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Simple enough, but not simpler: reconsidering
additive logratio coordinates in compositional
analysis
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Abstract

Compositional data, multivariate observations carrying relative information, are popu-
larly expressed in additive logratio coordinates which are easily interpretable as they
use one of the components as ratioing part to produce pairwise logratios. These coordi-
nates are however oblique and they lead to issues when applying multivariate methods
on them, including widely-used techniques such as principal component analysis and
linear regression. In this paper we propose a way to redefine alr coordinates with respect
to an orthonormal system and we also extend the idea to the case of compositional ta-
bles. The new approach is demonstrated in an application to movement behavior data.

MSC: 62H25, 62J05.
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1. Introduction

Compositional data analysis concerns extracting knowledge from data carrying rela-
tive information (Aitchison, 1986). Technically this involves the representation of the
original components in logratio coordinates which are, fairly naturally, desirable to be
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somehow interpretable in terms of the original components to facilitate scientific insight.
Following on the early additive and centred logratio transformations (alr and clr respec-
tively) proposed by Aitchison (1986), formal developments in the last two decades, cru-
cially the characterisation of the sample space for compositional data (the simplex) as an
Euclidean space, have led to the popularisation of so-called isometric logratio (ilr) coor-
dinates (Egozcue et al., 2003). IlIr coordinates have been recently re-coined orthonormal
logratio (olr) coordinates to more precisely honour their particular geometrical proper-
ties. Any of these logratio representations aim to map the data into real space so that
ordinary statistical methods can be applied for analysis. They are all connected to each
other by algebraic manipulation and, depending on the method and the purpose of the
data analysis, they can be used indistinctly and lead to the same results. However, the
olr representation has been in recent times favoured since it is directly deducted from
the geometrical structure of the simplex as real-valued coordinates with respect to an
orthonormal basis. In first instance this is technically consistent with the own geometry
of the simplex but, beyond that, it overcomes some difficulties and inconsistencies with
the alr and clr representations (see e.g. Pawlowsky-Glahn et al. (2015)). Even so, some-
times practitioners find the interpretation of olr coordinates challenging in real-world
applications. Particular classes of olr coordinates have been proposed aiming to over-
come this difficulty. These include so-called balances, which are the flagship approach
and roughly interpreted as comparisons between subsets of components (Egozcue and
Pawlowsky-Glahn, 2005), and pivot coordinates (Filzmoser, Hron and Templ, 2018),
which are aimed at synthesising all the relative information of a component against all
the others in a single coordinate.

Even so, some criticism has been recently brought out questioning the role of bal-
ances in compositional data analysis and the actual relevance of orthonormality of logra-
tio coordinates in general (Greenacre, 2019b, 2018, 2019a). It is argued in these works
that balances result from some form of mathematical funambulism and that orthonor-
mality is not that much necessary and, if required, it can be closely approximated by a
much simpler logratio coordinate system. One of these simpler systems is obtained by
just using alr coordinates, which result from just dividing all components by one of them
(the ratioing part). Specifically, for a D-part composition X = (x1,...,xp), and xp being
the rationing part up to a possible permutation, alr coordinates are given by

alr(x) = <lnxl,...,lnxD_l> ) (D

XD XD

These logratios are sometimes even identified with the original compositional parts in
some fields where the scientific community widely accepts the role of xp as reference
or normalizing part. On the down side, however, they do not preserve distances and
angles when moving from the simplex to the real space (they refer to an oblique instead
of orthonormal coordinate system) (Pawlowsky-Glahn, Egozcue and Tolosana-Delgado,
2015). This causes problems for both PCA, which is only orthogonal equivariant (Hron
et al., 2021), and regression analysis, where the regression coefficients lose their stan-
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dard interpretation (Coenders and Pawlowsky-Glahn, 2020). One recent attempt to pro-
vide a reasonable alternative is found in Hron et al. (2021), which aims to maintain
orthonormality while enabling the use of simpler pairwise logratios. They are called
backwards pivot coordinates in reference to their relationship with pivot coordinates.
Hron et al. (2021) also demonstrate that orthonormality really matters when popular sta-
tistical methods such as principal component analysis or regression analysis are applied
to compositional data.

In this paper we present backwards pivot coordinates as a valid alternative to addi-
tive logratio coordinates, stressing the associated gains in interpretability in the context
of principal component analysis (PCA) biplots and regression analysis. Furthermore, we
extend the concept to two-factorial compositions, a.k.a. compositional tables (Egozcue
et al., 2015; Facevicova et al., 2018), for which to our best knowledge no appropriate
counterpart to alr coordinates is available. In Section 2, backwards pivot coordinates
and their extension to compositional tables are introduced. The subsequent sections 3
and 4 are devoted to the development and interpretation of PCA and regression analysis
in terms of backwards pivot coordinates. Section 5 demonstrates an application using
movement behavior data in the form of both standard vector compositions and composi-
tional tables. Finally, a synthesis of the presented material is outlined.

2. Backwards pivot coordinates and beyond

Proper choice of logratio coordinates is fundamental for reliable analysis of composi-
tional data. Here we briefly review current approaches for ordinary vector compositional
data and then proceed to the more general setting of compositional tables.

2.1. Vector compositional data

It is common in compositional data analysis that different logratio representations are
used for different purposes. Thus, clr coefficients of the form

L T .2
Ch(")‘<l 5@ "5’ ’1g<x>) @

are commonly used to produce compositional biplots (Aitchison and Greenacre, 2002),
where g(x) stands for the geometric mean of the parts of the composition x. Although
clr coefficients are isometric with respect to the so-called Aitchison geometry of the
sample space of compositions and are easy to interpret (the original components are
symmetrically represented with respect to the overall geometric mean at the observa-
tion level), they lead to singular covariance matrix in the clr-space and, thus, hinder the
use of methods that require regular covariance matrices. Using olr coordinates over-
comes this issue and reflects the actual D — 1 dimensionality of compositions. However,
there are infinitely many possibilities to construct olr coordinates (although they are all
related by orthogonal rotation) and, as mentioned above, some special cases such as
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balances (Egozcue et al., 2005) and pivot coordinates (Filzmoser et al., 2018) facilitate
interpretability.

