
10.2436/20.8080.02.111SORT 47 (2) July-December 2023, 1-16 DOI: 

Subcompositional coherence 
and a novel proportionality index of parts 

Juan Jose Egozcue´ 1 and Vera Pawlowsky-Glahn2 

Abstract 

Research in compositional data analysis was motivated by spurious (Pearson) corre-
lation. Spurious results are due to semantic incoherence, but the question of ways to 
relate parts in a statistically consistent way remains open. To solve this problem we 
frst defne a coherent system of functions with respect to a subcomposition and ana-
lyze the space of parts. This leads to understanding why measures like covariance and 
correlation depend on the subcomposition considered, while measures like the distance 
between parts are independent of the same. It allows the defnition of a novel index of 
proportionality between parts. 
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1. Introduction 

Research in compositional data analysis (CoDA) was motivated by the so-called spu-
rious (Pearson) correlation (Pearson, 1897; Chayes, 1971). It appears as correlations 
changing when considering the same variables, or parts, as parts of different compo-
sitions represented in closed form. For instance, in the example below, the Pearson 
correlation coeffcient between milk and eggs changes from −1 when they are consid-
ered as a two part composition, to more than 0.6 when represented as proportions of 
a subcomposition including also sugar, fat, juices and non-alcoholic drinks (see also 
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Fig. 1). This led to the principle of subcompositional coherence as a requirement for a 
consistent methodology (Aitchison, 1986, 1992). Nowadays, we know that most mea-
sures between two compositional parts are in this sense also spurious, e.g. Spearman and 
Kendall correlations, or copulas (Ortego and Egozcue, 2013; Egozcue and Pawlowsky-
Glahn, 2019; Pawlowsky-Glahn and Egozcue, 2022). We also know that those spurious 
results are actually due to a misnomer of the parts in different compositions, as they re-
ally involve all the parts considered through the operation of closure (Pawlowsky-Glahn 
and Egozcue, 2022). There is in fact a semantic incoherence inherent to the common 
practice of assigning identical labels to different functions. 

From the initial developments of CoDA (Aitchison, 1986) up to now there were 
several reformulations of the principle of subcompositional coherence, (for instance, 
Aitchison, 1992; Aitchison and Egozcue, 2005; Egozcue, 2009; Boogaart and Tolosana-
Delgado, 2013; Pawlowsky-Glahn, Egozcue and Tolosana-Delgado, 2015). However, no 
formal defnition of coherence has been clearly stated. There are other quite different, 
but sound, interpretations of this principle, for instance, Bear and Billheimer (2017). 
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Figure 1. Correlation coeffcients (Pearson, blue; Spearman, green; Kendall, red) between milk 
and eggs. Using raw data (full lines), and clr transformed data (dashed lines). Coeffcients are 
computed on closed subcompositions including the number of parts annotated in the x-axis and 
ordered as enumerated in the legend. 

Nevertheless, the question of ways to relate two parts in a statistically consistent way 
remains open. Certainly, many analysts try to evaluate the co-variation of two parts in 
a compositional sample using traditional tools of statistics conceived for real random 
variables. For instance, the correlation between raw parts, or between clr-components 
(see A.3 for defnition). These two examples are spurious in the sense described above 
since the values of such correlations can change dramatically with the subcomposition 
considered, even from extremely positive to extremely negative values. 

In order to illustrate the drawbacks of some correlation functions on compositional 
data samples, we selected the EFSA Nutrition consumption data for adults as reported in 
the R-package robCompositions (Templ, Hron and Filzmoser, 2010) (See also Appendix 
D). Figure 1 shows the well-known effects on correlation coeffcients between milk and 
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eggs when changing the subcomposition. The correlation coeffcients change from −1, 
when only these two parts are in the subcomposition, up to more than 0.6 for a subcom-
position including 6 parts. These changes in all correlation coeffcients illustrate their 
spurious character. 

After the next Section 2 on the background of CoDA, the present goal is to formally 
defne subcompositionally coherent sets of functions constituting a CoDA and to discuss 
the desirable properties of the many functions frequently appearing in CoDA (Section 
3). This goal leads to the search for measures of co-variation between two parts that 
are admissible in a coherent CoDA, thus able to substitute the traditional, but spurious, 
correlation coeffcients (Section 4). This last point is based on the idea that a compo-
sitional sample can be viewed as a sample of observations by rows and also as a set 
of compositional parts shared out on observations. The compositional space of parts 
(columns) is called P-space (Pawlowsky-Glahn and Egozcue, 2022), whereas the tradi-
tional view of observations (rows) constitute the space of observations (O-space, Section 
4 and Appendix B), 

2. Background 

The root idea underlying CoDA is that the compositional information conveyed by a 
K-part composition x = (x1,x2, . . . ,xK) does not change when it is multiplied by a real 
positive constant. This was formulated in the seminal works by Aitchison (1982, 1986) 
as the principle of scale invariance. It leads to the following concept of compositional 
equivalence (Aitchison, 1992; Barcelo-Vidal, Mart´ ı́n-Fernández and Pawlowsky-Glahn, 
2001; Barcelo-Vidal and Mart´ ı́n-Fernández, 2016; Pawlowsky-Glahn et al., 2015). 

Defnition 2.1. [Compositional equivalence, proportionality] Two K-tuples x = (x1,x2, 
. . . ,xK), y =(y1,y2, . . . ,yK), with strictly positive components, are compositionally equiv-
alent if there exists a constant c > 0 such that xi = cyi for all i = 1, 2, . . . ,K. The equiv-
alence classes are compositions. 

This defnition implies that a composition can be conveniently represented by K-
tuples whose components add up to a given constant κ > 0, e.g. κ = 1 or κ = 100, as the 
concept of compositional equivalence exactly matches the principle of scale invariance 
formulated in the early 1980s (Aitchison, 1982, 1986). In a compositional exploratory 
analysis, proportionality between K-tuples, or an approximation of it, has been consid-
ered a linear association in the simplex (Lovell et al., 2015; Erb and Notredame, 2015; 
Egozcue, Pawlowsky-Glahn and Gloor, 2018). After Defnition 2.1, the proportionality 
of two compositions is really equivalence and equality of compositions. 

If compositions are considered to be equivalence classes, the usual way to work 
with them is to select representatives. One way of doing this is the closure operation 
(Aitchison, 1982). 
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Defnition 2.2. [Closure to κ] The closure of x = (x1,x2, . . . ,xK) ∈ R+ 
K to a constant sum 

κ > 0 is � �
κ · x1 κ · x2 κ · xK

Cκ (x) = , , · · · , ∈ SK . 
∑

K 
∑

K 
∑

K 
k=1 xk k=1 xk k=1 xk 

In what follows, κ = 1 for simplicity and without loss of generality. 
The fact that any composition can be represented in the simplex by its closed rep-

resentative suggests defning the K-part simplex, SK , as the sample space of the K-part 
compositions (Aitchison, 1982, 1986). The perturbation and the powering (Eq. A.1) 
were defned between closed compositions in the above references, although powering 
appeared there as a marginal concept. Also, distance, norm, and inner product between 
compositions (Eq. A.2) are defned so that SK is structured as a (K − 1)-dimensional 
Euclidean vector space (Billheimer, Guttorp and Fagan, 2001; Pawlowsky-Glahn and 
Egozcue, 2001). This structure was called Aitchison geometry of the simplex in the lat-
ter reference. A consequence is that any composition can be represented by Cartesian 
orthogonal coordinates obtained by using an isometric log-ratio transformation (ilr, also 
known as orthonormal log-ratio transformation (olr) after Martı́n-Fernández (2019)). 
Details of the Aitchison geometry are presented in Appendix A. 

3. Defnition of subcompositional coherence 

The main concept of interest in the present framework is that of subcomposition. 

Defnition 3.1. [Subcomposition] Let x be a composition in SK . A subset of k parts, 
1 < k < K, is a subcomposition denoted sub(x). Its representative is chosen to be, by 
convention, its closure Csub(x) ∈ Sk . 

The selection of parts included in a subcomposition is arbitrary. In order to simplify 
the notation, the k common parts in x and sub(x) are taken to be the frst k parts ordered 
in the same way as in x. 

Let x be a K-part composition and y = sub(x) a k-part subcomposition of x, 1 < k < 
K. The number of parts D is used to denote one of K or k. 

Defnition 3.2. [Scale invariant function in SD] A function f : SD → R, here called 
generically function, is scale invariant if, for any positive real constant α > 0 and for 
any x ∈ SD, it satisfes 

f (α · x) = f (x) , 

that is, f is a zero-degree homogeneous function. 

Any analysis of compositions is required to be based on scale invariant functions 
(Aitchison, 1992). When studying subcompositional coherence, this is the frst require-
ment for any functions used. Compositional equivalence (Defnition 2.1) can be consid-
ered as the main reason to require the functions involved in compositional analyses to be 
scale invariant. 
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Defnition 3.3. [Invariant function under subcomposition] Let fD : SD → R, D = K,k, 
be two scale invariant functions from compositions onto real values. The functions fD 

are invariant under the subcomposition y = sub(x) (IfS) if, for any composition x ∈ SK , 
fK(x) = fk(y). 

A trivial consequence is that, if the arguments of fK are only those of y, then fK and 
fk are IfS. A more subtle point refers to the labels assigned to x, Cx ∈ SK and y, Cy ∈ Sk . 
The common parts are normally labeled equally, although their numerical value and the 
space in which they are defned are different. However, the value of the i-th part in Cy, 
depends on the whole parent composition Cx since 

xi xi yi = = . 
∑

k 1 − ∑K−k 
j=1 x j j=d+1 x j 

To provide the reader with further insight into this topic, below we examine some 
examples of functions that are and are not invariant to subcompositions. 

• Any simple log ratio between parts in the subcomposition y = sub(x) is an IfS 
under y. 

• Any log contrast including parts of x not included in y = sub(x), is not an IfS 
under y. For instance, log(x1/gm(x)), gm(x) = (∏K

j=1 x j)
1/K , is not an IfS under 

y, as it includes parts which are not in the subcomposition and can take arbitrary 
values. 

• Balances, logratios of geometric means of groups of parts, defned on parts within 
y = sub(x) are IfS under y. For instance, log(gm(x1, x2)/gm(x3, . . . ,xk)) is an IfS 
under y if k ≥ 3. 

There are families of functions that change with the considered subcomposition in 
a monotonic way with respect to the number of parts. When these functions are used 
in an analysis, although changing with the subcomposition, they preserve a type of con-
sistency. In practice, these functions use a second composition/subcomposition as a 
parameter. The Aitchison distance between x1 and a reference composition x0 will be 
non-increasing when taking any subcomposition. This subcomposition affects both x1 
and the reference x0, that is, the distances to be compared are 

da(x1,x0) and da(sub(x1),sub(x0)) . 

In the following, compositional references, as arguments of functions, are transformed 
accordingly when taking a subcomposition. 

Defnition 3.4. [Dominant function under subcomposition] Let fK : SK → R, fk : Sk → 
R, 1 < k < K, be two scale-invariant functions from a simplex onto real values. The 
function fK is dominant with respect to fk (DfS) under the subcomposition y = sub(x) 



6 Subcompositional coherence and a novel proportionality index of parts 

if, for any composition x ∈ SK , it holds either fK(x) ≥ fk(y) (non-increasing domi-
nance) or fK(x) ≤ fk(y) (non-decreasing dominance). If the defnition of fK includes a 
compositional parameter x0 ∈ SK , the corresponding parameter in fk, after taking sub-
composition, is assumed to be y0 = sub(x0). 

This kind of defnition has been applied to Aitchison distances from the early works 
of Aitchison (1992) and then reported by many authors. This property was called sub-
compositional dominance of the distance since the Aitchison distance of the whole com-
position to a reference is always larger than or equal to that of the subcomposition. Here 
dominance refers both to a non-increasing and a non-decreasing monotonic behavior of 
fK . 

Some examples of functions that are and are not DfS follow: 

• All IfS under a subcomposition are also DfS with respect to that subcomposition. 

• Consider x0 and its corresponding subcomposition y0 = sub(x0), and take them 
as references in SK and Sk respectively. Then, Aitchison distances da(x,x0) dom-
inates da(y,y0), as functions of x and y. However, they are not IfS under the 
subcomposition. 

• Taking the neutral elements as references, x0 = nK , y0 = nk in the previous exam-
ple, it yields that the Aitchison norm is a decreasing DfS under the subcomposi-
tion, that is ∥x∥a ≥ ∥y∥a. The inverse of the norm is an increasing DfS since 

∥x∥a ≥ ∥y∥a ⇒∥x∥−1 ≤ ∥y∥−1 .a a 

• Consider x0 and its corresponding subcomposition y0 = sub(x0) as references in 
SK and Sk respectively. Then ⟨x,x0⟩a and ⟨y,y0⟩a are functions of x and y. How-
ever, the Aitchison inner product ⟨·, ·⟩a is not DfS (see Proposition B.5). 

• Consider a component of clr(x), say fK(x) = log(x1/gm(x)). The function fK is 
not DfS, since taking the subcomposition y, the function | fk(y)| = | log(x1/gm(y))|
can take values smaller than, equal to or larger than | fK(x)|, depending on the re-
moved parts from x, thus changing gm(y) arbitrarily. Therefore, the components 
of a clr transformation depend in a non-dominant way on the particular subcom-
position in which they are computed. 

From the previous examples, some important points can be summarized in the following 
proposition. 

Proposition 3.1. Let x ∈ SK and consider a subcomposition y = sub(x) ∈ Sk, 1 < k < K. 
Let x0 ∈ SK and y0 = sub(x0) be reference compositions in SK and Sk respectively. Then, 
(a) da(x,x0), as a function of x, is dominant under the subcomposition y = sub(x); 
(b) ⟨x,x0⟩a, as a function of x, is not dominant under subcomposition y = sub(x). 
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Any CoDA consists of a set of functions f : SK → R. In many instances, this set of 
functions is applied to sample compositions and some of their subcompositions. Con-
sistency of the analyses on the original composition and their subcompositions imposes 
certain requirements on the functions which defne the idea of subcompositional coher-
ence. 

Defnition 3.5. [Subcompositional coherence] Let fK,ℓ : SK → R be a collection of func-
tions, labeled by ℓ, used in a compositional analysis (CoDA). The set of functions fK,ℓ 

is subcompositionally coherent with respect to a given subcomposition sub(x), if each 
function in the collection fK,ℓ satisfes the following properties: 
(a) it is scale invariant; 
(b) it is subcompositionally dominant with respect to the subcomposition sub(x). 
Whenever all the functions in the collection fK,ℓ are invariant under the subcomposition, 
the collection is said strictly subcompositionally coherent. 

Note that, in an informal framework, the term subcompositionally coherent was ap-
plied to invariant functions under subcompositions. Also, the term dominant was mainly 
used for distances as a separate concept from invariance. After Defnition 3.5, IfS is 
a particular case of DfS. The two concepts, invariance (IfS) and dominance (DfS), are 
here applied to functions, whereas coherence is reserved to sets of functions constituting√ ˜ 
an analysis. For instance, the balance log(X1/ X2X3) · 2/3 is an IfS under the sub-
composition (X1,X2,X3); the Aitchison distance da(x1, x2) between two samples of the 
original composition, x1, x2, is (decreasingly) dominant (DfS) under the subcomposition 
(X1,X2,X3). Following Defnition 3.5, the set of the mentioned balance and the distance 
between the samples is a subcompositionally coherent CoDA. 

Some examples of the coherence of a CoDA follow. 

• Any scale invariant function involving exclusively parts of the subcomposition is 
an IfS under the subcomposition. 

• Expressing a composition x ∈ SK in ilr-coordinates provides (K − 1)-coordinates 
which are real functions. These functions can be IfS or not depending on the co-
ordinate system selected and the subcomposition considered. Assume that in the 
subcomposition y = sub(x) ∈ Sk the k frst parts remain in y. A sequential binary 
partition (SBP) (Egozcue and Pawlowsky-Glahn, 2005) can always separate the 
frst k parts and the (K − k) ones not in the subcomposition as the frst step of the 
SBP. The balance coordinates from an SBP of (x1,x2, . . . ,xk) are then IfS. The in-
formation contained in the remaining coordinates, including the one defned in the 
frst step of the SBP, is lost when taking subcomposition. Therefore, these latter 
balance coordinates are not computable from the subcomposition and they are not 
IfS under the subcomposition. If CoDA is based on the frst k − 1 coordinates it is 
coherent; if some of the K − k + 1 coordinates are included in the CoDA, then it is 
not coherent. 
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• There is no subset of the components of clr(x) ∈ RK which is coherent under any 
subcomposition y = sub(x). This is due to the presence of all components of x in 
the geometric mean appearing in the denominator of all components of clr(x). The 
same applies to pivot coordinates, as they are proportional to the clr coeffcients. 

• Most measures of entropy or information are computed on probability distribu-
tions normalized to 1. When the distributions are considered as compositions 
scale invariance should allow arbitrary normalization. Then, these measures are 
not scale invariant and, consequently any CoDA including these measures is not 
coherent. However, the scalar measure of evidence information Ie(x) = ∥x∥a is 
a DfS under any subcomposition (Egozcue and Pawlowsky-Glahn, 2018). Also, 
the symmetrized compositional Kullback-Leibler divergence (Martı́n-Fernández, 
2001) is shown to be a DfS. 

4. Searching for a coherent co-variability measure of parts 

4.1. Requirements and proposal 

Consider a compositional sample, denoted by xi, i = 1,2, . . . ,N, called observations. 
They form a compositional data (N,D)-matrix X, whose entries are denoted xi j, i = 
1,2, . . . ,N, j = 1,2, . . . ,D. The columns of X, here denoted Xj, j = 1,2, . . . ,D are called 
parts and are also N-part compositions (in general not closed). Using matrix notation 

⊤ ⊤ ⊤X = (X1,X2, . . . ,XD) = (x1 ,x2 , . . . ,xN )
⊤ , 

where (⊤) denotes transposition. Assume that the entries of X are positive. Such tables 
can be analyzed in three different ways: (1) row-wise; (2) column-wise; (3) as a single 
realization of a compositional (N,D)-table (see e.g. Egozcue et al., 2015; Pawlowsky-
Glahn, Egozcue and Planes-Pedra, 2019). Cases (1) and (2) are studied here and corre-
spond to the well known R-mode and Q-mode analysis (e.g. Zhou, Chang and Davis, 
1983; Grunsky, 2001). 

Herein, the goal is to evaluate the relationship between two parts, for instance, with-
out loss of generality, X1 and X2. Parts in X are N-part compositions which can be 
represented in SN , called the space of parts PN (Pawlowsky-Glahn and Egozcue, 2022). 
In contrast, the observations xi are D-part compositions in the space of observations 
which can be represented in SD . 

