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Inference on the symmetry point-based optimal 
cut-off point and associated sensitivity and 
specifcity with application to SARS-CoV-2 

antibody data 

A.M. Franco-Pereira1,2, M.C. Pardo1,2, C.T. Nakas3,4 and B. Reiser5 

Abstract  

In the presence of a continuous response test/biomarker, it is often necessary to iden-
tify a cut-off point value to aid binary classifcation between diseased and non-diseased 
subjects. The symmetry-point approach which maximizes simultaneously both types 
of correct classifcation is one way to determine an optimal cut-off point. In this arti-
cle, we study methods for constructing confdence intervals independently for the sym-
metry point and its corresponding sensitivity, as well as respective joint nonparametric 
confdence regions. We illustrate using data on the generation of antibodies elicited 
two weeks post-injection after the second dose of the Pfzer/BioNTech vaccine in adult 
healthcare workers. 

MSC: 62F10, 62G07, 65C05, 62P10. 

Keywords: Empirical likelihood function, Empirical chi-square function, Box-Cox transformation, 
Confdence regions, Sensitivity, Specifcity. 

1.  Introduction  

Let X1 and X2 denote continuous response variables (biomarkers) for two user-defned 
groups (e.g. non-diseased versus diseased subjects), and let FX1 and FX2 be the cor-
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responding probability distribution functions. Using a cut-off point c to decide that a 
subject is non-diseased when a marker measurement is less than c and that the subject 
is diseased otherwise, the specifcity of the marker is spec(c) = P(X1 ≤ c) and the sen-
sitivity of the marker is sens(c) = P(X2 > c). We further make the standard assumption 
that larger values of the marker are more indicative of disease. The Receiver Operat-
ing Characteristic (ROC) curve is defned by sens(c) versus 1− spec(c) as c varies over 
the support of the response variable values. The symmetry point is the point cs where 
spec(cs) = sens(cs), which is where the ROC curve and the line sens = 1 − spec inter-
sect. The symmetry point approach for cut-off point selection has appeared in a wide 
range of recent applications in practice (see e.g. Arnone et al. 2020; Le, Ku and Jun, 
2021; Sande et al. 2021; Sekgala et al. 2022) owing to its optimality properties rising 
from game theory considerations (Sanchez, 2017). However, in these studies, the esti-
mated symmetry point is reported without confdence intervals, emphasizing the impor-
tance of having effcient and effective methods of statistical inference on the symmetry 
point cut-off and its sensitivity along with accessible software for implementation. 

To our knowledge, the only two proposals for constructing confdence intervals (CIs) 
of the symmetry point-based optimal cutpoint and its associated sensitivity have been 
given by López-Ratón et al. (2016). They are based on the generalized pivotal quan-
tity (GPQ) and the empirical likelihood (EL), respectively. The authors recommended 
the use of EL method when the distributions of healthy and diseased populations are 
unknown. Later, Adimari and Sinigaglia (2020) proposed a nonparametric method that 
provides joint confdence regions for the symmetry point-based optimal cutpoint and its 
associated sensitivity. Their method is also based on EL and uses the fact that the asymp-
totic distribution of the statistic they use has a chi-squared distribution with two degrees 
of freedom. We discuss an alternative to these nonparametric methods based on EL as 
well as parametric approaches for the construction of confdence intervals. 

In the following section we present parametric and nonparametric approaches for the 
construction of confdence intervals for the symmetry point and its associated sensitivity, 
or equivalently its specifcity, separately as well as methods for the construction of si-
multaneous confdence regions. Simulation studies comparing the different methods are 
presented in Section 3. In Section 4, an application to data of SARS-CoV-2 antibody lev-
els is presented pertinent to the diagnosis of prior COVID-19 for possibly asymptomatic 
individuals. We end with a discussion. 

2. Methods 

2.1. Construction of confdence intervals: parametric approaches 

Let X11,X12, ..., X1n1 and X21, .X22, ..., X2n2 denote two random samples of sizes n1 and n2 
2taken from two independent normal distributions with mean µi and variance σi , i = 1,2, 

respectively. Under this assumption, it follows that the symmetry point cs satisfes the 
following equation 
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˜ 
µ2 − µ1 +σ1Φ−1(x) 

° 

Φ = 1 − x
σ2 

where spec(cs) = 1 − x and Φ is the cumulative distribution function of a variable fol-
lowing a standard normal distribution. After elemental algebra (see L´ on et al. opez-Rat´ 
(2016)), we obtain the following closed-form expression: 

µ1σ2 +µ2σ1 cs = (1)
σ1 +σ2 

and ˜ ° 
µ2 − µ1 spec(cs) = sens(cs) = Φ(δs) = Φ . (2)
σ1 +σ2 

Both cs and sens(cs) are estimated by substituting for the unknown µ1, µ2,σ1,σ2 in the 
above formulae their maximum likelihood estimates (MLEs), µ̨1, µ̨2, σ̨1, σ̨2. Sensitiv-
ity and specifcity are proportions and thus they are bounded between zero and one. 
As a result, the normal approximation for the construction of confdence intervals de-
scribed in the classical approach can be inadequate for small samples and may also 
result in intervals which exceed the bounds. To obtain a (1-α)% confdence interval 
for sens(cs) we apply standard normal asymptotic theory on δ̨  

s which is not bounded,˜ ˝ ˇ° ˆ 
and use Φ δs ± z1−α/2 Var δs 

˛ ˙ ˛ where z1−α/2 refers to the 1 − α/2 percentile of 

the standard normal distribution. Since µ̨1, µ̨2, σ̨1, σ̨2 are all independent, using the delta 
method, we obtain 

˜ ° 2 ˜ ° 2 ˜ ° 2 ˜ ° 2∂ c̨s ∂ c̨s ∂ c̨s ∂ c̨s˙ ˙ ˙ ˙ ˙Var (c̨s)≈ Var (µ̨1)+  Var (µ̨2)+  Var (σ̨1)+  Var (σ̨2)∂ µ1 ∂ µ2 ∂σ1 ∂σ2 

∂ c̨s σ̨2 
∂ c̨s σ̨1 

∂ c̨s σ̨2(µ̨2−µ̨1) ∂ c̨s σ̨1(µ̨1−µ̨2)where = σ̨1+σ̨2
, = σ̨1+σ̨2

, = 
σ1+˛ 2 , = 

σ1+˛ 2 and
∂ µ1 ∂ µ2 ∂σ1 (˛ σ2) ∂σ2 (˛ σ2) 

˘ �2 ˘ �2 ˘ �2 ˘ �2ˆ ˇ ∂ ˛ ∂ ˛ ∂ ˛ ∂ ˛δs δs δs δsVaṙ δ̨  
s ≈ Var (˛ Var (˛ Var (˛ ˙ σ2)˙ µ1)+  ˙ µ2)+  ˙ σ1)+  Var (˛

∂ µ1 ∂ µ2 ∂σ1 ∂σ2 

∂ ˛ ∂ ˛ ∂ ˛ ∂ ˛δs 1 δs 1 δs µ̨2−µ̨1 
δs µ̨2−µ̨1where = , = − , = − 2 , = − 2 . The implied σ̨1+σ̨2 σ̨1+σ̨2 (˛ (˛∂ µ1 ∂ µ2 ∂σ1 σ1+�σ̨2) ∂σ2 σ1+σ̨2) 

˙confdence interval for cs is of the form c̨s ± z1−α/2 Var (c̨s). We refer to this approach 
as “δ”. 

The assumption that the biomarkers are normally distributed can be quite restrictive 
leading to false results when it is signifcantly violated. A popular way of extending 
the parametric approach is the use of the Box-Cox transformation (Box and Cox, 1964) 
which has been previously employed in the ROC framework (e.g. Faraggi and Reiser 
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(2002); Fluss, Faraggi and Reiser (2005); Molodianovitch, Faraggi and Reiser (2006); 
Schisterman et al. (2008); Franco-Pereira, Nakas and Pardo (2020); L´ on etopez-Rat´ 
al. (2016)) and has been shown to perform very well. The Box-Cox transformation 

Xi 
λ − 1

is defned by X (λ )
= for λ ̸= 0 and X (0)

= log(Xi) where it is assumed that ˜ i ° λ i 

X (λ ) (λ ) 
,σ (λ )∼ N µ . The maximum likelihood estimate (MLE) λ̨ of the commoni i i 

transformation parameter λ can be obtained by maximizing the profle likelihood func-
(BC) δ (BC)tion given in Franco-Pereira et al. (2021). We use c̨s and ˛ 

s to denote the estimate 
(BC)of cs and δs obtained above, but using the transformed observations. The estimator c̨s 

needs to be backtransformed to obtain an estimator of the symmetry point on the original 
scale. In this approach the “added” variation due to estimating the transformation is not 
taken into account following the rationale as Schisterman et al. (2008). We refer to this 
approach as “δ -BC”. 

Another possibility is to consider a bootstrap-based approach in order to obtain an 
estimate of the variance of c̨s and s̋ens(cs) and thus to compute the 100(1 − α)% conf-
dence interval for cs and sens(cs) through the following steps: 

Algorithm 1 

1. Take a sample with replacement from X1 and X2. 

2. Carry out the Box-Cox transformation by maximizing the profle likelihood given 
in Franco-Pereira et al. (2021) for each bootstrap sample. 

(λ ) σ (λ )3. For i = 1,2, calculate µ̨ and ˛ , the MLE of µi and σi, respectively. i i 

(BC) δ (BC) (λ )4. Calculate c̨s and ˛ 
s in (1) and (2) by replacing the µi and σi with µ̨ andi 

σ (λ )˛ .i 

(BC)5. Back-transform c̨s to obtain the current estimate for the symmetric point on the 
original scale, denoted by c̨s. 

δ (BC)6. Repeat steps 1-5 B times. Then, based on the B values of c̨s and ˛ , c̨sb and˜ s° 
δ̨ (BC) δ̨ (BC) 

sb VarB (c̨s) and Var̋B s, derive the bootstrap estimate ˝ , respectively. 

7. Construct the two-sided 100(1 − α)% confdence interval of cs as c̨s ± z1−α/2˙ ˆ ˇ ˜ °˘ 

δ (BC) δ (BC) 
s ± z1−α/2 VarB sVar̋B (c̨s) and sens(cs) as Φ ˛ ˝ ˛ . 

δ (BC)We refer to this approach as “BC-AN”. The bootstrap estimates, c̨sb and ˛ cansb 
also be used to obtain bootstrap percentile confdence intervals (“BC-PB”) as well as the 
bias corrected bootstrap confdence interval (“BC-bias”). Note again that these bootstrap 
estimators do take into account the variation due to the estimation of λ . 
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2.2. Construction of confdence intervals: nonparametric approaches 

López-Ratón et al. (2016) constructed confdence intervals for the symmetry point and 
its associated sensitivity index using a parametric aproach based on the generalized piv-
otal quantity (GPQ) and a non-parametric approach based on the empirical likelihood 
(EL). They recommended the use of the EL method when the distributions of healthy 
and diseased populations are unknown and this is the approach we are going to consider. 
Details of this procedure are presented therein. The method is based on the empirical 
likelihood function which is given by 

˙ ° 
FX1 

° ° 

˜ ˝˛FX1 (cs)
(cs) log + 1 − 

1 − FX1 (cs)
(cs) log (3)l (sens(cs) ,cs) = 2n1 °FX1sens(cs) 1 − sens(cs) ˙ ° ° 1 − FX2 (cs)FX2 FX2 

° ° 

˜ ˝˛FX2 (cs)
(cs) log + 1 −+2n2 (cs) log

1 − sens(cs) sens(cs) 

FXi 

i = 1,2, using the same bandwidth given in López-Ratón et al. (2016). We refer to this 
approach as “EL”. However, in many contexts, the chi-square test statistic works better 
than the likelihood ratio test statistic. Pardo, Lu and Franco-Pereira (2022) compared test 
statistics based on the empirical likelihood and chi-squared functions for testing mono-
tone and umbrella orderings, and that based on the chi-square function was the most 
powerful. Pardo and Pardo (2008) found that the chi-square test statistic outperforms the 
classical loglikelihood test statistic for selecting a model from a sequence of General-
ized Linear Models with binary data. Therefore, in this work we consider the procedure 
described by López-Ratón et al. (2016) substituting the empirical likelihood function 

° 

with the empirical chi-square function 

where is the Gaussian kernel estimate of the cumulative distribution function FXi , 

˝˛ 2 ° n1 FX1 (cs)− sens(cs) n2 
Λ(sens(cs) ,cs) =  + 

sens(cs)(1 − sens(cs)) 

˝ ° 
˛ 

FX2 

2 
(cs)− (1 − sens(cs)) 

(4)
sens(cs)(1 − sens(cs)) 

in step 2 of their algorithm. A nonparametric estimator of sens(cs) is obtained which 
is in turn used to minimize Equation (4) in cs and consider the minimum found as the 
nonparametric estimator of cs. Then, we resample independently from the original pair 
of samples B times and repeating the above estimation procedure to obtain B bootstrap 
estimators of sens(cs) and cs. Finally, these estimates are used to construct the CIs by 
the percentile method. We refer to this approach as “ECS”. 

2.3. Construction of confdence regions 

A joint region provides more precise information about the pair of parameters of interest 
(sens(cs),cs) than the marginal confdence intervals do. In our simulation study reported 
below (Section 4) the parametric methods did not perform satisfactorily for the marginal 
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CIs obtained for cs. As a result, we focus, in this section, on constructing nonparametric 
confdence regions for the symmetry point and its associated sensitivity index. Adimari 
and Sinigaglia (2020) proposed an approach based on the computation of the empirical 
distribution function from the data. As a consequence, the set 

˜ ° 
Rα = (sens (cs) ,cs) : l (sens(cs) ,cs)≤ χ2

2 
,α 

˛ ˝ 
with l (sens(cs) ,cs) defned in (3) and χ2

2 
,α is such that P χ2

2 ≥ χ2
2 
,α = α, is a conf-

dence region with nominal coverage probability 1 − α for the (sens(cs) ,cs) point. 
Since the asymptotic distribution of Λ(sens(cs),cs) is the same as the asymptotic 

distribution of l (sens(cs) ,cs) since l (x,y) = Λ(x,y)+op (1) , an alternative confdence 
region with nominal coverage probability 1 − α is given by 

˜ ° 
R∗ 

α = (sens(cs) ,cs) : Λ(sens(cs) , cs)≤ χ2
2 
,α 

with Λ(sens(cs) ,cs) defned in (4). 

3. Simulation study 

3.1. CIs 

A large simulation study was conducted in order to compare the approaches for con-
structing confdence intervals described in Sections 2.1 and 2.2, namely: δ , δ -BC, BC-
AN, BC-PB, BC-bias and ECS. We also compare our approaches with the one based on 
the empirical likelihood (EL) proposed by López-Ratón et al. (2016). We generated data ˛ ˝ 

X−1/3 
,X−1/3from Normal, PowerNormal , LogNormal, Gamma and Mixed models. 1 2 

The parameters used for each of these scenarios are the same as those given in Table 1 of 
L´ on et al. (2016). We used sample sizes: n1 = n2 = 30,50,100 and the unequal opez-Rat´ 
sample size scenarios (20, 30), (50,100) and (50,300). The number of Monte Carlo 
replications utilized was N=1000 and B=500 for the bootstrap technique. Performances 
of each CI approach were assessed by coverage probability (CP) and mean of interval 
lengths (widths) for cs and sens(cs), respectively. 

Figures 1 and 3 summarize graphically the observed coverage probabilities and aver-
age widths of the CIs for each scenario for both cs and sensitivity, respectively. In terms 
of coverage for cs, except for the case of the mixture of normal distributions, we notice 
that the nonparametric methods perform substantially better than the parametric ones 
even in the normal case. Therefore, the width tends to be larger for the two nonparamet-
ric approaches. For normal, gamma and mixture models scenarios, both nonparametric 
methods, ECS and EL, are similar. ECS provides the best results for PowerNormal and 
EL for LogNormal. If we focus on the parametric approaches, the “BC-AN” approach 
outperfoms the others except for the normal mixture scenario for which “δ -BC” is the 
best but the spread of the observed average values is very large in comparison with the 
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Normal, coverages for cs PowerNormal, coverages for cs 
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Figure 1. Boxplots of the coverages and average widths of the confdence intervals for cs in the 
different scenarios considered in the simulation study. 
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Figure 2. Boxplots of the coverages and average widths of the confdence intervals for sens(cs) 
in the different scenarios considered in the simulation study. 
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Figure 3. Boxplot of the coverages and average widths of the confdence intervals for cs for all 
scenarios combined. 

others. The parametric approaches tend to be somewhat conservative and their cover-

ages tend to be more variable over the various scenarios and sample sizes sometimes 

exhibiting quite low coverages while the nonparametric methods have coverages which 

vary much less. However, looking at the coverages for sens(cs) except for the normal 

mixtures, BC-AN seems to do quite well having coverage closer to the nominal and 

shorter length than the nonparametric methods. In this case, the nonparametric methods 

tend to be more liberal having more than the nominal coverage which naturally leads to 

longer average widths. 

Therefore, ECS and EL are recommended for constructing CIs for cs and BC-AN 

for sens(cs) as can be seen in Figures 1 through 4, which provide a summary for all 

the methods merging all the scenarios into box-plots of the observed coverages and CI 

widths. It is important to take the coverage into account with a head-to-head comparison 

only being justifed for similar coverages. However, the relationship between average 

length and coverage is not one-to-one, as a result, it is reported throughout for the sake 

of completeness in the Supplement (Tables 1-24). 

3.2. CRs 

A second simulation study was conducted to compare the approach based on the em-

pirical likelihood function for constructing confdence regions proposed by Adimari 

and Sinagaglia (2020) with our proposal based on the chi-squared function given in 

(4). We generated data from Normal, LogNormal, Beta, Exponential, Gamma and Mix-

tures of normal distributions. The parameters used for each of these scenarios are the 
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same as those considered in Adimari and Sinagaglia (2020). We used sample sizes: 

n1 = n2 = 20, 50, 100 and the unequal sample size scenarios (50, 20) and (20, 50) . The 

number of Monte Carlo replications was N=10000. The performance of each CR ap-

proach was assessed by the proportions of cases falling inside the confdence region, 

and mean of the confdence regions of the areas. In the simulation study we consider 

fve different scenarios: two scenarios correspond to the normal model, for the third and 

fourth we use the beta and the gamma models, respectively. Finally, the ffth scenario 

corresponds to mixture models (see Table 25 in the Supplement). 

The results of these simulations, for three levels of nominal coverage 1 − ̃  , that 

is, 0.90, 0.95 and 0.99, are shown in Tables 26-41 in the Supplement. Tables 26–33 

and Tables 34–41 give the estimated coverage probabilities and estimated areas of the 

confdence regions, respectively, obtained by using both methods presented in Section 

2.3. for each scenario. As expected, the simulated coverage is closer to the nominal 

when the sample size increases. Our proposal generally provides results with observed 

coverage closer to the nominal level. However, the observed coverages of the confdence 

regions based on R ° are more variable than R˜ for most of the scenarios. Figure 5
˜ 

provides a graphical presentation of these results as well as a box-plot with the estimated 

coverage for all scenarios combined. In relation to the areas of the confdence regions, 

looking at Figure 6, it can be seen that they are very similar for both methods. Therefore, 

R ° approach produces confdence regions with a coverage closer to the nominal level 
˜ 

without increasing their area. 

