Skip to main content
Log in

Abstract

The aim of this paper is to present a short historical/scientific review on nonholonomic mechanics, with special emphasis on the latest developments. Indeed, the use of differential geometric tools has permitted in the last 25 years a fast and unsuspected advance in the theory, particularly in a better understanding of symmetries and reduction, Hamilton–Jacobi theory and integrability characterizations, and the construction of suitable geometric integrators. The last part of the paper is devoted to discuss the latest results in Hamilton–Jacobi theory for nonholonomic dynamics using our own approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham R., Marsden J.E.: Foundations of Mechanics, 2nd edn. Bejamin, New York (1978)

    MATH  Google Scholar 

  2. Agrachev A.A.: Rolling balls and octonions. Proc. Steklov Inst. Math. 258(1), 13–22 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, V.I.: Mathematical Methods of Classical Mechanics. In: Graduate Texts in Mathematics, vol. 60. Springer, Berlin (1978)

  4. Arnold V.I., Kozlov V.V., Neishtadt A.I: Dynamical Systems III. Springer, Berlin (1988)

    Google Scholar 

  5. Balseiro P., de León M., Marrero J.C., Martín de Diego D.: The ubiquity of the symplectic Hamiltonian equations in mechanics. J. Geom. Mech. 1(1), 1–34 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Balseiro P., Solomin J.E.: Orthogonal projections and the dynamics of constrained mechanical systems. Q. Appl. Math 66(3), 437446 (2008)

    MathSciNet  Google Scholar 

  7. Balseiro P., Solomin J.E.: On generalized non-holonomic systems. Lett. Math. Phys. 84(1), 1530 (2009)

    MathSciNet  Google Scholar 

  8. Barbero-Liñán M., Muñoz-Lecanda M.: Geometric approach to Pontryagin’s maximum principle. Acta Appl. Math. 108(2), 429–485 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barbero-Liñán M., Muõz-Lecanda M.: Constraint algorithm for extremals in optimal control problems. Int. J. Geom. Methods Mod. Phys. 6(7), 1221–1233 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barbero-Liñán M., Muñoz-Lecanda M.: Strict abnormal extremals in nonholonomic and kinematic control systems. Discret. Contin. Dyn. Syst. Ser. S 3(1), 1–17 (2010)

    Article  MATH  Google Scholar 

  11. Bates L.: Examples of singular nonholonomic reduction. Rep. Math. Phys. 42, 231–247 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bates L., Graumann H., MacDonnell C.: Examples of gauge conservation laws in nonholonomic systems. Rep. Math. Phys. 37, 295–308 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bates L., Snyaticki J.E.: Nonholonomic reduction. Rep. Math. Phys. 32(1), 99–115 (1992)

    Article  Google Scholar 

  14. Benenti, S.: Geometrical aspects of the dynamics of non-holonomic systems. Journeées relativistes, Univ. de Chambery (1987)

  15. Bicchi A., Chitour Y., Marigo A.: Reachability and steering of rolling polyhedra: a case study in discrete nonholonomy. IEEE Trans. Autom. Control 49(5),–726 (2004)

    Article  MathSciNet  Google Scholar 

  16. Binz E., de León M., Martínde Diego D., Socolescu D.: Nonholonomic constraints in classical field theories. Rep. Math Phys 49(2–3), 151–166 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bloch, A.M.: Nonholonomic mechanics and control. In: Interdisciplinary Applied Mathematics, vol. 24. Systems and Control, pp. xx+483. Springer, New York (2003)

  18. Bloch A.M., Krishnaprasad P.S., Marsden J.E., Murray R.M.: Nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 136, 21–99 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bloch A.M., Marsden J.E., Zenkov D.V.: Nonholonomic dynamics. Notice AMS 52(3), 324–333 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Bondi H.: The rigid body dynamics of unidirectional spin. Proc. R. Soc. Lond. A 405, 265–274 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  21. Borisov A.V., Mamaev I.S.: On the history of the development of the nonholonomic mechanics. Regul. Chaotic Dyn. 7(1), 43–47 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bullo, F., Lewis, A.D.: Geometric control of mechanical systems. In: Modeling, analysis, and design for simple mechanical control systems. Texts in Applied Mathematics, vol. 49, pp. xxiv+726. Springer, New York (2005)

