Ir al contenido

Documat


A spectral characterization and an approximation scheme for the Hessian eigenvalue

  • Autores: Nam Q. Le
  • Localización: Revista matemática iberoamericana, ISSN 0213-2230, Vol. 38, Nº 5, 2022, págs. 1473-1500
  • Idioma: inglés
  • DOI: 10.4171/RMI/1306
  • Enlaces
  • Resumen
    • We revisit the kk-Hessian eigenvalue problem on a smooth and bounded {(k-1)}(k−1)-convex domain in \mathbb{R}^nRn. First, we obtain a spectral characterization of the kk-Hessian eigenvalue as the infimum of the first eigenvalues of linear second-order elliptic operators whose coefficients belong to the dual of the corresponding Gårding cone. Second, we introduce a non-degenerate inverse iterative scheme to solve the eigenvalue problem for the kk-Hessian operator. We show that the scheme converges, with a rate, to the kk-Hessian eigenvalue for all kk. When 2\leq k\leq n2≤k≤n, we also prove a local L^1L1 convergence of the Hessian of solutions of the scheme. Hyperbolic polynomials play an important role in our analysis


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno