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Polar lattices from the point of view of
nuclear spaces

WOICIECH BANASZCZYK

ABSTRACT. The aim of this survey article is to show certain questions concerning nuclear spa-
ces and linear operators in normed spaces lead to questions from geometry of numbers.

In papers [4], [5] and [6], the author considered additive subgroups of nu-
clear spaces. Certain results obtained there, when applied to subgroups of fi-
nite dimensional spaces and translated into the language of lattices, appear,
quite unexpectedly, to be very close to the results of Hastad [11]) and Lagarias,
Lenstra and Schnorr [15]. These matters are discussed more thoroughly in sec-
tion 1 of the present paper; it wears a survey complexion.

In sections 2 and 3 we show how the technique developed for subgroups
of nuclear spaces allows to prove “ellipsoidal” analogues of the inequalities es-
tablished in [15]. The results given here are new.

Motivations for studying subgroups of locally convex spaces come from
functional analysis and abstract harmonic anlysis. They will be explained in
monograph {7]. Whereas the investigation of connections between a lattice and
its polar lattice is motivated by certain problems in geometry of numbers and,
recently, in integer programming; see the introductions to [11] and [15].

The author wishes to thank H.W. Lenstra, Jr. and the referee for their re-
marks which contributed to an essential improvement of the paper.

0. NOTATION AND TERMINOLOGY

The open unit ball, the euclidean norm and the scalar product in R- are
denoted by B,/ /#and (. ), respectively. The distance of a point u to a set
A is denoted by d{u.4). The linear subspace spanned over A is denoted by
span A. It is convenient to set span @ ={0}. Thus, for a given system
Uy, Uy..., U, € R the symbol span {u},, for k= I should be read as {0}. Through-
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out the paper, D is an open n-dimensional ellipsoid in R” with centre at zero
and principal semiaxes £, <...<&,

A lattice in Rr is an additive subgroup of R~ generated by n linearly inde-
pendent vectors. Any system of freee generators of a lattice L is called a basis
of L. The family of all latices in R" will be denoted by A,.

Let L be a lattice in R, The set
fueRm(uw)eZ for all we L}
is a lattice, too. We call it the polar lattice and denote by L*. We have (L*)*=L.

For each i=1,....n, we define the j-th succesive minimum of L with respect
to D as the infimum of all r> 0 such that dim span (L~ rD) 2 i; we denote this
quantity by A(L,D). The covering radius of L with respect to D is the infimum
of all r>0 such that L+ rD=Rr it is denoted by p(L,D). We shall write A(L)
and (L) instead of A(L,B,) and p(L,B,), respectively.

1. ADDITIVE SUBGROUPS OF NUCLEAR SPACES

It was proved in [5] that closed subgroups of nuclear spaces are weakly
closed. This result is a direct consequence of the weak compactness of closed
balls in Hilbert spaces and the following fact:

(1.1) Lemma. Let K be an arbitrary subgroup of R". Let we R* be such that
Kn(w+ Dy=e. Suppose that SkE;'< 1. Then there exists a linear functional
kax=1
fon R with AKyc Z, Aiw)e[1/4.3/4]1+Z and Jff <6.

This is Lemma 7 of [5]. A modification of the proof allows one to replace
the constant 6 by, say, | +—;— <3241

Let {x} denote the distance of a real number x to the nearest integer. For
each n=1,2,..., let a, denote the infimum of all r>0 which satisfy the fol-
lowing condition: given L € A, and w e R, there exists some ve L*\[0} such that
{Ivll-d(ze, Ly < r{(w,v)}. Putting & =...=&, in (1.1), we obtain g, <12n(n+1). A
somewhat better estimate g, < 6n2+ I was obtained by Hastad [11]. An estimate
from below

a,>—2—(1+0(l))  as n—oo
2ne

is a direct consequence of the following result:
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(1.2) Theorem (Conway, Thompson). For each n=1,2,..., there exists an
L,eA, with L*=L_, such that

1w N
A(L)Y> Sne (1 +o()) as n—oo.

For the proof, see [16], Theorem 9.5. The actual order of magnitude of a,
for large n remains unknown.

Let G be an abelian topological group. By a character of G we mean a ho-
momorphism of G into the multiplicative group {zeCilzt=1}. The set of all
continuous characters of G is denoted by G. A subgroup H of G is said to be
dually embeded in G if each continuous character of H can be extended to a
continuous character of G.

(1.3) Proposition. Let E be a topological vector space. Then the Jormula
exp[2nifiu)] =x(u) defines a bijection f-y of the dual space E’ onto E.
The proof can be found e.g. in [13], (23.32)a).

It was proved in [6] that additive subgroups of nuclear spaces are dually
embedded. The proof is based on the following fact:

(1.4) Lemma. Let K be a subgroup of R" with KnD={0}. For each y e K,
one can find a linear functional f on R* such that exp[2niflu)]=y(u) for all
ue Kk, and

1
2

1< —3- e Sty

More precisely, from (1.3), (1.4) and the weak compactness of closed balls
in Hilbert spaces it follows immediately that discrete subgroups of nuclear spa-
ces are dually embedded. The extending of this result to arbitrary subgroups
needs a certain additional argument.

Translated into the language of lattices, (1.4) says that
ll(L,D)ﬂ(L',Bn)S\ —;— e’fl(i klgk-z):,rz
k=1

for each Le A,; the verification of this simple fact is left to the reader.

Foreach n=1,2,..., let b, be the infimum of all r > 0 with the following prop-
erty: for each Le A, with A,(L)> ! and each y € L, there exists a linear func-
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tional fon R* such that /f# <r and exp [2niflu)] = x(u) for all ue L. It is not
hard to see that

b,= sup {A(Lw(L*®:Le A} (n=12.).

Putting §,=... =&, =/ in (1.4), we obtain b,< n¥t for nz 5. From Theorem

(2.14) of [15] it follows that bns% m*? for all n= 1. On the other hand. (1.2}

implies that

b>

" (1+o(l))  as n—co.
4ne

The actual order of magnitude of b, for large » is unknown.

(1.5) Remark. The main idea of the proofs of (1.1) and (1.4) is very similar
to that of Korkine-Zolotarev bases (cf. the proof of (2.2) below). Since those
bases are the main tool in [11] and [15], there is no hope to improve the es-
timates on a, and &, obtained in [11] and [15] by modyfying the proofs of (1.1)
and (1.4). What is more, the replacement of balls by ellipsoids always leads to
the worsening of the constants occuring in the estimates. The reasons are of
technical nature; cf. the proof of (2.7).

(1.6) Remark. A subgroup H of an abelian topological group G is said 10
be dually closed in G if, to each ge G\H, there corresponds some y € G with
y(H)y=11} and x(g)# I. It follows easily from (1.3) that an additive subgroup
of a topological vector space is dually closed if and only if it is weakly closed.
Thus we may say that closed subgroups of nuclear spaces are duaily closed
and dually embedded. The Pontryagin duality theorem for LCA (locally com-
pact abelian) groups implies that closed subgroups of LCA groups are dually
closed and dually embedded. These results admit the following common
generalization,

Let N be the smallest class of abelian topological groups which contains
LCA groups and nuclear spaces and is closed with respect to the operations
of 1aking subgroups, Hausdorff quotients and arbitrary products. It turns out
that closed subgroups of groups belonging to N are dually closed and dually
embedded. The proofs are based on (1.1) and (1.4), respectively; they will be
given in [7].

(1.7) Remarks. S. Sidney [17] considered weakiy dense subgroups of Ba-
nach spaces. He proved that if a Banach space X has a separable infinite di-
mensional guotient space, then X contains a weakly dense proper closed sub-
group. Problem 2 of [17] is very similar to our Lemma (1.1}. The answer to
this problem is negative; this follows from the results of {2] and [3].
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The positive answer to Problem 1 of [17] was obtained in [3). It was proved

there that each infinite dimensional normed space contains a discrete sub-

group which is weakly dense. Next, it was proved in [2] that if a metrizable

locally convex space is not nuclear, then it contains a discrete subgroup which

is weakly dense in the linear subspace spanned over it. An easy argument
shows that such a subgroup cannot be dually embedded.

The proofs of the results obtained in [2] and [3] are also based on certain
inequalities for lattices in R~ in this case, however, of the Minkowski-Hlawka

type.

2. SUCCESIVE MINIMA

Lagarias, Lenstra and Schnorr proved in [15] that, for each Le A, with
nz=7, one has

(1) MDA (LIS == (= L)
The aim of this section is to prove the following result:

(2.1) Theorem. Let L be an arbitrary lattice in R". Then
) MLDR, ., (L*B)<e7S ke
k=1
fori=1I...,n

Putting here §,=_..=£ =1, we obtain inequalities (1) with a worse con-
stant on the right side.

We shall begin with some lemmas.

(2.2) Lemma. Let u,,...,u, be a basis of a lattice Le A, Let w,,...,w, be the
Gram-Schmidt orthogonalization of u,,...,u,. Denote

@Y r=(fw 2 +...+ w3

Then u(L)s.:,%. Moreover, there is a basis v,,...,v, of L such that fiv,J/ <r for

k=1,...n

Proof. We may write
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U, =CuW, + CaWy+ o+ W,

for some coefficients c,, A simple inductive argument allows us to find inte-
gers p, and coefficients c; € {—1/2,1/2] such that

V=W, =W,
V=Dl 4 U= W W,

Vol =Pl + Pty + ... + U, = CaWi+ CaWy+ o+ W,
Hence, by (3},
PP = I+ Z [P IS Il =r

for k= 1,...,n. Consider the rectangular parallelepiped

] 1
P={tw 4. +L,w,. — —5 <hoela < 5 }-

It is clear that the family { P+ u:u € L} is a disjoint covering of R". From (3)
we get PC%B-". Thus p(L)s——;—. 0

(2.3) Lemma. Let w,,...,w, be the Gram-Schmidt orthogonalization of some
system w,,...,u, € R™ If t,,....u,, € D, then fw >+ ..+ fw,f*<E+..+E.

The proof is standard.

(2.4) Lemma. Let L be a lattice in R". Denote s=(E}+...+E2)'2. Then there
is a subset A of LnsB, such that all non-zero components of the closed sub-
group L+span A are disjoint from D.

Proof. If LnD={0}, we may take A=g. In the other case, we can con-
struct inductively a linearly independent system u,,...,14,,€ L such that

(4) w,e D+ span {u).,, (k=1..m)

and all non-zero components of the closed subgroup L + Ru, +... + Ru,, are dis-
joint from D. Denote M= span {1} . Then Zu, +...+Zu,, is a lattice in M.
Let w,,...,w,, be the Gram-Schmidt orthogonalization of u,,...,u,. It follows from
(4) that w,,...,w,, is, in fact, the orthogonalization of some system of vectors be-
longing to D. Hence, by (2.3), we have fw,/*+ ...+ /w,/*<s’. Thus, accord-
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ing to (2.2), we can find a basis v,,...,v,, of the lattice Zu, +...+ Zu,, such that
Ivi <s for k=1,..,m. Now, we may take A={v}7.,. O

(2.5) Lemma. If Le A, and LnD={0), then A(LM<n(,..E )"

This is an easy consequence of the fundamental theorem of Minkowski
(see e.g. [9], Theorem 1,p. 123). It follows from (1.2) that (2.5) cannot be es-
sentially improved.

(2.6) Proposition. If a,.a,,... is a sequence of nonnegative numbers, not all
equal to zero, then - -

'k
g\(a,...ak)” <(i§4:z,r
For the proof, see e.g [10], 9.12.
(2.7) Lemma. Let L be a lattice in R" with LD={0}. Denote
=3 L),
k=

Then W(L*< —-;— .Moreover, we can find a basis v,,...,v, of L¥ with jv.Jf <t for
k= 1,...,”.

Proof. Let M be a k-dimensional subspace of R" and n, €... €1, - the prin-
cipal semiaxes of the k-dimensional ellipsoid D M. Then n,2E, fori=1,. . k.

Applying this standard fact and (2.5), we shall find consecutively generators
U U, _ 1., Of L* such that

d(u,, span {u,}, ) <kE,..E)-*

for k=1,...,n. Let w,,...,w, be the Gram-Schmidt orthogonalization of u,....,u,.
Applying (2.6) and the inequality k/> k*e-*, we get

T /W= Py span (14},) < 3 RE..£) =

=§kz("’"’)’“(% %-)“* < e’ék’éiE o,

The result follows now from (2.2). O

Proof of (2.1). Fix an arbitrary i=1,...,n. We have to show that (2) is
satisfied. Therefore, without loss of generality, we may assume that

(5) A(LD)=1
This implies that
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{6) dim span (LN D) <.
We may assume that
D={(x,,.. x,) e ReErad + ... + &%, < I},

Denote r=§: ket and n,=(r'kE )" for k=1,..,n. Then ié;m;zz 1. Consider
L]

the ellipsoi"&l
C={(xox) e REM+. 417 X2< T}

It follows from (2.4) that there is a subset 4 of Ln.D such that all non-zero
components of the closed subgroup K:= L+ span A are disjoint from C. De-
note N= span A.

Let N* be the orthogonal complement of N in R" and = the orthogonal pro-
jection onto N*. Then KnN* is a lattice in N* with KnN*na(C)={0}. De-
note /= dim N* and let {, <...<{, be the principal semiaxes of C. It is known
that {, > n, for j=1,....l. By (2.7), the polar lattice (KN N*)* admits a basis v,,...,v,
such that

Iyl <en(SkG < e kon) = ey

for j=1,....1. It is not difficult to see that (K~ N*)* is isometric to L*~N*. Con-
sequently, L*n(¢*?rB,) contains at least / linearly independent vectors. This
means that A,(L*B)<e”r. Since AcLnD, we have Nc span (LnD),
whence, by (6),

I= dim Nt=n— dim N>n—1.
Consequently, A,_,, (L*B,)<A{L*B)<e"r. In view of (5), this proves (2). O

Theorem (2.1) is a new result though all tools needed in its proof can be
found in [4], [5] and [6]. The proof of (2.2) follows on the lines of that of Lem-
ma 4 in [4]. The same idea occurs in [8); it is very similar to the idea of Kor-
kine-Zolotarev bases (cf. (1.5)).