A pivot coordinate system allows to aggregate all the relative information about a
given compositional part in the first coordinate (the pivoting coordinate), including the
possibility of defining weights for the logratios aggregated therein (Hron et al., 2017).
This idea is extended by Hron et al. (2021) to define backwards pivot coordinates (bpcs),
where a pairwise logratio plays the role of pivoting coordinate. Using bpcs allows to
easily capture the information conveyed in alr coordinates while fulfilling orthogonality.
Specifically, D — 1 bpc systems can be written in the form

0) i x(-l&-)l

b = 1 i =1,

pe(x') T n( i (1))1/’ i
j=1%

()

where x() = (x”,... ,xg)), l€{1,...,D—1}, stands for the permutation of the parts in x
so that the /-th part is placed at the second position and the rationing part (e.g. xp for the
sake of simplicity) is placed at the first position. That is, x() = (XDy X1, X1y« ooy XI— 1, X141,
...,xp—1). Then the pairwise logratio of interest (pivoting coordinate) is given by

..,D—1, 3)

()
1 x 1 X
Dy, — — In22 — 2t
bpe(x'); ﬂlnxgl) ﬁlnx[). 4)

Consequently, by varying the part of interest x;, which is placed at the second posi-
tion in the respective permuted vector x(), all alr-like coordinates can be obtained.

Following Miiller et al. (2018), the requirement of orthonormality can be even re-
laxed in regression analysis by replacing it by just orthogonality, which in practice means
to remove the normalizing constants in (3). This helps to simplify interpretation of re-
gression coefficients. A bpcs representation (3) without normalizing constant /i/(i+ 1)
will be denoted in the following by z(x(l )). Orthonormality is however important e.g. for
principal component analysis because here it guarantees that the total explained variabil-
ity coincides with that based on the clr (or any other olr) representation.

2.2. Compositional tables

Although for vector compositional data the use of non-orthonormal coordinate systems
such as alr can be argued on the basis of practical convenience, this is no longer the case
for compositional tables (Facevicova et al., 2018) nor multi-factorial compositional data
in general (Facevicov4, Filzmoser and Hron, 2023; Hron, Machalovd and Menafoglio,
2023). For these latter, the concept of orthogonality is crucial for their decomposition
into independent and interactive parts and preserving their respective dimensionality.
Moreover, while in ordinary compositional data the most basic information is con-
tained in the pairwise logratios, compositional tables (comprising / rows and J columns)
involve two types of elemental objects. On the one hand, the within-factor structure is



V. Nesrstova et al. 5

given by ({) (or (3)) pairwise balances between the respective row (column) levels. On
the other hand, the interactions between rows and columns are then naturally preserved
in (é) (é) simple (four-part) log odds-ratios, which represent the elemental source of in-
formation also by contingency tables (Agresti (2013), Ch. 2.4). This needs to be taken
into account for construction of any logratio coordinates aimed to generalize the concept
of alr coordinates (in the form of bpcs) to multi-factorial compositions.

With the aim of defining a coordinate system highlighting a specific source of ele-
mental information, we introduce x*!) as a permuted version of the original composi-
tional table x. Within this table, normalizing row and column (let say the /-th row and
the J-th column for the sake of simplicity) are placed at the first position followed by the
k-th row and the /-th column at the second position in the respective dimensions. Con-
sequently, the part x;;, placed at the position [1,1] in x*!), plays the role of normalizing
part xp, while the part x;; (at the position [2,2] in the respective permutation) represents
the pivoting part (denoted x; in the vector case). There are in general (/ —1)(J —1) of
such permutations, and then there is a coordinate system for each of them, following the
idea of vector bpcs and coordinates defined in Facevicovd et al. (2016). It can be defined
as follows.

The elemental information on the row factor is contained in the first coordinate from
the set of row backwards pivot balances (rbpb)

i g(xi,)

In i=1,.
i+1 i ki \ ’
( m=1 g(X£n°)))

That is, it is in the pairwise row balance

(k)
bob (k1) — \/71 g(X2o ) _ \/71 g(XkO)‘ 6
PRI =Y iy V2" gt ©

Note that here g(x;,) stands for the geometric mean of elements in the i-th row of
a table. Using the geometric mean to represent the rows guarantees that rbpbs can be
considered an orthogonal projection of the compositional table that accounts for relative
information conveyed solely by the rows (Facevicové et al., 2016). This involves fur-
ther benefits, including the Pythagorean decomposition of the overall variability while
respecting independence and interaction structure of the table. Similarly, g(X,;) is used
for the definition of column backwards pivot balances (cbpb) that concerns the inner
structure of the column factor as

rbpb(x k), = -1, (5)

jI g(x])
cbpb(x*)); = [ = In— " i
j+1 ( J (X(kl)))

j=1,...,J—1 @)

n=18Xen
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Thus, the pairwise column balance computed for each row-column permutation (k) is

given as
(k1)
I, g(xy) I g(xe)
cbpb(x*V), = \/71n 2/ —,/~1n (8)
pb(x™) 2 g(xsklz)) 2 g(Xey)

and carries information on the ratio between the /-th column of interest and the normal-
izing column (the J-th column).

Typically, the main interest lies on the relationships between factors. For this pur-
pose, the balances (5) and (7) are accompanied by the system of odds-ratio (referred to
as table) backwards pivot coordinates

. N\ M
&) ij ( et Ty X ) Xitl,j+1
tbpe(x\*);; = (i+1)(j+1)ln T N N 9
( m=1 xm,j+1) (Hizzl Xit1 n)
fori=1,..../—1and j=1,...,J — 1. The analysis is again focused on the first coor-

dinate, the simple log odds-ratio, which here represents the interaction between the first
two rows and columns of the respective permutation (kl), i.e.

(K1) (k)

1 X1 X 1 X1J Xkl
tbpe(x¥)); = ~In =L =2 — . (10)
2 xg’;l)xékll) 2 X11XkJ

The proposed sets of coordinates (5), (7) and (9) can be analyzed also separately
when only a specific source of information is of interest. Following Egozcue and Paw-
lowsky-Glahn (2008) any compositional table can be decomposed orthogonally onto its
independent and interactive parts. In our setting, the former is represented by (5) and
(7), while the latter is accounted for by (9). Finally, omitting the normalizing constants
can also lead here to a more straightforward interpretation in e.g. regression analysis.
These orthogonal alternatives to (5), (7) and (9) will be denoted by rz(x(kl)), cz(x(kl))
and tz(x(kl )) following on the notation introduced in the previous subsection.

To facilitate the understanding of the construction of coordinates (for both composi-
tional vectors and tables), Supplementary Material B contains a thorough description of
the process together with a graphical illustration.

3. Principal component analysis

Principal component analysis (PCA) is a well-known multivariate technique that aims to
reduce the dimension of a data set through the construction of mutually orthogonal linear
latent variables (principal components, PCs), which are fundamentally defined by ma-
trices of loadings (coefficients of the linear combinations of the original variables) and
scores (the values of the principal components) (Johnson and Wichern, 2007; Varmuza et
al., 2009). The ordinary formulation of PCA and the associated biplot display for com-
positional data is based on clr coefficients (Aitchison and Greenacre, 2002). Following
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on the strategy introduced in Kynclova, Filzmoser and Hron (2016), backwards pivot
coordinates can be used for compositional PCA by combining first coordinates from the
D — 1 bpc coordinate systems (3) (Hron et al., 2021). The final matrix of loadings is
obtained as a combination of rows from all the D — 1 loading matrices, picking out from
each the row corresponding to the first bpc. This approach is feasible due to the fact that
the resulting matrices of scores are the same for all D — 1 bpc systems. Key features of
this representation are the following: (1) the associated biplot display retains (visually)
all the properties of ordinary clr-based PCA biplots; (2) the first coordinate of the /-th
backwards pivot coordinate system conveys information equivalent to the analogous /-th
alr coordinate; and (3) unlike a biplot based on oblique alr coordinates, the results are
invariant to orthogonal rotations. In the following subsections we detail the technical
formulation of bpc-based PCA biplots for vector compositional data and generalize it to
compositional tables.

3.1. Preliminaries

Before we proceed, we briefly summarise the main elements of the theory of PCA and
the biplot display that will be required later on. Given a real matrix X,,«p, where n is
the number of observations and D stands for the number of variables (assumed to be
centered). PCA is commonly performed through singular value decomposition (SVD):

X = UDV, (11)

where U,,.p is an orthogonal matrix, Dpyj is a matrix of singular values on diagonal,
arranged in descending order (i.e. djj > dyp > ...dy > 0, k < min(n,D)) and Vpyy is
an orthogonal matrix of loadings. As noted above, the scores are the values of new PCs
and the loadings are the coefficients describing the importance of each variable on each
PC. The singular values in D are the standard deviations of the scores (Varmuza et al.,
2009). The biplot display (Gabriel, 1971) results from an alternative decomposition of
X as

X =GH’, (12)

where G = v/n—1U and H = \/%VD. The rows of matrix G,«p carry information
about the observations, while the information about the variables is contained in the
rows of Hpyx. The biplot is commonly based on the first k = 2 PCs (those retaining
most of the variability of the original data set) and, therefore, only the first two columns
of the matrices G and H are used. Hence, equation (12) holds only approximately (unless
X is of a rank two or less). This gives rise to the biplot graph where observations are
represented by points (with coordinates determined by the PC scores) and variables are
represented by arrows from the origin (with angle determined by the loadings vector).
In the compositional case, X is replaced by Y = clr(X), which can be (after column-
wise centering) decomposed as in (12). The matrix G still represents the observations
in the PC system, whereas H now carries information about the importance of the clr
coordinates. Following Aitchison and Greenacre (2002) and known properties of the
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classical (non-compositional) biplot, general properties of the compositional (clr-)biplot
are listed below (note that vectors with indexes ie and e refer, respectively, to the i-th
row and j-th column of a matrix; all vectors are considered as columns):

* The inner product between the rows of G and H (from the decomposition of Y)
approximates the clr coefficients:
Xij

8(Xis)

gihje ~yij=In

* The length of the rays approximate the variability of clr coefficients corresponding
to the parts x;, j=1,...,D:
Xj

h..|? ~ var(y; :\75r<1n>
H J H ( ]) g(X)

* The length of the links between the vertices of the rays approximate the variability
of a pairwise logratio formed by the respective parts:

1 Xi
2 o = Var
e —hjol|™ ~ —— (¥ei = Yoi)' (Yei = ¥ej) = Var (lnx;)

* The projection of the i-th score onto a link approximates the difference between
the respective clr coefficients (i.e. logratio between x;; and x;;):
P X
N L LS Pl
8(Xio) 8(Xie) Xik

gl-T.(hj. —hge) = 1n

More elaborated derivations of the biplot properties (discussed both here and in the
following sections) are available in Supplementary Material A.

3.2. Vector compositional data

The relationship between a pairwise logratio, i.e. the first bpc in the corresponding
coordinate system, and clr coefficients (2) contained in Y can be written as

1. x 1 1 1
bpe(x!)); = \/;lnx; = \/;yz — \[2”) = \/;(yz —Yp), (13)

where xp is the chosen rationing element. All D — 1 coordinate systems need to be
constructed to obtain all possible pairwise logratios with a chosen ratioing element. Let
7" be a centered matrix containing the bpcs of the I-th system, [ = 1,...,D — 1. The
biplot decomposition of Z(!) can be written as Z() = GOH"T. The matrices G are
identical for all systems and in fact equal to the matrix G resulting from the clr version
of PCA as defined above. The suggested biplot representation combines the first rows of
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the loading matrices H), corresponding to coordinates bpc(x(l))l and, consequently, to
pairwise logratios In(x;/xp) of interest.

The interpretation of the bpc-based biplot can be derived from the relationship be-
tween the first row of a matrix H) and the rows of the clr loading matrix H. From (13)

it follows that
1 1 1
h(l):\/>h.—\/>h.:\/>h.—h.. 14
le 2 l 2 D 2( ! D) ( )

Given that G!) = G and the relationship in (14), the main properties of the bpc-based
biplot are as follows:
* The inner product between a row of the matrix G and hgl_) approximates the pair-
wise logratio between the /-th component and the ratioing part:

I I xy
gﬂhﬁ;uxifn%;

* The lengths of biplot rays approximate the variability of the logratio between the
[-th and the rationing part:

DI e
2P~ S (1)

* The length of the links between the vertices of two rays approximate the variability
of the logratio between the compositional parts placed in the numerator of the
respective pairwise logratios:

1__
th’:) —hss.)H2 ~ ivar (lnip)

S

* The projection of a score onto a link approximates the pairwise logratio of the

respective components:
T ) )y L X
gi.(h11: _hli) ~ \/;nxl:

Amongst the properties above, it is worth highlighting that lengths of the links be-
tween vertices approximate pairwise logratio variances, i.e. the elements of the varia-
tion matrix (Aitchison, 1986). Thus, the bpc-based biplot shares this property with the
ordinary clr-based biplot, except that, for obvious reasons, now the pairwise logratios
containing the ratioing part are not contained in the links. They can however be read-
ily obtained from the lengths of the rays. This implies that the bpc-based biplot can be
used as a reasonable alternative to the crude alr-based biplot which suffers from non-
orthonormality of the input coordinates.
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3.3. Compositional tables

Similarly to the case of vector compositional data, PCA can be modified to summarize
the elemental information contained in a set of compositional tables. As noted in Section
2.2, this concerns the interactions between factors, as carried by simple log odds-ratios,
and the within-factor structure, as carried by the pairwise balances computed from the
entire rows and columns. The modified PCA using the bpc approach is like in the vector
case given by the repeated computation of the decompositions (11) and (12), with the
subsequent combination of the results from the different bpc systems. In each step, the
data matrix X is replaced by a matrix of coordinates given by (5), (7) and (9). When the
I-th row and the J-th column are understood as the normalizing categories, results from
(I—1)(J — 1) partial computations (based on (I — 1)(J — 1) permutations x*)) have to
be combined.

From a methodological point of view, it would be possible to analyze the elemental
information from both the independent and interactive parts of a compositional table
simultaneously in one biplot. Nevertheless, in the following we focus on the case where
these two types of information are displayed and interpreted separately. In our view, this
leads to a more straightforward interpretation of the resulting biplots.

3.3.1. Inter-factorial relationships

The ordinary PCA can be modified so that the resulting biplot contains all possible sim-
ple log odds-ratios with the rationing element x;;. Namely, let Z*), k=1,...,1—1,
I=1,...,J—1 be a mean centered n x (IJ — 1) matrix of coordinates from a sample
of compositional tables l-x(’d), i=1,...,n (note that in the following a left subscript will
stand for the sample index), with the coordinates being ordered as tbpc(x*)), rbpb(x(!))
and cbpb(x(¥)). That is, the log odds-ratio In (xx;s/xxyxy) is represented by the first
coordinate. When this matrix is decomposed as in (12), Z*) = GKH*®)T | the matrix
G*) remains the same for all row/column permutations and equals the one obtained
for the clr coefficients (G). For the biplot representation, the first row from each of the
loading matrices H*! is used, since it corresponds to the first tbpc (10). Each of these
coordinates is related to the clr coefficients through

Looxpgxa 1

tbpe(x*),; = anxuxkj =5 Vi) + Yt =Y = Yika)) » (15)

where yj; 1 stands for the clr representation of the part x;; of a compositional table x, i.e.
Yii,j = Inx;j/g(x),i=1,...,land j=1,...,J. The first row of H®*) is therefore related
to the rows of the clr loading matrix H as follows:

(ki) _ 1

h]o - E (h[IJ]o +h[k7l]o - h[Ll]o - h[kJ]o) ) (16)

with hy; . denoting the row of H corresponding to the clr coefficient yj; ;).
Based on the aforementioned decomposition, the biplot properties in this case can
be summarized as follows:
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* The inner product between the rows of the score matrix G and the first row of
H*) approximates the respective simple log odds-ratio:
X1 Xkl

Ty, (K ) 1 i
WJh .~ —In
Sie le 2 X1 ka

* Due to the centering of the clr coordinate matrix Y the lengths of the biplot rays
approximate the variability of the simple log odds-ratios:

1 __
by WP~ v (lnx”xkl) .

X1 XkJ

* The length of the links between two vertices can in general be understood in terms
of difference between variation of the respective simple log odds-ratios. More-
over, a more convenient interpretation is available for some combinations. Thus,
the links between rays related to odds-ratios sharing two common elements ap-
proximate the variation of a new simple log odds-ratio. Considering e.g. the log
odds-ratios sharing the elements at positions [k,J] and [/,J], and differing in the

column permutation index / (represented by h (kll) and h(kl2 , I1 # ), the distance
between the corresponding rays verifies that

1 __
||h (ky) klz ||2 ~var (mxkzlxnz) .
4 X1, Xkl

A similar derivation can be given for odds-ratios sharing the same column indices,
i.e. xg,1x17 / Xk, sxn and xg,ix17 /X %1 for ki # ko, where the corresponding link es-
timates the variance of In (xx, ;xk,s /Xk, sXr,1). Consequently, when a biplot collects
results from all coordinate systems defined for a fixed rationing part x;y, it pre-
serves also the information on the variability of the odds-ratios containing parts
either from the /-th row or the J-th column. On the other hand, the characteristics
of the other odds-ratios are not represented in this setting.

* In the case of the projection of a score to a link, only pairs of odds-ratios sharing
elements from the same row or column are worth investigating. E.g. for the same
pair as considered in the previous point, it holds that

Bk p () 11 Kkl Xl
gto( le ) 2 x”l l-xklz

Interestingly, the links (partially) approximate the elemental covariance structure,
represented here by variances of simple log odds-ratios. This property, which was also
observed for the bpc biplot in the vector case, is thus transferred to a more general
setting by a proper choice of coordinate representation of the interaction part of the
compositional table.
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3.3.2. Intra-factorial relationships

The other main source of information carried by a compositional table lies in its indepen-
dent part, whose elemental representation is given by pairwise row or column balances.
When the /-th row of a compositional table x is understood as the normalizing el-
ement (category of the row factor), all pairwise row balances with this element can be
given by the first rbpb, computed from different permutations x*), k =1,...,1—1. The
following relationship holds between these coordinates and the clr representation:

1
rbpb(x \/>ln =\ 57 V) Y =Y = —ypay) - AD

The construction of a biplot with pairwise row balances is based again on the de-
composition of the mean centered coordinate matrix Z*!) into matrices G*) and H*,
so it can be computed along with the one for the interaction part. Here the biplot rep-
resentation collects the rows of the loading matrices H®), k = 1,...,1 — 1, standing at
the position [(/ —1)(J — 1) + 1] (the column permutation / does not play a relevant role
in this case). Let the position be denoted by r1 in the following (in reference to the fact
that it is the position corresponding to the first rbpb). According to (17) the following
relation holds between a row of H*) and rows of the cIr loading matrix H:

1
hglil.) =\ 27 (hyerjo+ - +hygje —hy e — ... —hy ) - (13)

Accordingly, the biplot properties are now as follows:

(k1)

* The inner product between a row of matrix G and h,;

row balance:
J. g (Xe)
TH*) \[m iTke)
g rle ™ 2 g(ixlo)

* The lengths of the biplot rays give an approximation of the variability of the pair-

wise row balances:
J__ .
I e (e )
2 g(Xre)

. approximates the pairwise

* The length of the links between the vertices of the rays approximate the variability
of the balance between row categories standing in the numerator of the respective
coordinates:

J__ .
Ih%D —pkh2 o 2var<lng(xk')).

rle rlo g(szo)
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* A specific pairwise row balance can be for a given observation approximated by
the projection to a link:

Tl v [T 8 (Xke)
Sie (hrlo hrl. > - \/;lng(ixkzo) .

Analogous properties can be derived for the biplot constructed from the rows at the
positions [(I — 1)J + 1] of matrices H®), computed for different column permutations
[ =1,...,J — 1. These rows refer to the first cbpbs of x(*!), and therefore the interpre-
tation relates to the pairwise column balances with the J-th (rationing) column level or,
alternatively, between the other levels of the column factor.

4. Regression analysis

We now demonstrate the bpc approach focusing on the elemental information in vector-
or table-type compositional data in the context of regression analysis. More specifically,
we focus on linear regression models with real-valued response variable and explanatory
composition. The coordinate representation of the composition challenges the interpre-
tation of regression parameters. As Coenders et al. (2020) pointed out, the standard inter-
pretation of regression coefficients in terms of “increasing one regressor while keeping
the others constant” is violated when non-orthonormal coordinates are used. We add
that, even when an olr coordinate system is used, the idea of keeping regressors constant
needs to be understood correctly. In this section, following Hron et al. (2021), we elab-
orate on the interpretation of regression parameters in the vector composition case using
a bpc representation to, subsequently, extend the concept to compositional tables.

4.1. Vector compositional data

We focus on the regression analysis problem where a real-valued variable Y is mod-
elled in terms of a D-part compositional vector X = (xy,...,xp). Thus, a system of
(orthogonal) bpcs z(x(l)) = (zgl), ey g)_l) can be used to represent the composition in a

regression model as
E[Yax)] = o+ B0 4+ B ) 19

Even though the definition of bpcs in (3) refers to the usual natural logarithm, i.e.
logarithm with the base of e, following Miiller et al. (2018) this can be replaced by
logarithms with any other base k. An adequate choice of the base of the logarithm can
facilitate the interpretation of the regression parameters.

While the intercept By and global characteristics of the regression model such as
residuals, overall F-statistic, and coefficient of determination remain the same in any
coordinate system, all the other regression coefficients vary with the choice of logratio
basis. When bpcs with xp as the normalizing part are of interest, the effects of the
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simple logratios In(x; /xp) can be investigated by changing the index / (I =1,...,D— 1),
each represented by the corresponding regression parameter [51(1) associated to the first

()

bpc coordinate z;’ of the system. Therefore, the main result from such a modelling is
formed by estimates BO and Bl(l), [=1,...,.D—1.

Regardless the specific permutation (1), By gives an expected value of the response
when all compositional parts x;, i = 1,...,D, are equal. However, the interpretation of
the Bl(l), [=1,...,D—1, is related to the underlying model and coordinate system it is
coming from. For a given / the parameter ﬁl(l) estimates the effect of the k-times growth
of the ratio x; /xp on the response, while keeping the remaining coordinates zg), e ,zgll
constant. For example, using k¥ = 2 leads to the interpretation in terms of doubling the
ratio of interest. In order to keep the remaining coordinates unaffected, the k-times
increase in x;/xp has to be equally distributed between both parts in the ratio. More
specifically, the only scenario leading to the required change is the \/k-times increase
in x; accompanied by the same decrease in xp. Each of the regression parameters ﬁl(l),
l=1,...,D—1, therefore models the effect of the increase in the part of interest x; at
the expense of the rationing part xp, while keeping the rest of the composition constant.

Obviously, there are several other ways to achieve the x-times increase in the ra-
tio involving x; and xp. Particularly interesting is the case when the increase is caused
by a k-times increase in x; only. Even though this does not affect any other pairwise
logratio with the normalizing part xp, it leads to change in the remaining coordinates
zgl),...,zgll from the [-th system, which decrease by 1/2,1/3,...,1/(D — 1) respec-
tively. The effect of the k-times increase of x; would therefore need to be accounted for
from all the regression coefficients Bi(l), i=1,...,.D—1.

4.2. Compositional tables

For the purpose of regression modeling, a table x of dimensions / x J can be represented
by a vector of olr coordinates (Facevicova et al., 2021). When, additionally, the elemen-
tal information related to the /-th row and the J-th column is of interest, such coordinates
need to be constructed as in Section 2.2. The explanatory variables can be the orthogonal
versions of the row and column backwards pivot balances (5) and (7) and the odds-ratio
bpes (9), ie. ,z(x* D), z(x* ) and ,z(x*)) respectively. As noted in the previous sec-
tion, the natural logarithm can be replaced by any other with base k. A linear model of
dependence between a real variable Y and a I X J compositional table x can therefore be
formulated as

E[Y(x)] = o+ B o+ ..+ )
+131 ¢1)+ +BJ 5)1+ (20)
(k

kl) 1)
+ [311 zZn +..F BI 1J-1,2-10-1"

The parameter 3y does not depend on the olr basis chosen and it has the usual in-
terpretation, i.e. it is expected value of the response when all the regressors are set to

+
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zero. This corresponds to the case of no relationship between row and column factors
(i.e. ,z(x(kl)) being zero) and no informative categorization of the individual factors (i.e.
z2(x*D) and _z(x*")) being zero). The value and interpretation of the remaining regres-
sion parameters depend on the coordinate system from which they are estimated. As
we focus on the elemental sources of information, we suggest to combine the results
of the regression modeling (20) for each of the row-column permutations of the table
x,ie. x*) withk=1,....,/—1andl=1,...,J —1. As in the vector case in Section
4.1, the global characteristics of the model do not depend on the specific permutation
applied. The main part of the outcome is then formed by the estimates of coefficients
corresponding to the orthogonal versions of the first rbpbs rﬁl(kl), k=1,...,1—1, the
first cbpbs Cﬁl(k”, [ =1,...,J —1 and the first odds-ratio backwards pivot coordinates
B k1.

The final summary of the model collects estimates of I — 1 regression coefficients
. ﬁl(kl), which quantify the effect of a unit change of the ratios

&) . &(Xke)
rZI - ln ?

8(xre)
on the response variable Y while keeping the remaining ones constant. But, as we are
actually combining results from several regression models, that refers to the other co-
ordinates included in the respective model and not to those listed in the final summary.
The logratios (21) can be understood as a special case of the pairwise logratios studied
in Section 4.1. Thus, the interpretation of rﬁl(k[) is analogous. The unit increase in rzgkl)
means a K-times increase in the ratio g(Xt.)/g(Xse). This is achieved through a pro-
portional \/k-times increase in parts from the k-th row accompanied by a proportional

decrease in parts from the rationing row / by the same constant.

The second set of regression coefficients obtained from the regression analysis are

=1,...,0—1, 1)

the 8 l(kl), which analogously to the above quantify the effect of a unit change of

g(Xer)
8 (Xoj ) ’
on the response variable Y. The x-times increase in the respective ratio can be (under the
condition of unaltered remaining coordinates) achieved here through a proportional /K-
times increase in parts from the /-th column accompanied by a proportional decrease in
parts from the J-th column by the same constant.

A4 _ 1

=1,...,J—1, (22)

c

The last group of regression coefficients are the tﬁl(fl). These (I —1)(J — 1) coef-
ficients quantify the effect of changes in the interactive structure of the compositional
table, as each of them is related to one log odds-ratio of the form

X1jX,
2D — g T (23)
X[1XkJ

A k-times increase in this case means a +/K-times increase in the parts x;; and xy
accompanied by a simultaneous +/k-times decrease in x;; and x;;. Note that even though



16 Simple enough, but not simpler: reconsidering alr coordinates in CoDa

this ensures that the remaining coordinates from the system remain unchanged, it still
affects some of the elemental odds-ratios with rationing part x;;. More specifically, the
following happens:

* The odds-ratios sharing the pair of elements x;; and x;; or x;; and xyy, i.e.

X[JXkj or X1jXil

)
X]jXkJ XijX[1

i=1,...0—1, i#k and j=1,....0—1, j#I,

turn out to increase /K - times.

* The odds-ratios sharing with the one of interest only the part x;;,

WG, 0—1, i#k and j=1,...0—1, j#I,
X[jXij

increase v/K-times.

Similarly to the vector composition case, the unit increase in the coordinate of inter-
est admits an alternative interpretation. If the condition that the other coordinates must
remain unchanged is relaxed, we can consider the case in which only the part of the
interest x;; observes a k-times increase. This implies that the other coordinates from the
system are affected and the overall effect on the response variable is therefore a combi-
nation of all regression parameters for the (kl) model. In particular, the row backwards

Ekl), i=2,...,] —1, decrease by 1/iJ, while rzgkl) increases by 1/J.

Similarly, the column backwards pivot balances cz(kl)

J
and ngkl) is increased by 1/1. Finally, the odds-ratio backwards pivot coordinates tz(k[)

1j »
j=2,...,J—1, or tzgd), i=2,...,] —1, decrease by 1/ and 1/i respectively. The

(K1)

remaining Zij i=2,....,/—1land j=2,...,J—1, are increased by 1/ij.

17 ’
Another interesting case of a unit change in [zgkll) is that derived from change in

one of the odds constituting the corresponding odds-ratio (while keeping the other un-
changed). Thus, when for example the odd x;;/x;; decreases k-times in a way such that
x7; becomes /kx;; and x;; decreases proportionally to xi;/+/K, this change propagates
to coordinates tzgl;l), j=1,...,J—1, which increase by 1/ j, and to the row balance rzgkl),

which increases by 1/J. The effect of such a change on the response variable is therefore

pivot balances z

,j=2,...,J—1,decrease by 1/ I

given by a combination of the parameters . Bl(fl), j=1,...,J—1,and rﬁl(kl).

5. lllustrative applications

The presented methodology is illustrated in the following subsections using two real-
world data sets from the field of time-use epidemiology, where compositional methods
have been notably introduced in recent years (see e.g. (Dumuid et al., 2020)). The
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data analyses were conducted using R (R Core Team, 2020). All methods introduced
in this manuscript are implemented in the R package robCompositions (Templ,
Hron and Filzmoser, 2011), with associated functions called bpc, bpcPca, bpcReg,
bpcTabWrapper, bpcTabPca and bpcTabReg.

5.1. Movement behavior patterns in children and adolescents — a vector
approach

The first data set describes the distribution of 24-hour movement behaviors of 336 chil-
dren and adolescents aged between 8 and 18 (Géba et al., 2021). For each of the partici-
pants the times spent in sedentary behavior (SB), light physical activity (LPA), moderate
physical activity (MPA) and vigorous physical activity (VPA) were collected together
with sleep time using wrist-worn accelerometers. Note that sleep is a natural ratioing
part, so we will focus on the four pairwise logratios representing time spent in SB, LPA,
MPA and VPA behaviors relative to sleep.

5.1.1. Principal component analysis

Compositional PCA and associated biplot based on backwards pivot coordinates as de-
scribed in Section 3.2 are applied here to the movement composition, focusing on the
representation of pairwise logratios including sleep as reference behavior. The resulting
biplot display is shown in Figure 1, where it can be observed that the data variability is
mainly driven by the VPA-to-sleep logratio. The individuals (biplot points) are repre-
sented by their ID number in the database. Thus, while participant no. 1287 spent sub-
stantially more time sleeping than in VPA (the raw values are VPA = 0.12 min/day and
sleep = 478.35 min/day), for example participant no. 1656 (at the opposite side of the
biplot) reported a higher absolute (and relative) amount of VPA (VPA = 29.14 min/day,
sleep = 497.66 min/day). Another important source of variability is the logratio between
MPA and sleep, while the relative time spent in SB or LPA is rather consistent in com-
parison to the former two logratios. Looking at the links, the logratio between VPA and
MPA also stands out as relevant source of variation between participants, followed by
logratios between VPA and SB, VPA and LPA or MPA and SB.

To illustrate possible caveats of the ordinary alr approach (considering sleep as refer-
ence element as in the case of backwards pivot coordinates), Figure 2 shows the resulting
alr-based biplot. Two main issues are noticeable. Firstly, the scores of this biplot are dis-
torted with respect to the biplot based on backwards pivot coordinates. Although the
latter could be closely approximated using alr coordinates through an adequate choice of
reference element (Greenacre, 2018), this option is not feasible when the reference ele-
ment is chosen to have a concrete interpretation in the context of the problem at hand (as
it is the case here). Secondly, and related to the above, the loadings are also dramatically
different to those obtained using backwards pivot coordinates, particularly showing an
exaggerated variability of the logratio between VPA and sleep. This variability is better
represented relative to the other elements of the multivariate structure when orthonormal
coordinates as seen in Figure 1.
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Figure 1. PCA biplot based on backwards pivot coordinates for the movement behavior vector
composition with sleep used as reference behavior. The numbers correspond to participant ID.
Individuals no. 1287 and no. 1656 (highlighted in red color) differ substantially in time spent in
VPA relative to sleep.

5.1.2. Regression

The above movement distribution was accompanied by information on body fat percent-
age as response variable. Regression analysis as described in Section 4 was conducted
to investigate their relationships. Namely, four regression models were required, each
concerning the association with the response variable of each of the pairwise logratios
with sleep as rationing part. Moreover, the logarithmic base x was set to 2 for interpre-
tation in terms of doubling the respective ratios. Note that body fat percentage was also
represented in log,-scale as commonly done in practice to symmetrize its distribution.
The results from all four models are summarized in Table 1.

The value of parameter ﬁo indicates that the average body fat percentage of an indi-
vidual, who distributes time fairly equally over all five behaviors, is approximately 18 %
(2P0 = 2%199) " The pairwise logratios to sleep do not seem to play an important role
overall, with the exception of time in MPA relative to sleep that is statistically signifi-
cant at the usual 5% significance level. This implies that doubling this ratio (a v/2-times
increase in MPA at the expense of a similar decrease in sleep) results in an increase in
body fat percentage of more than one third (ZBI( Y 20446 — 1 362). Note that this trend
represents an average behavior over the entire data set. As the participants in this study
span a fairly wide age range, it is expectable that a more structured analysis, which is
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Figure 2. PCA biplot based on alr coordinates for the movement behavior vector composition
with sleep used as reference behavior. The numbers correspond to participant IDs.

beyond the scope of this more methodologically-orientated manuscript, would lead to
more specific results.

Following on Section 4.1, when only time dedicated to MPA doubles while all
the remaining behaviors are unchanged (before closure), the overall effect on body
fat percentage is derived from all the B coefficients in the respective model. In this
case, they are the coefficients from [31(3) to [3}3) estimated for the third (/ = 3) model,
which are (0.446,—0.036,—0.398, —0.193). Therefore, doubling the time spent in MPA
is associated to an increase in body fat percentage by approximately one fifth
(20-446-0.036/2-0.398/3-0.193/4 _ | 1g7).

Finally, it can be compared to a simpler model that considers only the MPA-to-
sleep logratio as explanatory variate, ignoring time devoted to other behaviors. This
latter gives a markedly lower performance (adjusted R? = 0.013) and doubling the MPA-
to-sleep ratio here implies a slight increase in body fat percentage (31 = 0.172 with
associated p-value equal to 0.020). The predicted body fat percentage when time spent
in MPA is equal to sleep time is estimated to be 26 % (,30 = 4.688 with p-value < 0.001).

5.2. Movement behavior for older adults — a compositional table approach

The second data set focuses on the older adult population from a study conducted in
2016-2019 (Cuberek et al., 2019). The structure of movement behaviors during weekend
waking time was assessed by hip-worn accelerometers and its association with visceral
fat area (VFA) was studied based on 161 individuals aged between 60 and 84. For each
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Table 1. Regression analysis of body fat percentage on movement behavior composition. Sum-
mary of the four regression models needed to extract all orthogonal logratios with sleep as ref-
erence behavior. Common overall significance and R* measures: F-statistic = 12.304 (p-value
< 0.001), R*> = 0.129 and adjusted R*> = 0.119.

(1)  Variable Estimate  Std. error ¢-value  p-value

Intercept 4.169 0.219 19.077 < 0.001
(1) log,(SB/SLEEP) 0.196 0.153 1.283 0.200
(2) log,(LPA/SLEEP) -0.051 0.154  -0.335 0.738
(3) log,(MPA/SLEEP) 0.446 0.114 3918 < 0.001
(4) log,(VPA/SLEEP) 0.027 0.097  0.278 0.781

participant, a two-factorial composition was available since activity (with categories SB,
LPA and MVPA (moderate to vigorous physical activity aggregated)) was also split by
part of the day (LM - late morning (9-12 am), N - noon (12 am - 3 pm), and A - af-
ternoon (3-6 pm)). Moreover, each of the 3 x 3 compositional tables was accompanied
by information about the visceral fat area (in cm?) for the individual (see Table 2 for an
example). Considering SB and LM as normalizing categories, the analysis focuses on
(1) pairwise row balances between LPA or MVPA and SB, and (2) pairwise column bal-
ances between N or A and LM. Additionally, the interaction structure is studied focusing
on the simple four-part log odds-ratios with [SB, LM] serving as the reference.

Table 2. Example compositional table showing the distribution of movement behaviors during
weekend (min./part of the day) for a senior individual presenting 71.36 cm? of visceral fat area.

LM N A
SB 110.5 73.0 385
LPA 65.5 885 105.5
MVPA 4.0 185 36.0

5.2.1. Principal component analysis

Figure 3 shows biplots for the row and column pairwise balances (left) and simple log
odds-ratios (right) resulting from the four PCAs required here, each based on a permu-
tation of the 3x3 compositional table x*).

The left biplot suggests that the data variability is mostly driven by the MVPA-to-
SB logratio (averaged over parts of the day). Even though SB time overall dominates
MVPA time amongst participants, the more active ones are represented on the left-hand
side of the biplot (e.g. participant no. 97159 has a paiwise row balance equal to -0.279).
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Figure 3. PCA biplots based on backwards pivot coordinates for the movement behavior com-
positional table with sedentary behavior (SB) and late morning (LM) used as normalizing cat-
egories. The numbers correspond to participant ID. Participants further discussed in main text

are highlighted in red.

Contrarily, participants whose amount of MVPA time is relatively small (e.g. no. 598
has a pairwise row balance of -7.275) appear on the right-hand side. An important
contribution to the overall variability is given by the simple log odds-ratio comparing
the MVPA-to-SB ratio between afternoon and late morning. Thus, participants at the
top of the right-hand side biplot tend to spend more time in MVPA (relatively to SB)
in the late morning than in the afternoon (e.g. participant no. 97027, with log odds-
ratio equal to -5.843). On the contrary, those at the bottom typically exhibit the opposite
behavior (e.g. participant no. 97168 has log odds-ratio equal to 5.010). Moreover, the
lengths of the rays indicate that a non-negligible variability involves the averaged A-to-
LM and N-to-LM logratios (i.e. there is a good deal of variability in movement behavior
during the day) and the log odds-ratio comparing the MVPA-to-SB ratios between noon
and late morning. It can be observed that all logratios including LPA are fairly stable
across participants. Thus, the LPA-to-SB logratio is fairly stable during the day and,
considering the results from the regression analysis, change in LPA could be related
with reduction in fat. Finally, looking at the link between the vertices of the odds-ratios
including MVPA, we can conclude that the odds-ratio comparing the MVPA-to-SB ratio
between afternoon and noon is markedly variable.