ECS 

EL 

BC-bias 

BC-PB 
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� -BC 

Coverages for sens(cs) 

Figure 4. Boxplot of the coverages and average widths of the confdence intervals for sens(cs) 
for all scenarios combined. 
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4. Application to SARS-CoV-2 antibody data 

We use part of the dataset measuring the generation of antibodies elicited two weeks 
post-injection after the second dose of the BNT162b2 mRNA vaccine in adult healthcare 
workers (Kontopoulou et al. 2021). All subjects were closely followed on a quasi-daily 
basis in order to fawlessly detect the presence of COVID-19. The estimation of a cut-
off point that could be used in medical practice would aid diagnosis of prior COVID-19 
infection, which in turn can guide decision making regarding correct classifcation of 
patients with symptoms pertinent to post COVID-19 syndrome (long covid). The data 
consist of 289 subjects without prior COVID-19 and 50 subjects with confrmed prior 
COVID-19. Antibody data do not conform to normality assumptions in general (Ander-
son and Darling, 1952) normality test p-value < 2.2e− 16 for controls and 0.002188 for 
cases) and a log10 transformation is a typical remedy in order to pursue formal hypothe-
sis testing (Horne-Dale, 1995). The Box-Cox transformation provides a straightforward 
approach for an optimal estimation of the power transformation to normality. Kernel 
density estimators illustrating measurements before and after the Box-Cox transforma-
tion (bλ = 0.235) are given in Figure 7 (a) and (b), respectively. In addition, we have 
included the corresponding estimation of the densities under the binormal model (after 
the Box-Cox transformation) and its corresponding ROC curve, whose associated AUC 
value is 0.716, in Figure 7 (c) and (d), respectively. 

Results regarding the cut-off point based on the symmetry point methods presented 
in Section 2 are given in Table 1, suggesting that antibody measurements above around 
22300 suggest prior COVID-19 infection, when antibodies are measured two weeks af-
ter the second dose of the BNT162b2 mRNA vaccine, with sensitivity around 65%. The 
classifcation of patients, with symptoms pertinent to post COVID-19/long Covid syn-
drome is to be taken with caution in practice. Antibody levels two weeks post-injection 
after the second dose of the BNT162b2 mRNA vaccine is a signifcant marker but can-
not be used as a standalone test in practice given its very limited utility nowadays and its 
moderate performance. Corresponding confdence regions (CRs) and their illustration 
are given in Table 2 and Figure 8. Confdence regions are somewhat tighter using the R∗ α 
approach, providing an apparent higher estimation accuracy. 

Table 1. Estimates and 95% CIs for the different methods. 

Method bcs 95% CI (bcs) dsens(cs) = dspec(cs) 95% CI sens(bcs) 

δ 

δ -BC 
BC-AN 
BC-PB 

BC-Bias 
EL 

ECS 

25234.90 
22304.13 
22220.90 
22299.64 
22251.90 
22296.64 
22296.64 

(22814.74, 27655.06) 
(20103.32, 24504.93) 
(19888.72, 24553.08) 
(20103.53, 24495.76) 
(20119.51, 24384.29) 
(19597.31, 24995.98) 
(19597.31, 24995.98) 

0.641 
0.656 
0.656 
0.661 
0.651 
0.655 
0.655 

(0.578, 0.703) 
(0.601, 0.711) 
(0.597, 0.714) 
(0.608, 0.713) 
(0.599, 0.704) 
(0.591, 0.719) 
(0.591, 0.719) 
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Coverages for scenario (1a) Coverages for scenario (1b) Coverages for scenario (2) 

* * * 
R R R 

˜ ˜ ˜ 

R R R˜ ˜ ˜ 

Figure 5. Boxplots of the estimated coverages of the confdence regions at 95% confdence level 
for all scenarios considered in the simulation study, including a boxplot (the last one) with the 
results of all scenarios combined. 