Lemma (2.3) is another form of Lemma 1.2 of [6]. The proof of (2.4) 1s
essentially the same as that of Lemma 4 in [5]. Finally, the argument used in
the proof of (2.7) can be found in the proof of Lemma 3 in [4]; the idea of ap-
plying (2.6) comes from [5].

3. BIORTHOGONALITY

The theory of nuclear groups, presented in [7} (sce (1.6)), would undergo
a considerable simplification if it were possible to prove the following fact:
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{3.1) Conjecture. There exist absolute constants c> 0 and m € N satisfying
the following conditions: if L € A, and §,=ck™ for k=1,...,n, then there exists
an n-dimensional o-symmetric ellipsoid € in R* with B,c Cc D, such that L
admits a basis which is orthogonal with respect to the scalar product defined
by C.

Let p be the Minkowski functional of D. It is not hard to see that (3.1)
wottld follow from the following assertion:

(3.2) Conjecture. There exist absolute constants ¢> 0 and m € N satisfy-
ing the following condition: if Le A, and £, ck™ for k=1....,n, then one can
find some u,,...u,€ L and w,,...,w, e L* with (u,w)=0, for all i,j=1,....n, such
that fu /-p(w)<i-=fori=1,...n

It is not known nowadays whether these conjectures are true (cf. (3.5)).
The aim of this section is to prove the following result, weaker than (3.2):

{3.3) Theorem. Let p be the Minkowski functional of D. Then, for each
Le A, one can find some ue L and we L* with (uw)=1 and

n~1
M Jufpn <3, RE
Proof. Without loss of generality we may assume that
(8) A'I(L’Bn)= 1,
9 (3 k=173
=1
Let ¢,,...,e, be the unit vectors in R". We may write R"-'= span {e,,....e,_,}. By
(8), there is some u < L with fu/ =1 We may assume that u=e, In view of
(9), it is enough to prove that there is some we L* with (u,w)=1 and p{w)< |
Suppose the contrary. Then

(10) L*~Dnie,+R")=a.

Let n,<...<1, , be the principal semiaxes of the (n— I)—dimensional el-
lipsoid D~R~-*. It is a standard fact that

(11) &p“*’e'ﬂk (k=],...,n—1).

Let us write A= sup {x,(x,,....x,)€ D} and let {;<...<{,_, be the principal
serniaxes of the (n— 1 — dimensional ellipsoid C=Dn(e+R"-'}. It is clear that
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(12} Li=(1—-h-)ry, (k=1..n-=1)

Let © be the orthogonal projection onto R"-', It is not hard to see that
K:=n(L) is a lattice in R"-' with

(13)  MKB,_)= 3
2

Next, it is clear that L*~[R"! is the polar lattice of K. Let s be the centre of
C. From (10) it follows that

(L*NR-)+(C—-s5)#R.
In view of (2.7), this implies that
(4 MKB <UD xS ity
Since =&, from (9) we get 2> 3. Thus, by (14), (12}, (11) and (9), we have

MK.B,_ ) <(1/2)e¥ (1 — h-2)-"( ; ke 3y

n=1
</ en SN2 (5 tegynzen A2
4 = 8
which contradicts (13). This completes the proof. [

(3.4) Remark, Foreach n=12,.., let 5, be the infimum of all s> 0 which
satisfy the following condition: for each Le A, one can find some v L and
we L* with (u,w)=1 and Juj-fwj <s. From (3.3) we get 5,<./3 2 For
large n, a much better estimate can be obtained. Let v,’s be Hermite’s constants
(see [9], 38.1). Denote

¢= lim sup n-'y,.

n—0o

It was pointed out to the author by H.W. Lenstra, Jr. that Theorem (2.14) of
[15] implies that 5, < (c/3 + o{1))n*? as n—oo. From the result of Kabat’yanskii
and Levenstein [14] it follows that ¢ <0.872/re). Thus

5, <(0.034+ (It  as n—oo.

(3.5) Remark. For each n=1,2,..., let z, be the infimum of all 2> 0 with
the following proper y: for each Le A, one can find some u,,...,u,€ L and
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W,,..., W, € L* with (u,w)=38; for all ij=1...n and with ju/-fwj <z, for
i=1,...,n.Babai 1], Theorem 5.1, proved that z,<(3/,/2) for every n. Hastad
[11] proved that z,< exp (cn'?) for some constant ¢> (. It seems conceivable
that z, might actually be bounded by a polynomial in . This would be an ar-
gument supporting Conjecture (3.1).
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