The relation, co-variation, or linear association between two parts X1 and X2 corre-
sponds to the comparison of two elements in PN , which are N-part compositions. The 
functions to be used to this end should be of the kind fN : SN → R. If X1 is the argument 
of the function, X2 can be included as a reference in the function. Then the notation can 
be fN(X1,X2). 

The requirements on fN are: 
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A When taking a subcomposition in the space of observations, including a closure, 
fN (X1,X2) remains unaltered. That is, the measure of co-variation does not depend 
on the subcomposition of observations considered. 

B When taking a sub-sample of observations, fN (X1,X2) should be dominant with 
respect to any subsample of observations which is a subcomposition in PN . 

These two requirements are equivalent to that the analysis of co-variation of X1 and X2 

must be IfS in PN [A], and DfS in OD [B]. The relations between PN and OD (App. B, 
Pawlowsky-Glahn and Egozcue (2022) ) are crucial for the following discussion. 

The main result is that taking a subcomposition in OD results in a perturbation in PN . 
An elementary but key result is that closure in OD is a perturbation in PN (Proposition 
B.1) and vice versa, closure in PN is a perturbation in OD . When taking a subcom-
position of observations, the closure of observations should not alter the result of the 
analysis. This implies that the measure of co-variation fN (X1,X2) must be invariant un-
der perturbation in PN . Denoting ⊕p the perturbation in PN , it means that 

fN (X1,X2) =  fN (X1 ⊕p P,X2 ⊕p P) , P ∈ SN , 

for any N-part perturbation P. An obvious solution to this requirement is that fN (X1,X2)=  
ϕN (X1 ⊖p X2), where ϕN is a function from SN into R and ⊖p is the perturbation-
subtraction in PN as suggested by Proposition B.6. The more intuitive guess for ϕN 

is the Aitchison norm in PN or any power of it as 

fN (X1,X2) = ϕN (X1 ⊖p X2) = ∥X1 ⊖p X2∥w , w ∈ R .a 

The case w = 0 is trivial and useless; the cases w = 1,2 correspond to the Aitchison dis-
tance and its square, fN (X1,X2) = dp(X1,X2), fN (X1,X2) = d2 (X1,X2) respectively. Tak-p˜ 
ing into account that dp(X1,X2) =  Nτ12 

o , where τo = Varo(log(X1/X2)) is the (1,2)-12 
entry of the variation matrix of observations (Proposition B.4), a promising scaling of 
the co-variation measure is 

fN 
∗ (X1,X2) =  

1 √ = ˜ 
1 

, (1)
1 +dp(X1,X2)/ N 1 + τo 

12 

which can be named proportionality index of parts (PIP). It ranges from ∼ 0 for large 
Aitchison distances to ∼ 1 for small distances. Note that when dp(X1,X2) = 0 or, equiv-
alently, fN 

∗ (X1,X2) = 1, the parts X1, X2 are proportional (Egozcue et al., 2018; Erb and 
Notredame, 2015; Lovell et al., 2015; Egozcue, Lovell and Pawlowsky-Glahn, 2013), 
and they are equivalent as compositions (Def. 2.1; see Appendices A and B). Note that 
the number of observations, N, is trivially invariant under p-perturbation and, given a 
value of τo

N (X1, X2) does not change with N.12, f ∗ 

Condition B in the requirements on fN is easily checked for f ∗ due to the rela-N 
tionships between distances in PN and OD (Propositions B.3, B.4). In fact, taking a 
sub-sample of observations is equivalent to taking a subcomposition in PN . Also in PN , 
the Aitchison distances are DfS, thus satisfying condition B. 
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Figure 2. Measures of association as functions of the standard deviation of the logratio. Blue: 
fN 
∗ (PIP); Green: f̃N; Red: fN

a1; Orange: f a2 . These functions do not depend on N. N 

There are alternative functions of co-variation satisfying the same requirements. The 
following three are used for comparison with the PIP; they are 

f̃N (X1,X2) =  
1 

= 
1 

,
1 +d2 

p(X1,X2)/N 1 + τ12 
o 

˜ ˛ 
1

f a1 
N (X1,X2) = 1 − exp −° ,

τo 
12 ˝ ° ˙ 

f a2 τo 
N (X1,X2) = exp − 12 . 

The frst one is similar to f ∗ (PIP) but uses the square p-distance in place of the p-N 
distance; the second and the third are inspired in that proposed by Aitchison (1997) and 
corrected according to his explanation but in discordance from the equation shown. The 
curves in Figure 2 are the measures of association as functions of the standard deviation ° 
of the corresponding log-ratio τ12 

o . The main characteristic is that they attain the unit 
value for null standard deviation and decay to zero for large values. It is worth paying 
attention to the behavior for small values of the standard deviation. When the standard 
deviation goes to zero, f a1 attains values near to one (high linear association) before N 
f̃N . The latter goes to one clearly more quickly than fN 

∗ and f a2. This is the reason toN 
propose the PIP (Eq. 1) or f a2 as appropriate measures of proportionality as they better N 
distinguish between small standard deviations from the exact proportionality of parts.° 
The PIP is preferred to f a2 because the latter gives very small values for values of τo 

N 12 
which appear quite frequently in practice. However, the reasons to adopt fN 

∗ (PIP) in 
front fN

a2 are quite subjective and require further study. 
The measure of association PIP has been computed for a subcomposition of nutrition 

data (App. D). For the whole set of countries, the PIP attains the maximum value of 0.80 
for grains (grn) and sugar (sug). This value only depends on the number of countries 
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(observations, N = 16) through the variability of the estimation of the standard devia-
∗tion of the log-ratio between grains and sugar. Although f = 0.80, the proportionality N 

between the grains and sugar is doubtful. Figure 3 (left) shows the relation between 
the balance B(grn/R) (x-axis) and B(sug/R) (y-axis), where R denotes the parts of the 
composition after removing grn and sug. The exact proportionality of the parts corre-
sponds to the unit slope (red line) (Egozcue et al., 2018). The blue line has been ftted 
in a regression of B(sug/R) on B(grn/R). The p-value (0.11) on the hypothesis of the 
unit slope is indicated in the Figure. Note that this test depends on the subcomposition 
selected, thus lacking subcompositional coherence. The left panel of Figure 3, shows the 
same analysis for fsh (fsh) and snacks (snk) when the sample is restricted to 8 countries 

∗in North Europe. In this case, fN = 0.88 and the ftted line (blue) seem to better approach 
the unit slope, but the p-value (0.026) suggests a rejection of the unit-slope hypothesis. 
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Figure 3. Left: Balance of grain (grn) over the rest (R) of the composition against the balance of 
sugar (sug) over R using the whole EFSA nutrition-consumption (adults) data. Right: Balances 
of fsh (fsh) and snk (snacks) over the rest (R) for the subsample North European countries. Red 
line: unit slope. Blue line: ftted to data. Both fgures show a poor linear association and a 
doubtful unit slope. 

4.2. Non invariant under subcomposition measures of co-variation 

The fact that functions used in a CoDA are not IfS or DfS (non-coherent CoDA) does 
not invalidate its use. However, this fact should be remarked indicating which is the 
subcomposition for which the result was obtained. There are many cases of standard 
compositional tools using non IfS or non DfS functions. Most results in a compositional 
biplot (Aitchison and Greenacre, 2002) are examples since the projection into two or 
three dimensions depends on the subcomposition. However, the explained variance is 
(increasingly) DfS. Also, the test of linear association used below depends on the sub-
composition and is not a DfS. 

There are a number of approaches to measuring co-variation or proportionality be-
tween parts. In general, they are not DfS, and hence not IfS, as the resulting values 
depend on the subcomposition considered. This is the case of measures proposed in 
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Egozcue et al. (2018), Erb and Notredame (2015), Lovell et al. (2015), Kync̆lová, Hron 
and Filzmoser (2017) and Erb (2020). Here, the correlation in the space of parts provides 
another measure of co-variation but once again its DfS fails as it is based on the inner 
product between parts which is known to be non DfS (Prop. B.5) 

A 

B 

As 

Bs 

pert 

origin 

Figure 4. In a two dimensional setting, a segment AB is shifted (pert) to AsBs maintaining its 
length and orientation. However, the angles AOB and AsOBs change, thus revealing that the 
inner product ⟨A,B⟩ is not invariant under shifting (pert). 

Consider an o-centred composition W = X⊖o Ceno(X), where the observation centre 
is Ceno(X) = (1/N) ⊙o 

˜ 
xi (Eq. 3). For two parts of W, W1, W2, the p-covariance is o 

1 1
Covp(W1,W2) =  ⟨W1,W2⟩p = ⟨clrp(W1),clrp(W2)⟩e ,N N 

where ⟨·, ·⟩ is the ordinary inner product in RN . The p-correlation is (Pawlowsky-Glahn e 
and Egozcue, 2022) 

Covp(W1,W2)Corrp(W1,W2) =  ° . (2)
Covp((W1,W1)) · Covp((W2,W2)) 

Although the computation of Corrp(W1,W2) only involves the parts W1 and W2, it is not 
an IfS, as the p-inner product is neither invariant nor dominant under perturbation (Prop. 
B.5) and, consequently, produces non-coherent analyses. Figure 4 intuitively explains, 
in two dimensions, why this happens: a perturbation of two compositions shifts them in 
a parallel way. However, the origin of the space is unaltered and the angles subtended 
by the vectors before and after the shift change in a non-monotonic way. 

Figure 5 shows the behavior of different measures of linear association between 
milk and eggs when changing the subcomposition as in Figure 1. All these measures of 
co-variability depend on the subcomposition considered except fN 

∗ (PIP) which appears 
constant (red line) along the set of subcompositions. 

5. Conclusion 

A formal defnition of subcompositional coherence in a CoDA is given (Section 3). This 
is based on the properties of the functions which confgure the analysis. In a coherent 
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red ∗0 ≤ fN ≤ 1 ∗f = 1N here Eq. (1) 

Figure 5. Association metrics between milk and eggs. Colors: φ , blue; ρ , green; symmetric 
∗balance correlation ρsymb, orange; partial correlation ρ|R , violet; p-correlation, turquoise; fN, 

red. Different metrics are computed on closed subcompositions including the number of parts 
annotated in the x-axis and ordered as enumerated in the legend of Figure 1. The table below the 
Figure shows some characteristics of these association metrics. 

analysis, all used functions are either invariant or dominant functions under the given 
subcomposition. When all functions are invariant under subcomposition, the coherence 
is termed strict. An important point is that it is necessary to specify under which sub-
compositions an analysis is coherent or not. Under these defnitions, there is no global 
coherence for all possible subcompositions. 

The lack of subcompositional coherence affected the correlation analysis between 
parts from the beginning of CoDA, resulting in the rejection of correlation between parts 
as being spurious. Consequently, the study of coherent alternatives to the correlation of 
parts is a sensible topic. Based on the properties linking the space of parts and the space 
of observations, a coherent alternative called PIP, defned in the interval (0,1) and based 
on the Aitchison distance in the space of parts, is proposed. 
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The lack of coherence in many CoDA, has promoted biased interpretations. They try 
to identify certain functions to parts. If the functions are not invariant under a subcompo-
sition, this identifcation is simply a misnomer, and the conclusion of the analysis can be 
wrong. The most typical biased identifcation is that of a part to the clr coeffcient which 
has that part in the numerator of the log-ratio. Certainly, the clr coeffcient changes with 
the subcomposition considered. 
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