Table 2. Estimates of 90, 95, 99% CRs for the different methods. 

Area 90% CR 95% CR 99% CR 

R˜ 463.62 621.10 946.14 

R˜ 
˜ 459.47 603.13 939.89 

Estimated coverages for all scenarios combined 

Coverages for scenario (5a) Coverages for scenario (5b) 
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Areas for scenario (1a) Areas for scenario (1b) Areas for scenario (2) 

R˜ 

R ̃  
* 
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R˜ 

R ̃  
* 

Figure 6. Boxplot of the estimated areas of the confdence regions at 95% confdence level for all 
scenarios considered in the Simulation Study, including a boxplot (the last one) with the results 
of all scenarios combined. 

5. Discussion 

When considering a continuous biomarker/score clinicians are in need of a cut-off point/ 
optimal threshold to classify subjects into one of the t o diagnostic groups under consid-
eration. One such method is based on the symmetry point. This approach has theoretical 
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support from a game theory minimax perspective and has important robustness features 
(Sanchez, 2017). The symmetry point has been used in applications but typically without 
the addition of confdence intervals. In this work, we have considered both marginal CIs 
for the symmetry point and its associated sensitivity and CRs for these jointly. For 
the marginal CIs we examined both parametric and nonparametric approaches. The 
parametric approaches are based on the binormal model and implemented using the Box-
Cox transformation for cases when normality assumptions are not met. The BC-AN 
method worked quite well for the associated sensitivity for a wide range of distributions 
except for the mixtures. Two nonparametric methods were examined. The frst due to 
L´ on et al. (2016) is based on empirical likelihood while the second is based opez-Rat´ 
on the chi-square test statistic and has been found to work well in other contexts. Both 
of these give very similar results and work quite well both for the symmetry point and 
its corresponding sensitivity although somewhat conservative for most scenarios. Due 
to the poor performance of the parametric CIs for cs we only examined nonparametric 
confdence regions for the symmetry point and its associated sensitivity index. The frst 
due to Adimari and Sinigaglia (2020) is based on empirical likelihood. We proposed 
an alternative again based on a chi-square test statistic. Our simulations indicate that 
although these two methods perform similarly our proposal generally provides results 
with observed coverage closer to the nominal level. The availability of CIs and CRs 
for the symmetry point approach should help practitioners using this method in their 
data analyses. Software for carrying out these procedures is available from the frst 
author. We illustrated these procedures using part of the dataset from a published study 
on SARS-CoV-2 antibody levels post vaccination. 

In addition to the symmetry point approach there are many other methods proposed 
in the literature for obtaining the optimal cut-off point value. Commonly seen methods 
include maximizing the Youden Index (Bantis, Nakas and Reiser, 2019) or its weighted 
version (Schisterman et al., 2005), point closest to the (0,1) corner (Perkins and Schister-
man, 2006) and maximizing the product of sensitivity and specifcity (Liu, 2012) among 
others. With many possible methods there is an inherent problem in choosing the appro-
priate method for the selection of an optimal cutoff point that can be used in everyday 
practice. Weights refecting the relative importance of sensitivity and specifcity can 
be introduced in a cost-beneft tradeoff approach. Researchers can be expected to po-
tentially run a large number of cut-off point selection approaches and estimate cut-off 
points along with corresponding CIs prior to fnal decision making. It is diffcult to say 
which approach is more clinically relevant. No automatic procedure for such a choice 
currently exists and it is not clear if this is possible at all. Future research on this issue 
would be benefcial for practical applications in clinical problems. An initial step in this 
direction would be a detailed comparison of cut-off point selection methods along with 
the assessment of the robustness of corresponding CIs. 
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