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Simple enough, but not simpler: reconsidering 
additive logratio coordinates in compositional 

analysis 
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5A. Gaba´ 3, J. Pelclová4 and K. Fačevicová 

Abstract 

Compositional data, multivariate observations carrying relative information, are popu-
larly expressed in additive logratio coordinates which are easily interpretable as they 
use one of the components as ratioing part to produce pairwise logratios. These coordi-
nates are however oblique and they lead to issues when applying multivariate methods 
on them, including widely-used techniques such as principal component analysis and 
linear regression. In this paper we propose a way to redefne alr coordinates with respect 
to an orthonormal system and we also extend the idea to the case of compositional ta-
bles. The new approach is demonstrated in an application to movement behavior data. 

MSC: 62H25, 62J05. 
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1. Introduction 

Compositional data analysis concerns extracting knowledge from data carrying rela-
tive information (Aitchison, 1986). Technically this involves the representation of the 
original components in logratio coordinates which are, fairly naturally, desirable to be 
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somehow interpretable in terms of the original components to facilitate scientifc insight. 
Following on the early additive and centred logratio transformations (alr and clr respec-
tively) proposed by Aitchison (1986), formal developments in the last two decades, cru-
cially the characterisation of the sample space for compositional data (the simplex) as an 
Euclidean space, have led to the popularisation of so-called isometric logratio (ilr) coor-
dinates (Egozcue et al., 2003). Ilr coordinates have been recently re-coined orthonormal 
logratio (olr) coordinates to more precisely honour their particular geometrical proper-
ties. Any of these logratio representations aim to map the data into real space so that 
ordinary statistical methods can be applied for analysis. They are all connected to each 
other by algebraic manipulation and, depending on the method and the purpose of the 
data analysis, they can be used indistinctly and lead to the same results. However, the 
olr representation has been in recent times favoured since it is directly deducted from 
the geometrical structure of the simplex as real-valued coordinates with respect to an 
orthonormal basis. In frst instance this is technically consistent with the own geometry 
of the simplex but, beyond that, it overcomes some diffculties and inconsistencies with 
the alr and clr representations (see e.g. Pawlowsky-Glahn et al. (2015)). Even so, some-
times practitioners fnd the interpretation of olr coordinates challenging in real-world 
applications. Particular classes of olr coordinates have been proposed aiming to over-
come this diffculty. These include so-called balances, which are the fagship approach 
and roughly interpreted as comparisons between subsets of components (Egozcue and 
Pawlowsky-Glahn, 2005), and pivot coordinates (Filzmoser, Hron and Templ, 2018), 
which are aimed at synthesising all the relative information of a component against all 
the others in a single coordinate. 

Even so, some criticism has been recently brought out questioning the role of bal-
ances in compositional data analysis and the actual relevance of orthonormality of logra-
tio coordinates in general (Greenacre, 2019b, 2018, 2019a). It is argued in these works 
that balances result from some form of mathematical funambulism and that orthonor-
mality is not that much necessary and, if required, it can be closely approximated by a 
much simpler logratio coordinate system. One of these simpler systems is obtained by 
just using alr coordinates, which result from just dividing all components by one of them 
(the ratioing part). Specifcally, for a D-part composition x = (x1, . . . ,xD), and xD being 
the rationing part up to a possible permutation, alr coordinates are given by � � 

x1 xD−1alr(x) = ln , . . . , ln . (1)
xD xD 

These logratios are sometimes even identifed with the original compositional parts in 
some felds where the scientifc community widely accepts the role of xD as reference 
or normalizing part. On the down side, however, they do not preserve distances and 
angles when moving from the simplex to the real space (they refer to an oblique instead 
of orthonormal coordinate system) (Pawlowsky-Glahn, Egozcue and Tolosana-Delgado, 
2015). This causes problems for both PCA, which is only orthogonal equivariant (Hron 
et al., 2021), and regression analysis, where the regression coeffcients lose their stan-
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dard interpretation (Coenders and Pawlowsky-Glahn, 2020). One recent attempt to pro-
vide a reasonable alternative is found in Hron et al. (2021), which aims to maintain 
orthonormality while enabling the use of simpler pairwise logratios. They are called 
backwards pivot coordinates in reference to their relationship with pivot coordinates. 
Hron et al. (2021) also demonstrate that orthonormality really matters when popular sta-
tistical methods such as principal component analysis or regression analysis are applied 
to compositional data. 

In this paper we present backwards pivot coordinates as a valid alternative to addi-
tive logratio coordinates, stressing the associated gains in interpretability in the context 
of principal component analysis (PCA) biplots and regression analysis. Furthermore, we 
extend the concept to two-factorial compositions, a.k.a. compositional tables (Egozcue 
et al., 2015; Faˇ a et al., 2018), for which to our best knowledge no appropriatecevicov´ 
counterpart to alr coordinates is available. In Section 2, backwards pivot coordinates 
and their extension to compositional tables are introduced. The subsequent sections 3 
and 4 are devoted to the development and interpretation of PCA and regression analysis 
in terms of backwards pivot coordinates. Section 5 demonstrates an application using 
movement behavior data in the form of both standard vector compositions and composi-
tional tables. Finally, a synthesis of the presented material is outlined. 

2. Backwards pivot coordinates and beyond 

Proper choice of logratio coordinates is fundamental for reliable analysis of composi-
tional data. Here we briefy review current approaches for ordinary vector compositional 
data and then proceed to the more general setting of compositional tables. 

2.1. Vector compositional data 

It is common in compositional data analysis that different logratio representations are 
used for different purposes. Thus, clr coeffcients of the form � � 

x1 x2 xDclr(x) = ln , ln , . . . , ln (2)
g(x) g(x) g(x) 

are commonly used to produce compositional biplots (Aitchison and Greenacre, 2002), 
where g(x) stands for the geometric mean of the parts of the composition x. Although 
clr coeffcients are isometric with respect to the so-called Aitchison geometry of the 
sample space of compositions and are easy to interpret (the original components are 
symmetrically represented with respect to the overall geometric mean at the observa-
tion level), they lead to singular covariance matrix in the clr-space and, thus, hinder the 
use of methods that require regular covariance matrices. Using olr coordinates over-
comes this issue and refects the actual D− 1 dimensionality of compositions. However, 
there are infnitely many possibilities to construct olr coordinates (although they are all 
related by orthogonal rotation) and, as mentioned above, some special cases such as 
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balances (Egozcue et al., 2005) and pivot coordinates (Filzmoser et al., 2018) facilitate 
interpretability. 

A pivot coordinate system allows to aggregate all the relative information about a 
given compositional part in the frst coordinate (the pivoting coordinate), including the 
possibility of defning weights for the logratios aggregated therein (Hron et al., 2017). 
This idea is extended by Hron et al. (2021) to defne backwards pivot coordinates (bpcs), 
where a pairwise logratio plays the role of pivoting coordinate. Using bpcs allows to 
easily capture the information conveyed in alr coordinates while fulflling orthogonality. 
Specifcally, D − 1 bpc systems can be written in the form r (l)

i xi+1bpc(x(l))i = ln � �1/i , i = 1, . . . ,D − 1, (3)
i + 1 (l)

∏
i 
j=1 x j 

(l) (l)where x(l) = (x , . . . ,xD ), l ∈ {1, . . . ,D−1}, stands for the permutation of the parts in x1 
so that the l-th part is placed at the second position and the rationing part (e.g. xD for the 
sake of simplicity) is placed at the frst position. That is, x(l) = (xD,xl,x1, . . . ,xl−1,xl+1, 
. . . ,xD−1). Then the pairwise logratio of interest (pivoting coordinate) is given by 

(l)1 x 1 xl2bpc(x(l))1 = √ ln 
(l)

= √ ln . (4)
2 x 2 xD1 

Consequently, by varying the part of interest xl , which is placed at the second posi-
tion in the respective permuted vector x(l), all alr-like coordinates can be obtained. 

Following Müller et al. (2018), the requirement of orthonormality can be even re-
laxed in regression analysis by replacing it by just orthogonality, which in practice means 
to remove the normalizing constants in (3). This helps to simplify interpretation of re-p
gression coeffcients. A bpcs representation (3) without normalizing constant i/(i + 1) 
will be denoted in the following by z(x(l)). Orthonormality is however important e.g. for 
principal component analysis because here it guarantees that the total explained variabil-
ity coincides with that based on the clr (or any other olr) representation. 

2.2. Compositional tables 

Although for vector compositional data the use of non-orthonormal coordinate systems 
such as alr can be argued on the basis of practical convenience, this is no longer the case 
for compositional tables (Faˇ a et al., 2018) nor multi-factorial compositional datacevicov´ 
in general (Faˇ a, Filzmoser and Hron, 2023; Hron, Machalov´cevicov´ a and Menafoglio, 
2023). For these latter, the concept of orthogonality is crucial for their decomposition 
into independent and interactive parts and preserving their respective dimensionality. 

Moreover, while in ordinary compositional data the most basic information is con-
tained in the pairwise logratios, compositional tables (comprising I rows and J columns) 
involve two types of elemental objects. On the one hand, the within-factor structure is 
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�I� �J� 
given by 2 (or 2 ) pairwise balances between the respective row (column) levels. On 
the other hand, the interactions between rows and columns are then naturally preserved �I��J� 
in 2 2 simple (four-part) log odds-ratios, which represent the elemental source of in-
formation also by contingency tables (Agresti (2013), Ch. 2.4). This needs to be taken 
into account for construction of any logratio coordinates aimed to generalize the concept 
of alr coordinates (in the form of bpcs) to multi-factorial compositions. 

With the aim of defning a coordinate system highlighting a specifc source of ele-
mental information, we introduce x(kl) as a permuted version of the original composi-
tional table x. Within this table, normalizing row and column (let say the I-th row and 
the J-th column for the sake of simplicity) are placed at the frst position followed by the 
k-th row and the l-th column at the second position in the respective dimensions. Con-
sequently, the part xIJ , placed at the position [1,1] in x(kl), plays the role of normalizing 
part xD, while the part xkl (at the position [2,2] in the respective permutation) represents 
the pivoting part (denoted xl in the vector case). There are in general (I − 1)(J − 1) of 
such permutations, and then there is a coordinate system for each of them, following the 
idea of vector bpcs and coordinates defned in Faˇ a et al. (2016). It can be defnedcevicov´ 
as follows. 

The elemental information on the row factor is contained in the frst coordinate from 
the set of row backwards pivot balances (rbpb) r (kl) 

(kl))i = 
iJ g(xi+1•)rbpb(x ln � �1/i , i = 1, . . . , I − 1. (5)

i + 1 (kl)
∏

i 
m=1 g(xm• ) 

That is, it is in the pairwise row balance r r(kl) 
(kl))1 = 

J g(x2• ) J g(xk•)rbpb(x ln = ln . (6)
(kl)2 2 g(xI•)g(x )1• 

Note that here g(xi•) stands for the geometric mean of elements in the i-th row of 
a table. Using the geometric mean to represent the rows guarantees that rbpbs can be 
considered an orthogonal projection of the compositional table that accounts for relative 
information conveyed solely by the rows (Fačevicová et al., 2016). This involves fur-
ther benefts, including the Pythagorean decomposition of the overall variability while 
respecting independence and interaction structure of the table. Similarly, g(x• j) is used 
for the defnition of column backwards pivot balances (cbpb) that concerns the inner 
structure of the column factor as s 

(kl)g(x 
cbpb(x(kl)) j = 

jI 
ln � 

• j+1) �1/ j , j = 1, . . . ,J − 1. (7)
j + 1 (kl)

∏n
j 
=1 g(x•n ) 
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Thus, the pairwise column balance computed for each row-column permutation (kl) is 
given as r r(kl) 

(kl))1 = 
I g(x•2 ) I g(x•l)cbpb(x ln = ln (8)

(kl)2 2 g(x•J)g(x•1 ) 

and carries information on the ratio between the l-th column of interest and the normal-
izing column (the J-th column). 

Typically, the main interest lies on the relationships between factors. For this pur-
pose, the balances (5) and (7) are accompanied by the system of odds-ratio (referred to 
as table) backwards pivot coordinates 

s � �1/i j (kl) (kl) 
i j ∏

i
m=1 ∏n

j 
=1 xmn xi+1, j+1 

tbpc(x(kl))i j = ln � �1/i � �1/ j , (9)
(i+ 1)( j + 1) (kl) (kl)

∏
i 

∏
j 

m=1 xm, j+1 n=1 xi+1,n 

for i = 1, . . . , I − 1 and j = 1, . . . ,J − 1. The analysis is again focused on the frst coor-
dinate, the simple log odds-ratio, which here represents the interaction between the frst 
two rows and columns of the respective permutation (kl), i.e. 

(kl) (kl)1 x 1 xIJxkl tbpc(x(kl))11 = ln 11 x22 = ln . (10)
(kl) (kl)2 x 2 xIlxkJ 12 x21 

The proposed sets of coordinates (5), (7) and (9) can be analyzed also separately 
when only a specifc source of information is of interest. Following Egozcue and Paw-
lowsky-Glahn (2008) any compositional table can be decomposed orthogonally onto its 
independent and interactive parts. In our setting, the former is represented by (5) and 
(7), while the latter is accounted for by (9). Finally, omitting the normalizing constants 
can also lead here to a more straightforward interpretation in e.g. regression analysis. 

z(x(kl)), z(x(kl))These orthogonal alternatives to (5), (7) and (9) will be denoted by r c 
and tz(x(kl)) following on the notation introduced in the previous subsection. 

To facilitate the understanding of the construction of coordinates (for both composi-
tional vectors and tables), Supplementary Material B contains a thorough description of 
the process together with a graphical illustration. 

3. Principal component analysis 

Principal component analysis (PCA) is a well-known multivariate technique that aims to 
reduce the dimension of a data set through the construction of mutually orthogonal linear 
latent variables (principal components, PCs), which are fundamentally defned by ma-
trices of loadings (coeffcients of the linear combinations of the original variables) and 
scores (the values of the principal components) (Johnson and Wichern, 2007; Varmuza et 
al., 2009). The ordinary formulation of PCA and the associated biplot display for com-
positional data is based on clr coeffcients (Aitchison and Greenacre, 2002). Following 
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on the strategy introduced in Kynčlová, Filzmoser and Hron (2016), backwards pivot 
coordinates can be used for compositional PCA by combining frst coordinates from the 
D − 1 bpc coordinate systems (3) (Hron et al., 2021). The fnal matrix of loadings is 
obtained as a combination of rows from all the D− 1 loading matrices, picking out from 
each the row corresponding to the frst bpc. This approach is feasible due to the fact that 
the resulting matrices of scores are the same for all D − 1 bpc systems. Key features of 
this representation are the following: (1) the associated biplot display retains (visually) 
all the properties of ordinary clr-based PCA biplots; (2) the frst coordinate of the l-th 
backwards pivot coordinate system conveys information equivalent to the analogous l-th 
alr coordinate; and (3) unlike a biplot based on oblique alr coordinates, the results are 
invariant to orthogonal rotations. In the following subsections we detail the technical 
formulation of bpc-based PCA biplots for vector compositional data and generalize it to 
compositional tables. 

3.1. Preliminaries 

Before we proceed, we briefy summarise the main elements of the theory of PCA and 
the biplot display that will be required later on. Given a real matrix Xn×D, where n is 
the number of observations and D stands for the number of variables (assumed to be 
centered). PCA is commonly performed through singular value decomposition (SVD): 

X = UDVT , (11) 

where Un×D is an orthogonal matrix, DD×k is a matrix of singular values on diagonal, 
arranged in descending order (i.e. d11 ≥ d22 ≥ . . .dkk > 0, k ≤ min(n,D)) and VD×k is 
an orthogonal matrix of loadings. As noted above, the scores are the values of new PCs 
and the loadings are the coeffcients describing the importance of each variable on each 
PC. The singular values in D are the standard deviations of the scores (Varmuza et al., 
2009). The biplot display (Gabriel, 1971) results from an alternative decomposition of 
X as 

X = GHT , (12) 
√ 

√ 1where G = n − 1U and H = 
n−1 

VD. The rows of matrix Gn×D carry information 
about the observations, while the information about the variables is contained in the 
rows of HD×k. The biplot is commonly based on the frst k = 2 PCs (those retaining 
most of the variability of the original data set) and, therefore, only the frst two columns 
of the matrices G and H are used. Hence, equation (12) holds only approximately (unless 
X is of a rank two or less). This gives rise to the biplot graph where observations are 
represented by points (with coordinates determined by the PC scores) and variables are 
represented by arrows from the origin (with angle determined by the loadings vector). 

In the compositional case, X is replaced by Y = clr(X), which can be (after column-
wise centering) decomposed as in (12). The matrix G still represents the observations 
in the PC system, whereas H now carries information about the importance of the clr 
coordinates. Following Aitchison and Greenacre (2002) and known properties of the 
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classical (non-compositional) biplot, general properties of the compositional (clr-)biplot 
are listed below (note that vectors with indexes i• and • j refer, respectively, to the i-th 
row and j-th column of a matrix; all vectors are considered as columns): 

• The inner product between the rows of G and H (from the decomposition of Y) 
approximates the clr coeffcients: 

T xi j g h j• ≈ yi j = lni• g(xi•) 

• The length of the rays approximate the variability of clr coeffcients corresponding 
to the parts x j, j = 1, . . . ,D: � � 

∥h j•∥2 ≈ c c ln 
g 
x 
(x 

j 

) 
var(y j) = var 

• The length of the links between the vertices of the rays approximate the variability 
of a pairwise logratio formed by the respective parts: � � 

1 xi∥hi• − h j•∥2 ≈ (y•i − y• j)T (y•i − y• j) = varc ln 
n− 1 x j 

• The projection of the i-th score onto a link approximates the difference between 
the respective clr coeffcients (i.e. logratio between xi j and xik): 

T xi j xik xi j gi•(h j• − hk•) ≈ ln − ln = ln 
g(xi•) g(xi•) xik 

More elaborated derivations of the biplot properties (discussed both here and in the 
following sections) are available in Supplementary Material A. 

3.2. Vector compositional data 

The relationship between a pairwise logratio, i.e. the frst bpc in the corresponding 
coordinate system, and clr coeffcients (2) contained in Y can be written as r r r r 

1 xl 1 1 1
bpc(x(l))1 = ln = yl − yD = (yl − yD) , (13)

2 xD 2 2 2 

where xD is the chosen rationing element. All D − 1 coordinate systems need to be 
constructed to obtain all possible pairwise logratios with a chosen ratioing element. Let 
Z(l) be a centered matrix containing the bpcs of the l-th system, l = 1, . . . ,D − 1. The 
biplot decomposition of Z(l) can be written as Z(l) = G(l)H(l)T . The matrices G(l) are 
identical for all systems and in fact equal to the matrix G resulting from the clr version 
of PCA as defned above. The suggested biplot representation combines the frst rows of 
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the loading matrices H(l), corresponding to coordinates bpc(x(l))1 and, consequently, to 
pairwise logratios ln(xl/xD) of interest. 

The interpretation of the bpc-based biplot can be derived from the relationship be-
tween the frst row of a matrix H(l) and the rows of the clr loading matrix H. From (13) 
it follows that r r r 

1 1 1
h(l) 

1• = hl• − hD• = (hl• − hD•) . (14)
2 2 2 

Given that G(l) = G and the relationship in (14), the main properties of the bpc-based 
biplot are as follows: 

• The inner product between a row of the matrix G and h(l) approximates the pair-1• 
wise logratio between the l-th component and the ratioing part: r 

T xil gi•h
( 
1 
l 
• 
) ≈ 

1
2

ln 
xiD 

• The lengths of biplot rays approximate the variability of the logratio between the 
l-th and the rationing part: � � 

∥h(l) 1 xl 
1•∥

2 ≈ c lnvar 
2 xD 

• The length of the links between the vertices of two rays approximate the variability 
of the logratio between the compositional parts placed in the numerator of the 
respective pairwise logratios: � � 

1 xp∥h(p) − h(s)∥2 ≈ cvar ln1• 1• 2 xs 

• The projection of a score onto a link approximates the pairwise logratio of the 
respective components: r 

T 1 xip gi•(h
(p) − h(s)

) ≈ ln1• 1• 2 xis 

Amongst the properties above, it is worth highlighting that lengths of the links be-
tween vertices approximate pairwise logratio variances, i.e. the elements of the varia-
tion matrix (Aitchison, 1986). Thus, the bpc-based biplot shares this property with the 
ordinary clr-based biplot, except that, for obvious reasons, now the pairwise logratios 
containing the ratioing part are not contained in the links. They can however be read-
ily obtained from the lengths of the rays. This implies that the bpc-based biplot can be 
used as a reasonable alternative to the crude alr-based biplot which suffers from non-
orthonormality of the input coordinates. 
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3.3. Compositional tables 

Similarly to the case of vector compositional data, PCA can be modifed to summarize 
the elemental information contained in a set of compositional tables. As noted in Section 
2.2, this concerns the interactions between factors, as carried by simple log odds-ratios, 
and the within-factor structure, as carried by the pairwise balances computed from the 
entire rows and columns. The modifed PCA using the bpc approach is like in the vector 
case given by the repeated computation of the decompositions (11) and (12), with the 
subsequent combination of the results from the different bpc systems. In each step, the 
data matrix X is replaced by a matrix of coordinates given by (5), (7) and (9). When the 
I-th row and the J-th column are understood as the normalizing categories, results from 
(I − 1)(J − 1) partial computations (based on (I − 1)(J − 1) permutations x(kl)) have to 
be combined. 

From a methodological point of view, it would be possible to analyze the elemental 
information from both the independent and interactive parts of a compositional table 
simultaneously in one biplot. Nevertheless, in the following we focus on the case where 
these two types of information are displayed and interpreted separately. In our view, this 
leads to a more straightforward interpretation of the resulting biplots. 

3.3.1. Inter-factorial relationships 

The ordinary PCA can be modifed so that the resulting biplot contains all possible sim-
ple log odds-ratios with the rationing element xIJ . Namely, let Z(kl), k = 1, . . . , I − 1, 
l = 1, . . . ,J − 1 be a mean centered n × (IJ − 1) matrix of coordinates from a sample 
of compositional tables ix(kl), i = 1, . . . ,n (note that in the following a left subscript will 
stand for the sample index), with the coordinates being ordered as tbpc(x(kl)), rbpb(x(kl)) 
and cbpb(x(kl)). That is, the log odds-ratio ln(xklxIJ/xkJxIl) is represented by the frst 

= G(kl)H(kl)Tcoordinate. When this matrix is decomposed as in (12), Z(kl) , the matrix 
G(kl) remains the same for all row/column permutations and equals the one obtained 
for the clr coeffcients (G). For the biplot representation, the frst row from each of the 
loading matrices H(kl) is used, since it corresponds to the frst tbpc (10). Each of these 
coordinates is related to the clr coeffcients through 

1 xIJxkl 1 � � 
tbpc(x(kl))11 = ln = y[I,J] + y[k,l] − y[I,l] − y[k,J] , (15)

2 xIlxkJ 2 

where y[i, j] stands for the clr representation of the part xi j of a compositional table x, i.e. 
y[i, j] = lnxi j/g(x), i = 1, . . . , I and j = 1, . . . ,J. The frst row of H(kl) is therefore related 
to the rows of the clr loading matrix H as follows: 

1 � � 
h(kl) 

= h[I,J]• + h[k,l]• − h[I,l]• − h[k,J]• , (16)1• 2 

with h[i, j]• denoting the row of H corresponding to the clr coeffcient y[i, j]. 
Based on the aforementioned decomposition, the biplot properties in this case can 

be summarized as follows: 
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• The inner product between the rows of the score matrix G and the frst row of 
H(kl) approximates the respective simple log odds-ratio: 

T h(kl) 1
ln ixIJ ixkl g ≈ .i• 1• 2 ixIl ixkJ 

• Due to the centering of the clr coordinate matrix Y the lengths of the biplot rays 
approximate the variability of the simple log odds-ratios: � � 

∥h(kl) 1 xIJxkl var ln .1• ∥
2 ≈ c 

4 xIlxkJ 

• The length of the links between two vertices can in general be understood in terms 
of difference between variation of the respective simple log odds-ratios. More-
over, a more convenient interpretation is available for some combinations. Thus, 
the links between rays related to odds-ratios sharing two common elements ap-
proximate the variation of a new simple log odds-ratio. Considering e.g. the log 
odds-ratios sharing the elements at positions [k,J] and [I,J], and differing in the 
column permutation index l (represented by h(kl1) and h(kl2) , l1 ≠ l2), the distance 1• 1• 
between the corresponding rays verifes that � � 

∥h(kl1) − h(kl2) 1 xkl1 xIl2∥2 ≈ cvar ln .1• 1• 4 xIl1 xkl2 

A similar derivation can be given for odds-ratios sharing the same column indices, 
i.e. xk1lxIJ/xk1JxIl and xk2lxIJ/xk2JxIl for k1 ̸= k2, where the corresponding link es-
timates the variance of ln(xk1lxk2J/xk1Jxk2l). Consequently, when a biplot collects 
results from all coordinate systems defned for a fxed rationing part xIJ , it pre-
serves also the information on the variability of the odds-ratios containing parts 
either from the I-th row or the J-th column. On the other hand, the characteristics 
of the other odds-ratios are not represented in this setting. 

• In the case of the projection of a score to a link, only pairs of odds-ratios sharing 
elements from the same row or column are worth investigating. E.g. for the same 
pair as considered in the previous point, it holds that 

T
i•(h

(kl1) − h(kl2) 1
ln ixkl1 ixIl2g ) ≈ .1• 1• 2 ixIl1 ixkl2 

Interestingly, the links (partially) approximate the elemental covariance structure, 
represented here by variances of simple log odds-ratios. This property, which was also 
observed for the bpc biplot in the vector case, is thus transferred to a more general 
setting by a proper choice of coordinate representation of the interaction part of the 
compositional table. 
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3.3.2. Intra-factorial relationships 

The other main source of information carried by a compositional table lies in its indepen-
dent part, whose elemental representation is given by pairwise row or column balances. 

When the I-th row of a compositional table x is understood as the normalizing el-
ement (category of the row factor), all pairwise row balances with this element can be 
given by the frst rbpb, computed from different permutations x(kl), k = 1, . . . , I − 1. The 
following relationship holds between these coordinates and the clr representation: r r � �

(kl))1 = 
J g(xk•) 1

rbpb(x ln = y[k,1] + . . . + y[k,J] − y[I,1] − . . . − y[I,J] . (17)
2 g(xI•) 2J 

The construction of a biplot with pairwise row balances is based again on the de-
composition of the mean centered coordinate matrix Z(kl) into matrices G(kl) and H(kl), 
so it can be computed along with the one for the interaction part. Here the biplot rep-
resentation collects the rows of the loading matrices H(kl), k = 1, . . . , I − 1, standing at 
the position [(I − 1)(J − 1)+ 1] (the column permutation l does not play a relevant role 
in this case). Let the position be denoted by r1 in the following (in reference to the fact 
that it is the position corresponding to the frst rbpb). According to (17) the following 
relation holds between a row of H(kl) and rows of the clr loading matrix H: r 

1 � � 
h(kl) 

= h[k,1]• + . . . + h[k,J]• − h[I,1]• − . . . − h[I,J]• . (18)r1• 2J 

Accordingly, the biplot properties are now as follows: 

• The inner product between a row of matrix G and h(kl) approximates the pairwise r1• 
row balance: r 

i•h
(kl) J g(ixk•)gT
r1• ≈ ln 

g(ixI•) 
.

2 

• The lengths of the biplot rays give an approximation of the variability of the pair-
wise row balances: � � 

∥h(kl) J g(xk•)var ln .r1• ∥
2 ≈ c 

2 g(xI•) 

• The length of the links between the vertices of the rays approximate the variability 
of the balance between row categories standing in the numerator of the respective 
coordinates: � � 

J g(xk1•)∥h(k1l) − h(k2l)∥2 ≈ c lnvar .r1• r1• 2 g(xk2•) 
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• A specifc pairwise row balance can be for a given observation approximated by 
the projection to a link: r � � 

T 
� 

h(k1l) − h(k2l) 
� J g ixk1• g ≈ ln .i• r1• r1• 2 g(ixk2•) 

Analogous properties can be derived for the biplot constructed from the rows at the 
positions [(I − 1)J + 1] of matrices H(kl), computed for different column permutations 
l = 1, . . . ,J − 1. These rows refer to the frst cbpbs of x(kl), and therefore the interpre-
tation relates to the pairwise column balances with the J-th (rationing) column level or, 
alternatively, between the other levels of the column factor. 

4. Regression analysis 

We now demonstrate the bpc approach focusing on the elemental information in vector-
or table-type compositional data in the context of regression analysis. More specifcally, 
we focus on linear regression models with real-valued response variable and explanatory 
composition. The coordinate representation of the composition challenges the interpre-
tation of regression parameters. As Coenders et al. (2020) pointed out, the standard inter-
pretation of regression coeffcients in terms of “increasing one regressor while keeping 
the others constant” is violated when non-orthonormal coordinates are used. We add 
that, even when an olr coordinate system is used, the idea of keeping regressors constant 
needs to be understood correctly. In this section, following Hron et al. (2021), we elab-
orate on the interpretation of regression parameters in the vector composition case using 
a bpc representation to, subsequently, extend the concept to compositional tables. 

4.1. Vector compositional data 

We focus on the regression analysis problem where a real-valued variable Y is mod-
elled in terms of a D-part compositional vector x = (x1, . . . ,xD). Thus, a system of 

(l) (l)(orthogonal) bpcs z(x(l)) = (z , . . . ,zD−1) can be used to represent the composition in a 1 
regression model as h i 

(l)) (l) (l)E Y |z(x = β0 + β (l)z + . . . + β (l) (19)1 1 D−1zD−1. 

Even though the defnition of bpcs in (3) refers to the usual natural logarithm, i.e. 
logarithm with the base of e, following Müller et al. (2018) this can be replaced by 
logarithms with any other base κ . An adequate choice of the base of the logarithm can 
facilitate the interpretation of the regression parameters. 

While the intercept β0 and global characteristics of the regression model such as 
residuals, overall F-statistic, and coeffcient of determination remain the same in any 
coordinate system, all the other regression coeffcients vary with the choice of logratio 
basis. When bpcs with xD as the normalizing part are of interest, the effects of the 
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simple logratios ln(xl/xD) can be investigated by changing the index l (l = 1, . . . ,D−1), 
each represented by the corresponding regression parameter β (l) associated to the frst 1 

(l)bpc coordinate z1 of the system. Therefore, the main result from such a modelling is 
formed by estimates β̂0 and β̂ (l) , l = 1, . . . ,D − 1.1 

Regardless the specifc permutation (l), β0 gives an expected value of the response 
when all compositional parts xi, i = 1, . . . ,D, are equal. However, the interpretation of 
the β (l) , l = 1, . . . ,D − 1, is related to the underlying model and coordinate system it is 1 

coming from. For a given l the parameter β (l) estimates the effect of the κ-times growth 1 
(l) (l)of the ratio xl/xD on the response, while keeping the remaining coordinates z , . . . ,z2 D−1 

constant. For example, using κ = 2 leads to the interpretation in terms of doubling the 
ratio of interest. In order to keep the remaining coordinates unaffected, the κ-times 
increase in xl/xD has to be equally distributed between both parts in the ratio. More√ 
specifcally, the only scenario leading to the required change is the κ-times increase 
in xl accompanied by the same decrease in xD. Each of the regression parameters β (l) ,1 
l = 1, . . . ,D − 1, therefore models the effect of the increase in the part of interest xl at 
the expense of the rationing part xD, while keeping the rest of the composition constant. 

Obviously, there are several other ways to achieve the κ-times increase in the ra-
tio involving xl and xD. Particularly interesting is the case when the increase is caused 
by a κ-times increase in xl only. Even though this does not affect any other pairwise 
logratio with the normalizing part xD, it leads to change in the remaining coordinates 
(l) (l)z , . . . ,zD−1 from the l-th system, which decrease by 1/2,1/3, . . . ,1/(D − 1) respec-2 

tively. The effect of the κ-times increase of xl would therefore need to be accounted for 
from all the regression coeffcients βi 

(l) , i = 1, . . . ,D − 1. 

4.2. Compositional tables 

For the purpose of regression modeling, a table x of dimensions I × J can be represented 
by a vector of olr coordinates (Faˇ a et al., 2021). When, additionally, the elemen-cevicov´ 
tal information related to the I-th row and the J-th column is of interest, such coordinates 
need to be constructed as in Section 2.2. The explanatory variables can be the orthogonal 
versions of the row and column backwards pivot balances (5) and (7) and the odds-ratio 

z(x(kl)),bpcs (9), i.e. z(x(kl)) and t z(x(kl)) respectively. As noted in the previous sec-r c 
tion, the natural logarithm can be replaced by any other with base κ . A linear model of 
dependence between a real variable Y and a I × J compositional table x can therefore be 
formulated as h i 

(kl)) β (kl) (kl) 
β (kl) (kl)E Y |z(x = β0 + r 1 rz1 + . . . + r I−1 rzI−1+ 

β (kl) (kl) 
β (kl) (kl) (20)+ z + . . . + zc 1 c 1 c J−1 c J−1+ 

β (kl) (kl) 
β (kl) (kl)

+ z + . . . + zt 11 t 11 t I−1,J−1 t I−1,J−1. 

The parameter β0 does not depend on the olr basis chosen and it has the usual in-
terpretation, i.e. it is expected value of the response when all the regressors are set to 
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zero. This corresponds to the case of no relationship between row and column factors 
(i.e. t z(x(kl)) being zero) and no informative categorization of the individual factors (i.e. 
z(x(kl)) and z(x(kl)) being zero). The value and interpretation of the remaining regres-r c 

sion parameters depend on the coordinate system from which they are estimated. As 
we focus on the elemental sources of information, we suggest to combine the results 
of the regression modeling (20) for each of the row-column permutations of the table 
x, i.e. x(kl), with k = 1, . . . , I − 1 and l = 1, . . . ,J − 1. As in the vector case in Section 
4.1, the global characteristics of the model do not depend on the specifc permutation 
applied. The main part of the outcome is then formed by the estimates of coeffcients 

β̂
(kl)corresponding to the orthogonal versions of the frst rbpbs , k = 1, . . . , I − 1, ther 1 

β̂
(kl)frst cbpbs , l = 1, . . . ,J − 1 and the frst odds-ratio backwards pivot coordinatesc 1 

β̂
(kl) 

t 11 , ∀k, l. 
The fnal summary of the model collects estimates of I − 1 regression coeffcients 

β (kl), which quantify the effect of a unit change of the ratios r 1 

(kl) g(xk•) 
rz1 = ln , k = 1, . . . , I − 1, (21)

g(xI•) 

on the response variable Y while keeping the remaining ones constant. But, as we are 
actually combining results from several regression models, that refers to the other co-
ordinates included in the respective model and not to those listed in the fnal summary. 
The logratios (21) can be understood as a special case of the pairwise logratios studied 

β (kl) (kl)in Section 4.1. Thus, the interpretation of is analogous. The unit increase in zr 1 r 1 
means a κ√-times increase in the ratio g(xk•)/g(xI•). This is achieved through a pro-
portional κ-times increase in parts from the k-th row accompanied by a proportional 
decrease in parts from the rationing row I by the same constant. 

The second set of regression coeffcients obtained from the regression analysis are 
β (kl)the , which analogously to the above quantify the effect of a unit change of c 1 

(kl) g(x•l)z = ln , l = 1, . . . ,J − 1, (22)c 1 g(x•J) 

on the response variable Y . The κ-times increase in the respective ratio can be (under the√ 
condition of unaltered remaining coordinates) achieved here through a proportional κ-
times increase in parts from the l-th column accompanied by a proportional decrease in 
parts from the J-th column by the same constant. 

β (kl)The last group of regression coeffcients are the 11 . These (I − 1)(J − 1) coef-t 
fcients quantify the effect of changes in the interactive structure of the compositional 
table, as each of them is related to one log odds-ratio of the form 

(kl) xIJxkl z = ln . (23)t 11 xIlxkJ 
√ 

A κ-times increase in this case means a 4 
κ-times increase in the parts xIJ and xkl √ 

accompanied by a simultaneous 4 
κ-times decrease in xIl and xkJ . Note that even though 
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this ensures that the remaining coordinates from the system remain unchanged, it still 
affects some of the elemental odds-ratios with rationing part xIJ . More specifcally, the 
following happens: 

• The odds-ratios sharing the pair of elements xIJ and xkJ or xIJ and xIl , i.e. 

xIJxk j xIJxil or , i = 1, . . . , I − 1, i ≠ k and j = 1, . . . ,J − 1, j ̸= l, 
xI jxkJ xiJxIl 

√ 
turn out to increase κ - times. 

• The odds-ratios sharing with the one of interest only the part xIJ , 

xIJxi j 
, i = 1, . . . , I − 1, i ̸= k and j = 1, . . . ,J − 1, j ≠ l, 

xI jxiJ 

√ 
increase 4 

κ-times. 

Similarly to the vector composition case, the unit increase in the coordinate of inter-
est admits an alternative interpretation. If the condition that the other coordinates must 
remain unchanged is relaxed, we can consider the case in which only the part of the 
interest xkl observes a κ-times increase. This implies that the other coordinates from the 
system are affected and the overall effect on the response variable is therefore a combi-
nation of all regression parameters for the (kl) model. In particular, the row backwards 

(kl) (kl)pivot balances z , i = 2, . . . , I − 1, decrease by 1/iJ, while z increases by 1/J.r i r 1 
(kl)Similarly, the column backwards pivot balances z , j = 2, . . . ,J − 1, decrease by 1/ jI j 

(kl) (kl) 
c 

and z is increased by 1/I. Finally, the odds-ratio backwards pivot coordinates z ,c 1 1 jt 
(kl)j = 2, . . . ,J − 1, or z , i = 2, . . . , I − 1, decrease by 1/ j and 1/i respectively. Thet i1 

(kl)remaining z , i = 2, . . . , I − 1 and j = 2, . . . ,J − 1, are increased by 1/i j.i j 
(kl) 

t 

Another interesting case of a unit change in z is that derived from change int 11 
one of the odds constituting the corresponding odds-ratio (while keeping the other un-
changed). Thus, when for example the odd xkJ/xIJ decreases κ-times in a way such that √ √ 
xIJ becomes κxIJ and xkJ decreases proportionally to xkJ/ κ , this change propagates 

(kl) (kl)to coordinates z , j = 1, . . . ,J −1, which increase by 1/ j, and to the row balance z ,1 j r 1t 
which increases by 1/J. The effect of such a change on the response variable is therefore 

β (kl) 
β (kl)given by a combination of the parameters , j = 1, . . . ,J − 1, and .1 j r 1t 

5. Illustrative applications 

The presented methodology is illustrated in the following subsections using two real-
world data sets from the feld of time-use epidemiology, where compositional methods 
have been notably introduced in recent years (see e.g. (Dumuid et al., 2020)). The 
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data analyses were conducted using R (R Core Team, 2020). All methods introduced 
in this manuscript are implemented in the R package robCompositions (Templ, 
Hron and Filzmoser, 2011), with associated functions called bpc, bpcPca, bpcReg, 
bpcTabWrapper, bpcTabPca and bpcTabReg. 

5.1. Movement behavior patterns in children and adolescents — a vector 
approach 

The frst data set describes the distribution of 24-hour movement behaviors of 336 chil-
dren and adolescents aged between 8 and 18 (Gába et al., 2021). For each of the partici-
pants the times spent in sedentary behavior (SB), light physical activity (LPA), moderate 
physical activity (MPA) and vigorous physical activity (VPA) were collected together 
with sleep time using wrist-worn accelerometers. Note that sleep is a natural ratioing 
part, so we will focus on the four pairwise logratios representing time spent in SB, LPA, 
MPA and VPA behaviors relative to sleep. 

5.1.1. Principal component analysis 

Compositional PCA and associated biplot based on backwards pivot coordinates as de-
scribed in Section 3.2 are applied here to the movement composition, focusing on the 
representation of pairwise logratios including sleep as reference behavior. The resulting 
biplot display is shown in Figure 1, where it can be observed that the data variability is 
mainly driven by the VPA-to-sleep logratio. The individuals (biplot points) are repre-
sented by their ID number in the database. Thus, while participant no. 1287 spent sub-
stantially more time sleeping than in VPA (the raw values are VPA = 0.12 min/day and 
sleep = 478.35 min/day), for example participant no. 1656 (at the opposite side of the 
biplot) reported a higher absolute (and relative) amount of VPA (VPA = 29.14 min/day, 
sleep = 497.66 min/day). Another important source of variability is the logratio between 
MPA and sleep, while the relative time spent in SB or LPA is rather consistent in com-
parison to the former two logratios. Looking at the links, the logratio between VPA and 
MPA also stands out as relevant source of variation between participants, followed by 
logratios between VPA and SB, VPA and LPA or MPA and SB. 

