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Abstract

Amidst the COVID-19 pandemic, astute public health interventions, including mobility constraints,
are paramount. The bedrock of such strategies lies in the precision of forecasting models. Harnessing
data from the Cantabrian Health Service, this study critically evaluates and contrasts time series
analysis and cutting-edge machine learning techniques in predicting 30-day COVID-19 case trajectories.
Additionally, it demystifies the technological scaffolding and methodologies of the Cantabrian Institute
of Statistics’ web portal for streamlined collation and display of socio-health indicators. The analysis
underscores the indispensability and acumen of predictive modeling in steering agile responses to
public health crises.
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1. Introduction

The advent of the COVID-19 pandemic, characterized by the emergence of a novel coronavirus,
2019-nCoV, in Wuhan, China, on December 31, 2019, posed an enormous and multifaceted challenge
to global health systems (Gao et al., 2023; Rismanbaf, 2020). This newly identified virus, subsequently
designated as SARS-CoV-2 owing to its molecular kinship with SARS-CoV-1, was associated with
acute cases of pneumonia and manifested staggeringly high infection and transmission rates relative
to other known viral agents (Rismanbaf, 2020). Its prodigious capacity for transmission precipitated
its meteoric dissemination worldwide, earning it notoriety as a formidable pathogen. The alarming
pace at which this virus spread cast a shadow over global healthcare, making it imperative to devise
and implement robust containment strategies.

In scenarios evocative of the COVID-19 pandemic, the success of containment measures is heavily
predicated on the accessibility to comprehensive and temporally relevant data on the trajectory of
the epidemic (Chakraborty and Ghosh, 2020). Thus, the adoption of scrupulous case monitoring
procedures, concomitant with the continuous refinement of predictive accuracy as new data materialize,
is vitally imperative (Chakraborty and Ghosh, 2020). Moreover, the availability of precise predictive
models can aid policymakers in devising strategies that are more informed and, thus, more likely to
curb the transmission of the virus effectively.

An eclectic array of methodologies has been harnessed for prognosticating statistical series associated
with infectious diseases (Assad, Cara, and Ortega-Mier, 2023). Noteworthy among these are epidemi-
ological models, with SIR being a quintessential example. SIR models are predicated on the principle
that transmission dynamics eclipse demographic dynamics in their temporal evolution, providing
valuable insights into the factors that dictate the spread of infections. Additionally, the Autoregressive
Integrated Moving Average (ARIMA) model has gained traction in the predictive domain and has
been applied to an assortment of ailments, encompassing hemorrhagic fever, brucellosis, influenza, and
COVID-19 (Liu et al., 2011; Cao et al., 2020; He and Tao, 2018; Ceylan, 2020). The flexibility and
versatility of ARIMA make it a powerful tool in time series analysis, particularly in epidemiological
studies. Moreover, local regression merits mention, amalgamating the linearity and simplicity of
the least squares regression with the adaptive capacity of nonlinear regression. Local regression
techniques, by capitalizing on both linear and nonlinear aspects, enable more nuanced modeling of
complex relationships within data.

Of late, machine learning-driven models have gained commendable recognition in the academic realm,
attributable to their proficient acumen in forecasting COVID-19 cases (Kwekha-Rashid, Abduljabbar,
and Alhayani, 2021; Sujath, Chatterjee, and Hassanien, 2020). These models typically comprise
a learning phase (training), during which the algorithm adapts to the characteristics of the data,
and an evaluation phase (testing), which assesses the model’s predictive performance on unseen
data. Neural networks, random forests, and the K-nearest neighbors algorithm are among the most
widely employed machine learning techniques (Kwekha-Rashid, Abduljabbar, and Alhayani, 2021).
Their capacity for capturing intricate patterns and relationships in data has made them invaluable in
tackling complex predictive challenges.

In this scholarly endeavor, using daily PCR positive case data procured from the Cantabrian Health
Service, we undertake a meticulous comparative appraisal of the aforementioned modeling techniques
over a 30-day interval, with an emphasis on forecasting active cases. We utilize a diverse set of
performance metrics to gauge the efficacy of these models. Through this treatise, we seek to enrich
the scholarly corpus in this domain, provide insights into the comparative advantages and limitations
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of various modeling techniques, and offer valuable perspectives that may guide future research and
inform policy-making aimed at containing the spread of infectious diseases like COVID-19.

2. Methodology

2.1. Data

To conduct this comparative analysis of the performance of prediction models, data were sourced
from the platform of the Cantabrian Health Service. This repository is diligently updated on a
daily basis and encompasses a wide array of variables, which include the number of daily cases, the
aggregated tally of cases over 7 and 14 days, the count of patients currently hospitalized, and the
overall sum of hospital admissions within the region. The time frame for data collection commenced
on the day when the first positive case of SARS-CoV-2 was reported in Cantabria, and stretches up
to the present time. This ensures a comprehensive dataset that is both extensive in its coverage and
timely in reflecting the ongoing developments.

2.2. Models

In this section, we delve into a plethora of modeling methodologies that have been harnessed for the
purpose of forecasting and analyzing epidemiological data. Among the traditional statistical models,
the Autoregressive Integrated Moving Average (ARIMA) stands as a paragon for time series analysis
and forecasting. Additionally, the scope of our exploration extends to machine learning models
which have gained momentum in recent years for their prowess in modeling complex and non-linear
relationships within data. Neural networks and random forests exemplify the kind of machine
learning models considered in this study. As we navigate through each model, we will explicate their
underpinnings, applications, and implications in the context of COVID-19 data analysis.

2.2.1. ARIMA Model

The Autoregressive Integrated Moving Average (ARIMA) model stands as a staple in time series
analysis, enjoying widespread application in various fields (Aditya Satrio et al., 2021; Roy, Bhunia,
and Shit, 2021). Essentially, the ARIMA model is a composite of three components: Autoregressive
(AR), Integrated (I), and Moving Average (MA).

The Autoregressive (AR) part captures the influence of the preceding observations on the current
observation. It assumes that the current value of the series, denoted by Yt, can be expressed as a
linear combination of its past values. For an AR process of order p, the mathematical representation
is:

Yt = δ + ϕ1Yt−1 + ϕ2Yt−2 + . . .+ ϕpYt−p + εt,

where δ is a constant, ϕi are the parameters of the model, and εt is the error term.

The Moving Average (MA) part, on the other hand, accounts for the dependency between an
observation and a residual error from a moving average model applied to lagged observations. For an
MA process of order q, the mathematical representation is:

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + . . .+ θqεt−q,

Estad́ıstica Oficial

https://www.scsalud.es/coronavirus


BEIO, Vol. 39, Núm. 2 39

where µ is the mean of the series, θj are the parameters of the model, and εt is the error term.

The Integrated (I) part involves differencing the time series data to render it stationary, that is, data
with a constant mean and variance over time. When the series is non-stationary, differencing can be
applied d times to achieve stationarity. The difference ∆Yt is calculated as:

∆Yt = Yt − Yt−1 = Yt − LYt = Y ′
t ,

Combining the AR and MA models yields the ARMA(p, q) model:

Yt = δ + ϕ1Yt−1 + . . .+ ϕpYt−p + εt + θ1εt−1 + . . .+ θqεt−q,

Integrating the difference into the ARMA model culminates in the ARIMA(p, d, q) model, generally
represented as:

(1− ϕ1L− ϕ2L
2 − . . .− ϕpL

p)∆dYt = δ + εt + θ1εt−1 + . . .+ θqεt−q,

Here, the Partial Autocorrelation Function (PACF) can help in determining the AR order, while the
autocorrelation function plots aid in ascertaining the MA order.

For the selection of the most fitting ARIMA model, Akaike’s Information Criterion (AIC) is frequently
employed to assess the performance. The AIC accounts for the goodness of fit along with the simplicity
of the model. The formula for AIC is:

AIC = −2 log(L) + 2(p+ q + k),

where L is the likelihood of the data, p is the order of the autoregressive part, q is the order of
the moving average part, and k represents the intercept of the ARIMA model. A lower AIC value
suggests a more suitable model relative to others with higher AIC values.

2.2.2. Local regression

Local regression, also known as LOESS (Locally Estimated Scatterplot Smoothing), employs a
distinct approach to curve fitting. This method involves computing the fit at each data point X0

by considering only the neighboring training observations. The algorithm can be outlined in the
following steps:

1. Select a subset S of the training data such that it contains the k observations whose Xi values
are nearest to X0. Here, the fraction of the training data included in this subset is s = k

n .

