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Abstract
In this paper we provide a mathematical programming based decision tool to opti-
mally reallocate and share equipment between different units to efficiently equip 
hospitals in pandemic emergency situations under lack of resources. The approach is 
motivated by the COVID-19 pandemic in which many Heath National Systems were 
not able to satisfy the demand of ventilators, sanitary individual protection equip-
ment or different human resources. Our tool is based in two main principles: (1) Part 
of the stock of equipment at a unit that is not needed (in near future) could be shared 
to other units; and (2) extra stock to be shared among the units in a region can be 
efficiently distributed taking into account the demand of the units. The decisions are 
taken with the aim of minimizing certain measures of the non-covered demand in a 
region where units are structured in a given network. The mathematical program-
ming models that we provide are stochastic and multiperiod with different robust 
objective functions. Since the proposed models are computationally hard to solve, 
we provide a divide-et-conquer math-heuristic approach. We report the results of 
applying our approach to the COVID-19 case in different regions of Spain, high-
lighting some interesting conclusions of our analysis, such as the great increase of 
treated patients if the proposed redistribution tool is applied.
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1 Introduction

We recently lived a pandemic situation caused by the COVID-19 virus. The high 
contagiousness of this virus provoked its rapid propagation all over the world; and 
this led to the sudden need of hospitalization of a large amount of patients affected 
by COVID-19, many of them in Intensive Care Units (ICU). This abrupt and mas-
sive increase in the number of hospitalizations brought some hospitals to the col-
lapse and produced lack of material and human resources, such as diagnostic tests, 
ventilators, ICU beds, personal protective equipment for sanitarians, etc., in many 
of them. This extreme situation gave rise to the application of improvised measures, 
such as the creation of field hospitals, the use of non-approved personal protective 
equipment or the application of ageisming when assigning (insufficient) ventilators 
to patients (Cesari and Proietti 2020; García-Soler et al. 2020), even though this last 
measure is not allowed by the World Health Organization (World Health Organiza-
tion n.d.). Other improvised measure, in Spain for instance, were the hire of ven-
tilators between hospitals in different cities just to cover the demand at a specific 
time of the pandemic, without taking into account demand forecasting (Libertad 
Digital 2020; Hoy 2020; El Médico Interactivo 2020; El País 2020), or distributing 
test packages between regions by population instead of by the number of infected 
citizens (Global 2020). In these pandemic situations, like the one caused by the 
COVID-19, in which the number of infected citizens and the gravity of their disease 
are distributed heterogeneously in a country or state, it is a must to provide efficient 
strategies to distribute equipment and share the available resources between differ-
ent hospitals or units in order to efficiently equip these hospitals or field hospitals to 
satisfy the demand of the patients and sanitarians.

Furthermore, during the COVID-19 pandemic, patients were also moved from 
collapsed hospitals to hospitals with a lower level of saturation. However, as the 
Spanish Society of Urgency and Emergency Medicine reported, moving patients 
between hospitals affects patients’ safety and even influence patient deterioration 
and mortality (Sociedad Española de Medicina de Urgencias y Emergencias 2020). 
This fact emphasizes the need of distributing and sharing health equipment to 
properly equip hospitals to avoid patients translation in these collapsed situations. 
The need of (re)distribution of health equipment is also strengthen by the fact that 
most of the ICU are expanded in most of the hospitals in pandemic situation, as we 
learned in the recent COVID-19 pandemic, which led to the requirement of addi-
tional equipment.

1.1  Discussion

Allocating/reallocating resources is a recurrent application of Operations 
Research and a wide variety of situations and tools analyzing the efficient distri-
bution of goods can be found in literature (see, e.g Baricelli et al. 1996; Bodson 
2002; Gomar et al. 2002; Hegazy 1999; Michaud and Michaud 2008; Wang et al. 
2011, among many others). In the case of sanitary emergency situations, many 
papers have been recently published proposing methods to deal with the logistics 
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and transportation of goods during the COVID-19 pandemic (see Chowdhury 
et  al. (2021) for a recent review on the topic). In particular, there are some of 
them proposing different approaches to allocate scarce resources. Arora et  al. 
(2010) provide a nonlinear optimization model to allocate antivirals among dif-
ferent regions of the United States in order to share resources among regions 
using a central stockpile minimizing a measure of the lost benefits due to resource 
shortages. In a recent paper, Mehrotra et al. (2020) propose a stochastic multipe-
riod planning model to allocate and reallocate ventilators to treat critical patients. 
That model is designed for a particular network and assumes that a central agency 
makes decisions on the reallocation of ventilators while federal agencies and 
states decide on the percentage of available ventilators to share, by minimizing 
the expected non-covered demand. Yin et al. (2020) provide linear programming-
based methodologies for multi-resource allocation to hospitals, where resources 
are grouped in different classes, each of them with particular characteristics. A 
biobjective optimization problem considering the minimization of both ventila-
tor-day shortages and inter-unit transfers is proposed by Bertsimas et al. (2021) 
to give response to COVID-19. In Rastegar et al. (2021), the authors propose a 
mixed integer linear model for the equitable flu vaccine distribution to high-risk 
people in developing countries. Another example of the recent developments on 
optimal resource allocation in pandemic situations is Dönmez et al. (2022) where 
the number of infections (as a function of the number of workers in a hospital not 
using personal protective equipment–PPE) and the deprivation cost is minimized 
when allocating PPE to hospitals.

Besides, many of the research on resource allocation is cost-oriented, i.e., the 
decision aid tools are designed to minimize, among others, certain function of the 
transportation or set-up costs. This is counterproductive in emergency situations, 
where satisfying in adequate time the needs of the society affected by any dam-
age, beyond its distribution cost, is crucial. Thus, an efficient resource allocation 
and collaboration among the different units which may supply materials is essen-
tial. In the COVID-19 situation, the life of sick patients depends on the use of 
ventilators, and the non-infection of health personnel depends on the availability 
of sanitary protection equipment. Therefore, designing strategies to share equip-
ment between hospitals will help to reduce the impact of this crisis and avoid a 
lack of human resources being able to cut the pandemic. Furthermore, national 
and regional governments were receiving extra stock of equipment, provided 
by international suppliers or by different private initiatives (as the home-made 
confection of face-masks, 3D-printing of helmets, etc.) and sharing this stock 
among the different units should be done by means of the demand of each of 
the units instead of population-based sharing, as those that have been applied. 
The COVID-19 pandemic has already provoked around to six million worldwide 
deaths until mid-2022, which evidences the need of cooperation of the different 
agents to palliate the effect of the virus.
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1.1.1  Main contributions

The main goal of this paper is to develop a general framework for a rapid and effi-
cient reallocation and sharing of any type of necessary health equipment, unlike 
described works focused on particular goods, as for instance the one by Arora et al. 
(2010). This reallocation is made between different sanitary units in a pandemic or 
in other situations in which the resources are scarce and should be urgently distrib-
uted. Our approach assumes general networks structures for the distribution, gener-
alizing in this way some of the approaches that have been recently proposed , includ-
ing them as special cases, in particular, the one of Mehrotra et  al. (2020). Unlike 
classical resource (re)allocation literature, we minimize different functions of the 
non-covered demand in a framework which considers four main ingredients:

Distribution Network: The units and the different types of available logistic plat-
forms are linked in a network-based input information, allowing us to model dif-
ferent policies established for the regions in a country. We hence assume that 
products can be distributed through given general network structures.
Multiperiod: The planning is performed for a short time horizon, being the 
approach a multiperiod decision-making tool.
Uncertainty: Since the demand of equipment in each unit is stochastic along time 
(it depends on the number of sick or infected citizen), we incorporate this uncer-
tainty in the model.
Robust Decisions: Our model decides on the optimal way to reallocate and share 
extra stock based on different aggregation measures of the non-covered demand 
along the planing horizon, minimizing different robust objective functions, as 
the maximum (by units) non-covered expected demand; the maximum (by time 
periods) non-covered expected demand, the maximum (by regions) non-covered 
expected demand; the overall non-covered expected demand1, and also their min-
imax regret counterparts that provide robust solutions with a good performance 
under any of the possible uncertain situations that may happen.

