the infuence of the number of used principal components on quality of 
classifcation will be illustrated within the Sections 4 and 5. 

3.2. Functional logistic regression 

Functional logistic regression (Nourollah Mousavi and Sørensen, 2017) is a classifca-
tion method designed specifcally for binary response, meaning that the problem reduces 
to the decision between two groups with labels {0,1}. In particular, in the B2(I) set-
ting, the classifcation rule is based on the probabilities π(g|x) = P(Y = g|X = x) with 
g ∈ {0,1} which provide the probabilities to associate the g-th group with a new obser-
vation x ∈B2(I). For g = 1, this conditional probability is given by 

exp {α + ⟨β ,x⟩ }Bπ(1|x) =  (8)
1 + exp {α + ⟨β ,x⟩ }B 

and can be rewritten in terms of the logit transformation of the original probability as 
ˆ 

π(1|x) 
ˇ 

η(x) = log = α + ⟨β ,x⟩B . (9)
1 −π(1|x) 

This way, aside from the intercept α , the relationship between X and Y can be described 
by a functional parameter β (t). Embedded within the same B-spline basis as x, the PDF 
β (t) can be decomposed as 

l−1 

β (t) =  ∑ biBi
k(t) = bT Bk

i (t), (10) 
i=−k 
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where Bk
i (t) stands for the i-th B-spline basis function. Additionally, due to the relatively 

simple form of (9), parameters α and β (t) (specifcally spline coeffcients b for the latter) 
can be estimated from the associated conditional likelihood function L(α,β |x1, . . . ,xN ), 

N N exp{gi(α + ⟨β , xi⟩B)}
1 + exp{gi(α + ⟨β ,xi⟩B)} 

L(α,β |x1, . . . ,xN) = ∏πi
gi (1 − πi)

1−gi = ∏ , (11) 
i=1 i=1 

where πi = π(1|xi) and gi ∈ {0,1} is the observed group label for xi. By computing 
β̂ (t) = b̂T Bk

i (t), it is then possible to estimate the predictive probabilities from (8) and, 
for a given new observation x, the classifcation rule reduces to choosing g ∈ {0,1}
which maximizes the estimated conditional probability π̂(g|x). 

Note that one can also choose to work directly with clr-transformed PDFs, using 
a proper ZB-spline basis. Resulting parameter β (t) then can offer better interpretable 
information (Talská, Hron and Matys Grygar, 2021). Similarly, a principal component 
basis can be used instead of a fxed (Z)B-spline basis when (S)FPCA was performed 
prior classifcation. 

3.3. Simplicial functional principal component regression 

In many cases, it is necessary to classify observations into G > 2 groups, a possibility 
which is allowed by the following method. As noticeable from its name, simplicial 
functional principal component regression (SFPCR) is a generalization of multivariate 
principal component regression (Varmuza and Filzmoser, 2009) which combines the 
results of SFPCA with regression, aiming to produce a regression model which can be 
then used for the class prediction. Here, the B2 counterparts to scores from (7) play 
the role of covariates whereas the class indices serve as response. Functional principal 
component regression has been studied, for data in L2, in Reiss and Ogden (2007); it is 
here reformulated for density data in B2. 

The keystone is the structure of response, which is a N ×G matrix. With the assump-
tion that each density belongs exclusively to one of the predefned classes, it is possible 
to reorder observations in the data set such that the response follows a pattern of matrix 
R:   

1 −1 . . . −1 
. . . . . . . . . . . . 
1 −1 . . . −1 
−1 1 . . . −1 

. . . . . . . . . . . . 
−1 1 . . . −1 
. . . . . . . . . . . . 

. .−1 −1 . 1 
. . .. . . . . .. . . 

 

R = 

−1 −1 . . . 1 
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where Rig = 1 if the i-th observation belongs into group g, Rig = −1 otherwise. When 
using d SFPCs as newly obtained latent variables from the SFPCA step, [N × (d + 1)]-
dimensional predictor matrix P is in form  

P = 
 

1 ⟨x1 ⊖ x,ζ1⟩B ⟨x1 ⊖ x,ζ2⟩B . . . ⟨x1 ⊖ x,ζd⟩B 
1 ⟨x2 ⊖ x,ζ1⟩B ⟨x2 ⊖ x,ζ2⟩B . . . ⟨x2 ⊖ x,ζd⟩B 
. . . 

. . . 
. . . 

. . . 
. . . 

1 ⟨xN ⊖ x,ζ1⟩B ⟨xN ⊖ x,ζ2⟩B . . . ⟨xN ⊖ x,ζd⟩B 

 , 

where the frst column is linked to the intercept and the remaining ones are formed 
dfrom the scores corresponding to the orthogonal eigenfunctions {ζi}1, obtained as linear 

combinations of the ZB-spline basis elements. 
The resulting regression model can be then written in a matrix form as 

R = PB + E 

with a (d + 1) × G-dimensional matrix B of real coeffcients or, using a scalar product 
for each element of R, as 

d � 
Rig = Pi· · B·g = β0g + ∑ β jg xi ⊖ x,ζ j + εigB (12) 

j=1 

for any g ∈ {0, . . . ,G − 1} and i ∈ {1, . . . ,N}. 
It is then possible to estimate the [(d + 1) × G]-dimensional matrix B of regression 

coeffcients using the OLS approach leading to 

bB = (PTP)−1PTR, 

where Bb ·g carries the coeffcients for the SFPCs corresponding to class g. Similarly 
to the previous method, the estimated response can be computed using the regression 
coeffcients estimates in (12). The classifcation rule is then based on maximizing the 
estimated response for newly observed density x: the assigned group index corresponds 
to the column with the highest (positive) row value. 

3.4. Functional linear discriminant analysis 

The functional adaptation of linear discriminant analysis (Johnson and Wichern, 2007) 
(FLDA) has been already developed in James and Hastie (2001). A possible application 
in context of particle size distributions was presented in Pavlů et al. (2022). Although 
the method could be formulated directly in B2, we resort for simplicity to the equivalent 
formulation in L2 based on clr-transform densities. In the following, clr(Xig), clr(xig) 
will thus denote the clr-transformed forms of Xig, xig, namely the i-th random/observed 
PDF in the g-th group. 

Likewise in the multivariate case, the basic idea of FLDA lies in the concept of re-
ducing the – essentially infnitely-dimensional – observations into a lower dimensional 

(13) 
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discriminant space. Considering a d-dimensional discriminant space together with the 
concept of compositional splines (Machalová et al., 2021), each considered random 
functional observation clr(Xig) can be rewritten as 

clr(Xig)(t) ≈ Z(ν0 + Λαg + γ ig)(t)+ εig(t), (14) 

G−1 
g = 0, . . . ,G − 1, i = 1, . . . ,Ng, ∑ Ng = N, t ∈ I 

g=0 

where Z stands for the common system of compositional spline basis functions, the 
argument in parentheses, ν0 + Λαg + γ ig, represents the decomposition of the spline 
coeffcients and Ng stands for the number of observations from group g. In this form, it is 
possible to distinguish three main parts which form the spline coeffcients and recognize 
their meaning: 

• ν0 ∈ Rd represents the main effect which is common for all observations regard-
less their (true) class; 

• Λαg stands for the effect of the group, which is of the main interest in this case. 
While Λ ∈ Rd×d serves as a form of standardization for the group effect (using 
Λ

T C−1 Λ = I), αg ∈ Rd can be understood as representatives of the classes in the 
low-dimensional discriminant space, so-called centroids; 

• γ ig ∈ Rd represents the individual effect of each separate observation. 

In (14), εig represents the random functional error. However, for an easier use, dis-
cretized observations clr(xig) of the clr-transformed densities will be considered, which 
can be easily obtained by numerical evaluation of functions over a certain grid of points 
T = (t1, . . . , tn) ∈ I. This leads to decomposing the discretized clr(xig) as 

clr(xig) = ZT (ν0 + Λαg + γ ig)+ ε ig, i = 1, . . . ,Ng, g = 0, . . . ,G− 1, (15) 

where ZT = (Z(t1), . . . ,Z(tn))
T . In the standard L2 setting, the vector ε ig of measurement 

errors would follow a multivariate normal distribution N(0,σ2I). Instead, given the zero 
integral constraint induced by the clr transformation, the random error has a singular 
normal distribution (Kwong and Iglewicz, 1996; Pavlů et al., 2022), i.e. εig ∼ N(0,Σ = 
σ2VVT) with VVT = INg − 1Ng×Ng /Ng being an idempotent matrix. The model, covering 
all necessary conditions, can be formulated as follows (James and Hastie, 2001), 

xig = ZT (ν0 + Λαg + γ ig)+ εig, i = 1, . . . ,Ng, g = 0, . . . ,G − 1, (16) 

G−1 
γ ig ∼ N(0, Γ), ε ig ∼ N(0,σ 2VVT), ∑ αg = 0, Λ

TBTC−1BΛ = I. 
g=0 

Using the additional assumption of independence of the observations, the parameters of 
the joint likelihood function of clr(xig) are estimated using the EM algorithm (Dempster, 
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Laird and Rubin, 1977); details in James and Hastie (2001); Pavlů et al. (2022)). The 
fnal estimates of α̂ g can also be used for graphical representation of the group centres 
in the discriminant space with h components in the form of centroids - an example of 
such visualisation can be seen in Figure 3. 

The fnal decision is then made based on the classifcation rule which minimizes the 
criterion � � 

argmin ||α̂ xig − α̂ g||2 − 2 ln
Ng 

. (17) 
g∈{0,...,G−1} N 

The ratio Ng here corresponds to the estimation of prior probability of group g being rep-N 
resented in the original data set. Note that, up to the constant, (17) essentially minimizes 
the Euclidean distance between the linear discriminant of clr(xig) and the class centroids. 
The index g which attains the minimization of the given criterion is then chosen as the 
estimated class for clr(xig). 

Figure 3. Clr-transformed particle size distributions from Figure 1 displayed in the two-
dimensional linear discriminant space. 

3.5. Small-ball probability approach 

The method, introduced in detail in Bongiorno and Goia (2016), was already formulated 
for the general Hilbert space setting; therefore, it is only briefy summarized here. The 
main idea is based on the so-called small-ball probability (SMBP), which can be defned 




 �
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for x in any Hilbert space H (in the following, H = B2) as the limit behaviour of 

ϕ(x,h) = P(||X − x|| < h), h > 0. (18) 

for h → 0. Equation (18) essentially captures how the probability law of X is concen-
trated around x. Given Y as in (6), ϕ(x,h) can be rewritten as the mixture 

G−1 
ϕ(x,h) = ∑ 

Ng 
ϕ(x,h|g), (19)

Ng=0 

where 
ϕ(x,h|g) = P(||X − x|| < h|Y = g). 

Additional conditions on the eigenvalues decay of the covariance operator of X de-
scribed in Bongiorno and Goia (2016) ensure that, when h tends to zero, it is possible to 
fnd d = d(h) such that the small-ball probability factorizes as 

ϕ(x,h) ∼ fd(θ1, . . . ,θd)φ(d,h), (20) 

where fd(θd) is the PDF of the scores along the frst d functional principal components 
evaluated at θd = (θ1, . . . ,θd)

T with θ j = x,ξ j , ξ j are the SFPCs (as appearing in (7)) 
and φ(d,h) stands for the volume of the d-dimensional ball of radius h. 

Classifcation itself is based on a slight modifcation of the Bayes classifcation rule 
– specifcally, the new observation x is assigned to the g-th group if, for small values of h, 
the posterior probability P(Y = g| ||X − x|| < h) is maximal over {0, . . . ,G− 1}. Thanks 
to factorization (20) and for a large enough d, it is possible to rewrite and simplify the 
classifcation rule in the following way: observation x is assigned to class g if 

P(G = g| ||X − x|| < h)) (Ng/N)ϕ(x,h|g) Ng fd|g(θd 
(g)
) 

= ∼ > 1, (21)
P(G = g ′| ||X − x|| < h) (N ′ /N)ϕ(x,h|g ′ ) fd|g ′ (θ (g ′ ) 

g N ′ )g d 

for any g ′ ̸= g and h tending to zero, where θ (g) is the vector containing the frst dd 
principal components computed for the g-th group. 

The resulting classifer is 

ρ(x,d) = argmax 
Ng fd(x|g) (22) 

g=0,...,G−1 N 

that can be approximated by means of a kernel density estimator leading to 
n 

ρ̂(x,d) = argmax 
Ng 

∑ I{gi 
∗ =g}KHg (||Π̂ g,d(Xi − x)||), (23) 

g=0,...,G−1 i=1N 

where KHg (u) = det(Hg)
− 12 K(Hg)

−12u with a kernel function K. In this context, Hg 

stands for a symmetric positive semi-defnite matrix defning the bandwidth of the ker-
nel, and Π̂ g,d denotes the projector operator over the newly-obtained subspace spanned 
by the frst d eigenfunctions of the empirical covariance operator Vb g. As the index g 
suggests, Vb g are estimated individually within each g ∈ {0, . . . ,G − 1}. 



13 I. Pavlů et al. 

3.6. Functional k-nearest neighbours algorithm 

Classifcation based on the k-nearest neighbours (FKNN) (Burba, Ferraty and Vieu, 
2009) is a popular tool for any type and origin of data because it commonly works 
well under very weak assumptions. Given a new PDF x0, the decision rule of the k-
nearest neighbours algorithm is based on looking for the k closest observations of x0 
with respect to a given metric (or semi-metric), and assigning x0 to the most frequently 
represented class among its neighbours. Consistently with the Bayes space approach 
considered here, the B2 distance between original PDFs is taken, which is equivalent 
to the L2 distance between the respective clr-transformed curves. In B2, the distance 
between two functional objects is given by (3) with an equivalent formulation in the L2 Z 

d(clr( f1),clr( f2)) = ||clr( f1) − clr( f2)||2 = [clr( f1)(s) − clr( f2)(s)]
2 ds. (24)

I 

The group index g ∗ associated with the highest frequency of neighbours is then assigned 
as a group label for x0. In case there are two or more groups with the same highest 
occurrence, a secondary criterion may be considered for those groups, e.g., in the form of 
considering the sum of distances from x0 to all observations from these groups included 
within k-nearest neighbors of x0. The observation x0 is then assigned to the group with 
the smallest sum of distances. 

4. Simulation study 

The data analyses included in the two following sections were performed using the soft-
ware environment R (R Core Team, 2021) and its packages robCompositions (Templ, 
Hron and Filzmoser, 2011) and fda. To implement FLDA in the B2 case, a code avail-
able at http://faculty.mar-shall.usc.edu/gareth-james/Research/Research.html by authors 
of James and Hastie (2001) was used as a starting point and adapted to the case of clr-
transformed PDFs. 

Since there is usually no universal rule for the choice of key parameters in the classi-
fcation methods under consideration, they were evaluated each time for multiple values 
of parameters. The parameters included in the fnal comparisons were then chosen to 
ensure the best results of the method on the given data set. To avoid overparametrized 
models, the maximum value of parameters was determined prior to the analysis of the 
misclassifcation rates. For methods based on SFPCA (FLR, FPCR, SMBP), the frac-
tion of explained variability (FEV) was taken into account - the maximum number of 
FPCs was chosen such that these FPCs would explain at least 98% of data variability √ 
(assuming the rest is caused by noise). For FKNN, k = n with n denoting the size of 
the training data set served the same purpose. In case of FLDA, the highest possible 
dimension of the discriminant space was given by the number of considered groups. 

Finally, since FLR is designed for binary classifcation, it will not be considered in 
a multi-class case, although it could be used for classifcation of one group against the 
rest of the data set (one vs. all scenario). 

http://faculty.mar-shall.usc.edu/gareth-james/Research/Research.html
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Figure 4. Simulation 1: Data set (PDFs and clr-transformed PDFs) and the 2-dimensional 
scores based on the different value of parameter σ . 

4.1. Simulation 1 

The frst data set of PDFs was designed to provide a favourable scenario for the linear 
methods, namely FPCR and FLDA, thanks to the convex shape of the low-dimensional 
score clusters resulting from SFPCA. The data set used for this simulation is defned 
over a domain [0,1] using the frst four non-constant elements of Fourier basis, i.e. the 
process 

2 
X = ∑ An cos(2πnx)+ Bn sin(2πnx), x ∈ [0,1] . (25) 

n=1 

The data in the three proportional clusters were independently generated by sampling 
a set of coeffcients (A1,B1,A2,B2) from a Gaussian distribution N(µg,σ

2I), g = 0,1,2 
with µ0 = (1,0,0,0)T , µ1 = (0,1,0,0)T , µ2 = (0,0,1,0)T . An example of the simulated 
data set for different choices of the scatter parameter σ is presented in Figure 4. 
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To get more information from the simulation, the infuence of both the size of the 
training set and the variance was further studied. For the frst setting, σ was set to 0.4 
to determine the impact of the sample size. To this end, the number of observations ni 

in each of classes was set to 10, 20, 50, 100 and 300. The size of the testing set stayed 
the same throughout the simulation, being equal to 150 (50 observations per group) and 
generated from the same setting described above. For each sample size and each param-
eter, N = 100 training and testing data sets were produced and used for the evaluation of 
the quality of classifcation. Table 1 summarizes the results for the optimal parameters, 
specifcally mean and standard deviation, as well as their robust counterparts (median 
and median absolute deviation - MAD) of the estimated misclassifcation error, here 
defned as the proportion of misclassifed observations in the sample. 

Table 1. Simulation 1: Summary of results with changing parameter ni (σ = 0.4). Overall, 
FLDA and FKNN seem to perform best within the given setting. 

ni Algorithm Parameter Miscl. error - mean Miscl. error - sd Miscl. error - median Miscl. error - MAD 

10 FPCR d = 2 0.0162 0.0107 0.0133 0.0099 
FLDA d = 2 0.0085 0.0124 0.0067 0.0099 
SMBP d = 2 0.1030 0.0654 0.0900 0.0544 
FKNN k = 4 0.0055 0.0065 0.0067 0.0099 

20 FPCR d = 2 0.0160 0.0103 0.0133 0.0099 
FLDA d = 2 0.0057 0.0075 0.0067 0.0099 
SMBP d = 2 0.0873 0.0548 0.0700 0.0346 
FKNN k = 4 0.0047 0.0056 0.0000 0.0000 

50 FPCR d = 2 0.0164 0.0096 0.0133 0.0099 
FLDA d = 2 0.0049 0.0061 0.0000 0.0000 
SMBP d = 2 0.0820 0.0278 0.0067 0.0297 
FKNN k = 3 0.0034 0.0046 0.0000 0.0000 

100 FPCR d = 2 0.0149 0.0103 0.1000 0.0099 
FLDA d = 2 0.0037 0.0054 0.0000 0.0000 
SMBP d = 2 0.0757 0.0252 0.0000 0.0297 
FKNN k = 9 0.0019 0.0041 0.0000 0.0000 

300 FPCR d = 2 0.0174 0.0102 0.0200 0.0099 
FLDA d = 2 0.0045 0.0059 0.0000 0.0000 
SMBP d = 2 0.0763 0.0218 0.0000 0.0198 
FKNN k = 8 0.0028 0.0041 0.0000 0.0000 

To explore the infuence of the changing variability of scores, the size of both train-
ing and testing data sets was set to 150 observations (50 per group), while the σ was 
gradually set to 0.2, 0.4, 0.6, 0.8 and 1 - keeping the rest of the simulation the same. 
Once again, results are displayed in Table 2. 

The results of the simulation are not surprising; we can see that, given the shape of 
the score clusters, the linear methods perform quite well and can compete even with the 
seemingly most universal FKNN. Different, and rather non-elliptic score clusters could 
be expected when PDFs were considered in the original B2 space (Figure 4, upper row). 
Obviously, small values of PDFs form the main source of variability which results from 
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Table 2. Simulation 1: Summary of results with changing parameter σ (ni = 50). Although 
the results seem quite similar with low σs, the development of the mean misclassifcation error 
suggests stronger potential for FLDA and FKNN in case of higher variance. 

σ Algorithm Parameter Miscl. error - mean Miscl. error - sd Miscl. error - median Miscl. error - MAD 

0.4 FPCR d = 2 0.0173 0.0097 0.0133 0.0099 
FLDA d = 2 0.0047 0.0067 0.0000 0.0000 
SMBP d = 3 0.0041 0.0054 0.0000 0.0000 
FKNN k = 3 0.0030 0.0043 0.0000 0.0000 

0.6 FPCR d = 2 0.0901 0.0250 0.0900 0.0297 
FLDA d = 2 0.0377 0.0157 0.0400 0.0199 
SMBP d = 3 0.0414 0.0246 0.0400 0.0199 
FKNN k = 12 0.0332 0.0144 0.0333 0.0099 

0.8 FPCR d = 3 0.1630 0.0318 0.1600 0.0297 
FLDA d = 2 0.0996 0.0243 0.0933 0.0297 
SMBP d = 3 0.1143 0.0288 0.1133 0.0297 
FKNN k = 8 0.0970 0.0261 0.1000 0.0297 

1 FPCR d = 3 0.1984 0.0304 0.2000 0.0297 
FLDA d = 2 0.1693 0.0307 0.1667 0.0297 
SMBP d = 3 0.1907 0.0366 0.1867 0.0395 
FKNN k = 10 0.1659 0.0306 0.1667 0.0297 

their relative scale. This would, however, be ignored if the original PDFs were classifed 
as L2 objects. Note that FKNN appears to outperform the other methods in most sce-
narios based on the mean misclassifcation error, but results appears to be substantially 
equivalent to those of FLDA if accounting for the standard deviation of the errors. In this 
case, while FKNN provides a simple solution to the classifcation problem, a strength of 
FLDA relies in the interpretability of the linear discriminants, which can be used to shed 
light on the data set itself. 

4.2. Simulation 2 

For this simulation setting, the training data set is produced in the same way as in Section 
3.1 in Bongiorno and Goia (2016) (except for the different number L of basis functions). 
For the sake of completeness, a brief description of the simulation design is provided in 
what follows. 

The idea behind this simulation setting is to deal with scores that are not spherically 
clustered but present a nonlinear data structure. To this end, the following functional 
basis expansion 

L p
Xig(t) = ∑ βl τiglξl(t), t ∈ [0,1], i = 1, . . . ,ng and g = 0, . . . ,G− 1 (26) 

l=1 

is used, where βl = 0.7 × 3−l (l = 1, . . . ,L = 30), ξl(t) is the l-th non-constant element 
of the Fourier basis (extension of (25)) and G = 2. To avoid spherical shaped groups of 
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scores, uncorrelated but dependent coeffcients (τigl)
L 
l=1,  

τig1 = sin(ϑi)cos(π 
2 I{g=1})+ σεi,1,  τig2 = sin(ϑi)sin(π 
2 I{g=1})+ σεi,2, 

τig3 = cos(ϑi)+(−k)g + σεi,3,  √ 
τigl = 0.1εi,l, 4 ≤ l ≤ L, 

i.i.d. were generated with (ϑi) i.i.d. from Beta(5,5) scaled on [−π,π], (εi,l)
L ∼ N(0,1)l=1 

representing the Gaussian noise, and (−k)g (here k = 0.5) standing for the vertical trans-
lation. This way, it is possible to obtain FPCA scores which replicate the τ’s structure 
(shown for different σ ’s in the bottom row of Figure 5). This setting ensures that the 
decay of the eigenvalues of the covariance operator is fast enough to guarantee (20) (see 
Bongiorno and Goia (2016) for more details). Due to this nonlinearity, one would ex-
pect a weaker performance of the (linear) parametric methods, namely FLR, FPCR and 
FLDA. 

Likewise as in the previous simulation study, the impact of the size of the train-
ing set and the amount of random noise were tracked. The size of the two groups 
was set to n1 ∈ {10,20,50,100,300} while the noise was determined by parametern√ √ √ √ √ o 
σ ∈ 0.001, 0.005, 0.01, 0.05, 0.1 – its infuence on both the coeffcients and 
the resulting data sets can be seen in Figure 5. The size of the testing set remained 100 
(50+50). 

Figure 5. Simulation 2: Data set (original and clr) and the 3-dimensional scores representation 
based on the different value of parameter σ . 
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Table 3. Simulation 2: Summary of results with changing parameter ni. Altogether, SMBP and 
FKNN seem to perform best based both on the mean/median misclassifcation error as well as 
the signifcantly lower standard deviation/MAD. 

ni Algorithm Parameter Miscl. error - sd Miscl. error - mean Miscl. error - median Miscl. error - MAD 

10 FLR d = 3 0.3713 0.0845 0.3300 0.0593 
FPCR d = 3 0.3393 0.0812 0.3250 0.5189 
FLDA d = 1 0.3243 0.0561 0.3200 0.0593 
SMBP d = 3 0.0104 0.0270 0.0000 0.0000 
FKNN k = 1 0.0096 0.0213 0.0000 0.0000 

20 FLR d = 3 0.3152 0.0701 0.3000 0.0445 
FPCR d = 3 0.3147 0.0708 0.3050 0.0519 
FLDA d = 1 0.3236 0.0670 0.3200 0.0445 
SMBP d = 3 0.0020 0.0043 0.0000 0.0000 
FKNN k = 2 0.0009 0.0032 0.0000 0.0000 

50 FLR d = 3 0.3093 0.0452 0.3100 0.0445 
FPCR d = 3 0.3088 0.0456 0.3100 0.0445 
FLDA d = 1 0.3255 0.0523 0.3200 0.0445 
SMBP d = 3 0.0022 0.0005 0.0000 0.0000 
FKNN k = 2 0.0006 0.0028 0.0000 0.0000 

100 FLR d = 3 0.2971 0.0429 0.3000 0.0445 
FPCR d = 3 0.2972 0.0438 0.3000 0.0445 
FLDA d = 1 0.3091 0.0501 0.3200 0.0445 
SMBP d = 3 0.0001 0.0010 0.0000 0.0000 
FKNN k = 4 0.0004 0.0020 0.0000 0.0000 

300 FLR d = 3 0.2941 0.0410 0.3000 0.0445 
FPCR d = 3 0.2941 0.0412 0.2950 0.0445 
FLDA d = 1 0.3010 0.3200 0.0417 0.0445 
SMBP d = 3 0.0000 0.0000 0.0000 0.0000 
FKNN k = 2 0.0001 0.0010 0.0000 0.0000 

The results obtained for increasing ni which affects size of the training set (constant √ 
σ = 0.005) are shown in Table 3, while the latter case (constant ni = 50, changing σ ) is 
summarized in Table 4. Altogether it can be observed that the non- and semi-parametric 
approaches indeed work better than the parametric ones (taking into account the standard 
deviation of the misclassifcation error, they can be considered interchangeable). Here, 
both FKNN and SMBP are designed to catch nonlinear correlation in data and hence 
outperform linear methods. 

5. Real-world applications 

In this section, the proposed methods will be used for classifcation of two real-world 
data sets of different origin. The frst one deals with age distributions of men and women 
in Upper Austria (used in Hron et al. (2016)) while the second one contains particle size 
distributions from four measuring sites in the Czech Republic. 
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Table 4. Simulation 2: Summary of results with changing parameter σ . SMBP and FKNN 
demonstrate their strength once again - especially for the cases with lower σs, as the differences 
between classifcation results seem to decrease with larger variability in the data. 

σ Algorithm Parameter Miscl. error - sd Miscl. error - mean Miscl. error - median Miscl. error - MAD 

0.001 FLR d = 3 0.2990 0.0422 0.2900 0.0445 
FPCR d = 3 0.2985 0.0416 0.3000 0.0445 
FLDA d = 1 0.3080 0.0472 0.3100 0.0445 
SMBP d = 4 0.0007 0.0026 0.0000 0.0000 
FKNN k = 2 0.0002 0.0014 0.0000 0.0000 

0.005 FLR d = 3 0.3141 0.0510 0.3150 0.0519 
FPCR d = 3 0.3134 0.0508 0.3100 0.0593 
FLDA d = 1 0.3212 0.0514 0.3100 0.0445 
SMBP d = 3 0.0008 0.0027 0.0000 0.0000 
FKNN k = 2 0.0004 0.0020 0.0000 0.0000 

0.01 FLR d = 3 0.3037 0.0540 0.3100 0.0519 
FPCR d = 3 0.3047 0.0530 0.3100 0.0445 
FLDA d = 1 0.3200 0.0594 0.3200 0.0593 
SMBP d = 3 0.0012 0.0036 0.0000 0.0000 
FKNN k = 2 0.0008 0.0027 0.0000 0.0000 

0.05 FLR d = 3 0.3503 0.0761 0.3300 0.0593 
FPCR d = 3 0.3511 0.0.0765 0.3300 0.0667 
FLDA d = 1 0.3642 0.0713 0.3550 0.0445 
SMBP d = 3 0.0511 0.0231 0.0500 0.0148 
FKNN k = 6 0.0503 0.0219 0.0500 0.0148 

0.1 FLR d = 3 0.3737 0.0620 0.3600 0.0593 
FPCR d = 3 0.3732 0.0610 0.3600 0.0593 
FLDA d = 1 0.3970 0.0569 0.3900 0.0593 
SMBP d = 3 0.1505 0.0349 0.1500 0.0297 
FKNN k = 8 0.1462 0.0370 0.1500 0.0445 

5.1. Age distribution 

The data set from Hron et al. (2016) contains age distributions from 57 municipalities in 
Upper Austria (Figure 6). For each district, age distributions for both men and women 
were observed. Accordingly, the aim is to classify these observations by gender. 

All presented methods were evaluated using the 5-fold cross-validation.The best re-
sults for this data set were obtained using the following parameters: dFLR = dFPCR = 
3, dFLDA = dSmBP = 2, k = 5. Table 5 then summarizes the results, while Figure 7 dis-
plays the 2D score representation of the original data set. From the results, it is evident 
that both FLR and FPCR as well as the nonparametric method FKNN perform very 
well – nevertheless, the mean misclassifcation rate of all presented methods is below or 
around 5%. 

Hereby it is interesting to observe the main source of variability, and consequently 
also classifcation for the original versus the clr-transformed PDFs. While when looking 
at the original PDFs (Figure 6, left) one would guess ages around 30 and 80 as the 
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Figure 6. Age distribution data. In (a) and (b) colors are given according to their classes (blue 

- men, pink - women). 

main source of information for classifcation, for clr-transformed PDFs (Figure 6, right) 

this comes clearly from the oldest age categories. The latter source is quite natural as it 

corresponds to mean lifetime which forms clearly the most important difference between 

men and women age distributions. 

Table 5. Classifcation results - age distributions. 

Algorithm Parameter Miscl. error - mean Miscl. error - sd Miscl. error - median Miscl. error - MAD 

FLR 

FPCR 

FLDA 

SMBP 

FKNN 

d = 3 

d = 3 

d = 2 

d = 2 

k = 3 

0.0025 

0.0037 

0.0514 

0.0126 

0.0048 

0.0102 

0.0122 

0.0414 

0.0220 

0.0147 

0.0000 

0.0000 

0.0455 

0.0000 

0.0000 

0.0000 

0.0000 

0.0562 

0.0000 

0.0000 

Given that functional logistic regression performs best in this case, we analyse fur-

ther the shape of the functional regression parameter, as this might be indicative of the 

discrimination power of the different portions of the domain of the PDFs. As indicated 

in Section 3.2, the interpretation of the regression parameter (b ) is straightforward in 

the clr space, because the resulting zero-integral function forms naturally a contrast be-

tween positive and negative values which can be, accordingly, assigned to effects of 

either classes. Specifcally, positive values of the regression parameter (in its clr repre-

sentation) for a specifc part of the domain indicate a tendency toward the class g = 1, 

(here indicating women) and vice versa for negative values (Talská et al., 2021). As it 
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can be observed from Figure 8, the interval [60,100], corresponding to the oldest age 
groups, carries signifcant differences between the two gender groups. The high abso-
lute effect of β (t) on interval [80,100] then confrms that this age group discriminates 
the most between gender groups, positive values being associated to the group of women 
and their higher life expectancy. This fact can be possibly used also for weighting of the 
domain of PDFs (van den Boogaart et al., 2014; Talská et al., 2020) to highlight the 
effect of the part of domain which contributes at most to classifcation between both 
gender groups. 

Figure 7. Age distribution data: visualisation of classifcation results of each observation during 
CV individually through their 2-dimensional scores representation. The darker the color, the 
higher proportion of scenarios where the observation was classifed correctly. 

5.2. Particle size distribution example 

The data set discussed in this section contains particle size distributions (PSDs) mea-
sured at four different locations in the Czech Republic (Dobˇ ejova, sice, Brodek u Prostˇ 
Rozvadovice, Ivan;ˇ further denoted as classes 1-4) with locations playing the role of 
classes (Simˇ ı́ček et al., 2021). The original data set consists of 250 vectors (each corre-
sponding to a unique discretized PSD), which were smoothed using the compositional 
splines. Here, the different classes are represented unevenly, with sample sizes 96, 39, 
66, and 49. As the site of origin (and therefore the correct classifcation) of the measured 
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Figure 8. Estimated functional regression parameter β (t) corresponding to functional logistic 
regression with the age distribution data set. 

samples is known, it is possible to estimate the required parameters and to examine the 
quality of the classifcation model via cross validation. The data set is displayed in 
Figure 9. 
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Figure 9. Particle size distribution data. In (a) and (b) colors are given according to their 
classes. 

Even from a visual inspection of Figure 9b, it is possible to capture some differences 
between groups, namely class 1 (black) is deviating from the common behaviour around 
points 0.3 µm and 10 µm and class 2 (red) in the neighbourhood of 300 µm; neverthe-
less, the effect of the latter class would not be observable from Figure 9a. On the other 
side, classes 3 and 4 are practically indistinguishable. This demonstrates once again that 
a proper representation of the original PDFs is crucial to assess the source of classifca-
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tion into given groups. Clearly, the clr transformation highlights the role of small values 
of PDFs which is fully in line with the relative scale of PDFs. Accordingly, while no 
differences between groups can be observed for fractions above 100 µm with the ori-
ginal PDFs, this is clearly the opposite case when their clr-transformed counterparts are 
considered. Moreover, also here it might be benefcial to change the reference measure, 
e.g. to B-mean as in van den Boogaart et al. (2014) or to a user designed reference, to 
provide a better insight and prospectively also better classifcation. 

Again, the 5-fold cross-validation was performed for all presented methods resulting 
in the following optimal parameters: dFPCR = 6, dFLDA = 2, dSmBP = 6, k = 4. Overall 
results are summarized in Table 6, confrming the dominance of FKNN. An interesting 
effect can be observed from Figure 10, showing the 3D scores representation of the 
given data set. It seems that, although group 2 (red) is quite clearly different from the 
rest, both FPCR and SMBP struggle to capture these differences. On the other hand, the 
task of differentiating between groups 3 (green) and 4 (blue) seems to be diffcult for all 
methods, although FKNN performs best even in this case. 

Table 6. Classifcation results - particle size distributions. 
Algorithm Parameter Miscl. error - mean Miscl. error - sd Miscl. error - median Miscl. error - MAD 

FPCR 
FLDA 
SMBP 
FKNN 

d = 6 
d = 2 
d = 6 
k = 4 

0.1709 
0.1872 
0.1795 
0.0958 

0.0348 
0.0440 
0.0469 
0.0355 

0.1730 
0.1875 
0.1800 
0.1000 

0.0399 
0.0408 
0.0593 
0.0297 

Figure 10. Particle size distribution data: visualisation of classifcation results of each observa-
tion during CV individually through their 3-dimensional scores representation. The darker the 
color, the higher proportion of scenarios where the observation was classifed correctly. 
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6. Conclusions 

The need of considering a proper sample space for representation of functional distri-
butional data (expressed usually in terms of probability density functions) has been ad-
dressed throughout the years. This paper aims to provide a frst concise overview of 
classifcation methods in the context of the Bayes space approach. In practice, it is com-
mon to transform PDFs into the L2 space using the clr transformation and then proceed 
with data analysis - however, it is important to emphasize the embedding of the methods 
in the (original) Bayes space framework. 

When looking at the results of classifcation performed on both simulated and real 
data sets, the nonparametric FKNN approach seems to outperform all of its competitors. 
On one hand, this should not be too surprising as, with FKNN, the ”complete” infor-
mation contained in the data is used (no simplifcation through parametrization is done). 
On the other hand, this way one does not have any model to work with, no parameters to 
assign interpretation to. With the remaining methods, it is possible to obtain additional 
information and interpretability from the parameters which can be useful especially for 
real-world applications. As demonstrated in the paper, this is indeed an important advan-
tage of methods like FLR and FPCR. Considering the relative scale of PDFs by the clr 
transformation opens new perspectives concerning the discrimination power of portions 
of the domain unlike it could be deduced from the original PDFs. Note also that the 
choice of a proper classifcation method could be different, and even counterintuitive, if 
based on assessing the data structure of the original PDFs in terms of the L2 space. 

Another aspect worth mentioning is connected to the fact that the performance of the 
methods can be severely infuenced by choosing different parameters and/or by different 
proportionality occurring in the data. The safest bet is to test a few sets of parameters 
and choose, in a data-driven fashion (e.g., via cross-validation) the combination which 
performs the best. Also choosing a more appropriate reference measure than the default 
uniform one (van den Boogaart et al., 2014; Talská et al., 2020) can contribute to a better 
classifcation performance. 

Although in this paper classifcation of univariate densities was presented, the Bayes 
space methodology offers the possibility of an extension to multivariate densities, which 
is nowadays equipped with an orthogonal decomposition of PDFs into independent and 
interactive parts (Genest, Hron and Neslehovˇ ´ a and Menafoglio,a (2023); Hron, Machalov´ 
2022). The development of proper methods for the data analysis and classifcation in this 
very cutting-edge setting will be of our primary interest in the near future. 
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	representation (if needed for interpretation purposes). Using (1), one can also defne the distance between f and g as 
	dB( f, f)= B || f⊖ f||, where ( f⊖ f)(t)= B f⊕ [−1⊙ f(t)], t ∈ I. (3) 
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	To proceed with the statistical processing of densities, two ways can be pursued. Indeed, methods can be either developed directly in the Bsetting, or PDFs can be mapped into Lto make use of existing FDA methods. The latter approach is appealing due to the existence of an isometric mapping from B(I) into a subspace of L(I) of zero-integral functions -frequently denoted as L(I). This mapping, called the centred
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	clr( f )(t)= ln f (t) − ln f (u)du , t ∈ I (4)
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	then results in a zero-integral real function on the same domain I. Using these clrtransformed densities (see Figure 1 for an illustration), the standard functional approaches can be considered, thus avoiding the computational inconveniences related to processing directly in Bayes spaces, and maintaining the relative information of the original data. 
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	transformed counterparts (right). Gray dashed lines represent the position of the knots used for their ZB-spline representation. It is obvious that clr transformation enables to highlight variation related to small functional values as compared to the original PDFs. This data set is further discussed in Section 5.2. 
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	as a whole continuous curve. Instead, the raw data usually consist of a discrete set of measures dispersed over the supporting domain. This obstacle can be overcome during the preprocessing stage. Commonly, for Ldata, the B-spline representation (De Boor, 1978; Machalov´a, Hron and Monti, 2016) is used to smooth the discrete data by piece-wise polynomial functions, with Fourier bases and wawelets serving as examples of other basis choices. Using a common spline basis – defned by I, a sequence of knots and t
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	Similarly as for B-splines, the compositional ZB-spline functions Z(t) are k-degree piecewise polynomials with k − 1 continuous derivatives defned on t ∈ I. Examples of both the ZB-spline (right) and the B-spline bases (left), defned using cubic basis functions over the same set of 16 non-equispaced knots, are illustrated in Figure 2. When considering the ZB-spline basis, the observations are represented as a linear combination of the basis functions 
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	l−1 xk(t)= ziZ(t), t ∈ I, (5) i=−k where l defnes the length of the vector of inner knots and zi represents the spline coeffcient corresponding to the i−th basis function. By linearity, each observation derived from (5) is guaranteed to still belong to the clr space. This essential step of the data preprocessing stage will be considered further in the descriptive text as well as during the data processing in both simulated and real data sets. 
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	3. Classifcation techniques for PDFs 
	The techniques considered in this work cover (i) three of the most popular and commonly used parametric classifcation methods available in FDA; (ii) a semi-parametric approach based on the idea of the small-ball probability (see Bongiorno and Goia (2016)); and (iii) the non-parametric method of k-nearest neighbours. This section offers an overview of these methods, when adapted to the case of densities. To start, however, an insight to a functional principal component analysis (FPCA) is offered, as dimensio
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	For further reference, a brief summary of notation is offered here. In the following, X is a random element defned on the probability space (Ω,F,P), taking values in B(I) and x is its observed value. Assume that Ω is partitioned by G subsets Ωg ⊂ Ω with g ∈{0,...,G− 1} and let Y be the random variable identifying the group label of ω and 
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	Figure 2. B-spline (left) and ZB-spline basis (right) corresponding to the data set displayed in Figure 1. 
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	3.1. Dimension reduction in functional data analysis 
	When considering functions in the Bayes space, reducing dimensionality involves projecting the data over a basis of the underlying Hilbert space and keeping a small number of the obtained basis coeffcients. As an instance in the PDF setting, it is possible to consider the compositional spline basis as presented in the previous section, or the basis obtained from the functional principal component analysis (FPCA, Ramsay and Silverman (2005); Horv´
	-
	-

	ath and Kokoszka (2012); Hron et al. (2016)). The latter allows one, in addition to the dimensionality reduction, to maintain a signifcant proportion of variability from the original data set and for this reason is introduced in what follows. FPCA can be formulated directly for data belonging to B(I); in this case, which will be of interest for this work, it is named simplicial functional principal component analysis (SFPCA, Hron et al. (2016)). 
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	In particular, for a random function X(t) ∈ B(I) with mean function µ(t)= E [X(t)] and the covariance operator Σ(·)= E [⟨X ⊖ µ,·⟩(X ⊖ µ)], it is possible to consider the Karhunen-Lo`eve expansion (Eaton, 1983; Horv´ath and Kokoszka, 2012) 
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	where θj = X ⊖µ,ξj satisfes E[θj]=0, Var(θj)=λj and E[θjθi]=0 for any i ̸= j, and stands for the scores along the j-th simplicial functional principal component
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	(SFPC), whereas ξj(t) are the loadings obtained as the orthonormal eigenfunctions
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	of Σ ordered according to the decreasing values of the associated eigenvalues λj . As a consequence, ∑λk/∑λk indicates the fraction of variability of Xexplained by the frst d SFPCs, that is, by the d-dimensional process X(t)=µ(t)⊕ θj ⊙ξj(t) obtained by truncating (7). When working with a sample of N observations x,...,xN , the theoretical quantities are replaced with their empirical counterparts, namely the 
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	From a computational point of view, it has been shown that the easiest and most straightforward way to perform SFPCA is to transform the densities using (4) and to proceed within the Lspace (Hron et al., 2016). Using a sample of zero-integral functional observations, the common FPCA setting – which is widely explored in the literature (Ramsay and Silverman, 2005) – is obtained. 
	-
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	We fnally remark that, as in FPCA, there is no universal answer for which fraction of explained variability in SFPCA is suffcient for proceeding further with data analysis. It is important to account for the specifc features of the data and the scope of the data analysis, to fnd a dimension d of functional principal components suffciently high to appropriately describe the data. In this work, SFPCA will come into play in Sections 3.2, 
	3.3 and 3.5, and the infuence of the number of used principal components on quality of classifcation will be illustrated within the Sections 4 and 5. 
	Functional logistic regression (Nourollah Mousavi and Sensen, 2017) is a classifcation method designed specifcally for binary response, meaning that the problem reduces to the decision between two groups with labels {0,1}. In particular, in the B(I)setting, the classifcation rule is based on the probabilities π(g|x)=P(Y =g|X =x)with g ∈{0,1}which provide the probabilities to associate the g-th group with a new observation x ∈B(I). For g =1, this conditional probability is given by 
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	and can be rewritten in terms of the logit transformation of the original probability as 
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	η(x)=log =α +⟨β ,x⟩. (9)
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	1 −π(1|x) 
	This way, aside from the intercept α, the relationship between X and Y can be described by a functional parameter β (t). Embedded within the same B-spline basis as x, the PDF β (t)can be decomposed as 
	l−1 β (t)= biB(t)=bB(t), (10) i=−k 
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	where B(t) stands for the i-th B-spline basis function. Additionally, due to the relatively simple form of (9), parameters α and β (t) (specifcally spline coeffcients b for the latter) can be estimated from the associated conditional likelihood function L(α,β |x,...,xN ), 
	where B(t) stands for the i-th B-spline basis function. Additionally, due to the relatively simple form of (9), parameters α and β (t) (specifcally spline coeffcients b for the latter) can be estimated from the associated conditional likelihood function L(α,β |x,...,xN ), 
	where B(t) stands for the i-th B-spline basis function. Additionally, due to the relatively simple form of (9), parameters α and β (t) (specifcally spline coeffcients b for the latter) can be estimated from the associated conditional likelihood function L(α,β |x,...,xN ), 
	k
	i 
	1

	NN 
	exp{gi(α + ⟨β , xi⟩)}1 + exp{gi(α + ⟨β ,xi⟩)} 
	B
	B

	L(α,β |x,...,xN)=
	1

	∏
	i −gi 
	π
	i
	g
	(1 − π
	i
	)
	1

	=
	∏
	, 
	(11) 
	i=1 i=1 
	where πi = π(1|xi) and gi ∈{0,1} is the observed group label for xi. By computing β(t)= bB(t), it is then possible to estimate the predictive probabilities from (8) and, for a given new observation x, the classifcation rule reduces to choosing g ∈{0,1}which maximizes the estimated conditional probability πˆ(g|x). 
	ˆ
	ˆ
	T 
	k
	i 

	Note that one can also choose to work directly with clr-transformed PDFs, using a proper ZB-spline basis. Resulting parameter β (t) then can offer better interpretable information (Talsk´a, Hron and Matys Grygar, 2021). Similarly, a principal component basis can be used instead of a fxed (Z)B-spline basis when (S)FPCA was performed prior classifcation. 

	3.3. Simplicial functional principal component regression 
	3.3. Simplicial functional principal component regression 
	In many cases, it is necessary to classify observations into G > 2 groups, a possibility which is allowed by the following method. As noticeable from its name, simplicial functional principal component regression (SFPCR) is a generalization of multivariate principal component regression (Varmuza and Filzmoser, 2009) which combines the results of SFPCA with regression, aiming to produce a regression model which can be then used for the class prediction. Here, the Bcounterparts to scores from (7) play the rol
	2 
	2
	2

	The keystone is the structure of response, which is a N ×G matrix. With the assumption that each density belongs exclusively to one of the predefned classes, it is possible to reorder observations in the data set such that the response follows a pattern of matrix 
	-

	R:
	
	 
	 
	1 −1 ... −1 .. . 
	1 −1 ... −1 .. . 

	.. . 
	.. ... . 1 −1 ... −1 −11 ... −1 
	.. ... . 1 −1 ... −1 −11 ... −1 

	.. . 
	.. . 
	.. ... . 
	−11 ... −1 ... ... ... ... 
	. 
	. 

	.
	.

	−1 −1 .1 
	.. .
	.. .

	. 
	.... 
	.
	.

	.. . 
	 
	R = 
	−1 −1 ... 1 
	I. Pavl˚u et al. 
	where Rig = 1 if the i-th observation belongs into group g, Rig = −1 otherwise. When using d SFPCs as newly obtained latent variables from the SFPCA step, [N × (d + 1)]dimensional predictor matrix P is in form 
	-

	
	 
	P = 
	 
	1 
	1 
	1 
	⟨x1 ⊖ x,ζ1⟩B 
	⟨x1 ⊖ x,ζ2⟩B 
	... 
	⟨x1 ⊖ x,ζd⟩B 

	1 
	1 
	⟨x2 ⊖ x,ζ1⟩B 
	⟨x2 ⊖ x,ζ2⟩B 
	... 
	⟨x2 ⊖ x,ζd⟩B 

	. . . 
	. . . 
	. . . 
	. . . 
	... 
	. . . 

	1 
	1 
	⟨xN ⊖ x,ζ1⟩B 
	⟨xN ⊖ x,ζ2⟩B 
	... 
	⟨xN ⊖ x,ζd⟩B 


	
	, 
	where the frst column is linked to the intercept and the remaining ones are formed 
	d
	from the scores corresponding to the orthogonal eigenfunctions {ζi}, obtained as linear combinations of the ZB-spline basis elements. 
	1

	The resulting regression model can be then written in a matrix form as 
	R = PB + E 
	with a (d + 1) × G-dimensional matrix B of real coeffcients or, using a scalar product for each element of R, as 
	d
	. 
	Rig = Pi·· 
	Rig = Pi·· 
	·g g ∑ 
	B
	= β
	0
	+ 

	βjg xi ⊖ ,ζj + εig
	x


	B 
	(12) 
	j=1 
	for any g ∈{0,...,G − 1} and i ∈{1,...,N}. 
	It is then possible to estimate the [(d + 1) × G]-dimensional matrix B of regression coeffcients using the OLS approach leading to 
	b
	B =(PP)PR, 
	T
	−1
	T

	where B·g carries the coeffcients for the SFPCs corresponding to class g. Similarly to the previous method, the estimated response can be computed using the regression coeffcients estimates in (12). The classifcation rule is then based on maximizing the estimated response for newly observed density x: the assigned group index corresponds to the column with the highest (positive) row value. 
	b 


	3.4. Functional linear discriminant analysis 
	3.4. Functional linear discriminant analysis 
	The functional adaptation of linear discriminant analysis (Johnson and Wichern, 2007) (FLDA) has been already developed in James and Hastie (2001). A possible application in context of particle size distributions was presented in Pavlu˚ et al. (2022). Although the method could be formulated directly in B, we resort for simplicity to the equivalent formulation in Lbased on clr-transform densities. In the following, clr(Xig), clr(xig) will thus denote the clr-transformed forms of Xig, xig, namely the i-th rand
	2
	2 

	Likewise in the multivariate case, the basic idea of FLDA lies in the concept of reducing the – essentially infnitely-dimensional – observations into a lower dimensional 
	-

	(13) 
	discriminant space. Considering a d-dimensional discriminant space together with the concept of compositional splines (Machalov´a et al., 2021), each considered random functional observation clr(Xig) can be rewritten as 
	clr(Xig)(t) ≈ Z(ν+ Λαg + γ)(t)+ εig(t), (14) 
	0 
	ig

	G−1 g = 0,...,G − 1, i = 1,...,Ng, Ng = N, t ∈ I 
	∑ 

	g=0 
	where Z stands for the common system of compositional spline basis functions, the argument in parentheses, ν+ Λαg + γ, represents the decomposition of the spline coeffcients and Ng stands for the number of observations from group g. In this form, it is possible to distinguish three main parts which form the spline coeffcients and recognize their meaning: 
	0 
	ig

	• 
	• 
	• 
	ν∈ Rrepresents the main effect which is common for all observations regardless their (true) class; 
	0 
	d 
	-


	• 
	• 
	Λαg stands for the effect of the group, which is of the main interest in this case. While Λ ∈ Rserves as a form of standardization for the group effect (using ΛCΛ = I), αg ∈ Rcan be understood as representatives of the classes in the low-dimensional discriminant space, so-called centroids; 
	d×d 
	T 
	−1 
	d 


	• 
	• 
	γ∈ Rrepresents the individual effect of each separate observation. 
	ig 
	d 



	In (14), εig represents the random functional error. However, for an easier use, discretized observations clr(xig) of the clr-transformed densities will be considered, which can be easily obtained by numerical evaluation of functions over a certain grid of points T =(t,...,tn) ∈ I. This leads to decomposing the discretized clr(xig) as 
	-
	1

	clr(xig)= ZT (ν+ Λαg + γ)+ εig, i = 1,...,Ng, g = 0,...,G− 1, (15) 
	0 
	ig

	where ZT =(Z(t),...,Z(tn)). In the standard Lsetting, the vector εig of measurement errors would follow a multivariate normal distribution N(0,σI). Instead, given the zero integral constraint induced by the clr transformation, the random error has a singular normal distribution (Kwong and Iglewicz, 1996; Pavl˚u et al., 2022), i.e. εig ∼ N(0,Σ = σVV) with VV= IN− 1N×N/Ng being an idempotent matrix. The model, covering all necessary conditions, can be formulated as follows (James and Hastie, 2001), 
	1
	T 
	2 
	2
	2
	T
	T 
	g 
	g
	g 

	xig = ZT (ν+ Λαg + γ)+ εig, i = 1,...,Ng, g = 0,...,G − 1, (16) 
	0 
	ig

	G−1 
	γ∼ N(0, Γ), εig ∼ N(0,σVV), αg = 0, ΛBCBΛ = I. 
	ig 
	2
	T
	∑ 
	T
	T
	−1

	g=0 
	Using the additional assumption of independence of the observations, the parameters of the joint likelihood function of clr(xig) are estimated using the EM algorithm (Dempster, 
	I. Pavl˚u et al. 
	Laird and Rubin, 1977); details in James and Hastie (2001); Pavlu˚ et al. (2022)). The fnal estimates of αˆ g can also be used for graphical representation of the group centres in the discriminant space with h components in the form of centroids -an example of such visualisation can be seen in Figure 3. 
	The fnal decision is then made based on the classifcation rule which minimizes the criterion 
	.. 
	argmin ||αˆ x− αˆ g||− 2 ln. (17) g∈{0,...,G−1} 
	ig 
	2 
	N
	g 
	N 

	The ratio here corresponds to the estimation of prior probability of group g being rep-
	N
	g 

	N 
	resented in the original data set. Note that, up to the constant, (17) essentially minimizes the Euclidean distance between the linear discriminant of clr(xig) and the class centroids. The index g which attains the minimization of the given criterion is then chosen as the estimated class for clr(xig). 
	Figure 3. Clr-transformed particle size distributions from Figure 1 displayed in the two-
	dimensional linear discriminant space. 

	3.5. Small-ball probability approach 
	3.5. Small-ball probability approach 
	The method, introduced in detail in Bongiorno and Goia (2016), was already formulated for the general Hilbert space setting; therefore, it is only briefy summarized here. The main idea is based on the so-called small-ball probability (SMBP), which can be defned 
	The method, introduced in detail in Bongiorno and Goia (2016), was already formulated for the general Hilbert space setting; therefore, it is only briefy summarized here. The main idea is based on the so-called small-ball probability (SMBP), which can be defned 
	for x in any Hilbert space H (in the following, H = B) as the limit behaviour of 
	2


	ϕ(x,h)= P(||X − x|| < h), h > 0. (18) 
	for h → 0. Equation (18) essentially captures how the probability law of X is concentrated around x. Given Y as in (6), ϕ(x,h) can be rewritten as the mixture 
	-

	G−1 ϕ(x,h)= ϕ(x,h|g), (19)
	∑ 
	N
	g 

	N
	N

	g=0 
	where 
	ϕ(x,h|g)= P(||X − x|| < h|Y = g). 
	Additional conditions on the eigenvalues decay of the covariance operator of X described in Bongiorno and Goia (2016) ensure that, when h tends to zero, it is possible to fnd d = d(h) such that the small-ball probability factorizes as 
	-

	ϕ(x,h) ∼ fd(θ,...,θd)φ(d,h), (20) 
	1

	where fd(θd) is the PDF of the scores along the frst d functional principal components evaluated at θd =(θ,...,θd)with θj = x,ξj , ξj are the SFPCs (as appearing in (7)) and φ(d,h) stands for the volume of the d-dimensional ball of radius h. 
	1
	T 

	Classifcation itself is based on a slight modifcation of the Bayes classifcation rule 
	– specifcally, the new observation x is assigned to the g-th group if, for small values of h, the posterior probability P(Y = g| ||X − x|| < h) is maximal over {0,...,G− 1}. Thanks to factorization (20) and for a large enough d, it is possible to rewrite and simplify the classifcation rule in the following way: observation x is assigned to class g if 
	P(G = g| ||X − x|| < h)) (Ng/N)ϕ(x,h|g) Ng fd|g(θ) 
	d 
	(g)

	= ∼ > 1, (21)
	P(G = g | ||X − x|| < h)(N ′ /N)ϕ(x,h|g ) 
	′
	′ 
	f
	d|g 
	′ 
	(θ 
	(g 
	′ 
	) 

	gN ′ )
	gd 
	for any g ̸= g and h tending to zero, where θ is the vector containing the frst d
	′
	(g) 

	d 
	principal components computed for the g-th group. The resulting classifer is 
	ρ(x,d)= argmax fd(x|g) (22) g=0,...,G−1 
	N
	g 

	N 
	N 

	that can be approximated by means of a kernel density estimator leading to 
	n ρˆ(x,d)= argmax I∗ KH(||Πg,d(Xi − x)||), (23) g=0,...,G−1 i=1
	N
	g 
	∑ 
	{g
	i 
	=g}
	g 
	ˆ 

	N 
	N 

	where KH(u)= det(Hg)K(Hg)2u with a kernel function K. In this context, Hg stands for a symmetric positive semi-defnite matrix defning the bandwidth of the kernel, and Πg,d denotes the projector operator over the newly-obtained subspace spanned by the frst d eigenfunctions of the empirical covariance operator Vg. As the index g suggests, Vg are estimated individually within each g ∈{0,...,G − 1}. 
	g 
	− 
	1
	2 
	−1
	-
	ˆ 
	b 
	b 
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	3.6. Functional k-nearest neighbours algorithm 
	3.6. Functional k-nearest neighbours algorithm 
	Classifcation based on the k-nearest neighbours (FKNN) (Burba, Ferraty and Vieu, 2009) is a popular tool for any type and origin of data because it commonly works well under very weak assumptions. Given a new PDF x, the decision rule of the knearest neighbours algorithm is based on looking for the k closest observations of xwith respect to a given metric (or semi-metric), and assigning xto the most frequently represented class among its neighbours. Consistently with the Bayes space approach considered here,
	0
	-
	0 
	0 
	2 
	2 
	2
	2 

	Z 
	d(clr( f),clr( f)) = ||clr( f) − clr( f)||=[clr( f)(s) − clr( f)(s)]ds. (24)
	1
	2
	1
	2
	2 
	1
	2
	2

	I 
	The group index g associated with the highest frequency of neighbours is then assigned as a group label for x. In case there are two or more groups with the same highest occurrence, a secondary criterion may be considered for those groups, e.g., in the form of considering the sum of distances from xto all observations from these groups included within k-nearest neighbors of x. The observation xis then assigned to the group with the smallest sum of distances. 
	∗ 
	0
	0 
	0
	0 



	4. Simulation study 
	4. Simulation study 
	The data analyses included in the two following sections were performed using the software environment R (R Core Team, 2021) and its packages robCompositions (Templ, Hron and Filzmoser, 2011) and fda. To implement FLDA in the Bcase, a code availof James and Hastie (2001) was used as a starting point and adapted to the case of clrtransformed PDFs. 
	-
	2 
	-
	able at http://faculty.mar-shall.usc.edu/gareth-james/Research/Research.html by authors 
	-

	Since there is usually no universal rule for the choice of key parameters in the classifcation methods under consideration, they were evaluated each time for multiple values of parameters. The parameters included in the fnal comparisons were then chosen to ensure the best results of the method on the given data set. To avoid overparametrized models, the maximum value of parameters was determined prior to the analysis of the misclassifcation rates. For methods based on SFPCA (FLR, FPCR, SMBP), the fraction o
	-
	-

	√ 
	(assuming the rest is caused by noise). For FKNN, k = with n denoting the size of the training data set served the same purpose. In case of FLDA, the highest possible dimension of the discriminant space was given by the number of considered groups. 
	n 

	Finally, since FLR is designed for binary classifcation, it will not be considered in a multi-class case, although it could be used for classifcation of one group against the rest of the data set (one vs. all scenario). 
	Figure
	Figure 4. Simulation 1: Data set (PDFs and clr-transformed PDFs) and the 2-dimensional scores based on the different value of parameter σ. 
	4.1. Simulation 1 
	4.1. Simulation 1 
	The frst data set of PDFs was designed to provide a favourable scenario for the linear methods, namely FPCR and FLDA, thanks to the convex shape of the low-dimensional score clusters resulting from SFPCA. The data set used for this simulation is defned over a domain [0,1] using the frst four non-constant elements of Fourier basis, i.e. the process 
	2 
	2 

	X = An cos(2πnx)+ Bn sin(2πnx), x ∈ [0,1]. (25) 
	∑ 

	n=1 
	The data in the three proportional clusters were independently generated by sampling a set of coeffcients (A,B,A,B) from a Gaussian distribution N(µg,σI), g = 0,1,2 with µ=(1,0,0,0), µ=(0,1,0,0), µ=(0,0,1,0). An example of the simulated data set for different choices of the scatter parameter σ is presented in Figure 4. 
	1
	1
	2
	2
	2
	0 
	T 
	1 
	T 
	2 
	T 
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	To get more information from the simulation, the infuence of both the size of the training set and the variance was further studied. For the frst setting, σ was set to 0.4 to determine the impact of the sample size. To this end, the number of observations ni in each of classes was set to 10, 20, 50, 100 and 300. The size of the testing set stayed the same throughout the simulation, being equal to 150 (50 observations per group) and generated from the same setting described above. For each sample size and ea
	-

	Table 1. Simulation 1: Summary of results with changing parameter ni (σ = 0.4). Overall, FLDA and FKNN seem to perform best within the given setting. 
	ni 
	ni 
	ni 
	Algorithm 
	Parameter 
	Miscl. error -mean 
	Miscl. error -sd 
	Miscl. error -median 
	Miscl. error -MAD 

	10 
	10 
	FPCR 
	d = 2 
	0.0162 
	0.0107 
	0.0133 
	0.0099 

	TR
	FLDA 
	d = 2 
	0.0085 
	0.0124 
	0.0067 
	0.0099 

	TR
	SMBP 
	d = 2 
	0.1030 
	0.0654 
	0.0900 
	0.0544 

	TR
	FKNN 
	k = 4 
	0.0055 
	0.0065 
	0.0067 
	0.0099 

	20 
	20 
	FPCR 
	d = 2 
	0.0160 
	0.0103 
	0.0133 
	0.0099 

	TR
	FLDA 
	d = 2 
	0.0057 
	0.0075 
	0.0067 
	0.0099 

	TR
	SMBP 
	d = 2 
	0.0873 
	0.0548 
	0.0700 
	0.0346 

	TR
	FKNN 
	k = 4 
	0.0047 
	0.0056 
	0.0000 
	0.0000 

	50 
	50 
	FPCR 
	d = 2 
	0.0164 
	0.0096 
	0.0133 
	0.0099 

	TR
	FLDA 
	d = 2 
	0.0049 
	0.0061 
	0.0000 
	0.0000 

	TR
	SMBP 
	d = 2 
	0.0820 
	0.0278 
	0.0067 
	0.0297 

	TR
	FKNN 
	k = 3 
	0.0034 
	0.0046 
	0.0000 
	0.0000 

	100 
	100 
	FPCR 
	d = 2 
	0.0149 
	0.0103 
	0.1000 
	0.0099 

	TR
	FLDA 
	d = 2 
	0.0037 
	0.0054 
	0.0000 
	0.0000 

	TR
	SMBP 
	d = 2 
	0.0757 
	0.0252 
	0.0000 
	0.0297 

	TR
	FKNN 
	k = 9 
	0.0019 
	0.0041 
	0.0000 
	0.0000 

	300 
	300 
	FPCR 
	d = 2 
	0.0174 
	0.0102 
	0.0200 
	0.0099 

	TR
	FLDA 
	d = 2 
	0.0045 
	0.0059 
	0.0000 
	0.0000 

	TR
	SMBP 
	d = 2 
	0.0763 
	0.0218 
	0.0000 
	0.0198 

	TR
	FKNN 
	k = 8 
	0.0028 
	0.0041 
	0.0000 
	0.0000 


	To explore the infuence of the changing variability of scores, the size of both training and testing data sets was set to 150 observations (50 per group), while the σ was gradually set to 0.2, 0.4, 0.6, 0.8 and 1 -keeping the rest of the simulation the same. Once again, results are displayed in Table 2. 
	-

	The results of the simulation are not surprising; we can see that, given the shape of the score clusters, the linear methods perform quite well and can compete even with the seemingly most universal FKNN. Different, and rather non-elliptic score clusters could be expected when PDFs were considered in the original Bspace (Figure 4, upper row). Obviously, small values of PDFs form the main source of variability which results from 
	2 

	Table 2. Simulation 1: Summary of results with changing parameter σ (ni = 50). Although the results seem quite similar with low σs, the development of the mean misclassifcation error suggests stronger potential for FLDA and FKNN in case of higher variance. 
	σ 
	σ 
	σ 
	Algorithm 
	Parameter 
	Miscl. error -mean 
	Miscl. error -sd 
	Miscl. error -median 
	Miscl. error -MAD 

	0.4 
	0.4 
	FPCR 
	d = 2 
	0.0173 
	0.0097 
	0.0133 
	0.0099 

	TR
	FLDA 
	d = 2 
	0.0047 
	0.0067 
	0.0000 
	0.0000 

	TR
	SMBP 
	d = 3 
	0.0041 
	0.0054 
	0.0000 
	0.0000 

	TR
	FKNN 
	k = 3 
	0.0030 
	0.0043 
	0.0000 
	0.0000 

	0.6 
	0.6 
	FPCR 
	d = 2 
	0.0901 
	0.0250 
	0.0900 
	0.0297 

	TR
	FLDA 
	d = 2 
	0.0377 
	0.0157 
	0.0400 
	0.0199 

	TR
	SMBP 
	d = 3 
	0.0414 
	0.0246 
	0.0400 
	0.0199 

	TR
	FKNN 
	k = 12 
	0.0332 
	0.0144 
	0.0333 
	0.0099 

	0.8 
	0.8 
	FPCR 
	d = 3 
	0.1630 
	0.0318 
	0.1600 
	0.0297 

	TR
	FLDA 
	d = 2 
	0.0996 
	0.0243 
	0.0933 
	0.0297 

	TR
	SMBP 
	d = 3 
	0.1143 
	0.0288 
	0.1133 
	0.0297 

	TR
	FKNN 
	k = 8 
	0.0970 
	0.0261 
	0.1000 
	0.0297 

	1 
	1 
	FPCR 
	d = 3 
	0.1984 
	0.0304 
	0.2000 
	0.0297 

	TR
	FLDA 
	d = 2 
	0.1693 
	0.0307 
	0.1667 
	0.0297 

	TR
	SMBP 
	d = 3 
	0.1907 
	0.0366 
	0.1867 
	0.0395 

	TR
	FKNN 
	k = 10 
	0.1659 
	0.0306 
	0.1667 
	0.0297 


	their relative scale. This would, however, be ignored if the original PDFs were classifed as Lobjects. Note that FKNN appears to outperform the other methods in most scenarios based on the mean misclassifcation error, but results appears to be substantially equivalent to those of FLDA if accounting for the standard deviation of the errors. In this case, while FKNN provides a simple solution to the classifcation problem, a strength of FLDA relies in the interpretability of the linear discriminants, which can
	2 
	-


	4.2. Simulation 2 
	4.2. Simulation 2 
	For this simulation setting, the training data set is produced in the same way as in Section 
	3.1 in Bongiorno and Goia (2016) (except for the different number L of basis functions). For the sake of completeness, a brief description of the simulation design is provided in what follows. 
	The idea behind this simulation setting is to deal with scores that are not spherically clustered but present a nonlinear data structure. To this end, the following functional basis expansion 
	L 
	p
	Xig(t)= τiglξl(t), t ∈ [0,1], i = 1,...,ng and g = 0,...,G− 1 (26) l=1 
	∑ 
	βl 

	is used, where βl = 0.7 × 3(l = 1,...,L = 30), ξl(t) is the l-th non-constant element of the Fourier basis (extension of (25)) and G = 2. To avoid spherical shaped groups of 
	−l 
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	scores, uncorrelated but dependent coeffcients (τigl)
	L 

	l=1
	, 

	 
	τig1 = sin(ϑi)cos(I)+ σεi,1, 
	π 
	2 
	{g=1}

	
	 
	τig2 = sin(ϑi)sin(I)+ σεi,2, 
	π 
	2 
	{g=1}

	τig3 = cos(ϑi)+(−k)+ σεi,3, 
	g 

	 √
	 
	τigl = εi,l, 4 ≤ l ≤ L, 
	0.1

	i.i.d. 
	were generated with (ϑi) i.i.d. from Beta(5,5) scaled on [−π,π], (εi,l)∼ N(0,1)
	L 

	l=1 representing the Gaussian noise, and (−k)(here k = 0.5) standing for the vertical translation. This way, it is possible to obtain FPCA scores which replicate the τ’s structure (shown for different σ’s in the bottom row of Figure 5). This setting ensures that the decay of the eigenvalues of the covariance operator is fast enough to guarantee (20) (see Bongiorno and Goia (2016) for more details). Due to this nonlinearity, one would expect a weaker performance of the (linear) parametric methods, namely FLR
	g 
	-
	-
	-
	1 

	√ √ √√√ 
	n
	o 

	σ ∈ 0.001, 0.005, 0.01, 0.05, – its infuence on both the coeffcients and the resulting data sets can be seen in Figure 5. The size of the testing set remained 100 (50+50). 
	0.1 

	Figure
	Figure 5. Simulation 2: Data set (original and clr) and the 3-dimensional scores representation based on the different value of parameter σ. 
	Table 3. Simulation 2: Summary of results with changing parameter ni. Altogether, SMBP and FKNN seem to perform best based both on the mean/median misclassifcation error as well as the signifcantly lower standard deviation/MAD. 
	ni 
	ni 
	ni 
	Algorithm 
	Parameter 
	Miscl. error -sd 
	Miscl. error -mean 
	Miscl. error -median 
	Miscl. error -MAD 

	10 
	10 
	FLR 
	d = 3 
	0.3713 
	0.0845 
	0.3300 
	0.0593 

	TR
	FPCR 
	d = 3 
	0.3393 
	0.0812 
	0.3250 
	0.5189 

	TR
	FLDA 
	d = 1 
	0.3243 
	0.0561 
	0.3200 
	0.0593 

	TR
	SMBP 
	d = 3 
	0.0104 
	0.0270 
	0.0000 
	0.0000 

	TR
	FKNN 
	k = 1 
	0.0096 
	0.0213 
	0.0000 
	0.0000 

	20 
	20 
	FLR 
	d = 3 
	0.3152 
	0.0701 
	0.3000 
	0.0445 

	TR
	FPCR 
	d = 3 
	0.3147 
	0.0708 
	0.3050 
	0.0519 

	TR
	FLDA 
	d = 1 
	0.3236 
	0.0670 
	0.3200 
	0.0445 

	TR
	SMBP 
	d = 3 
	0.0020 
	0.0043 
	0.0000 
	0.0000 

	TR
	FKNN 
	k = 2 
	0.0009 
	0.0032 
	0.0000 
	0.0000 

	50 
	50 
	FLR 
	d = 3 
	0.3093 
	0.0452 
	0.3100 
	0.0445 

	TR
	FPCR 
	d = 3 
	0.3088 
	0.0456 
	0.3100 
	0.0445 

	TR
	FLDA 
	d = 1 
	0.3255 
	0.0523 
	0.3200 
	0.0445 

	TR
	SMBP 
	d = 3 
	0.0022 
	0.0005 
	0.0000 
	0.0000 

	TR
	FKNN 
	k = 2 
	0.0006 
	0.0028 
	0.0000 
	0.0000 

	100 
	100 
	FLR 
	d = 3 
	0.2971 
	0.0429 
	0.3000 
	0.0445 

	TR
	FPCR 
	d = 3 
	0.2972 
	0.0438 
	0.3000 
	0.0445 

	TR
	FLDA 
	d = 1 
	0.3091 
	0.0501 
	0.3200 
	0.0445 

	TR
	SMBP 
	d = 3 
	0.0001 
	0.0010 
	0.0000 
	0.0000 

	TR
	FKNN 
	k = 4 
	0.0004 
	0.0020 
	0.0000 
	0.0000 

	300 
	300 
	FLR 
	d = 3 
	0.2941 
	0.0410 
	0.3000 
	0.0445 

	TR
	FPCR 
	d = 3 
	0.2941 
	0.0412 
	0.2950 
	0.0445 

	TR
	FLDA 
	d = 1 
	0.3010 
	0.3200 
	0.0417 
	0.0445 

	TR
	SMBP 
	d = 3 
	0.0000 
	0.0000 
	0.0000 
	0.0000 

	TR
	FKNN 
	k = 2 
	0.0001 
	0.0010 
	0.0000 
	0.0000 


	Thlts obtained for increasing ni which affects size of the training set (constant 
	e resu

	√ 
	σ = 0.005) are shown in Table 3, while the latter case (constant ni = 50, changing σ) is summarized in Table 4. Altogether it can be observed that the non-and semi-parametric approaches indeed work better than the parametric ones (taking into account the standard deviation of the misclassifcation error, they can be considered interchangeable). Here, both FKNN and SMBP are designed to catch nonlinear correlation in data and hence outperform linear methods. 


	5. Real-world applications 
	5. Real-world applications 
	In this section, the proposed methods will be used for classifcation of two real-world data sets of different origin. The frst one deals with age distributions of men and women in Upper Austria (used in Hron et al. (2016)) while the second one contains particle size distributions from four measuring sites in the Czech Republic. 
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	Table 4. Simulation 2: Summary of results with changing parameter σ. SMBP and FKNN demonstrate their strength once again -especially for the cases with lower σs, as the differences between classifcation results seem to decrease with larger variability in the data. 
	σ 
	σ 
	σ 
	Algorithm 
	Parameter 
	Miscl. error -sd 
	Miscl. error -mean 
	Miscl. error -median 
	Miscl. error -MAD 

	0.001 
	0.001 
	FLR 
	d = 3 
	0.2990 
	0.0422 
	0.2900 
	0.0445 

	TR
	FPCR 
	d = 3 
	0.2985 
	0.0416 
	0.3000 
	0.0445 

	TR
	FLDA 
	d = 1 
	0.3080 
	0.0472 
	0.3100 
	0.0445 

	TR
	SMBP 
	d = 4 
	0.0007 
	0.0026 
	0.0000 
	0.0000 

	TR
	FKNN 
	k = 2 
	0.0002 
	0.0014 
	0.0000 
	0.0000 

	0.005 
	0.005 
	FLR 
	d = 3 
	0.3141 
	0.0510 
	0.3150 
	0.0519 

	TR
	FPCR 
	d = 3 
	0.3134 
	0.0508 
	0.3100 
	0.0593 

	TR
	FLDA 
	d = 1 
	0.3212 
	0.0514 
	0.3100 
	0.0445 

	TR
	SMBP 
	d = 3 
	0.0008 
	0.0027 
	0.0000 
	0.0000 

	TR
	FKNN 
	k = 2 
	0.0004 
	0.0020 
	0.0000 
	0.0000 

	0.01 
	0.01 
	FLR 
	d = 3 
	0.3037 
	0.0540 
	0.3100 
	0.0519 

	TR
	FPCR 
	d = 3 
	0.3047 
	0.0530 
	0.3100 
	0.0445 

	TR
	FLDA 
	d = 1 
	0.3200 
	0.0594 
	0.3200 
	0.0593 

	TR
	SMBP 
	d = 3 
	0.0012 
	0.0036 
	0.0000 
	0.0000 

	TR
	FKNN 
	k = 2 
	0.0008 
	0.0027 
	0.0000 
	0.0000 

	0.05 
	0.05 
	FLR 
	d = 3 
	0.3503 
	0.0761 
	0.3300 
	0.0593 

	TR
	FPCR 
	d = 3 
	0.3511 
	0.0.0765 
	0.3300 
	0.0667 

	TR
	FLDA 
	d = 1 
	0.3642 
	0.0713 
	0.3550 
	0.0445 

	TR
	SMBP 
	d = 3 
	0.0511 
	0.0231 
	0.0500 
	0.0148 

	TR
	FKNN 
	k = 6 
	0.0503 
	0.0219 
	0.0500 
	0.0148 

	0.1 
	0.1 
	FLR 
	d = 3 
	0.3737 
	0.0620 
	0.3600 
	0.0593 

	TR
	FPCR 
	d = 3 
	0.3732 
	0.0610 
	0.3600 
	0.0593 

	TR
	FLDA 
	d = 1 
	0.3970 
	0.0569 
	0.3900 
	0.0593 

	TR
	SMBP 
	d = 3 
	0.1505 
	0.0349 
	0.1500 
	0.0297 

	TR
	FKNN 
	k = 8 
	0.1462 
	0.0370 
	0.1500 
	0.0445 


	5.1. Age distribution 
	5.1. Age distribution 
	The data set from Hron et al. (2016) contains age distributions from 57 municipalities in Upper Austria (Figure 6). For each district, age distributions for both men and women were observed. Accordingly, the aim is to classify these observations by gender. 
	All presented methods were evaluated using the 5-fold cross-validation.The best results for this data set were obtained using the following parameters: dFLR = dFPCR = 3, dFLDA = dSmBP = 2, k = 5. Table 5 then summarizes the results, while Figure 7 displays the 2D score representation of the original data set. From the results, it is evident that both FLR and FPCR as well as the nonparametric method FKNN perform very well – nevertheless, the mean misclassifcation rate of all presented methods is below or aro
	-
	-

	Hereby it is interesting to observe the main source of variability, and consequently also classifcation for the original versus the clr-transformed PDFs. While when looking at the original PDFs (Figure 6, left) one would guess ages around 30 and 80 as the 
	Figure
	Figure 6. Age distribution data. In (a) and (b) colors are given according to their classes (blue -men, pink -women). 
	main source of information for classifcation, for clr-transformed PDFs (Figure 6, right) this comes clearly from the oldest age categories. The latter source is quite natural as it corresponds to mean lifetime which forms clearly the most important difference between men and women age distributions. 
	Table 5. Classifcation results -age distributions. 
	Algorithm 
	Algorithm 
	Algorithm 
	Parameter 
	Miscl. error -mean 
	Miscl. error -sd 
	Miscl. error -median 
	Miscl. error -MAD 

	FLR FPCR FLDA SMBP FKNN 
	FLR FPCR FLDA SMBP FKNN 
	d = 3 d = 3 d = 2 d = 2 k = 3 
	0.0025 0.0037 0.0514 0.0126 0.0048 
	0.0102 0.0122 0.0414 0.0220 0.0147 
	0.0000 0.0000 0.0455 0.0000 0.0000 
	0.0000 0.0000 0.0562 0.0000 0.0000 


	Given that functional logistic regression performs best in this case, we analyse further the shape of the functional regression parameter, as this might be indicative of the discrimination power of the different portions of the domain of the PDFs. As indicated in Section 3.2, the interpretation of the regression parameter (β ) is straightforward in the clr space, because the resulting zero-integral function forms naturally a contrast between positive and negative values which can be, accordingly, assigned t
	-
	-
	-

	I. Pavl˚u et al. 
	can be observed from Figure 8, the interval [60,100], corresponding to the oldest age groups, carries signifcant differences between the two gender groups. The high absolute effect of β (t) on interval [80,100] then confrms that this age group discriminates the most between gender groups, positive values being associated to the group of women and their higher life expectancy. This fact can be possibly used also for weighting of the domain of PDFs (van den Boogaart et al., 2014; Talsk´a et al., 2020) to high
	-

	Figure
	Figure 7. Age distribution data: visualisation of classifcation results of each observation during CV individually through their 2-dimensional scores representation. The darker the color, the higher proportion of scenarios where the observation was classifed correctly. 

	5.2. Particle size distribution example 
	5.2. Particle size distribution example 
	The data set discussed in this section contains particle size distributions (PSDs) measured at four different locations in the Czech Republic (Dobˇ ejova, 
	-

	sice, Brodek u Prostˇ Rozvadovice, Ivan;ˇ further denoted as classes 1-4) with locations playing the role of classes (Sim´ıˇ
	ˇ 

	cek et al., 2021). The original data set consists of 250 vectors (each corresponding to a unique discretized PSD), which were smoothed using the compositional splines. Here, the different classes are represented unevenly, with sample sizes 96, 39, 66, and 49. As the site of origin (and therefore the correct classifcation) of the measured 
	-

	Figure 8. Estimated functional regression parameter β (t) corresponding to functional logistic 
	regression with the age distribution data set. 
	samples is known, it is possible to estimate the required parameters and to examine the quality of the classifcation model via cross validation. The data set is displayed in Figure 9. 
	Figure 9. Particle size distribution data. In (a) and (b) colors are given according to their 
	classes. 
	Even from a visual inspection of Figure 9b, it is possible to capture some differences between groups, namely class 1 (black) is deviating from the common behaviour around points 0.3 µm and 10 µm and class 2 (red) in the neighbourhood of 300 µm; nevertheless, the effect of the latter class would not be observable from Figure 9a. On the other side, classes 3 and 4 are practically indistinguishable. This demonstrates once again that a proper representation of the original PDFs is crucial to assess the source 
	-
	-
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	tion into given groups. Clearly, the clr transformation highlights the role of small values of PDFs which is fully in line with the relative scale of PDFs. Accordingly, while no differences between groups can be observed for fractions above 100 µm with the original PDFs, this is clearly the opposite case when their clr-transformed counterparts are considered. Moreover, also here it might be benefcial to change the reference measure, 
	-

	e.g. to B-mean as in van den Boogaart et al. (2014) or to a user designed reference, to provide a better insight and prospectively also better classifcation. 
	Again, the 5-fold cross-validation was performed for all presented methods resulting in the following optimal parameters: dFPCR = 6, dFLDA = 2, dSmBP = 6, k = 4. Overall results are summarized in Table 6, confrming the dominance of FKNN. An interesting effect can be observed from Figure 10, showing the 3D scores representation of the given data set. It seems that, although group 2 (red) is quite clearly different from the rest, both FPCR and SMBP struggle to capture these differences. On the other hand, the
	Table 6. Classifcation results -particle size distributions. 
	Algorithm 
	Algorithm 
	Algorithm 
	Parameter 
	Miscl. error -mean 
	Miscl. error -sd 
	Miscl. error -median 
	Miscl. error -MAD 

	FPCR FLDA SMBP FKNN 
	FPCR FLDA SMBP FKNN 
	d = 6 d = 2 d = 6 k = 4 
	0.1709 0.1872 0.1795 0.0958 
	0.0348 0.0440 0.0469 0.0355 
	0.1730 0.1875 0.1800 0.1000 
	0.0399 0.0408 0.0593 0.0297 


	Figure
	Figure 10. Particle size distribution data: visualisation of classifcation results of each observation during CV individually through their 3-dimensional scores representation. The darker the color, the higher proportion of scenarios where the observation was classifed correctly. 
	-



	6. Conclusions 
	6. Conclusions 
	The need of considering a proper sample space for representation of functional distributional data (expressed usually in terms of probability density functions) has been addressed throughout the years. This paper aims to provide a frst concise overview of classifcation methods in the context of the Bayes space approach. In practice, it is common to transform PDFs into the Lspace using the clr transformation and then proceed with data analysis -however, it is important to emphasize the embedding of the metho
	-
	-
	-
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	When looking at the results of classifcation performed on both simulated and real data sets, the nonparametric FKNN approach seems to outperform all of its competitors. On one hand, this should not be too surprising as, with FKNN, the ”complete” information contained in the data is used (no simplifcation through parametrization is done). On the other hand, this way one does not have any model to work with, no parameters to assign interpretation to. With the remaining methods, it is possible to obtain additi
	-
	-
	2 

	Another aspect worth mentioning is connected to the fact that the performance of the methods can be severely infuenced by choosing different parameters and/or by different proportionality occurring in the data. The safest bet is to test a few sets of parameters and choose, in a data-driven fashion (e.g., via cross-validation) the combination which performs the best. Also choosing a more appropriate reference measure than the default uniform one (van den Boogaart et al., 2014; Talsk´a et al., 2020) can contr
	Although in this paper classifcation of univariate densities was presented, the Bayes space methodology offers the possibility of an extension to multivariate densities, which is nowadays equipped with an orthogonal decomposition of PDFs into independent and interactive parts (Genest, Hron and Neslehovˇ ´ a and Menafoglio,
	a (2023); Hron, Machalov´ 2022). The development of proper methods for the data analysis and classifcation in this very cutting-edge setting will be of our primary interest in the near future. 
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