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A glimpse at the theory of Jordan-Banach
triple systems

JOSE M. ISIDRO

ABSTRACT. In this article, a survey of the theory of Jordan-Banach triple systems is presented.
Most of the recent relevant results in this area have been included, though no proofs are given.

0. PRELIMINARIES AND GEOMETRIC BACKGROUND

In what follows, E denotes a complex Banach space and Dc E is a domain.
Two domains D,c E, and D,c E, are holomorphically isomorphic (briefly, iso-
morphic) if there is a biholomorphic bijection f:D,— D, of D, onto D,. An iso-
morphism of D onto itself is called an automorphism of D. The set AutD of
all automorphisms of D is a group in a natural way.

Only the special class consisting of bounded symmetric domains is going
to be considered. An automorphism se Aut D is said to be a symmetry of D
around the point x, € D if s is involutive (i., s*=s) and X, is an isolated fixed
point for 5. A symmetry of D at x,, if it exists, is unique and D is said to be
symmetric if there is a symmetry s, e AutD for each x< D. Thus, for sym-
metric domains D the group Aut D is plentiful.

A holomorphic vector field X(X)Fax_is said to be complete in D if, for

every x, € D, the initial value problem
- fo=Af0). AO=X,

has a solution which is valid on the whole real line R. The set autD of com-
plete holomorphic vector fields has a natural Lie algebra structure.
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In 1976, Upmeier and Vigué independently proved the following infinite
dimensional version of H. Cartan’s theorem on groups of holomorphic
transformations.

1. Theorem. Let D be a bounded symmetric domain in a complex Banach
space E. Then

a) AutD is a real Banach-Lie group which acts analytically (in the real
sense) on D.

b) autD is a purely real Banach-Lie algebra which is isomorphic to the Lie
algebra of AutD.

The way in which the underlying topological and manifold structures in
AutD and autD were constructed is not relevant for our pourpose.

Let us fix a point p e D (with no loss of generality, one may assume that
p is the origin 0 of E). With respect to a suitable chart, the symmetry s of D
at 0 gives a splitting of aut D into a topologically direct sum of linear subspaces:

autD=K®P (1)

For us, the important fact is that P consists of quadratic vector fields that have
the form

X 2= (a—q.,(x))% @)

for some a € £ and some continuous homogeneous polynomial g: E— E of de-
gree 2, ¢, < Q(E), the mapping a— g, being continuous and conjugate linear.

Vigué also proved the Banach version of the Harish-Chandra realization
for bounded symmetric domains in C":

2. Theorem. Let D be a bounded symmetric domain in a complex Banach
space E. Then D is isomorphic to a (bounded symmetric) balanced domain D
of E.

A decisive step was given by Kaup and Upmeier who made a close study
of the orbit AutD(0)={f0):fe AutD} of the origin under the group Aut D. They
proved

3. Theorem. Let D be a bounded circular (but not necessarily symmetric)
domain in a Banach space E. Then

a) There is a closed complex subspace F of E such that AutD(()=DnF.

b} The Lie algebra autD splits in the form (1) and the mapping F— Q(E)
given by a—q, is an isomorphism of the underlying real Banach spaces F and

QCE).
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¢) Any fe AutD splits in the form f=L- M where L is (the restriction to D
of) a surjective linear isometry of E and M, called a Mcbius transformation, is
the solution of the initial value problem

d —a— =
— YW=a-abl, WO)=>b

for some ac F and be DAF. The domain D is symmetric if, an only if, F=E.

This result reveals the existence of a close connection between the orbit
AutiX0), the quadratic vector fields (a—q,(x))%c— and the mapping a— q,

and it suggests the notion of a Jordan-Banach triple system (or JB*-triple)
which shall be dealt with in the next section, However, triple systems had al-
ready been introduced by Koecher and Loos as a vehicle for classifying
bounded symmetric domains in the C* setting.

1, JB*-TRIPLE SYSTEMS. ELEMENTARY PROPERTIES

A JB*-triple is a complex Banach space E with a ternary law of composi-
tion E x E x E~E, denoted by {x,y*z} and called the triple product, with the
following properties:

J: The triple product {x,y*x} is continuous in (x,y,z), symmetric and
linear in the external variables x,z, and conjugate linear in the middle vari-
able y.

Let aC1b* stand for the bounded linear operator x—{a,b%x}. Then, for
xynuvek

3: [xOy% uOv¥={xy*uj0v*—u0q vnxty}*

where [4,B]=:AB-BA is the commutator product in ¥ (E).
J: For ae E, a(Ja* is a hermitian positive element of the algebra . (E).
J: For a€ E, one has [la0a*| =llal]?

Axiom J, appears as an abstract formulation of the properties prosessed by
the function ¢,(x,¥)={x,a*y), i.e. the symmetric bilinear mapping correspond-
ing to the homogeneous component of the quadratic vector field

{a—qfx)) —aax— Axiom J, is also known as the Jordan Identity. Motivations

for axioms J,J, and J, can be found, in the C* setting, in Loos [LI].

Homomorphisms, isomorphisms and automorphisms between JB*-triples
can be introduced in the usual manner. Thus, JB*-triples form a category.
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In $0(Th.3.B), a JB*-triple was associated to each bounded symmetric do-
main D in E. Notice that a point (supposed to be the origin and referred to
as the base point of D) has been distinguished when constructing the chart at
0 in which the component in P of any complete vector field has the form

g 0
fix) 'E‘={a-q.,(x)) 2x

If two bounded symmetric domains are isomorphic, then their associated JB*-
triples are also isomorphic. If a JB*-triple E is given, one can find a bounded
symmetric domain D having E as associated system, whence the following re-
sult holds

4. Theorem. There is an equivalence between the category of JB*-triples
and that of bounded symmetric domains with base point.

Thus, JB*-triples appear as a natural algebraic-metric setting for the study
of bounded symmetric domains. There are some other reasons for the study
of this structure.

Firstly, this category is large enough to contain several others that are well
known in Functional Analysis:

1) Any complex Hilbert space H with scalar product (..) becomes a JB*-
triple in the product

Ax.y*zi=(xy)z+(zdy)x

2) Any complex C*-algebra becomes a JB*-triple in the product
%* —_ 1 #* *
fxyhzl=: —— (o*z+2y%0)

3) Any complex Jordan-Banach algebra (briefly JB*-algebra) with product
o and involution * is a JB*-triple by setting

{x %2} = xo(y*oz) ~ y*o(zox) + zo(x0y*)

4) Let H and K be complex Hilbert spaces, and let L(H,K) be the space of
bounded linear operators with the operator norm. A norm-closed complex
subspace U of L(H,K) is a J*-algebra if A4*4 € U whenever A € U. Here, A*
stands for the usual adjoint operator of 4. Any J*-algebra becomes a JB*
triple in the product

*Cle: L (4p* *
{4.B%Cl=: _2._(A_LC_~|-_CB A)



A Glimpse at the theory of Jordan-Banach triple systems 149

Notice that in examples 2 and 3, the binary product is respectively asso-
ciative (but non-commutative) and commutative (but non-associative)
whereas in example 4 there is no binary product. (See [HA.1] for an account of
J*-algebras)

On the other hand, the category of JB*-triples behaves reasonably well so
as to have nice properties, and it is closed under many usual operations in
Functional Analysis:

1) Any JB*-triple FE is locally isomorphic to a commutative C*-algebra.
More precisely, the subtriple generated by a single element g E is isomorphic
to (the triple corresponding by example 3 to) the C*-algebra C(QQ) of con-
tinuous functions that vanish at infinity in Q(=the spectrum of the operator
a(a*e #(E)). This is important because many problems can be solved locally.