  23. Cantrijn F., Cortés J., de León M., Martín de Diego D.: On the geometry of generalized Chaplygin systems. Math. Proc. Camb. Philos. 132(2), 323–351 (2002)

    MATH  Google Scholar 

  24. Cantrijn F., de León M., Martín de Diego D.: On almost Poisson structures in nonholonomic mechanics. Nonlinearity 12, 721–737 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Cantrijn F., de León M., Marrero J.C., Martín de Diego D.: Reduction of constrained systems with symmetries. J. Math. Phys. 40, 725–820 (1999)

    Article  Google Scholar 

  26. Cantrijn F., de León M., Marrero J.C., Martín de Diego D.: On almost Poisson structures in nonholonomic mechanics II: the time-dependent framework. Nonlinearity 13(4), 1379–1409 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Cariñena J.F., Rañada M.F.: Lagrangian systems with constraints: a geoemtric approach to the method of Lagrangian multipliers. J. Phys. A Math. Gen. 26, 1335–1351 (1993)

    Article  MATH  Google Scholar 

  28. Cariñena J.F., Gràcia X., Marmo G., Martínez E., Muñoz-Lecanda M., Rom-Roy N.: Geometric Hamilton–Jacobi theory for nonholonomic dynamical systems. Int. J. Geom. Methods Mod. Phys. 7(3), 431–454 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Cendra H., Grillo S.: Generalized nonholonomic mechanics, servomechanisms and related brackets. J. Math. Phys 47(2), 022902 (2006)

    Article  MathSciNet  Google Scholar 

  30. Cendra H., Grillo S.: Lagrangian systems with higher order constraints. J. Math. Phys 48(5), 052904 (2007)

    Article  MathSciNet  Google Scholar 

  31. Cendra H., de León M., Iborty A., Martín de Diego D.: A generalization of Chetaev’s principle for a class of higher order nonholonomic constraints. J. Math. Phys. 45(7), 2785–2801 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  32. Chaplygin, S.A.: Analysis of the Dynamics of Nonholonomic Systems. Classical Natural Sciences, Moscow (1949)

  33. Chaplygin, S.A.: Selected Works on Mechanics and Mathematics. State Publ. House, Technical– Theoretical Literature, Moscow (1954)

  34. Coleman M., Holmes P.: Motions and stability of a piecewise holonomic system: the discrete Chaplygin Sleigh. Regul. Chaotic Dyn. 4(2), 1–23 (1999)

    Article  MathSciNet  Google Scholar 

  35. Cortés, J.: Geometric, control and numerical aspects of nonholonomic systems. In: Lecture Notes in Mathematics, vol. 1793. Springer, Berlin (2002)

  36. Cortés J., de León M., Martín de Diego D., Martínez S.: Geometric description of vakonomic and nonholonomic dynamics Comparison of solutions. SIAM J. Control Optim. 41(5), 1389–1412 (2002)

    Article  MathSciNet  Google Scholar 

  37. Cortés J., Jorge de León M., Marrero J.C., Martínez E.: Nonholonomic Lagrangian systems on Lie algebroids. Discret. Contin. Dyn. Syst. 24(2), 213–271 (2009)

    Article  MATH  Google Scholar 

  38. Cortés J., de León M., Martínde Diego D., Martìnez S.: Mechanical systems subjected to generalized non-holonomic constraints. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci 457(2007), 651–670 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Cortés J., Martínez S.: Non-holonomic integrators. Nonlinearity 14(5), 1365–1392 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  40. Cushman R., Kemppainen D., Sniatycki J., Bates L.: Geometry of nonholonomic constraints. Rep. Math. Phys. 36, 275–286 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. Chetaev N.G.: On Gauss principle. Izv. Fiz-Mat. Obsc. Kazan Univ. 7, 68–71 (1934)

    Google Scholar 

  42. Dazord P.: Mécanique Hamiltonienne en présence de constraintes. Ill. J. Math. 38, 148–175 (1994)

    MathSciNet  MATH  Google Scholar 

  43. Delassus E.: Sur les liaisons non linéeaires. C.R. Acad. Sci. Paris 153, 626–628 (1911)

    MATH  Google Scholar 

  44. Eden R.J.: The Hamiltonian dynamics of non-holonomic systems. Proc. Roy. Soc. London. Ser. A. 205, 564–583 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  45. Eden R.J.: The quantum mechanics of non-holonomic systems. Proc. Roy. Soc. Lond. Ser. A. 205, 583–595 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  46. Ehlers, K., Koiller, J., Montgomery, R., Rios, P.M.: Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin Hamiltonization. In: The breadth of symplectic and Poisson geometry, 75120, Progr. Math., vol. 232. Birkhäuser Boston, Boston, MA (2005)

  47. Euler L.: De minimis oscillationibus corporum tam rigidorum quam exililium, methodus nova et facilis. Commentarii Academiae scientiarum imperialis Petropolitanae 7, 99–122 (1740)

    Google Scholar 

  48. Fedorov Yu.N., Zenkov D.V.: Discrete nonholonomic LL systems on Lie groups. Nonlinearity 18, 211–2241 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  49. Fedorov Y.N., Jovanovic B.: Hamiltonization of the generalized Veselova LR system. Regul. Chaotic Dyn. 14(4-5), 495–505 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  50. Ferraro S., Iglesias D., Martín de Diego D.: Momentum and energy preserving integrators for nonholonomic dynamics. Nonlinearity 21(8), 1911–1928 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  51. Ferrers N.M.: Extension of Lagrange’s equations. Q. J. Pure Appl. Math. 12(45), 1–5 (1872)

    Google Scholar 

  52. Ferraro, S., Iglesias, D., Martín de Diego, D.: Numerical and geometric aspects of the nonholonomic SHAKE and RATTLE methods, AIMS Proceedings (2011) (in press)

  53. Fomenko A.T.: Visual and hidden symmetry in geometry. Symmetry : unifying human understanding Part 1. Comput. Math. Appl. 17(1–3), 301–320 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  54. García P.L., García A., Rodrigo C.: Cartan forms for first order constrained variational problems. J. Geom. Phys. 56(4), 571–610 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  55. García, P.L., Rodrigo, C.: Cartan forms and second variation for constrained variational problems. In: Geometry, integrability and quantization, pp. 140–153. Softex, Sofia (2006)

  56. García P.L., Fernández A., Rodrigo C.: Variational integrators for discrete Lagrange problems. J. Geom. Mech. 2(4), 343–374 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  57. Giachetta G.: Jet methods in nonholonomic mechanics. J. Math. Phys. 33, 1652–1665 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  58. Grabowski J., de León M., Marrero J.C., Martínde Diego D.: Nonholonomic constraints: a new viewpoint. J. Math. Phys 50(1), 013520 (2009)

    Article  MathSciNet  Google Scholar 

  59. Gràcia X., Marín-Solano J., Muñoz-Lecanda M.C.: Some geometric aspects of variational calculus in constrained systems. Rep. Math. Phys. 51, 127–148 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  60. Gràcia, X., Martín, R.: Regularity and symmetries of nonholonomic systems. J. Phys. A Math. Gen. 38, 1071–1087 (2005). doi:10.1088/0305-4470/38/5/009

    Google Scholar 

  61. Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration, Structure-Preserving Algorithms for Ordinary Differential Equations. In: Springer Series in Computational Mathematics, vol. 31. Springer, Berlin (2002)

  62. Hertz, H.: The principles of mechanics. In: Introduction by Robert S. Cohen, xlii+274 pp. Dover Publications, Inc., New York (1956) (preface by H. von Helmholtz. translation by D. E. Jones and J. T. Walley)

  63. Kleinsteuber K.H.M., Silva Leite F.: Rolling Stiefel manifolds. Int. J. Syst. Sci. 39(9), 881–887 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  64. Ibort L.A., de León M., Lacomba E.A., Martín de Diego D., Pitanga P.: Mechanical systems subjected to impulsive constraints. J. Phys. A 30(16), 5835–5854 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  65. Ibort L.A., de León M., Lacomba E.A., Marrero J.C., Martín de Diego D., Pitanga P.: Geometric formulation of mechanical systems subjected to time-dependent one-sided constraints. J. Phys. A 31(11), 2655–2674 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ibort L.A., de León M., Lacomba E.A., Marrero J.C., Martín de Diego D., Pitanga P.: Geometric formulation of Carnot’s theorem. J. Phys. A 34(8), 1691–1712 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  67. Ibort L.A., de León M., Marmo G., Martín de Diego D.: Non-holonomic constrained systems as implicit differential equations. Geometrical structures for physical theories, I (Vietri, 1996). Rend. Sem. Mat. Univ. Politec. Torino 54(3), 295–317 (1996)

    MathSciNet  MATH  Google Scholar 

  68. Ibort A., de León M., Marrero J.C., Martín de Diego D.: Dirac brackets in constrained dynamics. Forschritte der Physik 47(5), 459–492 (1999)

    Article  MATH  Google Scholar 

  69. Iglesias-Ponte D., de León M., Martínde Diego D.: Towards a Hamilton–Jacobi theory for nonholonomic mechanical systems. J. Phys. A 41(1), 015205 (2008)

    Article  MathSciNet  Google Scholar 

  70. Iglesias D., Marrero J.C., Martín de Diego D., Martínez E.: Discrete nonholonomic Lagrangian systems on Lie groupoids. J. Nonlinear Sci. 18(3), 221–276 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  71. Jurdjevic, V., Zimmerman, J.: Rolling problems on spaces of constant curvature. In: Lagrangian and Hamiltonian methods for nonlinear control 2006, 221–231. Lecture Notes in Control and Information Science, vol. 366. Springer, Berlin (2007)

  72. Jurdjevic V., Zimmerman J.: Rolling sphere problems on spaces of constant curvature. Math. Proc. Camb. Philos. Soc 144(3), 729–747 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  73. Kane C., Marsden J.E., Ortiz M., West M.: Variational integrators and the Newmark algorithm for conservative and dissipative mechanical systems. Int. J. Numer. Methods Eng. 49(10), 1295–1325 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  74. Kobilarov M., Martín de Diego D., Ferraro S.: Simulating nonholonomic dynamics. Bol. Soc. Esp. Mat. Apl. SeMA 50, 61–81 (2010)

    Google Scholar 

  75. Koiller J.: Reduction of some classical nonholonomic mechanical systems with symmetry. Arch. Ration. Mech. Anal. 118, 113–148 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  76. Koiller J., Delgado J.: On efficiency calculations for nonholonomic locomotion problems: an application to microswimming. Pacific Institute of Mathematical Sciences Workshop on Nonholonomic Constraints in Dynamics (Calgary, AB, 1997). Rep. Math. Phys. 42(1–2), 165–183 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  77. Koon W.S., Marsden J.E.: Poisson reduction of nonholonomic mechanical systems with symmetry. Rep. Math Phys. 42, 101–134 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  78. Koslov V.V.: Realization of nonintegrable constraints in classical mechanics. Dokl. Akad. Nauk. SSSL 273(3), 550–554 (1983)

    Google Scholar 

  79. Kozlov V.V.: On the integration theory of equations of nonholonomic mechanics. Regul. Chaotic Dyn. 7, 161–176 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  80. Korteweg D.J.: Ueber eine ziemlich verbreitete unrichtige Behandlungsweise eines Problems der rollende Bewegung, die Theorie dieser Bewegung, und ins besondere kleine rollende Schwingungen um eine Gleichgewichtslage. Nieuw Archief voor Wiskunde 4, 130–155 (1899)

    Google Scholar 

  81. Kremnev A.V., Kuleshov A.S.: Nonlinear dynamics and stability of the skateboard. Discret. Contin. Dyn. Syst. Ser. S 3(1), 85–103 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  82. Kuleshov A.S.: A mathematical model of the snakeboard (Russian). Mat. Model. 18(5), 37–48 (2006)

    MathSciNet  MATH  Google Scholar 

  83. Lacomba E.A., Tulczyjew W.M.: Geometric formulation of mechanical systems with one-sided constraints. J. Phys. A 23(13), 2801–2813 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  84. de León M., Marrero J.C., Martínez E.: Lagrangian submanifolds and dynamics on Lie algebroids. J. Phys. A Math. Gen 38, R241–R308 (2005) (topical review)

    Article  MATH  Google Scholar 

  85. de León M., Marrero J.C., Martín de Diego D.: Non-holonomic Lagrangian systems in jet manifolds. J. Phys. A 30(4), 1167–1190 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  86. León M., Marrero J.C., Martín de Diego D.: Linear almost Poisson structures and Hamilton–Jacobi equation. Applications to nonholonomic mechanics. J. Geom. Mech. 2(2), 159–198 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  87. de León M., Martín de Diego D.: Solving non-holonomic Lagrangian dynamics in terms of almost product structures. Extracta Math. 11, 325–347 (1996)

    MathSciNet  MATH  Google Scholar 

  88. de León M., Martín de Diego D.: On the geometry of non-holonomic Lagrangian systems. J. Math. Phys. 37, 3389–3414 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  89. de León M., Martín de Diego D.: A constraint algorithm for singular Lagrangians subjected to nonholonomic constraints. J. Math. Phys. 38(6), 3055–3062 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  90. de León M., Martín de Diego D., Santamaría-Merino A.: Geometric numerical integration of nonholonomic systems and optimal control problems. Eur. J. Control 10(5), 515–521 (2004)

    Article  MathSciNet  Google Scholar 

  91. de León M., Martín de Diego D., Santamaría-Merino A.: Geometric integrators and nonholonomic mechanics. J. Math. Phys. 45(3), 1042–1064 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  92. de León M., Rodrigues P.R.: Methods of Differential Geometry in Analytical Mechanics. North- Holland, Amsterdam (1989)

    MATH  Google Scholar 

  93. de León M., Rodrigues P.R.: Higher-order mechanical systems with constraints. Int. J. Theor. Phys. 31(7), 1303–1313 (1992)

    Article  MATH  Google Scholar 

  94. Lewis A.D., Murray R.M.: Variational principles for constrained systems: theory and experiment. Int. J. Non-Linear Mech 30(6), 793–815 (1995) (including simulations and lab work)

    Article  MathSciNet  MATH  Google Scholar 

  95. Lindelof, E.: Acta Societatis Scientiarum Fennicae, vol. XX, issue no. 10 (1895)

  96. McLachlan R., Scovel C.: Open problems in symplectic integration. Fields Inst. Comm. 10, 151–180 (1996)

    MathSciNet  Google Scholar 

  97. Marigo A., Bicchi A.: Rolling bodies with regular surface: controllability theory and applications. IEEE Trans. Automat. Control 45(9), 1586–1599 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  98. Marle C.M.: Various approaches to conservative and nonconservative nonholonomic systems. Rep. Math Phys. 42, 211–229 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  99. Marle, C.M.: On symmetries and constants of motion in hamiltonian systems with nonholonomic constraints. Classical and quantum integrability (Warsaw, 2001), 223–242, Banach Center Publ., Polish Acad. Sci., vol. 59, Warsaw (2003)

  100. Marrero, J.C., Martín de Diego, D., Martínez, E.: Discrete Lagrangian and Hamiltonian mechanics on Lie groupoids. Nonlinearity 19(6), 1313–1348 (2006). (Corrigendum: Nonlinearity 19 (2006), no. 12, 3003–3004)

  101. Marsden J.E., Pekarsky S., Shkoller S.: Discrete Euler-Poincaré and Lie-Poisson equations. Nonlinearity 12, 1647–1662 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  102. Marsden, J.E.: Lectures on mechanics. London Mathematical Society Lecture Note Series, vol. 174, pp. xii+254. Cambridge University Press, Cambridge (1992)

  103. Marsden, J.E., Patrick, G.W., Shadwick, W.F.: Integration algorithms and classical mechanics. In: Proceedings of the conference held in Toronto, Ontario, October 1993. Edited by Fields Institute Communications, vol. 10, pp. xii+244. American Mathematical Society, Providence, RI (1996)

  104. Marsden J.E., Pekarsky S., Shkoller S., West M.: Variational Methods, Multisymplectic Geometry and Continuum Mechanics. J. Geom. Phys. 38, 253–284 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  105. Marsden J.E., West M.: Discrete mechanics and variational integrators. Acta Numerica 10, 357–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  106. Martínez S., Cortés J., de León M.: The geometrical theory of constraints applied to the dynamics of vakonomic mechanical systems: the vakonomic bracket. J. Math. Phys. 41(4), 2090–2120 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  107. Martínez S., Cortés J., de León M.: Symmetries in vakonomic dynamics: applications to optimal control. J. Geom. Phys. 38(3–4), 343–365 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  108. Massa E., Pagani E.: Classical dynamics of non-holonomic systems: a geometric approach. Ann. Inst. Henri Poincaré: Physique Theorique 55, 511–544 (1991)

