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ABSTRACT. In this paper we prove that the /2 -cube can be (1 + g}-embedded into any 1-subsym-
metric C{e)n-dimensional normed space.

Marcus and Pisier in [5] iniciated the study of the geometry of finite met-
ric spaces. Bourgain, Milman and Wolfson introduced a new notion of met-
ric type and developed the non-linear theory of Banach spaces (see [2] and
[7D. All these themes have been studied more intensively over the last years.

Johnson and Lindenstrauss proved that, given N points in the Euclidean
space, they can be (1 +&)-embedded into a subspace of dimension K{(g) log N
(see lemma 1 in [3]). The method they use is based in the isoperimetric in-
equality of P. Levy. Another proof of the same fact was given by Pisier, using
Gaussian processes ([8]). Bourgain, Milman and Wolfson, in the paper before
mentioned, studied the f-cubes and their (1 +€)-embeddings in finite metric
spaces. More recently, Schechtman obtained estimates for (1 + &g)-embeddings
of finite subsets of L’ into /*-spaces (see [9]).

In this paper we will study (1 + €)-embeddings of the /' -cube in finite-di-
mensional subsymmetric spaces. The result we prove for the /-case 1 <p<
2, can be deduced from Johnson and Lindenstrauss's lemma plus a refinement
of Dvoretzky’s theorem (see for instance [7], Theorem 3.9), but, as far as we
know, it is new in other cases. The method we use is in essence of probabilis-
tic nature and the main tool is a well known deviation inequality.
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We begin by recalling some definitions. Given two metric spaces (M,d) and

(M’,d"), we say that (M,d) (1+¢)-embeds into (M’ d") if there is a one-to-one
map ffrom M into M’ such that ||f || Il/'ll,, <1+¢, where

Ifll,, = sup,., dAD L)

d(x.y)
The F-cube is the metric space (Ci, p.) where C; = {—1, +1} and
p.(6,€)= max lg,—e’], for any par of elements ¢,6” belonging to C;.

I<isn
Since p_(&,e")=2, whenever £+ ¢’, the problem we are considering may be re-
lated with the sphere-packing problem, i.e., how many balls, with radius
ﬁ, can be packed into the unit ball of a finite dimensional Banach
space, in an asymptotic way? (See the paper by Ball [1] for infinite dimen-
sional sphere-packing problem)

In the sequel E, will denote a finite-dimensional Banach space with a
1-subsymmetric normalized basis {e,,....e,]. We use standard Banach space
theory notation as may be found in [4].

The theorem we will prove here is the following

Theorem.-There exists a numerical constant C> 0 such that, for any £>0
we can find a subset of N points {x,....,.x,} in E, verifying

l—e<|ix—xll<1+e, i %j
provided that

C
gt

n> log N

Proof.— Let € a given positive number verifying O<e<1. Let n be a natu-
ral number to be determined after. Consider the function y defined by

ISell
v ( ’;: y=— if0smsn,

| Sel

and by a nondecreasing continuous extension in the other points of the unit
interval [0,1]. The function w depends on #, but in some particular cases we
can choose the same fixed function for all #. This happens, for instance, in
the F-spaces where we may define w(f) = 17,0 = t < 1.
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We note that function y verifies y (0) = 0, w(1) = 1 and
w(279) 2z 27+ j =0, 1, *)

Indeed, if m < I Sm+1 we have
7 P "

n Zim+ ) m+i m
Ilg ell=|l > ell< 2l g ells 2+ ;e.ll

In general we don’t know the behaviour of the derivative of y in {0,1], but,
by averaging in the interval [1/4, 1/2], given 6 = &/128

172 1/2+6 1/2-8 17248
[ [y(t+8)—y(t—8)dt= ] W) — ] W< [ w<28
1/4 1/448 1/4-8 1/2-8

and then, we can pick a number a in the interval (1/4, 1/2) such that
y(a+8)—wy(a—y)<88. Hence, for every x,y € [a—8,a+ 8], we have

[w(x)— ()| <88=¢/16. (**)
Let k be the integer part of 2an, (k <2an< k+1). Then, by (*)

L L L 1 *kk
W )2 )2 - ifn 24 (%)

k
We now define X a random E, — valued vector by X(w) = 3 e{w)e, where
!

|€}t is an i.i.d. sequence of symmetric { + 1, — 1} — valved random variables de-
fined in some probality space. If Y is another i.i.d. copy of X, it is

k
clear that the two random variables [| X — Yl| and 2|/ 3 ne, Il (where
]

{n.} is an i.i.d. sequence of random variables uniformly distributed on the set
{0,1}) have the same distribution. Then, if we denote A(n) =[ Jell, the
1

1-subsymmetry of the norm implies that the distribution of the random

k
variables v ( ——;—2 n) and || I (X — Y)| also coincides.
1

2A(n)
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k
Since E (%2 n)= _Zk? we will compute the probability of
f|] —— (X — -
deviation of || 21_( ) ( Nl fromlp( )
k k ,
A _ - _ _—r S[lfﬂZ‘)
Plo]l —— 21() -y g )| > ew( > ) |
I
SPlo Iw(—-—z 1) —w( ~——)| -5 | .
Lok k I
on o o Sla- a5l
i28 ] & k & . )
L2 Thus, | 43S - 2-<-2
n> =2 us, | p, ;n} n| g implies
Lk _ L 4 ok
W S - l<e e by ()
Since - L Dy &
ER LT
we have
ASle;Iw(Lin)—w(—k-)ln ~L<
n ' n 16
gin?
— —_— < —
;| Zs(m)|>s]28 }< 2 exp( i )<
<2 — 82_”
exp ( c )

where C is a numerical constant. In this last step we have used the well known
probabilistic deviation inequality,

P{w; %:j g (0)>A/m)<exp(— %) A>0meN

(see, for instance, [6] Theorem III.15).

Consider now a natural number N such that n> 25(2: logN. If { X,}Y is an
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i.1.d. sequence of copies of X, then

Plao;ill —2;%1—)— (x—&)ll—w(% Y<ey( %),for all i +j}=

N £'n
2]—( 5 )Zexp(— °C )=>0

Hence, there exists w in the probability space, such that the corresponding
points

x= —2O)__ p<ish

()

satisfy the conclusion of the theorem,

Corollary.- The ["—cube is (1+€)—embedded in any finite-dimensional

1-subsymmerric space E, provided that dim E> Lz n. (C is an absolute cons-
tant) ¢

Remarks.-
i) Since
k sy
f ;&HSZH ; e ll+1
it is easy to prove that Hx.||S—%— I<i<N.

ii) The asymptotic estimate n> K log N is essentially best possible. In-
deed, in a ball of radius r of E, the number N of balls of radius »/2 we can
pack into (with disjoint interior) is given by

rvol (B)= M ; yvol (B,)

(vol (B,) is the n-dimensional volume of the unit ball)
ili) When E=/, I <p<oco, we can improve slightly the numerical con-

stant. Indeed, by taking a=1/2 and using the mean value theorem we obtain
the following:
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then n>
p2” e

a) Ife< fog N

b) Ife> then n>Clog. N

p2'#

{C is a numerical constant). These expressions say that p = co is the best poss-
ible situation, because, an isometric embedding {e=(}) is possible in this case.
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