2) Suppose fE—F is an algebraic homomorphism between JB*-triples,
that is, f'is a linear mapping such that

Rixy*zh={fx), 9)*, R2)} (xy,z€ E)

Then fis a contraction, i.e. | f|l<I. In particular, any algebraic homo-
morphism of JB*-triples is continuous, any algebraic isomorphism is an iso-
metry, the norm and the triple product are uniquely determined by each
other, and

1§ x, % 2 W < lxll (1]l 1z]] (x.y.ze E)

3) Let (E),., be an indexed family of JB*-triples, and set

E= :?E,::{(x,.),.e,e IE, sup llx,|| < oo}

Then £ with the supremun norm and the coordinatewise triple product
1) )% (2} =:({xp*2}).., becomes a JB*-triple.

4) Since in the triple product, the middle variable does not behave like
the external ones, one is led to define the ideals of a JB*-triple E as those
linear subspaces F of E for which {F,EXE}c F and {E,F*XE|cF (3

The kernel f~{(0) of any homomorphism between JB*-triples is an ideal.
For closed ideals F, the quotient space E/F with the quotient norm and the
triple product: {x+F, y*+F, z+F}=:{x,y%z}+F (x.y.ze E) is a JB*-triple.

5) Let E be a JB*-triple, and assume that Pe L(E) is a contractive projec-
tion, (i.e. P?=P and ||Pll<I). Then F=:P(E) is a JB*-triple in the product
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{xyrzh=P{xy*%2l), (xyzeF)

6) Let E be a JB*-triple, I a set of indices and U< P(J) an ultrafilter in I.
Denote by I°(E,I) the I-direct sum of the spaces E,=FE as defined in example
3. The set of the U-null sequences N=:{(x),. - lim ||lx|| =0} is a closed subspace

u

of IE,]). Denote by E*=:/~(E,I)}N the quotient space and put £=:=(x)+N
for the equivalence class of (x),., e [=(F,I). Then E is a JB*-triple in the norm
||)E|l=h;fn x|l and triple product

() 00, @Y =(xp*2])
As a consequence of this [D.1]

7) the bidual £** of a JB*-triple E is again a JB*-triple, the canonical in-
clusion J:E— E** {s a homomorphism of triples, and the triple product in F**
extends that of E. Moreover, if B, is the open unit ball of £, any holomorphic
automorphism f € AutB, (see section $0 extends to a holomorphic automorp-
hism f**e& AutB... of the unit ball of E**

2. TRIPOTENTS, PEIRCE DECOMPOSITION AND EXTREME
POINTS

An element ¢ of a JB*-triple E is a tripotent if {e.e* e}=e. In the study of
triple systems, tripotents play the same role of projections in C*-algebras. Due
to the Jordan identity, if e is a tripotent in E, the operator e[(Je* €.(E) has the
eigenvalues (,1/2, 1, and E splits into a direct topological sum of the corre-
sponding eigenspaces E= E @ E,® F, which are JB*-subtriples of E. This is the
Peirce decomposition of E relative to e. Besides, E, is a JB*-algebra in the
product x.y=:{x,e*y} for which e is a unit.

A tripotent e is regular if e¢[Je* is a regular element of the algebra /(F).
One has

5. Theorem. For any tripotent ec E, the following assertions are equiv-
alent:

1) e is a regular tripotent.

2} the 0-Peirce projector of e, Pfe), is nuil.

3) e is a real extreme point of the unit ball B,.
4) e is a complex extreme point of B,.

Notice that statement 2 above characterizes the extreme points (either real
or complex) of B, in purely algebraic terms. The set of regular tripotents is pre-
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served by JB*isomorphisms and by all transformations in AutB,. If extrB, is
not empty, then any JB*-isomorphism of E and any fe AutB, is uniquely de-
termined by its values at that set. However, extrB; is sometimes a plentiful
set (as occurs when E is a Hilbert space), but it may be empty (as occurs when
E is the JB*-triple C(H) of compact operators on H). By the Krein-Milman
theorem, in order to ensure the existence of extreme points, one is led to con-
sider triples that are dual Banach spaces.

3. JBW*TRIPLES, IDEALS AND STRUCTURE THEORY

A JB*-triple E is called a JBW*-triple if E is the dual of a Banach space
E. and the triple product is o(E, E.)-continuous in ¢ach variable separately. In
that case, E. is referred to as a predual of E.

Peirce projectors and JB*-automorphisms in a JBW*-triple E with predual
E. are o(E,E.)-continucus. However, holomorphic automorphisms of B, i.e.
the elements of AutB,, may fail to be so. See [SI.1] for a discussion of this
problem.

In [BT.1] Barton and Timoney improved Dineen’s ultrafilter argument to
prove that, in the second dual E** of a JB*-triple E, the triple product is
separately o(E** E%)-continuous, thus providing an important family of JBW*~
triples.

In [HO.1] Horn showed that any JBW*-triple E has a unique predual £,
and that in a JBW*-triple which has a unique predual E., the tripie product is
separately o(E,E.)-continuous. These results were again improved by Barton
and Timoney who showed the following:

6. Theorem. Let E be a JB*triple which is a dual Banach space. Then E
has a unigue predual E., and the triple product is separately o(E,E )-continuous.

Notice that this theorem is not implied by any of the partial results men-
tioned before, As a consequence, the requirement concerning the separate
o(E,E.)-continuity of the triple product in a JBW*-triple is automatically
satisfied, and may be dropped from the definition. Also, because of the unique-
ness of E., a JBW*-triple has a well defined weak-* topology. By the Krein-
Milman theorem, the set extrB; of extreme points is weak-* dense in B, (ac-
tually, it is norm-total in E by [HO.1)).

As in any Banach space, in a JB*-triple E one can consider M-summands
and M-ideals as introduced by Alfsen and Effros [AE.1]. One also has the J*
ideals (briefly, ideals) that arise from the triple product in £, as defined in (3),
and the relationships between these concepts are:
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7. Theorem. The closed ideals of a JB*-triple E are precisely its M-ideals.

Closed ideals may fail to be M-summands; however for dual triples one
has:

8. Theorem. The weak-* closed ideals of a JBW™-triple are precisely its
M-summands.

For dual C*-algebras and duval JB*-algebras, the set of projections is a com-
plete lattice, and so order structures play an important role in their study. But
the category of JB*-triples is based only on geometry, and there is no order
structure in it. Despite this fact, Friedman and Russo [FR.1] got a charac-
terization of the state space of @ JB*-triple simnilar to that of Alfsen and Shultz
[AS.1] for JB*-algebras.

A tripotent e is said to be minimal if its 1-Peirce projector P,(e) satisfies
P(e)E=ce. If E is JBW*-triple, then any extreme point g € extrB; of the unit
ball of E. is called an atom. Friedman and Russo established a bijection be-
tween the set of atoms in E, and the set of minimal tripotents in E, and using
this, they proved the following structure theorems.

9, Theorem. Let E be a JBW*-triple with predual E. Then E.=A€B,1N

where A is the norm - closure of the linear span of the atoms of E, and the unit
ball of N has no extreme points.

As a consequence,

10, Theorem. Let E be a JBW*-triple. Then E splits into an |l -direct sum
of two ideals E=A® N, where A is the weak-* closure af the linear span of its

minimal tripotents, and N has no minimal tripotent.

A JBW*-triple E for which N=0 is said to be atomic, and F is called a fac-
tor if it cannot be written as an /_-direct sum of two proper weak-* closed
ideals. A factor that contains a minimal tripotent is called a JBW™-triple fac-
tor of type I. Here are some examples known as Cartan Factors, as they were
introduced by E. Cartan in 1935 to solve the problem of the analytic classifi-
cation of bounded symmetric domains in €*. The infinite-dimensional version
of the (non exceptional) Cartan factors is due to Harris, who also noticed that
they are J*-algebras ($1, example 4).:

Let U=L(H,K) be a J*-algebra of operators, and suppose that Q) is a con-
jugation on H (i.e. a conjugate linear mapping with =1, [|Qll < I). Let A A"
be its associated transposition on L{H), where 4'=:0A4*Q. Then U is said to
be a Cartan factor of
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Type C, if U=L(H,K)

Type C, if U={4d e L(HyA'=A}

Type C, if U={4d e L(HyA'= — A}

Type C, if U is a closed complex subspace of L{H) such that U*c U (i.e.
U is selfadjoint) and IP=:{4* Ae Ujccl.

