Skip to main content

Data Augmentation for Industrial Prognosis Using Generative Adversarial Networks

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2020 (IDEAL 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12490))

Abstract

The Industry 4.0 revolution allows monitoring and intelligent processing of big amounts of data. When monitoring certain assets, very few data is found for operation under faulty conditions because the cost of not operating properly is unacceptable and thus preventive strategies are put in practice. Because machine learning algorithms are data exhaustive, synthetic data can be created for these cases. Deep learning techniques have been proven to work very well for these cases. Generative Adversarial Networks (GANs) have been deployed in numerous applications with data augmentation objectives, but not so much for balancing unidimensional series with few data. In this paper, a GAN is applied in order to augment data for assets operating under faulty conditions. The proposed method is validated on a real industrial case, yielding promising results with respect to the case with no strategy for class imbalance whatsoever.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beyan, C., Fisher, R.: Classifying imbalanced data sets using similarity based hierarchical decomposition. Pattern Recogn. 48(5), 1653–1672 (2015)

    Article  Google Scholar 

  2. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16(9), 321–357 (2002)

    Article  Google Scholar 

  3. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  4. Diez-Olivan, A., Del Ser, J., Galar, D., Sierra, B.: Data fusion and machine learning for industrial prognosis: trends and perspectives towards industry 4.0. Inf. Fus. 50, 92–111 (2019)

    Google Scholar 

  5. Diez-Olivan, A., Penalva, M., Veiga, F., Deitert, L., Sanz, R., Sierra, B.: Kernel density-based pattern classification in blind fasteners installation. In: Martínez de Pisón, F.J., Urraca, R., Quintián, H., Corchado, E. (eds.) HAIS 2017. LNCS (LNAI), vol. 10334, pp. 195–206. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59650-1_17

    Chapter  Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf

  7. Gui, J., Sun, Z., Wen, Y., Tao, D., Ye, J.: A review on generative adversarial networks: Algorithms, theory, and applications (2020)

    Google Scholar 

  8. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: IEEE International Joint Conference on Neural Networks, pp. 1322–1328 (2008)

    Google Scholar 

  9. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data Eng. 21(9), 1263–1284 (2009)

    Article  Google Scholar 

  10. Jiang, W., Hong, Y., Zhou, B., He, X., Cheng, C.: A GAN-based anomaly detection approach for imbalanced industrial time series. IEEE Access 7, 143608–143619 (2019)

    Article  Google Scholar 

  11. Lee, T., Lee, K.B., Kim, C.O.: Performance of machine learning algorithms for class-imbalanced process fault detection problems. IEEE Trans. Semicond. Manuf. 29(4), 436–445 (2016)

    Article  Google Scholar 

  12. Madhu, A., Kumaraswamy, S.: Data augmentation using generative adversarial network for environmental sound classification. In: European Signal Processing Conference, pp. 1–5 (2019)

    Google Scholar 

  13. Mehta, K., Kobti, Z., Pfaff, K., Fox, S.: Data augmentation using CA evolved GANs. In: IEEE Symposium on Computers and Communications, pp. 1087–1092 (2019)

    Google Scholar 

  14. Oh, J.H., Hong, J.Y., Baek, J.G.: Oversampling method using outlier detectable generative adversarial network. Expert Syst. Appl. 133, 1–8 (2019)

    Article  Google Scholar 

  15. Ortego, P., Diez-Olivan, A., Del Ser, J., Veiga, F., Penalva, M., Sierra, B.: Evolutionary LSTM-FCN networks for pattern classification in industrial processes. Swarm Evol. Comput. 54, 100650 (2020). https://doi.org/10.1016/j.swevo.2020.100650

    Article  Google Scholar 

  16. Shao, S., Wang, P., Yan, R.: Generative adversarial networks for data augmentation in machine fault diagnosis. Comput. Ind. 106, 85–93 (2019)

    Article  Google Scholar 

  17. Sharma, A., Jindal, N., Thakur, A.: Comparison on generative adversarial networks - a study. In: International Conference on Secure Cyber Computing and Communication, pp. 391–396 (2018)

    Google Scholar 

  18. Shorten, C., Khoshgoftaar, T.M.: A survey on image data augmentation for deep learning. J. Big Data 6(1), 60 (2019)

    Article  Google Scholar 

  19. Wang, K., Gou, C., Duan, Y., Lin, Y., Zheng, X., Wang, F.: Generative adversarial networks: introduction and outlook. IEEE/CAA J. Automatica Sinica 4(4), 588–598 (2017)

    Article  MathSciNet  Google Scholar 

  20. Xie, Y., Zhang, T.: Imbalanced learning for fault diagnosis problem of rotating machinery based on generative adversarial networks. In: 2018 37th Chinese Control Conference (CCC), pp. 6017–6022, July 2018

    Google Scholar 

Download references

Acknowledgments

This project was supported by the Spanish Centro para el Desarrollo Tecnologico Industrial (CDTI, Ministry of Science and Innovation) through the “Red Cervera” Programme (AI4ES project), as well as by the Basque Government through EMAITEK and ELKARTEK (ref. KK-2020/00049) funding grants. J. Del Ser also acknowledges support from the Department of Education of the Basque Government (Consolidated Research Group MATHMODE, IT1294-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patxi Ortego .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ortego, P., Diez-Olivan, A., Del Ser, J., Sierra, B. (2020). Data Augmentation for Industrial Prognosis Using Generative Adversarial Networks. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12490. Springer, Cham. https://doi.org/10.1007/978-3-030-62365-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62365-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62364-7

  • Online ISBN: 978-3-030-62365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics