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A geodesie completeness theorem
for locally symmetric Lorentz manjfolds

J. LAFUENTE LÓPEZ

ABSTRACI. We prove that a locally symmetric and nulí-complete Lorentz manifoid
is geodesically complete.

O. INTRODUCTION

The eoncept of nulí, timelike and spacelike completeness in Lorentz
manifolds are logically inequivalent: Kundt [3] gives an example of a
timelike-.complete and nulí-complete spacetime which is not spacelike
complete. Geroch [2] shows by an example that a globally hyperbolic
manifoid may be timelike incomplete but complete in other senses. Finally,
an example by Beem [1] together with sorne modifications to Kundt’s
example proposed by Geroch [2] show that the other possibilities may actual-
Iy occur.

Tbe aim of this work is to prove that, for locally symmetric Lorentz
manifolds null-completeness implies timelike and spacelike completeness.

A slight modification of the reasoning in 4.1 shows that for these
manifolds the three types of completeness are equivalent (see 5.2). Ihe rest of
this paper is devoted to prove the following main result:

Theorem 1. La A~ atid 41 be lacally symmetric, cannected, and nulí-
complete Lorentz many’olds. Let Nt be simply connected, andfix te M, oc 41.
Then y’ L: T5M—*T0M is a curvature preserving linear isometry, there isa local
isornetry 4xM—*44 such that ~(ñ)=oand d4’(ñ)=L.

In particular, if M is locally symmetric and nulí-complete, its universal
covering M will have the same properties. Then for. each ¿EM the symmetry
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L:TaMB y—> —vs 73M iscurvaturepreservingand,bytheorem 1 thereisalocal
isometry 4¡:M~—*Ñt such that 445)=5 and dd~(ó)=L. Clearly d.~

2(ó)=L2=id
and 49=id by 1.1; hence Ñi is symmetric and, in particular, geodesically
complete. This completeness is inherited by M and the aim of dxc paper is
achieved:

Corollary 2. A locally symmetric onU nulí-complete Lorentz manibId is
geodesically complete.

1. PRELIMINARY RESULTS

The following classical results are essential in the proof of theorem 1:

Proposition 1.1 Ij~] If 4>’, 4>=M—.Mare local isomaries beíween connected
semi-Riemannian many’olds and d4>x(p)=d4>

2(p)for sorne pc Nt, fien 4>, =4>2.

Theorem 1.2. (E. Cartan) [4]. Let M,M be locally symmnric Loren¡tz
manifolds, 5e Nt, OF 41 amI L:T0M —~ a curvature-preserving linear
isamnry. Let U5 be a sarred neighbourhood of 5 in LM, such fiar exp5 and
exp0 are defined on (Ja onU U, = L( 04 and exps is a differomorphisni from (Ja
onta its image LI. Define fien 4>=exp,Lexp~j-’:0--*exp,(U,)=U.

Ginen a geodesic ft[0,l]—.U such fiar y(0)=5, 9’<0)=i3e Os, onU taking
y(É) = exp,(tn) tF [0,1], y = LQ3) we geL

d44y(fl)=P,L Pp’ for te[0,l]

where fl onU 1-’, are dic parallel displacements a¡ong y onU y.
¡ti parhcu lar 4>:0—. EJ is a local isomehy onU infad (he only one such fiat

d4>(5) = L.

From now onwards, unless dic contrary is stated, alí the hypotheses of
Theorem 1 are assumed.

2. L-PROJECTIONS

The following preliminary result will justify definition 2.2.

Proposition 2.1. Let y.{0,a]—>M be a null geodesic such that y(0)=ñ, y’(0)
~rÁ3, L(i3) = y. Define y(()= exp0(tv) for 6 [0,a] (remark tha by hypothesis
exp0(tv) is defined for oíl t). libere is a partitian O = r. .cr1 <....cí, = a atid a
fainily ~i= { 0¡41):i = 1 r} such fiar:
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Pl) 0x is convex aníl open ¡ti 41, amI 5J[tj...
1, ~]a (i}¡for ¡=1,..., rl

P2) 4>¡:O¡—*4>~(U~)=U¡ is an isanietry for ¡=1 r ami 4>~(5)9o,
d4>¡(ñ)=L.

P3) 4>1§i(t))=y(t) for te[t11, t~] i= 1 r. Moreover
d4..<9Q1)) = d4~ + ¡(9(t1)).

Proof: lf P5,P, are as in 1.2 for te [0,a] we define

14 =P1Lr P¿’:Tw¡M-.T~<4M).

By local symmetry, 1’, and P1 are curvature-preserving and so is LS
Using 1.2 we see that for each te [O,a] there are ¡4, ¡4 convex neighbourhoods
of 9(t) and y(t), and an isometry 4>1:V,—*V, such that 4>,(9(t))=y(t) and

= ‘4.

Weclaim that if9[ti,t2] a V,,then for te[t1,(2] wehave tlt(9(t»=y(t), and
d@<’ (9(0) = 1.4.

Hence by ¡.1, i¿’,, coincides with ~‘, on the connected cornponent of V, 11V1

containing 9(t).

In order to prove the claim note that

= rfr,,(exp;ú,~t — t:)9’(tí))) =

— ts)14 (7(t1))) = exp1¡>((t — t¡)y’<tj) = y(t)

the second assertion is now an easy consequence of Cartan’s theorem.

Using the claim and the compactness of [O,a], we get a partition

family 42 = {(0¿, 4>ñ~ — 1 __ r} verifies Pl), and automatically P2) and P3).

Wc give the following general definition:

Definition 2.2. Jet 9:[0,~] —.M be cantinuous. We say that 9is L-projec-
table y’ 9(0)=5 ami we have a continuous curve y:[0,a]-.M, a partition
0(0<tx c..<ct,=a anda collectian qe’, such fiat (PI),(P2),(P3) ¡ti propósition
2.1 boU.

We sajy then fiat y is a L-pr~jection of 9 and (ti), 42 are ¡the associated
partition and covering of fie projectian.
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The definition is easily adapted for curves defined in [a,b]; tUs being valid

for alí results in the section.

Proposition 2.3. Le¡t 9:[0,a] —* NI be continuous. Then

(i) The L-projection y, y’ it exists, is un¡que.

(u) If y is dic L-projection a¡id has a coveritig 42 unU así associa¡ted partitian as
¡ti 2.2, fien 11w linear isornetry

L=U4>1(9(t)):7~>M—.L~>M for te{t1... ,,t~] ¡=1 r

is curva¡ture-preserving atid depends only on 9.

(iii) if 9 is a nulí qeodesic with 9(0) = 5, then it Ls L-projectable, and its L-
projection y Ls a nulí geodesic. Also with dic notation ¡ti 2.1 we boye
I4=P,LP¿’ jór te[0,a].

Proof:
(i) If y~ and Y2 are L-projections we may choose projection coverings

— {(0~>, 4>(~>)i —1 ..., r} a = 1,2 with the same associated partition
0=t~,<...<(r=a. Let 0¡ be the connected componení of 0~~>fl U~>
containing 9[t1..1, tJ. Let us prove that 4>~’>/U~=4>~/0 i— 1 ..., r.
Using condition (P2) and 1.1 the statement is shown to be true,
since U4>Y>(5)=L=U4>9>(ó). lf the statement is true br i> 1, using
(P3) we get:

d4>~V1 (9(¡t~)) = d4><’>(9qq) — U4>9>(y(tJ) = U4>F4

and using 1.1 the inductive step can be completed. For each te[t11,¡t1]
we have y ,(t) — 4><’ >(9(t)) — gM

2>(9(t)) = Y2ÚtI.

(u) The preceding argument applied to tbe projection coverings 42<~~ a = 1,2 of
9 over y widx the same associated partition (¡ti) shows dxat 4>I’>/U—
— 4>~2)/0~ where U, is defined as in (i). In particular d44’>(9(t)) =d4>~2>(9(t))

for eactx te[¡t,,,t
1].

(iii) It follows irnrnediaíely from 2.1.

Definition 2.4. ¡ffie hypothesis 2.3 (u) holds, fie map L:T911>JVf—.t<~,M is
calledÉhe transport of L from 9(0)=5 to 9(t) along 9.

We remark that L=L. Wc will write L-----L.

Ihe following statements are elementary and will be used in the future
more or Iess explicitly.
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Proposition 2.5.
(i) The L-projectability of9 depends essent¡ally on ini 9 and not on the spec~c

pararnetrization chosen with compact domain aníl origin at 5. Analogously
the transport L~ depends only on im9 onU fie final etid of 9.

(u) Jf t~, 9~ are cantinuous curves wifi 9, L-projectable onU 92 L,-projectable,
(he joint curve 9=9’ V92 ¡s L-projectable ami L.2 =(L-?±»,.

(iii) Reciprocally, y’ 9 is continuous atid L-projectable in M onU we can write
9 = 9x y 9~ we have that 9’ is L-projectable onU Y2 is L~, -projectable.

Using 2.5 and 2.3 we trivially obtain:

Corollary 2.6. Any nulí p¡ecew¡se geodes¡c 9:[0,a]—*A4 w¡th 9(0)=5 is
L-projeaable.

3. L-PROJECTIONS AND HOMOTOPIES

We will see that in order to show the existence of the local isometry 4> of
theorem 1 it is enough to prove that alí continuous curves with origin at
óe NI are L-projectable.

Proposition 3.1. Let 9:[0,1] y [0,a] e(s,t)—*9,(t)eM be a hornotopy with
%(0)=5, ¶,(a)=p for ah se¡jO,1]. Suppose fiat for alí se[0,1] fie curve y, is
a L-projection of 9,. Then

(i) y:[O,l] x [0,a]e(s,¡j—*y~~eM isa homotopy onU y¿a)=p does no¡t depená
on s.

(u) L<.:T~M—*T~M does not depetid on s.

Proal’: Fix s0e[O,1] and set 42={(U,, 4>óÁ=t 4 be a projection
covering for 9,, with associated partition O = t. .c... <t, = a; Note that 8>0
can be chosen such that ~ is also a projection covering of 9. if ¡s—s~¡ <8,
and 4>¡(9,(t))=y,(t) for ¡~e[¡t,...,, t,]. This proves the continuity of y. Now for
¡=r we [xave 4>r(9,(a))=4>r(PY=y,(a) for Is—~0V’~ Therefore the map
[0,1]Es—*y,(a)eM is locally constant; having connected domain it is
constant.

The same sort of argument proves that the map s-.*Lt, se [0,1] is
constant.

Corollary 3.2. If ah curves 9:jj0,a]—*44, j3(0)=ó, are L-projectable; ¡then
there is a local isometry 4xÑI-.M with «45)=0, U446)=L.
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Proal’.: Given ¡3cM there isa curve 9:[0,l]—*M with 9(0)=ñ, 9(I)=p. lf y
is the L-projection of 9, the po.int p=y(l)=4>(p) and the linear isometry
LP=L;:TPM—.TÉM are uniquely determined by 3.1 since M is simply
connected.

lf q~ = {(0~, 4>d:¡ = 1 4 is a projection covering of 9 and (te) is the
associated partition it is straightforward to conclude that 4>/Li, = 4>, ¡ = 1 r.

This shows that Lp=d4>(p) and 4> is a local isometry such that
d4>(ó)=L,, =L.

We prove die following technical lemma:

Lemma 3.3. Let 90:[0,a] —*M be a continuous curve such tha¡t 9~(0) = 5.
Suppose fiat 1br ah a1 cta ¡the curve 90/[0,a1] ¡s L-projec¡table and there is a
fixed-enás homatopy 9:[0,~5] y [0,a] 3(s,t)—*9$)e 41 such that

i) 95/[0,a — s] = 90/[0,a —

u) 9~/[a — s,a] is a L~’-projectab¡e curve.
Then 9~ is L-projectable.

Proof.: Since the homotopy 9 keeps ends fixed there is ¡3CM such that
9,(a)=p if se[0,¿]. Then if y5 is the L-projection of 9, we get from 3.1 that
p tÉy¿a) and L~ = Lj, are well determined, independently of s. Moreover L~
is a linear isometry preserving curvature (2.4 u). By Cartan’s theorem we get
convex neighbourhoods U, U of ¡3, p and an isometry 4>:U—.U such ttxat
d4>(P)=Lp. Fix ¿5~ >0 such that y,([a—81, a]) a O if0.cs=8x.We tuve tIxen
L;, =d4>(9,(¡j) if e[a—.5x, a], 0csc6,. Since y,(t)=y,(t) for te[0, a—s] we
get J4=U4>(90(Ó) for te[a—¿i, a]. Therefore 90/[a —8,, a] is L4’-projectable
(its projection is y0(t)=4>(90(t)) for te[a—¿,, a] and 9~/[0, a—¿¡] is L-
projectable. Using 2.6 u) we get that 9, is L-projectable.

4. PROOF OF THEOREM 1

By corollary 3.2 we just need to prove that any curve 9:[0,a]—*A4 is L-
projectable. As a first approximation we restrict ourselves to the case where 9
is a non-nulí geodesie. Ris requires the following result valid for any
Lorentzian manifold.

Theorem 4.1. Let 41 be a Loren¡tz many’old and y¿[0,a]—>M a non-nuhí
geodesic qf sign c. libere is aJixed-ends homo¡topy y:[0,8] y [0,a]—*41such that
y,/[0,a — s] = y,,/[0,a — s], atid y5/[a s,a] Ls ¡the loiti of two nuhl geodesies.
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Proal’: We take a convex neighbourhood U of y4a) = p and fix the
following notation. If x,y e U we write xy = exp’ (y) and ¡~~~(r) =exp~(rxy) for
re [0,1], is the only geodesic in EJ defined on [0,1] joining x and y. The
function q(x)w= <px,px> and the fxeld P(x)=~4 1), xc U are related by
gradq=2P.

IfC~={xeU:q(x)=0} we have xeC,, ifand only ~ isa nulí geodesic.
Tbe point x5 denotes y~a — s).

We sketch the proof as follows. Take c5~ >0 such that y,<t)e U if
e[a—3i,a]. Let HO, ¡te[0,ajj be a nulí parallel fleld along y, such that

c.V(a), y~,(a)»0 and expM,¡V(t)EU for te[a—81,a] (1)

The main idea is to prove that for small s the geodesic a5(r)
=exp~(rV(a—s)), re[0,1] intersects C,,, in a first point Ps

We construct then the homotopy by a convenient parametrization of the
curves y5=y,/[O,a —s] y &~, V tse.

We go into the details now (see Fig. 1).

V(a—s)

a,4 1)

z’(O)=J(l)

y

nG. ¡
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Ihe variation a:[0,8~] y [0,1] e(s,r)—*afr)=exp,~,(rV(a—sfle U defines cm
¿a

the geodesic a0 a Jacobi ficíd i(r) = ‘~~/(o r). Consider r:[0,¿1] e s-.aÁl)e U.

We get from (1) that e — /0(a), V(a)> = e .cJ(0). cr’0(0)> <0. Multiplying
V(t) ifnecessary by a suitable constant ¿e [0,1] we may assume by continuity
that e.czi(1), o>~(1)> <0 and therefore:

1 1
2 grad q> =

Qn the another hand, since q 40) = q(exp~( y(a)) = O there is 6 such tbat
Oczt=8~ with sqr(s).c0 for se [0,8]. Ifse [0,8] the mapeq r5:[0,l]—.IR verifies:

eqa3(0)=¿q(x5)>0, eqc5(l)=¿qz(s).c0.

Therefore, there is a first O~e(0,1) such that q a5(O,)=0. By the implicit
function theorem, the map (0,8] as-.*O~e¡j0,l] is continuous.

Define p. u,(O~). We define (see Fig. 2) the homotopy y as follnws:

(ruled area)
(20, ib te[a—s

expp(
a

2 Vsi
——(t—-a)pp,l if tela——, al

5 L 2 j

a— (dotted area)

(shaded area)

0 s o

RG. 2
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Wc check easily Ihe continuity of y al Ihe poinis iii [04] x [Op] acept al
(04 Tbe continuity al Ibis poiní is proved using thai p = Hm p,,. Therefore

5—,,

br any convex ncighbourhood W of p, diere is t>0 íuch thai p.c W fin
O.cs<cq, and 4.~. e,., are in W

CoroUary 4.2. Any geodesie a:[O.l] —St wkh &(0)=5 Ls L-projectable.

Prat: Nuil geodesics are L-projectable by 2.1.
II a is a non mili geodesic consider ¡ = {a e(0,l]:&ff0,a] is L.-projectabie}-
By Cartan’s Theorem, 1 is a non ernpty open subset of (0,1]. To see thai
(0,1]=I wejust need to prove dic following statenient 1f(Op) c 1 for ae(0,l),
iben tic 1. Leí 9,=&/ljOp]. Wc construct using 41 a flxed-ends ho¡nolopy
ji:[0, 1] x [Qn] -. St of ji, such thai:

(i) 9AO,a — si = 9./[Op — s] wicb is L-projcctable by hypotbesis.

(u) 9,/Ifa —sp] is a piccewise mill gcodesic, wbich is L~.-projectabIc by 2.7.

Wc gel from 3.3 thai 9, is L-projectablc and a el.

Coroilsry 4.3. Any curve <r[0,1]—.’M such diaL ñ(0)=ó Ls L-projectable.

Proof: As befare the set ¡ = {a e (0,1]:&/[0,a] is L-projectable} Ls a
non empty open subsel of (0,1]. Wc show that ae(0,1] and (0,a) c ¡
iniply ael. Consider %=a/[0,a]. Take U, convcx ncighbourhood of
p=94a) and ~5>Osuch thai 94t)eU it te[a—6,a]. If we define p.=ji,(a—s),
wc can construcí a fixed-ends honiotopy 40,6] x [O,a]—*Msuch thai:

(1) 9,,JIjOp —s] = 940,a — s] which Ls L-projcctable by bypothcsis.

(u) 9t)=ex¡».( te[a—sp].

Since 9,/Ifa — sp] is 1.4fl-projectablc by 4.2 wc gct from 3.3 Ihe residí.

Thcorem 1 is now inmediate, since 4.3 and 3.2 give a local isometry
&M-.M such thai d4>(ii)=L.

5. REMARKS

11w key poiní in ihe proal’of theorem 1 is 4.1 which can casily modified in
this way.
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Theoreni 5.1. Lev M be a Lorentz many’old atid y0:[0,a]—*M a geadesic
with sign e (ee{—1,0,1}). If wefix e’e{—l,0,1}, diere Ls afixed-ends hama(opy
of y0, say 40,8] y [0,a] —* M such tha¡t y~/[0,a — s] y0/[O,a — s] atid y5[a — s,a]
is a piecewise geodesic wi¡th sign e.

Theorem 5.1 allows to modify analogously theorem 1, and, as con-
sequence, also corollary 2, whose new statement becomes.

Corollary 52. The nulí, ¡timelike and spacel¡ke compleeness are equivalent
¡ti a lacally syrnme,tric Lorentz many’olU.
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