Apart from the above, our model has different particularities that can be adequately 
tuned to be adapted to each situation. We limit the number of deliveries from each 
unit to avoid the use of excessive resources to load, unload and mount the equip-
ment. We also set an upper bound for the amount of equipment to be delivered from 
each unit to a percentage of the available stock at each period, allowing hospitals to 
fix such a percentage based on their risk level.

It is clear that Mathematical Programming plays an important role in the design 
of optimal strategies to (re)distribute goods and determine sharing policies. The 
above characteristics of our model would require to incorporate to our methodology 
different elements which makes the problem specially difficult to solve. On the one 
hand, our problem will be modeled as a stochastic programming problem (Birge and 

1 Note that although overall non-covered expected demand is not formally a robust function, for the sake 
of generality we will also analyze this case.
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Louveaux 2011), in which a function of the expected non-covered demand (which is 
the uncertain data in our problem) is minimized. Second, in order to find fair solu-
tions that do not harm the weakest units, we use different robust objective functions 
in our models of type minmax (Campbell et al. 2008; Ogryczak 2000; Puerto et al. 
2018; Shahnejat-Bushehri et al. 2021; Sun et al. 2021; Ye et al. 2017) and minmax 
regret (Conde 2007; Conde et al. 2018; Gutiérrez et al. 1996; López-de-los Mozos 
et  al. 2013). Also, our problem consists of a planning model in multiple periods, 
being necessary to deal with multiperiod problems (Albareda-Sambola et al. 2010; 
Ben Mohamed et  al. 2020; Gholami et  al. 2020; Pun and Wong 2019; Shin et  al. 
2019).

1.1.2  Organization

The rest of the paper is organized as follows. In Sect. 2, we describe the input ele-
ments to derive a model for the problem. Section 3 is devoted to present the math-
ematical programming models for the problem. The math-heuristic approach 
is described in Sect.  4. The analysis of our model for Spanish COVID-19 data is 
reported in Sect.  5. Finally, we draw some conclusions and further extensions in 
Sect. 6.

2  Preliminaries

We analyze here the problem of distributing goods on a network with several par-
ticularities, as described above. In this section we describe the elements involved in 
the problems and introduce the notation and the problem under study.

Let us consider a weighted directed graph G = (N,A;�) where:

• N = {1,… , n} represents the different units in the distribution system. Some 
nodes may represent hospitals or (local, regional or national) health logistic cent-
ers.

• A is the set of arcs, it indicates the available direct links between units.
• � is the set of weights, origin-destination times (in days) to transfer equipment 

between the arcs. These weights include the times needed to load, deliver, unload 
and mount the equipment.

For the sake of presentation we assume that a single type of product is distributed 
along the network, although our approach can be easily adapted to distribute differ-
ent types of goods (in such a case, a set of weights for each product being distributed 
must be provided).

In Fig. 1, we illustrate an example of a hierarchical network that may represent 
the situation in many countries when distributing health equipment. There, solid cir-
cles represent different hospitals. They are supplied by local logistic centers (stars) 
which are at the same time supplied by regional logistic centers (squares). All the 
regions are supplied by a national logistic center (empty circle). The lines indicate 
the links in which the products can be distributed. This network example shows the 
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adaptability of the general network structure that we assume to particular network 
situations.

From the graph G, we consider the set of pairs of nodes for which there is a 
directed path in the graph between them, i.e.

In order to provide an optimal sharing of extra stocks and to account for the different 
policies of the different regions, we assume that the set of nodes, N, is divided into 
p groups, N1,… ,Np ⊆ N , not necessarily disjoint, which may represent different 
regions or clusters of hospitals which may receive extra stock from the same source. 
Observe that one unit may belong to different regions and receive equipment from 
different sources. This would be the case of countries that centrally share equipment 
directly to all (or some) hospitals but also regions with extra or available stock share 
equipment to the hospitals in the region. In this case, a hospital in the region belongs 
to two of the N-sets, to the one in which all the hospitals belong to and also to the 
one in which only the hospitals of the regions are included.

In the example drawn in Fig. 1, the different circles linked to a same star may 
represent one of these sets (provinces), all which are connected to a star linked to the 
same square represent others sets (regions), and all the square nodes linked with an 
empty circle node is the last set (country). We denote by P = {1,… , p} , the index 
set for the groups.

We also consider the following list of input parameters:

• T = {1,… , q} : planning horizon (in days). We will perform a distribution plan-
ning for a finite number, q, of periods.

• s0
i
 : initial stock at node i, for all i ∈ N . Each unit is assumed to have this nonneg-

ative initial stock at the beginning of the planning horizon and that is available to 
be used or delivered. It represents the number of equipment at each unit to cover 
the demand.

W = {(i, j) ∶ i, j ∈ N such that there exist a path from i to j}.

Nation

Region

Province

National logistic center

Regional logistic center

Province logistic center

Hospital

Fig. 1  Example of the graph structure involving different types of units and links in a distribution system
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• qt
k
 : amount of extra stock to be shared in period t between the nodes in group Nk , 

for k ∈ P . We assume that the units on group Nk may receive a nonnegative num-
ber of units at each period. It allows to model situations in which certain regions 
buy or receive equipment at certain periods and they want to share them among 
the units that belong to the region.

• Qi : upper bound on the number of deliveries from node i to different units, for 
i ∈ N . In order to avoid a large (and unrealistic) number of deliveries from units 
with low demand but high initial stocks, we will restrict the deliveries from each 
unit. This upper bound will be induced by the capacity of each unit to prepare 
and load the equipment to deliver.

• �ij : length of the shortest path in the graph with origin i and destination j, for all 
(i, j) ∈ W . This length represents the time (in days) needed to deliver an equip-
ment from unit i to unit j on the graph G.

• �i : proportion of the available stock (after covering its demand) that unit i is will-
ing to delivered to other units, for i ∈ N.

• gi : upper bound on the number of equipment to be deliver from unit i, for i ∈ N.
• ai : storage capacity of unit i, for i ∈ N.

Note that the parameters Qi , �i , gi and ai do not depend on the time period. However, 
the time dependence could be easily incorporated in the model, if needed.

2.1  Demands

Apart from the above deterministic information, we consider that the demands of 
equipment required by the units at each period are, as usual, uncertain. We denote 
the demands as d(�) , with � a random variable. We assume that � has finite support, 
i.e., that a finite number of possible realizations for the demands is possible. We 
consider the following notation for the demands,

• Ω(T) : finite support of possible scenarios, � ∈ Ω(T) . Abusing of notation, we 
will obviate the index set T in the definition of the set of scenarios, i.e., we will 
denote by Ω ≡ Ω(T).

• dt�
i

 : demand for node i ∈ N at period t ∈ T  under scenario � ∈ Ω(T).
• p� : probability of scenario � ∈ Ω(T) , with p� ≥ 0 , and 

∑
�∈Ω(T) p

� = 1.

Although we assume that each scenario contains the information of the demands for 
all nodes and all periods, different assumptions could be done, being our approach 
still valid. For instance, it can also be assumed that there exist a different set of pos-
sible scenarios for the demands for each period and each region, or a set of possible 
scenarios for each period (independently of node or the region). For example, in this 
last case, for each t ∈ T  there would exist a set of scenarios Ωt . And for each � ∈ Ωt 
we would have a vector of demands dt� = (dt�

1
,… , dt�

n
) , with an associate probabil-

ity pt� with 
∑

�∈Ωt

pt� = 1.
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With the above input information, our approach consists of determining an opti-
mal redistribution planning for the equipment between units and a sharing policy by 
minimizing a function that takes into account the demand that is not able to be cov-
ered at each unit and period by the lack of resources.

3  Mathematical programming model

In this section we provide a family of mathematical programming models to make 
decisions on: (1) the amount of product to be delivered between the different nodes 
of the network at each of the periods of the time horizon; and (2) the sharing of extra 
amounts received at each time period between the different groups N1,… ,Np , by 
minimizing different measures of the non-covered demand along the time horizon. 
Due to the existence of uncertainty in the demands, we propose robust solutions that 
perform well under any scenario. We describe the different mathematical program-
ming approaches which differ in the measures of the non-covered demand that are 
considered but share the same sets of variables and constraints.

3.1  Variables

We consider the following decision variables in our models.

• xt
ij
 : amount of equipment to deliver from unit i to unit j at period t, for all 

(i, j) ∈ W , t ∈ T .
• st

ik
 : stock of equipment received by node i from the sharing of group Nk at time 

period t, for all i ∈ Nk , k ∈ P , t ∈ T .

The above mentioned variables are identified with the two main decisions that are 
made by our models. The x-variables are identified with the distribution of existing 
equipment in the units in the given network while the s-variables model the distribu-
tion of new equipment incorporated to the network among the units in the different 
groups.

Observe that the above decision variables do not depend on the scenarios, since 
our aim is to provide a solution (distribution) with a good behavior under any of the 
scenarios that may occur.

We also consider the following auxiliary variables, which can be derived using 
the above decision variables, to ease the exposition of the models:

• yt
ij
=

{
1 if at least one equipment is delivered from i to j at period t,

0 otherwise,
 , for all 

(i, j) ∈ W , t ∈ T  . This variable allows us to control the different loads of equip-
ment from a given unit. In particular 

∑

j∈N∶(i,j)∈W

yij is the overall number of loads 
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that are prepared at period t from unit i, and will be upper bounded to avoid an 
excess of loads from each unit. Observe that this variables can be obtained from 
the x-variables as: 

• St
i
 : accumulated stock in node i until period t: 

 It is the initial plus the extra stocks shared stock received by each of the groups 
where i belongs to.

• Rt
i
 : amount of product received until period t by unit i from other units: 

 It is the overall sum on all the units from what i is able to receive equipment and 
in all the periods t′ in which the equipment are delivered plus the delivering time 
are previous or equal to t.

• Dt
i
 : amount of product delivered until period t by unit i: 

• Ht�
i

 : effective excess at time period t from unit i under scenario � ∈ Ω : 

 where D0
i
= 0 . That is, the stock received until this period, plus the 

amount received until this period, minus the delivered until the previ-
ous period, minus the demand in this period. If the demand is not covered, 
St
i
+ Rt

i
− D

(t−1)

i
− dt𝜔

i
< 0 , then the excess is 0. This amount represents the 

number of equipment that is available at the units in each period (under every 
scenario) after covering the demand at that unit. In order to linearly incor-
porate these variables to the model, we consider the auxiliary variable �t�

i
 

that takes value 1 if Ht�
i

≥ St
i
+ Rt

i
− D

(t−1)

i
− dt�

i
 and 0 otherwise. Then, the 

Ht�
i

= max{0, St
i
+ Rt

i
− D

(t−1)

i
− dt�

i
} can be linearly formulated as: 

yt
ij
=

{
1 if xt

ij
≥ 1,

0 otherwise
, for all (i, j) ∈ W, t ∈ T .

St
i
= s0

i
+

∑

k ∈ P ∶

i ∈ Nk

∑

t�≤t

st
�

ik
, ∀i ∈ N, t ∈ T .

Rt
i
=

∑

j ∈ N ∶

(j, i) ∈ W

∑

t� ≤ t ∶

t� + �ji ≤ t

xt
�

ji
, ∀i ∈ N, t ∈ T .

Dt
i
=

∑

j ∈ N ∶

(i, j) ∈ W

∑

t�≤t

xt
�

ij
, ∀i ∈ N, t ∈ T .

Ht�
i

= max{0, St
i
+ Rt

i
− D

(t−1)

i
− dt�

i
}, ∀� ∈ Ω, i ∈ N, t ∈ T ,

(1)St
i
+ Rt

i
− D

(t−1)

i
− dt�

i
≥ U(�t�

i
− 1), ∀� ∈ Ω, i ∈ N, t ∈ T ,
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 where U is a big enough constant. In particular, for each � ∈ Ω, i ∈ N, t ∈ T , 
U can be set as U = Ut�

i
= max{

∑
i s

0
i
+
∑

t�≤t

∑
k q

t�

k
, dt�

i
} . Constraints (1) and 

(2) allow to adequately define the value of �t�
i

 by the sign of the expression 
St
i
+ Rt

i
− D

(t−1)

i
− dt�

i
 . In case �t�

i
= 1 , i.e., St

i
+ Rt

i
− D

(t−1)

i
− dt�

i
≥ 0 , constraints 

(3) and (4) ensure that Ht�
i

 takes value St
i
+ Rt

i
− D

(t−1)

i
− dt�

i
 . Otherwise, by con-

straint (5) one is assured that Ht�
i

 takes value zero.
• Non-Covered Demand of unit i at time period t under scenario � ∈ Ω : 

 It is computed as the demand of the unit at that period plus the amount of equip-
ment delivered from the unit at that period minus the accumulated stock and 
the product received until that period. In case NCDt𝜔

i
> 0 , the demand plus the 

delivered are greater than the amount received, being not desirable and produc-
ing lack of resources at that period. Otherwise, if NCDt𝜔

i
< 0 , the demand plus 

the number of deliveries is less than the received amount, then the demand dt�
i

 , 
can be covered with the available equipment.

• Nonnegative Non-Covered Demand of point i at time period t under scenario 
� ∈ Ω : 

 As mentioned above, the actual demand that is not covered at a unit at a given 
time period under a given scenario is represented only when NCDt𝜔

i
> 0 . Thus, 

this auxiliary variable consider only that positive part, in case it exists, and 
zero otherwise. These variables will be used in our objective functions instead 
of NCDt�

i
 to be somehow minimized, since the negative non-covered demand 

(which represents the positive stock) is not convenient to be minimized because 
it may provoke an excess of stock in the units. Taking into account that the NCD
-variables (or some of them) will be globally minimized in our objective func-
tions, they can be easily incorporated to our mathematical programming formu-
lations without using binary variables nor big-M constraints to obtain the opti-
mal objective value for the problem. Concretely, they can be modeled as: 

(2)St
i
+ Rt

i
− D

(t−1)

i
− dt�

i
≤ U�t�

i
, ∀� ∈ Ω, i ∈ N, t ∈ T ,

(3)St
i
+ Rt

i
− D

(t−1)

i
− dt�

i
− U(1 − �t�

i
) ≤ Ht�

i
, ∀� ∈ Ω, i ∈ N, t ∈ T ,

(4)Ht�
i

≤ St
i
+ Rt

i
− D

(t−1)

i
− dt�

i
+ U(1 − �t�

i
), ∀� ∈ Ω, i ∈ N, t ∈ T ,

(5)0 ≤ Ht�
i

≤ U�t�
i
, ∀� ∈ Ω, i ∈ N, t ∈ T ,

(6)�t�
i

∈ {0, 1}, ∀� ∈ Ω, i ∈ N, t ∈ T ,

NCDt�
i

= dt�
i
+ Dt

i
− St

i
− Rt

i
, ∀� ∈ Ω, i ∈ N, t ∈ T .

NCD
t�

i
= max{0,NCDt�

i
}, ∀� ∈ Ω, i ∈ N, t ∈ T .
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 However, since in some of robust objective functions that we will consider, only 
the maximum of an aggregated function of these values is minimized, one is not 
assured that the values of the x- and the s-variables (which are the main decisions 
of our approaches) are adequately obtained but only those involved in the maxi-
mum values for the NCD-variables. Thus, to obtain those values, one is required 
to use a similar linearization that the one used for the H-variables (constraints 
(1)–(6)) using binary variables and big-M constraints.

3.2  Constraints

The above variables are related by means of a set of linear constraints that allows 
to represent adequately the reallocation and sharing problem under analysis: 

1. The product to be delivered from a node, in each period and scenario, cannot 
exceed a percentage of the excess of that node: 

 The constraint enforces that the overall amount of equipment delivered from i (under 
scenario � ) in period t do not exceed the proportion of the stock that is allowed 
to be delivered from the unit to other units. It allows each unit to decide the pro-
portion of the excess of equipment that is willing to deliver to other units. For 
risk-averse units, the proportion might be small, while for risk-adverse units, the 
proportion might be fixed to be large.

2. The amount to be delivered from a unit to other are zero unless the y variables 
take value one and viceversa. 

 In case yt
ij
= 0 , then, one cannot deliver any product from unit i to j, otherwise and 

amount between 1 and gi can be sent.
3. Upper bound on the number of deliveries from a node to different nodes in each 

period: 

NCD
t�

i
≥ NCDt�

i
, ∀� ∈ Ω, i ∈ N, t ∈ T ,

NCD
t�

i
≥ 0, ∀� ∈ Ω, i ∈ N, t ∈ T .
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 As mentioned in the definition of the y-variables, even in case a large stock is avail-

able in unit i, it is not realistic to assume that such a unit deliver equipment to 
many different units. This constraint limits such a number to Qi.

4. Amount to be shared for each group and each period: 

 It is assumed that all the extra stock wants to be shared between the units in Nk . One 
may instead assume that not all the stock needs to be shared, and the constraint 
may be replaced by the same but with ≤ instead the equation.

5. Avoid to simultaneously deliver and receive equipment in the same unit: 

 In particular, in case k = i , the constraint enforces that no bidirectional deliveries are 
allowed at the same period. Note that one may replace the set W by a subset of it 
to allow some of the units to deliver and receive at the same period.

6. Upper bound on the storage capacity of each hospital and each period: 

 Most units may not have unlimited space to store all the equipment they receive. This 
constraints avoid this effects and allows receiving material only if they have space 
to store it or directly use it.

3.3  Objective functions

Our stochastic mathematical programming models will have the following common 
shape:
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where Φ(⋅) will be a measure of the overall non-covered demands, and will deter-
mine the difference between the distinct approaches.

We consider four different robust objective functions for the mathematical pro-
gramming problem described above to be minimized:

• Maximum non-covered expected demand of the units within the time horizon: 

 This function equilibrates the expected non-covered demand for all the units 
along the whole time horizon.

• Maximum non-covered expected demand of the demand points at each period: 

 Here, one equilibrates, not only units for the whole time horizon, but also the 
different periods, avoiding tiny non-covered demands in a period at the price of 
large non-covered demands in others.

• Maximum non-covered expected demand in each region within the time horizon: 

 where M1,… ,ML ⊂ N is disjoint partition of N in L sets. Instead of finding 
fair solutions for all units and periods, in Φ3 , the units are aggregated by these 
regions, being the criterion to find equilibrate regional solutions. These sets 
represent different non-overlapping regions in which the effect of a distribution 
planning wants to be measured. In practice, they can be determined by the politi-
cal borders of a country (states, regions, districts, etc) in which the policies stab-
lished at each of them want to be evaluated.

• Minimize the total non-covered expected demand: 

 Finally, this function account for the overall non-covered demand for all sce-
narios, units and period along the time horizon.

The specific shape of the objective functions, among those described above, that is used 
in our decision tool must be chosen by the decision maker based on its own preferences. 

Φ1(s, x, y;Ω) = max
i∈N

∑

�∈Ω

p�
∑

t∈T

NCD
t�

i
.

Φ2(s, x, y;Ω) = max
i∈N

max
t∈T

∑

�∈Ω

p�NCD
t�

i
.

Φ3(s, x, y;Ω) = max
k=1,…,L

∑

�∈Ω

p�
∑

i∈Mk

∑

t∈T

NCD
t�

i
.

Φ4(s, x, y;Ω) =
∑

�∈Ω

p�
∑

i∈N

∑

t∈T

NCD
t�

i
.
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Φ1 allows one to find fair solutions by units (e.g., hospitals) taking into account the 
most harmed ones, in terms of the non covered demand, while in Φ3 , the fairness is 
measured by regions instead of single units. Objective Φ2 also accounts for equilibrat-
ing the non covered demand by periods, avoiding low non covered demand in some 
periods at the price of high non covered demands in others. Finally, Φ4 is the classical 
averaged measure which allows to globally minimize the non covered demand, which 
may harm some units to benefit others. The decision maker may also run all the models 
and, in view of the results, decide the most reasonable situation.

Apart from the four objective functions Φ1,… ,Φ4 , we also consider in our approach 
their max-regret counterparts. For any � ∈ Ω we denote by Φ∗(�) the optimal value of 
the problem above but only under scenario � ∈ Ω , i.e.,

for any of the objective functions defined above ( Φ ∈ {Φ1,Φ2,Φ3,Φ4}).
We define the regret of a solution (x, y, s) under scenario � ∈ Ω as:

that is, the difference between the actual evaluation in the global objective function 
Φ ∈ {Φ1,Φ2,Φ3,Φ4} of feasible solution (s, x, y) under scenario � and the optimal 
value obtained for such a single scenario �.

The minmax regret criterion seeks a solution minimizing the maximum regret 
among all scenarios, that is, it seeks a solution whose value is as close as possible 
to the optimal value for every scenario (see, e.g. Aissi et al. (2009); Ben-Tal et al. 
(2009); Kasperski (2008); Kouvelis and Yu (1997) and the references therein). The 
regret version of ( StochP ) is:

The above formulation can be equivalently rewritten as:

Φ∗(�) ∶= min Φ(s, x, y;{�})

s.t. (C1) − (C6),

st
i
∈ ℤ+, ∀i ∈ N, t ∈ T ,

xt
ij
∈ ℤ+, y

t
ij
∈ {0, 1}, ∀(i, j) ∈ W, t ∈ T ,

ΦRegret (s, x, y;�) = Φ(s, x, y;{�}) − Φ∗(�),

min max
�∈Ω

ΦRegret (s, x, y;�)

s.t. (C1) − (C6),

st
i
∈ ℤ+, ∀i ∈ N, t ∈ T ,

xt
ij
∈ ℤ+, y

t
ij
∈ {0, 1}, ∀(i, j) ∈ W, t ∈ T .
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for each Φ ∈ {Φ1,Φ2,Φ3,Φ4} , resulting in four alternative objective functions 
Φ

Regret

1
 , ΦRegret

2
 , ΦRegret

3
 , ΦRegret

4
.