2. Assign a weight function Ki0 = K(Xi, X0) to each point in the subset. The weight function
decreases as the distance between Xi and X0 increases, such that the point farthest from X0

has zero weight and the one nearest has the highest weight. All points outside this subset are
assigned a weight of zero.

3. Fit a weighted least-squares regression of Yi on Xi using the weights assigned in the previous
step. Obtain estimates β̂0 and β̂1 that minimize the weighted sum of squared residuals:

n∑
i=1

Ki0(yi − β0 − β1Xi)
2
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4. The fitted value at X0 is computed using the estimated coefficients:

f̂(X0) = β̂0 + β̂1X0

Local regression can be generalized to accommodate multiple predictors. However, this method
becomes inefficient for datasets with more than 3 or 4 predictors, mainly due to the scarcity of
observations in the vicinity of X0.

One important aspect to be aware of regarding local regression is the relatively low interpretability
of the results, as the method focuses on fitting the data locally rather than providing an explicit
functional form that can be easily interpreted.

2.2.3. Neural network

A neural network is inspired by the biological neural networks that constitute animal brains. It
consists of a large number of artificial neurons, known as processing units, which are organized into
layers. Each unit within a layer is connected to every unit in the preceding layer through synaptic
weights. These weights are pivotal as they encode the knowledge of the network, and can be adjusted
during the learning phase.

Data is fed into the network through the input layer and propagates through the subsequent layers
until it reaches the output layer. In its standard operation, particularly when employed as a classifier,
there is no feedback between layers – this is why this class of neural networks is referred to as
feed-forward neural networks.

Feed-forward neural networks are predominantly used for supervised learning tasks, where the goal is
to learn a mapping from inputs to outputs. They are particularly effective for datasets where the
instances are independent and identically distributed, meaning there is no sequential or temporal
dependency between them. More formally, feed-forward neural networks approximate a function f
such that f(x) ≈ y for example pairs (x, y).

In contrast, recurrent neural networks (RNNs) are designed for sequences of data where the order is
important. They achieve this by maintaining a state that can capture information about previous time
steps. Mathematically, RNNs approximate a function g on a sequence of inputs Xk = {x1, . . . , xk}
such that g(Xk) ≈ yk for sequences (Xn, Yn), where 1 ≤ k ≤ n.

In order to execute the neural network within the R Studio environment, the model employs Keras,
a versatile and high-level neural networks library written in Python. Keras is renowned for its user-
friendliness, modularity, and extensibility, which makes it particularly suitable for rapid prototyping
of deep learning models. Alongside Keras, the model integrates TensorFlow, an open-source machine
learning library developed by Google. TensorFlow is employed as the backend engine for the
neural network, enabling high-performance numerical computations and providing a sophisticated
infrastructure essential for training complex models.

By combining Keras’s high-level interface with TensorFlow’s efficient computation capabilities, the
implementation delivers an optimized neural network architecture for the comparative analysis of
models. This synergistic utilization of Keras and TensorFlow allows for a streamlined workflow,
making it both efficient and accessible for experimenting with neural networks within R Studio.
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Fig. 1: Graphic Illustration of an Artificial Neural Network

2.2.4. Random forest

The Random Forest algorithm, heralded as a linchpin in supervised machine learning, boasts a
compelling trifecta of accuracy, simplicity, and versatility. Its illustrious repute emanates from its dual
aptitude in tackling both classification and regression conundrums, compounded by its intrinsically
non-linear character, which lends it exceptional adaptability across diverse datasets and scenarios.

Coined as the “random decision forest” by Kam Ho, 1995, this algorithm was a tour de force,
deriving predictive acumen through an ingenious amalgamation of randomized datasets. This
ensemble algorithm derives its nomenclature, “forest”, from its intricate architecture, comprising an
amalgamation of decision trees. Rather than relying on the singular output of an isolated decision
tree, Random Forests culminate data across an ensemble of decision trees to augment the precision of
predictions. Its capacity to inject randomness into model construction by optimizing features within
a random subset of data bestows an additional layer of robustness.

At its core, the Random Forest training algorithm deploys the celebrated bootstrap aggregation,
or bagging, technique. Given a training set X = {x1, . . . , xn} with corresponding responses Y =
{y1, . . . , yn}, bagging iteratively selects random samples with replacement (B times) from the training
set and fits trees to these sub-samples. Concretely, for b = 1 to B:

Randomly sample, with replacement, n training instances from X,Y , denoted as Xb, Yb.
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Train either a classification or regression tree fb on Xb, Yb.

Subsequent to the training phase, predictions for unseen instances x′ are ascertained by averaging the
predictions from all the individual regression trees, or by majority voting in the case of classification
trees:

f̂ =
1

B

B∑
b=1

fb(x
′)

This bootstrapping protocol bolsters model performance by attenuating variance sans amplifying
bias. The predictions from an individual tree may be highly susceptible to noise, but the ensemble
mean proves resilient, provided the trees are not correlated.

Furthermore, Random Forests provide an estimate of predictive uncertainty, assessed via the standard
deviation of predictions across all the individual regression trees for x′:

σ =

√∑B
b=1(fb(x

′)− f̂)2

B − 1

The number of trees, B, constitutes a hyperparameter, with values spanning from a few hundred
to several thousand, contingent upon the dimensions and characteristics of the training dataset.
Cross-validation, or examining the out-of-bag error (an average prediction error on each training
sample Xi, utilizing the bootstrap sample), can be instrumental in identifying an optimal B. It is
noteworthy that both training and test error tend to plateau beyond a certain number of trees.

In sum, Random Forests embody a robust ensemble method that capitalizes on decorrelated trees,
spawned through bootstrapped samples, to engender predictions with diminished variance and
entrenched reliability, which is quintessential for intricate and high-stakes applications.

2.2.5. K-Nearest Neighbors

The K-Nearest Neighbors algorithm (K-NN), initially proffered by Evelyn Fix and Joseph Hodges
in 1951 (Silverman and Jones, 1989) and later augmented by Cover and Hart, 1967, epitomizes a
non-parametric modus operandi for classification and regression. Utilizing this algorithm, input
data encompasses an array of training instances predicated on the K-NN methodology applied to a
dataset. The nature of the outputs is contingent upon whether K-NN is employed for classification
or regression.

In the context of K-NN classification, the output denotes class membership. An object’s classification
is ascertained via a plurality voting mechanism amongst its neighbors, with the object being allocated
to the class that is most prevalent among its K nearest neighbors, where K is a positive integer,
typically diminutive. In the instance where K is equal to 1, the object is unequivocally allocated to
the class of its single nearest neighbor.

Conversely, within K-NN regression, the output represents the value of a particular attribute for the
object. This value is computed as the mean of the values attributed to its K nearest neighbors.

K-NN is thus categorized as a type of classifier wherein the function is approximated locally, and
computation is deferred until classification is performed. As the algorithm is reliant on distance for
classification, normalization of the training dataset is instrumental in significantly bolstering the
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accuracy, particularly when the features encompass heterogeneous physical units or are disparate in
scale.

In both classification and regression, it is efficacious to ascribe weights to the contributions of
neighbors, thereby enabling closer neighbors to exert greater influence on the average than those more
remote. For instance, a prevalent weighting scheme might involve conferring upon each neighbor a
weight of 1

d , where d signifies the distance to the neighbor in question.

The neighbors are derived from a corpus of objects for which the class (in K-NN classification) or the
object property value (in K-NN regression) is already known. This corpus can be conceptualized as
the training set for the algorithm, albeit there is no requirement for an explicit training phase. A
notable characteristic of the K-NN algorithm is its sensitivity to the local data structure.

The statistical underpinnings of the K-NN methodology can be elucidated as follows: Suppose we
have the following pairs (X1, Y1), (X2, Y2), . . . , (Xn, Yn), taking values in Rd × {1, 2}, where Y is the
class label of X, such that X/Y ∼ Pr for r = 1, 2 (probability distributions Pr). Given a norm ∥ · ∥
on Rd and X ∈ Rd, let (X(1), Y(1)), . . . , (X(n), Y(n)) be an ordering of the training data such that
∥X(1) − x∥ ≤ . . . ≤ ∥X(n) − x∥.

2.3. Technological Stack for Cantabria’s COVID-19 Data Application

As of the current landscape, there exist three dominant frameworks in the realm of frontend web
development: Angular, 2023, React, 2023, vue, 2023. A meticulous evaluation of these frameworks
indicates a parity concerning the functionalities and design patterns. However, discrepancies are
evident in terms of architectural complexities and learning curves. Angular, though robust, is
relatively intricate. React is renowned and in vogue Sala, 2021, albeit with a steep learning curve.
In contrast, Vue is more lightweight and intuitive, making it particularly suitable for compact or
solitary development teams.

Upon assessing the contemporary trends and trajectories of frontend JavaScript frameworks, Vue
was selected for the frontend development due to its potential and accessibility for newcomers.

GitHub

Github, 2023 serves as a cloud-based repository for version control using the Git system. It
encompasses an array of tools that foster collaborative programming and offers a suite of functionalities
tailored for project management. Its epitome lies in augmenting collaboration and productivity via a
Kanban-style project manager.

Vuetify

Vuetify, a UI library, was utilized for crafting the user interfaces. This library furnishes an extensive
repertoire of reusable components, facilitating the creation of aesthetically appealing and visually
coherent applications adhering to Google’s Material Design principles Material Design 2023.
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Chart.js

Chart.js, 2023 was employed for chart development. As a popular open-source library, it has garnered
substantial acclaim with approximately 55,000 stars on GitHub. Chart.js strikes a balance between
simplicity and a diverse set of functionalities, offering eight chart types including lines, bars, radar,
donuts, pies, polar areas, bubbles, and scatter plots.

Python

Python, 2023 is a dynamic, interpreted, and cross-platform programming language renowned for
its agility, simplicity, and versatility. Conceived in the late 1980s, Python is backed by the Python
Software Foundation, a non-profit entity committed to fostering the Python programming language
and nurturing a global community of Python developers. Python, alongside R, is predominantly
utilized in data processing and holds the distinction of being one of the most sought-after programming
languages worldwide.

Python’s versatility enables the development of data processing modules and packages, integration
with other information systems via microservices, and publication in data dissemination portals.
The maturity of Python’s web frameworks also allows for the creation of auxiliary applications for
automating tasks.

Firebase

Firebase, 2023 is a cloud-based platform catering to the development of web and mobile applications.
It is particularly lauded for the Firebase Realtime Database, a NoSQL cloud database that permits
storing and synchronizing data in JSON format across users in real-time.

Posit

The domain of statistical analysis has witnessed rapid advancements, and the software tools have
evolved commensurately with the progression in computational capabilities. Posit, 2023 is a cloud-
based solution that offers seamless online multiplatform collaboration in real-time. In the context
of public administration, it circumvents issues pertaining to version and package incompatibility,
serving as a unified Cloud offering for R Studio. However, a limitation is the constraint in installing
Python extensions, such as Keras, due to size considerations and cloud storage limitations even
within the Premium tier.

3. Results

In contrast to extant literature on COVID-19, this study presents a comprehensive analysis of five
distinct estimation and classification methodologies for projecting active PCR cases. A rigorous
two-phase validation framework is employed. The initial phase encompasses training, wherein machine
learning algorithms glean insights from the historical data of statistical series. Subsequently, the
second phase evaluates the efficacy of these models during the forecasting stage.
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Fig. 2: 30-Day Model Validation Plan

The evaluation strategy for models is systematically crafted through a coherent approach, premised on
the validation framework. This study juxtaposes the prognostications from ARIMA, local regression
(LM), random forest (Random Forest), neural network (Keras), and K-Nearest Neighbors (K-NN)
models against the empirically observed values from the daily PCR case series for Cantabria.

Fig. 3: Comparative Forecast Models for Cantabria

As delineated in Figure 3, the ARIMA, neural network, and K-NN models conspicuously approximate
the actual data with a higher degree of fidelity. Conversely, local regression and random forest models
exhibit suboptimal performance, deviating considerably from the empirical data.
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The supplementary section of this article furnishes granular forecasts from each model. A meticulous
juxtaposition of the model projections with the observed data enables an assessment of the relative
efficacy of each model in forecasting COVID-19 daily cases. Notably, the ARIMA and neural network
models manifest superior predictive accuracy, as evidenced through an analysis of the detailed
forecasts provided in the appendix.

This observation is further supported by a careful examination of the performance metrics listed
in Table 1. The metrics reveal an inverse relationship between model fit and their corresponding
values. For example, the Mean Absolute Percentage Error (MAPE) highlights the superiority of the
ARIMA model with a score of 43.48, in contrast to local regression, which evidently emerges as the
least effective model based on the aggregate performance indicators.

Tab. 1: Comparative Analysis of Performance Metrics Across Models.

Performance Factor
Model MAE MAPE MASE SMAPE RMSE
ARIMA 9.53 43.48 0.88 31.62 11.49
Random Forest 71.32 325.14 6.59 102.43 76.58
Neural Network 14.33 61.46 1.32 47.71 15.95
K-NN 29.77 158.46 2.75 61.71 36.99
Local regression 80.51 304.25 7.44 107.30 88.33

Note: MAE (Mean Absolute Error) measures the average magnitude of errors in
a set of predictions, without considering their direction. MAPE (Mean Absolute
Percentage Error) expresses the forecast errors as a percentage. textitMASE
(Mean Absolute Scaled Error) measures the accuracy of forecasts, scaled based
on the training data’s error. SMAPE (Symmetric Mean Absolute Percentage
Error) is an improved version of MAPE that accounts for over-forecasts and
under-forecasts equally. RMSE (Root Mean Square Error) measures the square
root of the average squared differences between predictions and observed values.

A holistic analysis of the performance metrics yields a conclusive ranking of the models predicated
on their efficacy in forecasting daily COVID-19 cases in Cantabria: ARIMA ranks first, followed by
Neural Network, K-NN, Random Forest, and Local Regression.

These results thus contribute novel insights into the relative efficacy of diverse forecasting methodolo-
gies, serving as an invaluable resource for policy makers and stakeholders in strategizing interventions
and resource allocation.

4. Conclusions

This study undertakes a robust comparison of time-series forecasting models to analyze the trajectory
of epidemiological outbreaks amid the COVID-19 pandemic. The paper introduces an evaluative
framework, comprising a spectrum of performance metrics, through which a collection of artificial
intelligence models is appraised alongside conventional statistical models, including ARIMA.

Efficacy of the models is substantiated through performance parameters as well as 30-day forecasts
juxtaposed with actual observations, which delineate the superiority of ARIMA and neural network
methodologies in predicting daily PCR data for Cantabria. The commendable performance of these
models is consistent with the empirical insights accrued by the Cantabrian Institute of Statistics
(Instituto Cántabro de Estad́ıstica) staff in their persistent endeavor to evaluate forecasting models
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during the COVID-19 pandemic. In particular, neural networks exhibited exemplary adaptation
to fluctuations in daily cases, as recorded by the Cantabrian Health Service and later subjected to
scrutiny at the Institute. The forecasts, with a 14-day horizon, demonstrated artificial intelligence
models’ slight edge in terms of precision.

Additionally, the technological facet of this study deserves special mention. The process of data collec-
tion and analysis unraveled the prodigious capabilities of cloud computing tools. The availability of
online repositories such as GitHub, cloud-based development environments like Firebase, and intuitive
programming languages including Python, coupled with statistical programming applications such as
R Studio Cloud (Posit), have significantly streamlined the task of processing and analyzing COVID-19
data. Although the infancy of the pandemic was marked by rudimentary data infrastructure, the
tenacity in information gathering led to the expeditious development of a COVID-19 interface, which
furnished indispensable insights into the pandemic’s progression to the citizens of Cantabria.

In summary, this manuscript encapsulates a vital component of the relentless efforts exerted by the
Cantabrian Institute of Statistics in data-driven pandemic management. The journey was replete
with learning and innovations, encompassing data acquisition, processing, modeling, and real-time
analysis, which were predominantly facilitated by the versatility of Cloud Computing in handling
statistical information.
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Alejandro López Cagigas Native of Rubayo (Cantabria), holds a
Computer Engineering degree from the University of Cantabria, attained
in 2016. He entered the civil service in 2018 and now thrives as a member
of the Assistant Technical Corps of Computer Science at the General
Directorate of Organization and Technology, Government of Cantabria.
His role is pivotal in maintaining and developing computer systems.
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