To illustrate possible caveats of the ordinary alr approach (considering sleep as refer-
ence element as in the case of backwards pivot coordinates), Figure 2 shows the resulting 
alr-based biplot. Two main issues are noticeable. Firstly, the scores of this biplot are dis-
torted with respect to the biplot based on backwards pivot coordinates. Although the 
latter could be closely approximated using alr coordinates through an adequate choice of 
reference element (Greenacre, 2018), this option is not feasible when the reference ele-
ment is chosen to have a concrete interpretation in the context of the problem at hand (as 
it is the case here). Secondly, and related to the above, the loadings are also dramatically 
different to those obtained using backwards pivot coordinates, particularly showing an 
exaggerated variability of the logratio between VPA and sleep. This variability is better 
represented relative to the other elements of the multivariate structure when orthonormal 
coordinates as seen in Figure 1. 
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Figure 1. PCA biplot based on backwards pivot coordinates for the movement behavior vector 
composition with sleep used as reference behavior. The numbers correspond to participant ID. 
Individuals no. 1287 and no. 1656 (highlighted in red color) differ substantially in time spent in 
VPA relative to sleep. 

5.1.2. Regression 

The above movement distribution was accompanied by information on body fat percent-
age as response variable. Regression analysis as described in Section 4 was conducted 
to investigate their relationships. Namely, four regression models were required, each 
concerning the association with the response variable of each of the pairwise logratios 
with sleep as rationing part. Moreover, the logarithmic base κ was set to 2 for interpre-
tation in terms of doubling the respective ratios. Note that body fat percentage was also 
represented in log2-scale as commonly done in practice to symmetrize its distribution. 
The results from all four models are summarized in Table 1. 

The value of parameter β̂0 indicates that the average body fat percentage of an indi-
vidual, who distributes time fairly equally over all fve behaviors, is approximately 18 % 
(2β̂0 = 24.169). The pairwise logratios to sleep do not seem to play an important role 
overall, with the exception of time in MPA relative to sleep that is statistically signif-√ 
cant at the usual 5% signifcance level. This implies that doubling this ratio (a 2-times 
increase in MPA at the expense of a similar decrease in sleep) results in an increase in 

β̂
(3) 

= 20.446body fat percentage of more than one third (2 1 = 1.362). Note that this trend 
represents an average behavior over the entire data set. As the participants in this study 
span a fairly wide age range, it is expectable that a more structured analysis, which is 
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Figure 2. PCA biplot based on alr coordinates for the movement behavior vector composition 
with sleep used as reference behavior. The numbers correspond to participant IDs. 

beyond the scope of this more methodologically-orientated manuscript, would lead to 
more specifc results. 

Following on Section 4.1, when only time dedicated to MPA doubles while all 
the remaining behaviors are unchanged (before closure), the overall effect on body 
fat percentage is derived from all the β coeffcients in the respective model. In this 
case, they are the coeffcients from β (3) to β (3) estimated for the third (l = 3) model, 1 4 
which are (0.446,−0.036, −0.398,−0.193). Therefore, doubling the time spent in MPA 
is associated to an increase in body fat percentage by approximately one ffth 
(20.446−0.036/2−0.398/3−0.193/4 = 1.187). 

Finally, it can be compared to a simpler model that considers only the MPA-to-
sleep logratio as explanatory variate, ignoring time devoted to other behaviors. This 
latter gives a markedly lower performance (adjusted R2 = 0.013) and doubling the MPA-
to-sleep ratio here implies a slight increase in body fat percentage (β̂1 = 0.172 with 
associated p-value equal to 0.020). The predicted body fat percentage when time spent 
in MPA is equal to sleep time is estimated to be 26 % (β̂0 = 4.688 with p-value < 0.001). 

5.2. Movement behavior for older adults — a compositional table approach 

The second data set focuses on the older adult population from a study conducted in 
2016-2019 (Cuberek et al., 2019). The structure of movement behaviors during weekend 
waking time was assessed by hip-worn accelerometers and its association with visceral 
fat area (VFA) was studied based on 161 individuals aged between 60 and 84. For each 
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Table 1. Regression analysis of body fat percentage on movement behavior composition. Sum-
mary of the four regression models needed to extract all orthogonal logratios with sleep as ref-
erence behavior. Common overall signifcance and R2 measures: F-statistic = 12.304 (p-value 
< 0.001), R2 = 0.129 and adjusted R2 = 0.119. 

(l) Variable Estimate Std. error t-value p-value 

Intercept 4.169 0.219 19.077 < 0.001 

(1) log2(SB/SLEEP) 0.196 0.153 1.283 0.200 

(2) log2(LPA/SLEEP) -0.051 0.154 -0.335 0.738 

(3) log2(MPA/SLEEP) 0.446 0.114 3.918 < 0.001 

(4) log2(VPA/SLEEP) 0.027 0.097 0.278 0.781 

participant, a two-factorial composition was available since activity (with categories SB, 
LPA and MVPA (moderate to vigorous physical activity aggregated)) was also split by 
part of the day (LM - late morning (9-12 am), N - noon (12 am - 3 pm), and A - af-
ternoon (3-6 pm)). Moreover, each of the 3 × 3 compositional tables was accompanied 
by information about the visceral fat area (in cm2) for the individual (see Table 2 for an 
example). Considering SB and LM as normalizing categories, the analysis focuses on 
(1) pairwise row balances between LPA or MVPA and SB, and (2) pairwise column bal-
ances between N or A and LM. Additionally, the interaction structure is studied focusing 
on the simple four-part log odds-ratios with [SB, LM] serving as the reference. 

Table 2. Example compositional table showing the distribution of movement behaviors during 
weekend (min./part of the day) for a senior individual presenting 71.36 cm2 of visceral fat area. 

LM N A 

SB 110.5 73.0 38.5 

LPA 65.5 88.5 105.5 

MVPA 4.0 18.5 36.0 

5.2.1. Principal component analysis 

Figure 3 shows biplots for the row and column pairwise balances (left) and simple log 
odds-ratios (right) resulting from the four PCAs required here, each based on a permu-
tation of the 3×3 compositional table x(kl). 

The left biplot suggests that the data variability is mostly driven by the MVPA-to-
SB logratio (averaged over parts of the day). Even though SB time overall dominates 
MVPA time amongst participants, the more active ones are represented on the left-hand 
side of the biplot (e.g. participant no. 97159 has a paiwise row balance equal to -0.279). 
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Figure 3. PCA biplots based on backwards pivot coordinates for the movement behavior com-
positional table with sedentary behavior (SB) and late morning (LM) used as normalizing cat-
egories. The numbers correspond to participant ID. Participants further discussed in main text 
are highlighted in red. 