4  Math‑Heuristic procedure

The mathematical programming formulations described in Sect.  3 involve integer 
variables to represent the decision variables concerning the deliveries (x) and the 
shared amounts (s). Furthermore, they use other sets of auxiliary binary and con-
tinuous variables in order to adequately represent the constraints and the objective 
functions, as y or those that allow to model the excess of stock or the nonnegative 
non-covered demand. Thus, the Mixed Integer Linear Programming (MILP) model 
becomes hard to solve when the number of units (N), periods (T) and scenarios ( Ω ) 
is large, as usual. Actually, using the real-data of the COVID-19 case in Spain that 
we analyze in Sect.  5 ( |N| = 106 , |T| = 49 and |Ω| = 3 ), the optimization solver 
(Gurobi) was not even able to load the model in 12 hours.

In this section, we describe a math-heuristic approach that allows us to obtain 
good quality feasible solutions for the problem in reasonable computational times, 
but still using mathematical programming tools to solve up to optimality some sub-
problems. The main idea under the heuristic is to split the time horizon in shorter 
time horizons and merge the obtained results of the smaller problems adequately.

In our approach we split T = {1,… , q} into smaller sorted non-overlapping 
subperiods, T1,… , TK with Tk = {tk−1, tk−1 + 1,… , tk − 1} for k = 1,… ,K , where 
1 =∶ t0 < t1 < ⋯ < tK ∶= q . Although one may solve the problem at each of the sets 
Tk instead of the whole T, the obtained solution is not feasible for our problem since 
the initial stock at the beginning of each subperiod is not defined, except for the first 
interval. To overcome this difficulty we propose an approach to adequately glue the 
obtained solutions to construct a feasible solution of the original problem. For the 
sake of this gluing process, instead of solving the problems within the time periods 
T1,… , TK , we consider the subperiods T+

1
,… , T+

K
 , where T+

k
= Tk ∪ {tk} , i.e., each 

subperiod is linked with the next subperiod throught a single time instant. Next, 
the MILP is solved for T+

1
 , calculating the reallocation and sharing policies for that 

interval, for all its time periods instead those of the last one, t1 , where, instead, we 
compute the excess of each unit at that period. This excess is used as input of the ini-
tial stock for solving the next subperiod, T+

2
 . The process is repeated until the com-

plete execution of all the subperiods is performed. Observe that, unless delivering 
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times are zero, the x and y variables in the last period of each interval are zero, 
since it is not possible to cover any demand. The values of the x and s-variables are 
sequentially obtained, while the value of the objective function (for each of them) 
has to be constructed once the procedure is terminated. In Algorithm 1 we show the 
pseudocode of proposed procedure.

Proposition 1 Algorithm 1 provides a feasible solution for ( StochP).

Proof Observe that at each time period, t, the obtained solution verifies all the con-
straints of the model, except ( C1 ) and ( C6 ) which depend on the auxiliary H-var-
iables, since they are separable by the index t. For the case of ( C1 ) and ( C6 ), they 
depend on the H-variables which were defined as:

Thus, they depend on the amount of product received and delivered until the previ-
ous period, and also on the stock accumulated until that period (which are accumu-
lated from the initial period to period t). Let us denote by:

the amount of available product in unit i at period t ∈ Tk before attending the 
demand of the unit, but after receiving (from other units or shared by its region) 
equipment and delivering, where

Ht�
i

= max{0, St
i
+ Rt

i
− D

(t−1)

i
− dt�

i
}.

ht
i
(k) = St

i
(k) + Rt

i
(k) − D

(t−1)

i
(k), for all i ∈ N,� ∈ Ω,
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for k ∈ {1,… ,K} , i ∈ N and t ∈ Tk.
Note that this values are the subperiod counterparts of the global variables 

defined in our model.
For t ∈ Tk we get that:

Thus, Ht�
i

= max{0, ht
i
(k) − dt�

i
} if t ∈ Tk . Hence, the H-variables in our model are 

adequately recovered from the solutions obtained solving the problem by subperi-
ods. Since for each of the subproblems on T+

k
 , the constraints:

are verified for t ∈ Tk and i ∈ N , � ∈ Ω and k ∈ {1,… ,K} , then ( C1 ) and ( C6 ) are 
also verified.   ◻

From the above result, we get that our procedure provides a feasible solution to 
our problem, and then gives us upper bounds for the exact optimal values of our 
problems.

5  Case study: reallocation and sharing of ventilators in Spain

One of the main causes for the critical situation in hospitals during the COVID-
19 crisis in Spain was, like in most of the countries, the high demand of invasive 
mechanical ventilation among severe patients, together with the lack of this resource 
in some hospitals around the country. Invasive mechanical ventilation is used to 
assist patients with serious breathing problems (Tobin 2001; NHLBI n.d.).

St
i
(k) = s0

i
(k) +

∑

j ∈ P ∶

i ∈ Nj

∑

t�≤t

st
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ij
,
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i
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t� + �ji ≤ t
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,
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,

hti(k) = Stki + Rtk
i − D(tk−1)

i +
∑

j ∈ P:
i ∈ Nj

∑

t′≤t
st′ij +

∑

j ∈ N:
(j, i) ∈ W

∑

tk−1 ≤ t′ ≤ t:
t′ + �ji ≤ t

xt′ji −
∑
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∑
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xt′ij

= Sti + Rt
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i
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We devote this section to analyze the reallocation and sharing of invasive 
mechanical ventilators (from now on ventilators) in two regions in Spain with dif-
ferent demand distribution during the first wave: the region of Madrid, in which 
the pandemic caused a large amount of critical patients and dead, and the region 
of Andalucía, in which the situation was slightly less critical. We use the proposed 
mathematical programming models to determine if the covered demand of patients 
needing a ventilator could have been significantly improved if reallocation and shar-
ing would have been applied during the first COVID-19 wave, the 49 days from 
March 8th to April 25th, 2020.

Even thought we focus in the reallocation of ventilators, as already mentioned, 
any other type of health equipment could be considered for sharing and allocation.

5.1  Input information

In what follows we describe the input information that we use in our models as well 
as the results obtained after running them. All the input information that we use 
in our experiments are available in the GitHub repository https:// github. com/ vblan 
coOR/ Redis tribu tionC OVID19.

5.2  Graph structure

We consider two types of graph structures trying to simulate possible real networks 
of the regions of Madrid and Andalucía. While the region of Madrid has 51 hospi-
tals, the region of Andalucía has 106.