5.2.2. Regression

The relationship between amount of visceral fat and structure of weekend activities can
be studied using a regression model of the form (20) as introduced in Section 4.2. Four
permutations x(¥)) were considered for each individual table, where k = 1,2 distinguishes
whether either LPA (k = 1) or MVPA (k = 2) is set as second row, and [ = 1,2 refers
to permutations where N (I = 1) or A ({ = 2) is placed in the second column. For each
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permutation, a system of orthogonal coordinates z (x(’d)) was computed following (5),
(7) and (9) . They were used as covariates in the regression model. As in the previous
example, a base Kk = 2 was set for the logarithm and the response variable VFA was
log-transformed to meet distributional assumptions. The results from all four models
are summarized in Table 3. Note that, e.g., notation log,(g(MVPA)/g(SB)) refers to
the pairwise row balance between MVPA and SB, while log,OR: x[MVPA, N] denotes
simple log odds-ratio with the pivoting element at the position [MVPA, N].

Table 3. Regression analysis of visceral fat area on weekend movement behavior composition in
adults according to intensity and part of a day. Summary of the four regression models needed
with sedentary behavior (SB) and late morning (LM) as normalizing categories. Common overall
significance and R* measures: F-statistic = 2.943 (p-value = 0.004), R*> = 0.134, adjusted
R? =0.089 (see text for details).

(kI)  Covariate Estimate  Std. error ¢-value  p-value

Intercept 6.246 0.126 49566 < 0.001
(le) log,(g(LPA)/g(SB)) -0.029 0.048  -0.607 0.545
(2e) log,(g(MVPA)/g(SB)) -0.105 0.035 -2.987 0.003
(o1) logy(g(N)/g(LM)) 0.068 0.157  0.436 0.664
(#2) log,(g(A)/g(LM)) -0.069 0.131  -0.530 0.597
(11)  log,OR: x[LPA, N] -0.088 0.047 -1.878 0.062
(12) log,OR: x[LPA, A] -0.063 0.039 -1.626 0.106
(21) log,OR: x[MVPA, N] -0.066 0.042 -1.562 0.120
(22) 1og,OR: x[MVPA, A] -0.024 0.035 -0.667 0.506

The results suggest that VFA is mostly related to the MVPA-SB ratio, with the cor-
responding regression coefficient being rﬁ’l(z') = —0.105. That is, doubling the average
MVPA-SB ratio is related to a decrease in VFA by approximately 7% (1 —279-105),
Change in the respective row balance is considered under the condition of constant re-
maining coordinates. Therefore, it has to happen across the whole day by simultaneous
\/2-increase of time spent in MVPA at the expense of SB. Alternatively, we can con-
sider a 2-time increase in MVPA over the day, without simultaneous decrease in SB nor
LPA and before closure. Similarly to the vector case, such a change affects the second

rbpb and, thus, the overall effect on VFA is 2(’ﬁ 1.8 2(2.)> = 2(-0.105+0.031/2) — () 940
(approx. 6% decrease). If LPA and the interactions were ignored, the simple model
of VFA on the MVPA-to-SB balance would estimate an effect of —0.120, leading to
a similar conclusion: doubling the mean MVPA time (with respect to SB without any
other condition) is associated with a decrease in VFA of about 8 %. Note that the overall
performance of this simpler model is also fairly poor (adjusted R? = 0.087).
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Another interesting regression coefficient is | 31(}1)’ which quantifies the effect of
change in the odds-ratio comparing the LPA-to-SB ratio at noon and late morning. Even
though the estimate is marginally non-significant at the usual 5% significance level (p-
value = 0.062), its value suggests that doubling the odds-ratio decreases VFA by more
than five percent (2798 = 0.941). This change has to be proportionally distributed
over all parts in the odds-ratio, meaning that while time spent in LPA at noon and in
SB at late morning increases v/2-times, this is at the expense of time devoted to the
same behaviors at the complementary part of a day. It can be therefore understood as
a transfer of LPA time from late morning to noon, compensated by a transfer of SB
time in the opposite direction. Alternative scenarios as discussed in Section 4.2 can be
considered. For instance, when the change affects only the late morning LPA-to-SB ratio
(decreasing in a half by reducing LPA time at the favor of SB time), the effect on VFA

is equal to 2(,31(1“)+%,31(2“)+%,Bf“))’ ie. 2(-0.088-0.026/2-0029/3) — (926 (a 7% decrease
approx.). Finally, the simpler model of VFA on the discussed log odds-ratio gives an
estimated 3 coefficient equal to —0.101 (p-value = 0.024). Therefore, when the other
covariates are neglected, doubling the odds-ratio comparing the LPA-to-SB ratio at noon
and late morning relates to a decrease in VFA by approximately 7%.

6. Final remarks

Some recent developments in compositional data analysis suggest that there is a demand
amongst practitioners for simple, interpretable logratio representations of compositional
data. The classic alr coordinates, although having some issues related to the fact that they
define an oblique system of coordinates, are indisputably a key representative of this
kind. Moreover, orthonormality of logratio coordinates is a desirable property which
is very much linked to the Aitchison geometry of compositional data, contributing to
guarantee consistent and reliable results. In this paper we present backwards pivot coor-
dinates as an orthonormal alternative to alr coordinates. It is demonstrated how they can
be used with widely-used techniques such as principal component analysis and linear
regression analysis. Just taking into account that the results are originated from multi-
ple coordinate representations simultaneously, the interpretation results to be simple and
natural while orthonormality is satisfied. Additionally, the approach is extended in this
contribution to the case of compositional tables, where orthonormality of coordinates is
required to enable (orthogonal) decomposition into independent and interactive parts.

We then consider that the approach in the present work opens up new possibilities
in compositional data analysis, offering simplicity of interpretation while respecting the
well-established geometrical framework for both vector compositional data and multi-
factorial compositions. Computer implementations of the methods are made freely avail-
able to facilitate use by practitioners on the R software for statistical computing.
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