Contrarily, participants whose amount of MVPA time is relatively small (e.g. no. 598 
has a pairwise row balance of -7.275) appear on the right-hand side. An important 
contribution to the overall variability is given by the simple log odds-ratio comparing 
the MVPA-to-SB ratio between afternoon and late morning. Thus, participants at the 
top of the right-hand side biplot tend to spend more time in MVPA (relatively to SB) 
in the late morning than in the afternoon (e.g. participant no. 97027, with log odds-
ratio equal to -5.843). On the contrary, those at the bottom typically exhibit the opposite 
behavior (e.g. participant no. 97168 has log odds-ratio equal to 5.010). Moreover, the 
lengths of the rays indicate that a non-negligible variability involves the averaged A-to-
LM and N-to-LM logratios (i.e. there is a good deal of variability in movement behavior 
during the day) and the log odds-ratio comparing the MVPA-to-SB ratios between noon 
and late morning. It can be observed that all logratios including LPA are fairly stable 
across participants. Thus, the LPA-to-SB logratio is fairly stable during the day and, 
considering the results from the regression analysis, change in LPA could be related 
with reduction in fat. Finally, looking at the link between the vertices of the odds-ratios 
including MVPA, we can conclude that the odds-ratio comparing the MVPA-to-SB ratio 
between afternoon and noon is markedly variable. 

5.2.2. Regression 

The relationship between amount of visceral fat and structure of weekend activities can 
be studied using a regression model of the form (20) as introduced in Section 4.2. Four 
permutations x(kl) were considered for each individual table, where k = 1,2 distinguishes 
whether either LPA (k = 1) or MVPA (k = 2) is set as second row, and l = 1,2 refers 
to permutations where N (l = 1) or A (l = 2) is placed in the second column. For each 
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� � 
x(kl)permutation, a system of orthogonal coordinates z was computed following (5), 

(7) and (9) . They were used as covariates in the regression model. As in the previous 
example, a base κ = 2 was set for the logarithm and the response variable VFA was 
log-transformed to meet distributional assumptions. The results from all four models 
are summarized in Table 3. Note that, e.g., notation log2(g(MVPA)/g(SB)) refers to 
the pairwise row balance between MVPA and SB, while log2OR: x[MVPA, N] denotes 
simple log odds-ratio with the pivoting element at the position [MVPA, N]. 

Table 3. Regression analysis of visceral fat area on weekend movement behavior composition in 
adults according to intensity and part of a day. Summary of the four regression models needed 
with sedentary behavior (SB) and late morning (LM) as normalizing categories. Common overall 
signifcance and R2 measures: F-statistic = 2.943 (p-value = 0.004), R2 = 0.134, adjusted 
R2 = 0.089 (see text for details). 

(kl) Covariate Estimate Std. error t-value p-value 
Intercept 6.246 0.126 49.566 < 0.001 

(1•) log2(g(LPA)/g(SB)) -0.029 0.048 -0.607 0.545 
(2•) log2(g(MVPA)/g(SB)) -0.105 0.035 -2.987 0.003 
(•1) log2(g(N)/g(LM)) 0.068 0.157 0.436 0.664 
(•2) log2(g(A)/g(LM)) -0.069 0.131 -0.530 0.597 

(11) log2OR: x[LPA, N] -0.088 0.047 -1.878 0.062 
(12) log2OR: x[LPA, A] -0.063 0.039 -1.626 0.106 
(21) log2OR: x[MVPA, N] -0.066 0.042 -1.562 0.120 
(22) log2OR: x[MVPA, A] -0.024 0.035 -0.667 0.506 

The results suggest that VFA is mostly related to the MVPA-SB ratio, with the cor-
β̂
(2•)responding regression coeffcient being = −0.105. That is, doubling the average r 1 

MVPA-SB ratio is related to a decrease in VFA by approximately 7% (1 − 2−0.105). 
Change in the respective row balance is considered under the condition of constant re-
maining coordinates. Therefore, it has to happen across the whole day by simultaneous √ 

2-increase of time spent in MVPA at the expense of SB. Alternatively, we can con-
sider a 2-time increase in MVPA over the day, without simultaneous decrease in SB nor 
LPA and before closure. Similarly to the vector case, such a change affects the second � � 

β̂
(2•)− 1 

β̂
(2•) 

r 1 2 r 2 = 2(−0.105+0.031/2)rbpb and, thus, the overall effect on VFA is 2 = 0.940 
(approx. 6% decrease). If LPA and the interactions were ignored, the simple model 
of VFA on the MVPA-to-SB balance would estimate an effect of −0.120, leading to 
a similar conclusion: doubling the mean MVPA time (with respect to SB without any 
other condition) is associated with a decrease in VFA of about 8 %. Note that the overall 
performance of this simpler model is also fairly poor (adjusted R2 = 0.087). 
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β̂
(11)Another interesting regression coeffcient is , which quantifes the effect oft 11 

change in the odds-ratio comparing the LPA-to-SB ratio at noon and late morning. Even 
though the estimate is marginally non-signifcant at the usual 5% signifcance level (p-
value = 0.062), its value suggests that doubling the odds-ratio decreases VFA by more 
than fve percent (2−0.088 = 0.941). This change has to be proportionally distributed 
over all parts in the odds-ratio, meaning that while time spent in LPA at noon and in 
SB at late morning increases 

√
4 2-times, this is at the expense of time devoted to the 

same behaviors at the complementary part of a day. It can be therefore understood as 
a transfer of LPA time from late morning to noon, compensated by a transfer of SB 
time in the opposite direction. Alternative scenarios as discussed in Section 4.2 can be 
considered. For instance, when the change affects only the late morning LPA-to-SB ratio 
(decreasing in a half by reducing LPA time at the favor of SB time), the effect on VFA � � 

β̂
(11) 

β̂
(11) 

β̂
(11)1 1+ +t 11 2 t 12 3 r 1is equal to 2 , i.e. 2(−0.088−0.026/2−0.029/3) = 0.926 (a 7% decrease 

approx.). Finally, the simpler model of VFA on the discussed log odds-ratio gives an 
estimated β coeffcient equal to −0.101 (p-value = 0.024). Therefore, when the other 
covariates are neglected, doubling the odds-ratio comparing the LPA-to-SB ratio at noon 
and late morning relates to a decrease in VFA by approximately 7%. 

6. Final remarks 

Some recent developments in compositional data analysis suggest that there is a demand 
amongst practitioners for simple, interpretable logratio representations of compositional 
data. The classic alr coordinates, although having some issues related to the fact that they 
defne an oblique system of coordinates, are indisputably a key representative of this 
kind. Moreover, orthonormality of logratio coordinates is a desirable property which 
is very much linked to the Aitchison geometry of compositional data, contributing to 
guarantee consistent and reliable results. In this paper we present backwards pivot coor-
dinates as an orthonormal alternative to alr coordinates. It is demonstrated how they can 
be used with widely-used techniques such as principal component analysis and linear 
regression analysis. Just taking into account that the results are originated from multi-
ple coordinate representations simultaneously, the interpretation results to be simple and 
natural while orthonormality is satisfed. Additionally, the approach is extended in this 
contribution to the case of compositional tables, where orthonormality of coordinates is 
required to enable (orthogonal) decomposition into independent and interactive parts. 

We then consider that the approach in the present work opens up new possibilities 
in compositional data analysis, offering simplicity of interpretation while respecting the 
well-established geometrical framework for both vector compositional data and multi-
factorial compositions. Computer implementations of the methods are made freely avail-
able to facilitate use by practitioners on the R software for statistical computing. 
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