Note that being the graph structure an input, it can be modified to adjust the real-
ity of the regions. In particular, we consider two types of graphs in our experiments:

Complete (C): We consider a complete graph in which all nodes (units) are con-
nected bidirectionally.
Logistic Centers (LC): We incorporate logistic centers of provinces and regions, 
and we consider that each hospital of a province is only bidirectionally linked 
with the logistic center of the province, and the logistic centers of the provinces 
are linked through the regional logistic center. For each of the two considered 
regions the situation is different:

Fig. 2  Graph structure with 
logistics centers in Andalucía

https://github.com/vblancoOR/RedistributionCOVID19
https://github.com/vblancoOR/RedistributionCOVID19
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– Region of Madrid: Since this region has a single province, we assume that the 
unique logistic center is located in the city of Madrid in Hospital de la Paz.

– Region of Andalucía: In this region there exist a logistic center in each of its 
eight provinces. We assume that the regional logistic center is located in Hos-
pital de Antequera in Málaga (geographical center of Andalucía). This graph 
has 105 arcs. In Fig. 2, we show, this graph structure in this region.

For the region of Madrid a single N1 region is considered (containing the 51 hos-
pitals in the region). In Andalucía, we consider N1,… ,N8 as the sets containing 
each of the hospitals in the different provinces. The sets M for the objective func-
tions Φ3 and ΦRegret

3
 coincide with the N-sets, that is, the regions for which fair solu-

tions are desired are the same as those for which the sharing policies are designed.
Furthermore, in Andalucía, for the LC-graph structure, we also use the set N9 

containing the eight logistic centers (but it is not included in the M-sets used in the 
Φ3-objective functions).

5.3  Initial stocks

The initial number of invasive mechanical ventilators in each hospital is crucial to 
conduct an accurate study. However, these official stocks were not publicly available 
in Spain. In order to estimate them we collected information from different sources. 
Since the main reason for hospitalizing a patient in an ICU is to provide ventilatory 
support (Tobin 2001), we assume that this number coincides with the number of 
ICU beds. Note that these amounts may be slightly larger due to extra ventilators sit-
uated at other types of beds in some hospitals. This underestimation may be favora-
ble since those ventilators are available for the hospitals in case more patients than 
the estimated need a ventilator. The proportion of ICU beds in public and private 
hospitals of each region (Datadista n.d.) together with the number of beds in each 
hospital  (Catálogo  Nacional de  Hospitales 2019) allows us to estimate the initial 
stock of ventilators of each hospital.

5.4  Extra stock

The extra stock at each time period indicates the new available ventilators to share 
(if any) in that period among the hospitals of a given region. During the COVID-
19 crisis different national or regional governments have bought and received extra 
invasive mechanical ventilators as reported by some national newspapers (Libertad 
Digital 2020; Hoy 2020; El Médico Interactivo 2020; Libre Mercado 2020; El País 
2020; El Periódico 2020; RTVE 2020among many others). The situation in the two 
considered regions is different:

• Region of Madrid: In this region, the regional government received 351 venti-
lators at the end of March and 213 ventilators at the early April (El Periódico 
2020). It also received ventilators from other regions of Spain: Galicia lent 
11 ventilators on March 27th, Andalucía 22 ventilators at the end of March, 



374 V. Blanco et al.

1 3

Extremadura 10 ventilators at the end of March and Murcia 9 ventilators in 
early April (El País 2020; Libertad Digital 2020; Hoy 2020; El Médico Inter-
activo 2020).

• Region of Andalucía: In Andalucía, there is no public information about 
the extra stock. However, a significant issue in this region is that Andalucía 
started to manufacture its own ventilators under the project Andalucía Respira 
(Andalusia Government 2020; El País 2020). Although these ventilators fulfill 
the quality requirements established by the Ministry of Health, we did not find 
any information stating that they have been distributed by the region yet.

Apart from the above, some extra stock was provided from the Spanish Govern-
ment and private donations. A total of 2400 ventilators was received to share 
among all the regions (Libre Mercado 2020; RTVE 2020); but there is no infor-
mation about when and where the ventilators were allocated. We assume that 
these ventilators were distributed among the regions by means of population. 
Hence, in the cases of Madrid and Andalucía, we estimate that they received, in 
the second week of April, 340 and 429 ventilators, respectively.

5.5  Capacities

• Qi : The maximum number of deliveries from a hospital depends on the graph 
structure. For the C-Graph we set it to 5, to avoid extra work on preparing 
packages of ventilators for different trucks. For LC-graph, the parameter for 
the logistic centers was fixed to infinity, while for the hospitals, we set it to 0.4 
times the number of adjacent nodes to the logistic center.

• �i : The percentage of excess that can be delivered from a hospital was fixed to 
0.8.

• gi : The amount of ventilators to be delivered by each hospitals is set to 20, as 
a measure of transport capacity.

• ai : The storage limit for the hospitals is set to twice the number of ICU beds in 
the hospital. For logistic centers the parameter is set to infinity.

5.6  Shipping times

The arc weights of the graphs are defined based on real geographical distance 
between the nodes. We compute the shortest paths between each pair of nodes (in 
each graph structure) considering real geographical distance and then, we trans-
late them to travel times, assuming that the largest distance is traversed in one 
day. The remaining travel times are computed proportionally to this largest travel 
time of one day. Apart of that, we include in the shipping times different graph-
dependent processing times: one day for the C-graph and 0.1 days per used logis-
tic center in the LC-graph.
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5.7  Demands

We estimated the daily ventilator demands based on real ICU demands of COVID-
19 patients in Madrid and Andalucía, published by the Spanish and Andalu-
cía governments from 08/03/2020 to 25/04/2020 (first COVID-19 wave data) 
(COVID19. Spain dataset n.d.; COVID19. Andalusian dataset n.d.).

This data was collected differently in each region. The region of Madrid reported 
the daily ICU demands, and then, ready to be incorporated to the models. On the 
other hand, the government of Andalucía reported the accumulated demand of ICU. 
Tons of studies have been published during the pandemic all around the world in 
which different estimations of the demand were proposed with different statistical 
methodologies (see e.g., Benítez-Peña et  al. (2021); Garcia-Vicuña et  al. (2022); 
Mahmoudi et  al. (2020, 2021, 2021); Maleki et  al. (2020, 2020), among many 
others). We adopt a simplified estimation of the demand. We estimated the daily 
demands as follows: for each hospital, we compute the daily number or new COVID-
19 patients in ICU and we assume that each of them stays in ICU 21 days (the aver-
age number of days the patients stay on a ICU bed during the first wave  (RTVE 
2020)). Scenario “Real” was created with these estimated demands. This scenario 
can be considered as the closest to the real situation that Spain lived during the first 
wave.

Using these demands, we randomly generate two more scenarios as follows:

• Choose r−
j
, r+

j
 uniformly distributed in [0, 0.5], for each province j ∈ P.

• Choose r̃−
i
 (resp. r̃+

i
 ) uniformly distributed in [0, r−

j
] (resp. [0, r+

j
] ), for each hospi-

tal i in the province, j, and set, for each scenario the following demands:

“Pessimistic” Scenario : d̃t
i
= (1 + r̃+

i
)dt

i
, i ∈ Nj, j ∈ P, t ∈ T .
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Fig. 3  Real demands of ventilators for Region of Andalucía (left) and Region of Madrid (right)
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“Optimistic” Scenario: d̃t
i
= (1 − r̃−

i
)dt

i
, i ∈ Nj, j ∈ P, t ∈ T .

   In case d̃t
i
= 0 we set random integer value in {1, 2} . We assume that the 

three scenarios are equally likely.

In Fig. 3, we show the demands on Scenario Real for the two regions.
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Fig. 4  Non-covered demand (red lines) and available stock (green lines) at each time period, if the Real 
scenario occurs, with (continuous line) and without (dashed line) redistribution, in Madrid, for LC-graph 
and objective ΦRegret
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5.8  Results

The models have been coded in Python 3.7 and using as optimization solver Gurobi 
9.0 in a MacBook Pro with a Core 2 Duo CPU clocked at 2,66 GHz and 4GB of 
RAM memory. We have run our math-heuristic algorithm partitioning the time hori-
zon into 12 subperiods. A time limit of 1 hour was fixed for solving the subprob-
lems, although none of our models reached such a limit.

We have applied our approach to the regions of Madrid and Andalucía. Moreover, 
we have also run the models in case no sharing is allowed between the hospital. The 
aim is to compare the obtained redistribution and sharing policies to the real situa-
tion in Spain, in which redistribution was not implemented. However, since there is 
no information about the sharing policies of the extra stock in the real situation, we 
assume that it was performed optimally according to our models (only fixing in them 
to 0 the x-variables). Note that we compare our redistribution and sharing proposal 
to a situation which is better than the actually implemented.

In the following sections, we analyze the results and conclusions obtained through 
the numerical study. We illustrate them with different graphics and figures for par-
ticular configurations of scenarios, objective functions or types of graphs. However, 
the rest of the figures for the remaining configurations of scenarios, functions or 
graphs can be found in https:// github. com/ vblan coOR/ Redis tribu tionC OVID19 for 
the interested readers.

5.8.1  Redistribution vs. no redistribution

We start by comparing the non-covered demand, that is, the number of patients 
needing a ventilator that were not attended due to the lack of this resource, if the 
proposed redistribution is carried out, or not. In Figs. 4 and 5, in each of the pic-
tures, the continuous red line represents the total non-covered demand at each time 
period if the Real scenario occurs and redistribution is allowed. The dashed red 
line shows the total non-covered demand at each time period, if the Real scenario 
happens and only the redistribution of the extra stock is allowed, but not the sharing 
of available stock. Remind that this second case represents a situation better than 
what was actually applied in Spain, since in this case, the redistribution of the extra 
stock is done optimally. For simplicity, we will refer to this second case as the with-
out redistribution case. The continuous and dashed green lines represent, respec-
tively, the total available stock in the two described situations: with or without redis-
tribution. Notice that we solve the models taking into account that any of the three 
considered scenarios can occur, but we represent in these figures the actual behavior 
if the obtained solution is implemented when the Real scenario happens.

We show in Fig. 4 the case of the Madrid region, for the graph with logistic cent-
ers and objective ΦRegret

2
 in the left picture, and for the complete graph and objective 

Φ1 in the right one. We can observe that in all the cases, when redistribution is not 
carried out, there exist always available stock but also demand that is not covered. 
For instance, in the second picture we see that in period 25, there are around 250 
available ventilators but around 650 patients that are not attended. However, when 
redistribution is considered, in the periods in which the non-covered demand is 

https://github.com/vblancoOR/RedistributionCOVID19
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positive, the available stock is almost zero, that is, the available stock is redistributed 
and used. This implies a significant decrease in the number of non-treated patients. 
For instance, in the same case described before, the non-covered demand reduces to 
less that 470. A similar behaviour can be observed in the rest of objectives, graphs 
and scenarios.

In Fig.  5, we show the case of the Andalucía region, for a graph with logistic 
centers and objective Φ4 (right), and for the complete graph and objective function 
Φ

Regret

3
 (left). In this case, we can observe that most of the demand is covered in 
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Fig. 6  Amount of redistributed stock throught the LC-graphs, at each time period, for the objective func-
tion Φ

3
 , for the region of Madrid (left) and the region of Andalucía (right)
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Fig. 7  Amount of redistributed stock throught the C-graphs, at each time period, for the objective func-
tion ΦRegret

3
 , for the region of Madrid (left) and the region of Andalucía (right)
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both cases, with and without redistribution. The reason for this is the availability 
of stock to cover all the demand in most of the periods. However, there is a critical 
period, between t = 25 and t = 33 , in which the demand increases (see Fig. 3) and 
the non-covered demand is positive for the case without redistribution, even thought 
there exist more than 200 available ventilators. It can also be observed that for some 
objective functions, the non-covered demand in the redistribution case is also posi-
tive despite existing available stock. The reason for this can be twofold: 1) Since the 
problem is solved using the heuristic described in Algorithm 1 in which the total 
time period is split into smaller periods, the heuristic is not able to anticipate, for 
all the objective functions, the rapid increase of the demand after period 24; 2) the 
collected information for the provinces of Málaga and Sevilla is not accurate, with a 
sudden big increase and decrease in period 27, as can be observed in Fig. 3, which 
can not always be efficiently handled. However, in most of the cases, the total non-
covered demand is lower for the redistribution case, being this value even zero for 
some of the objective functions, as it is the case of Φ4.

We conclude therefore that redistributing the available stock significantly 
increases the number of treated patients.

5.8.2  Comparison of redistribution and sharing policies

We compare in this section the behavior of the redistribution through the time hori-
zon and provinces.

We show in Fig. 6, the number of redistributed ventilators through the LC-graphs 
in the achieved solution, at each time period, for the region of Madrid (left) and 
Andalucía (right) for objective function Φ3 . We also include in such graphics the 
demand curves for the three scenarios. Figure  7 shows the same but for the case 
of C-graphs and objective function ΦRegret

3
 . We can observe that the amount of 

redistributed stock is much higher in the region of Andalucía than in the region 
of Madrid. This is caused by the fact that the number of demanded ventilators in 
Madrid is much greater than such number in Andalucía. The high demand in most 
of the hospitals in Madrid make practically nonexistent the availability of stock to 
share. The existence of stock to redistribute in periods 6 to 10 in Madrid is due to 
the lower demand, and the availability of stock in periods 16, 30 and 32 in Madrid 
in Fig. 6 is due to the entrance of a high quantity of extra stock: 351, 213 and 115 

Fig. 8  Distribution of proportion of extra stock in the provinces of Andalucía: by population (left), by 
our model for LC-graph and Φ

4
 (center), and C-graph and ΦRegret

4
(right)
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ventilators, respectively, to the logistic center that it is later redistributed. This effect 
is not observed in the case of the C-graphs, Fig.  7, because here the extra stock 
is directly distributed among the hospitals, and in this graphic we only show the 
redistribution among hospitals, not the distribution of the extra stock. In the case 
of Andalucía, the highest amounts of shared ventilators coincide with the periods 
in which there is lower demand, and therefore more available stock to redistribute 
anticipating future increases in the demands. In the case of the graphs including 
logistic centers, there exist more periods with redistribution due to the same effect 
explained for the case of Madrid, and also to the fact that the delivery constraints 
imposed to the logistic center are less restrictive than for the hospitals.

Note that we are optimizing the non-covered demand, and hence, the manage-
ment of the available stock could have been done better.

We include in the following Fig. 8, three different pie charts. The first one con-
tains the distribution by proportion of population of the regions in Andalucía. In the 
remaining charts, we show the proportion of extra stock in the obtained solution for 
the model with redistribution and objective functions Φ4 , and ΦRegret

4
 , respectively, 

for LC-graphs in the first case, and C-graphs in the last case. Note that the share of 
extra stock is performed in our model based on the demand required by each hos-
pital and not on population, and then, the pie charts reflect that our model allocates 
the extra stock by demand. We can observe for instance in the diagram for Φ4 and 
LC-graphs, the one in the center, that most of the extra stock is allocated in the prov-
ince of Córdoba, which is not concentrating the highest proportions of population. 
For the case of the C-graph and objective function ΦRegret

4
 , the distribution is not 

mostly concentrated in a single province, it is withal more divided among different 
provinces. However, also in this case, the distribution is not carried out according to 
the proportion of inhabitants. For instance, we can see that despite being Sevilla the 
province with the highest proportion of inhabitants in Andalucía, the proportion of 
extra stock sent to this province (grey) is one of the lowest ones.

In these pie charts we can also observed the previously described effect: the extra 
stock is more distributed into different provinces in the case of the C-graphs than in 
the case of the LC-graphs. This is due to the fact that it is easier to redistribute later 
the available stock from the logistic centers than from the hospitals, and also to the 
fact that the logistic centers have a higher capacity to store stock.

5.8.3  Comparison of non‑covered demand by scenarios

We show in this section, in Figs.  9 and 10, the behaviour of the non-covered 
demand if the achieved solution is implemented in each of the three considered 
scenarios: optimistic (left), real (center) and pessimistic (right). Each graphic in 
each of these figures follows the same style that the graphics presented in Fig. 4. 
Figure 9 illustrates the case of Madrid and objective function ΦRegret

1
 , and Fig. 10 

the case of Andalucía and objective function Φ4 . In both cases we can appreciate 
that the pattern of the non-covered demand is practically the same for the three 
different scenarios, since the tendency of the demand is the same in the three 
scenarios, but, as expected, the higher the amount of demand, the higher the non-
covered demand. For instance, in the worst moment in Madrid and our approach 
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is applied, if optimistic scenario occurs, the non-covered demand is around 250, 
meanwhile if pessimistic scenario occurs, the non-covered demand is more than 
750. For the case without redistribution, these amounts are around 300 and more 
than 1000.
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Fig. 11  Non-covered demand in Madrid at each time period for the LC-graph (red) and C-graph (blue), 
for objective functions ΦRegret

2
 (left) and ΦRegret

4
 (right) if the Real scenario occurs when considereing 

redistribution (color figure online)
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Fig. 12  Non-covered demand in Andalucía at each time period for the LC-graph (red) and C-graph 
(blue), for objective functions Φ

2
 (left) and Φ

4
 (right), if the Real scenario occurs when considereing 

redistribution (color figure online)
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5.8.4  Complete graph vs. logistic center graph

We include in this section a comparison of the non-covered demand for the LC- and 
C-graphs. In Fig. 11, we do it for the case of Madrid and objective functions ΦRegret

2
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Fig. 13  Non-covered demand in Madrid, at each time period, for the regret (dashed line) and not regret 
(continuous line) versions of objective functions Φ

2
 (left) and Φ

4
 (right), for the LC-graph (left) and 

C-graph (right) if the Real scenario occurs when considereing redistribution
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Fig. 14  Non-covered demand in Andalucía, at each time period, for the regret (dashed line) and not 
regret (continuous line) versions of objective functions Φ

4
 (left) and Φ

2
 (right), for the LC-graph (right) 

and C-graph (left) if the Real scenario occurs when considereing redistribution
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and ΦRegret

4
 , and in Fig. 12 for the case of Andalucía and objective functions Φ2 and 

Φ4 . The red line represents the non-covered demand for the LC-graphs, and the blue 
line for the C-graphs. For the case of Madrid, the behavior under both graph struc-
tures is quite similar. Using logistic centers to redistribute the ventilators seems to 
perform a bit worse than not using them for more cases (according to the settings we 
used in the numerical study), but not for all of them. This could be due to the need 
of considering more than one logistic center since the demand is very high. For the 
case of Andalucía, using logistic centers seems to perform better and to lead to less 
high demand peaks. For example, when minimizing the total non-covered expected 
demand, that is, for objective function Φ4 (right graphic in Fig. 12), using logistic 
centers results much better than not using them. 

5.8.5  Different criteria

We compare in this last section the regret version (dashed line) versus the not regret 
version (continuous line) of different objective functions for Madrid in Fig. 13, and 
for Andalucía in Fig. 14. We can observe that for the cases of Madrid included in 
Fig. 14 (objective function Φ2 and LC-graph (left) and Φ4 and C-graph (right)) the 
total non-covered demand of each objective function practically coincides for the 
regret and not regret version. The reason for this could be that the existence of few 
available stock make that the redistribution options are scarce and similar in both 
cases. For the case of Andalucía, the version without regret tends to perform bet-
ter for most of the cases if real scenario occurs. However, there exist cases, see for 
example the case of Φ2 vs ΦRegret

2
 and C-graph (right graphic), for which there exist 

periods that the regret version covers more demand than the version without regret.
In general, this tendency of the regret version to perform worse than the version 

without regret is maybe due to the election we made on the demand scenarios. Note 
that the real scenario, the one for which we are representing the NCD, is approxi-
mately an average of the other the other two scenarios, which benefits the objective 
functions without regret that average over the three scenarios. However, in cases in 
which the demand scenarios differ more, the regret version may perform better.

6  Conclusions and further research

In this paper we propose decision aid tools to determine optimal distribution and 
sharing strategies in pandemic emergency situations to properly equip expanded 
hospitals and field hospitals. The approach is motivated by the COVID-19 pan-
demic in which, in its first wave, a lack of emergency health equipment provoked 
hospitals collapse, and many patients were not adequately treated. Our approach 
allows deciding on how to distribute equipment through a given network of units 
along a time horizon and how to share the extra stock received at some of the 
periods, such that a global measure of the (stochastic) demand of the units is min-
imized. We provide a unified Mixed Integer Linear Programming formulation for 
the problem, that allows to model different distribution networks and different 
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objective (robust and min-max regret) functions. We also propose a divide-et-
conquer math-heuristic approach for the problem that provides feasible solutions 
of the problem in reasonable computational times. Finally, we analyze the case 
of the lack of mechanical invasive ventilators during the COVID-19 health cri-
sis in two different Spanish regions. We run our approach with different settings, 
obtaining as the main conclusion that applying our approach leads to a significant 
increase in the number of severe patients that can be rightly assisted. Further-
more, we observed that an optimal redistribution of the extra stock must be based 
on the demand and not on the distribution of population.

Some extensions of our approach will be the topic of a forthcoming paper. In 
particular, we observe that the use of logistic centers when distributing equipment 
in emergency situations may be advisable in many cases, since they allow a more 
adequate distribution, the non-used equipment storage, quicker deliveries, etc. How-
ever, some regions do not still have the infrastructures of those centers or the ones 
that they have are not sufficient. Also, in emergency situations, it may be useful to 
use field logistic centers during certain periods to improve the distribution of equip-
ment during the demand peaks. In those cases, apart of deciding the amounts to 
be delivered and shared, one must decide where to locate new logistic centers. Our 
approach could be extended to this case with major modifications. In particular, the 
distribution network would not be known and is part of the decision (it depends on 
the position of the logistic centers), and then, it must be incorporated to the model, 
increasing considerably the complexity of the approach proposed in this paper. 
Observe that the model becomes a hub-and-spoke location problem in which the 
flows associated to commodities are decision variables of the model. Also, an inter-
esting extension of this approach would be the incorporation of ordered weighted 
averaging aggregations of the non-covered demands to construct solutions under 
other robust objective functions (see e.g. Blanco et al. 2013, 2014, for an application 
of this type of aggregations in other logistic problems).
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