Besides these spaces, there are two exceptional Cartan factors C, and C,
which cannot be described as J*-algebras, though they can be isometrically em-
bedded as subtriples of (the JB*-triple asssociated by example 3 in ¢ 1 to) the
JB*-albegra H(O) of all 3 x 3 matrices with entries in the complex Cayley al-
gebra O, which are hermitian with respect to the canonical involution in Q.
(See [L.1] for details).

A relevant property of these spaces is the following characterization of
JBW*-triple factors of type I due to Horn:

11. Theorem. Every JBW™-triple factor of type I is isomorphic to a Cartan
Jactor (of type C, to C)).

Another important aspect of them is the following Gelfand-Neimark
representation result due to Friedman and Russo [FR.2].

12, Theorem. Every JB*-triple is isometrically isomorphic to a subtriple of
an 1 _-direct sum of Cartan factors, and so isomorphic to a subtriple of
LIH)®C(5,.C).

Here H is a suitable Hilbert space, and C(S,C,) is the JB*-triple of all C,-
valued continuous functions on the Stone-Cech compactification S of a discrete
set.

Norm closed subtriples E of L{H) are called JC*-triples and weak-* closed
(i.e. ultraweakly or o-weakly closed) subtriples of L(H) are called JW*-triples.
E is special if it is isometrically isomorphic to a JC*-triple, and E is excep-
tional if every representation (or homomorphism) of E into a JC*-triple is zero.
One has [BD.1]:

13. Theorem. Every JBW*-triple E has a unique decomposition
E=E _®E,, where E, is a special ideal of E and E,_, is a purely exceptional

one. Moreover E,,=C(S" C)®C(S”, C,) for some hyperstonean spaces S’ and
S



154 J.M. Isidro
4. SOME GEOMETRICAL RESULTS

To conclude this survey, some relevant results of a geometric nature, due
to Kaup ([K.2] and [K.3]), are mentioned.

Two elements, #,v of a JB*-triple E are orthogonal if uDv*=vQu*=0, and
in this case one writes # L v. A set of tripotents (€,),.,< E is complete if x€ E
and x L e, for a € 4 implies x=0. A JB*-triple which admits a complete system
of minimal pairwise orthogonal tripotents is called an atomic triple. Two such
complete systems have the same cardinal which is called the rank of E. A JB*-
triple which is a reflexive Banach space is always atomic and has finite rank.
Using this fact and the theory of finite rank triple systems, Kaup in 1981-1983
extended Cartan’s classification theorem (for bounded symmetric domains in

€ to the class of reflexive Banach spaces. He proved

14. Theorem. Every bounded symmetric domain D in a reflexive complex
Banach space E can be represented in an (up to order) unigue way as an
k

I_-direct sum D=@®D, where each D, is the unit ball of a Cartan factor.
J=1

Except for a few cases in low dimensions [L.2], the unit balls of two Car-
tan factor E’=E” are not holomorphically equivalent unless E’=E". So this
theorem gives a complete classification of bounded symmetric domains with-
in the family of reflexive Banach spaces, and it has been conjectured that, be-
yond this family, no complete classification of symmetric domains will ever
be found.

By ¢0, th.2, every bounded symmetric domain D in an arbitrary complex
Banach space E is holomorphically equivalent to a (bounded symmetric) bal-
anced domain D, For E=C~, it was known that this D is also convex, where-
by renorming E with the corresponding Minkowski functional, D becomes
the unit ball of E. In 1983, Kaup got the infinite dimensional version of this
result, thus obtaining a Riemann mapping theorem for Banach spaces [K.4].

15. Theorem. Every bounded symmetric domain D in a complex Banach
space E is biholomorphically equivalent to the open unit ball D of a certain Ba-
nach space E uniquely determined by D up to a linear isometry. The norms in
E and E are topoiogically equivalent.
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