    MathSciNet  MATH  Google Scholar 

  109. Moffatt H.K., Tokieda T.: Celt reversals: a prototype of chiral dynamics. Proc. Royal Soc. Edinb. 138, 361–368 (2008)

    MathSciNet  MATH  Google Scholar 

  110. Montgomery R.: A tour of sub-Riemannian geometries their geodesics and applications. Math. Surveys Monograph, vol. 91. American Mathematical Society, Providence (2002)

    Google Scholar 

  111. Moser J., Veselov A.P.: Discrete versions of some classical integrable systems and factorization of matrix polynomials. Comm. Math. Phys. 139(2), 217–243 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  112. Neimark, Ju.I., Fufaev, N.A.: Dynamics of Nonholonomic Systems, Transactions of Mathematical Monographs, vol. 33. AMS (1972) (Russian edition, 1967)

  113. Ohsawa T., Bloch A.M.: Nonholonomic Hamilton–Jacobi equation and integrability. J. Geom. Mech. 1(4), 461–481 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  114. Ortega J.P., Ratiu T.S.: Momentum maps and Hamiltonian reduction Progress in Mathematics, vol. 222. Birkhauser, Boston (2004)

    Google Scholar 

  115. Pavon, M.: Hamilton–Jacobi equations for nonholonomic dynamics. J. Math. Phys. 46, 032902 (2005)

    Google Scholar 

  116. Pironneau, Y.: Sur les liaisons non holonomes non linéaires deplacement virtuels á travail nul, conditions de Chetaev. In: Benenti, S., Francaviglia, M., Lichnerowicz, A. (eds.) Proceedings of the IUTAM-ISIMMM Symposium on Modern Developments in Analytical Mechanics, Torino 1982, pp. 671–686. Acta Academiae Scientiarum Taurinensis (1983)

  117. Poincaré H.: Les idées de Hertz sur la mécanique, Oeuvres VII, 231–250. Gauthier-Villars, Paris (1952)

    Google Scholar 

  118. Rodrigues P.R.: On Lagrangian equations with generic constraints. An. Acad. Brasil. Cienc. 56(1), 13–16 (1984)

    MathSciNet  MATH  Google Scholar 

  119. Routh E.J.: Dynamics of a System of Rigid Bodies. Dover, New York (1960)

    Google Scholar 

  120. Ruina A.: Nonholonomic stability aspects of piecewise holonomic systems. Rep. Math. Phys. 42(1–2), 91–100 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  121. Rumiantsev, V.V.: Hamiltonian principle for nonholonomic systems. Prikladnaia Matematika i Mekhanika, vol. 42, pp. 387–399, May–June (1978) (in Russian)

  122. Rumyantsev V.V.: Variational principles for systems with unilateral constraints. J. Appl. Math. Mech. 70, 808–818 (2006)

    Article  MathSciNet  Google Scholar 

  123. Sanz-Serna J.M., Calvo M.P.: Numerical Hamiltonian Problems. Chapman & Hall, London (1994)

    MATH  Google Scholar 

  124. Sarlet W., Cantrijn F., Saunders D.J.: A geometrical framework for the study of non-holonomic Lagrangian systems. J. Phys. A 28(11), 3253–3268 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  125. Saunders D.J., Sarlet W., Cantrijn F.: A geometrical framework for the study of non-holonomic Lagrangian systems. II. J. Phys. A 29(14), 4265–4274 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  126. Skinner R., Rusk R.: Generalized Hamiltonian dynamics. I. Formulation on \({T^{\ast} Q\oplus T Q}\) . J. Math. Phys. 24((11), 2589–2594 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  127. Skinner R., Rusk R.: Generalized Hamiltonian dynamics. II. Gauge transformations. J. Math. Phys. 24(11), 2595–2601 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  128. Slesser G.M.: Notes on rigid dynamics. Q. J. Math. 4, 65–77 (1861)

    Google Scholar 

  129. Sumbatov A.S.: Nonholonomic systems. Regul. Chaotic Dyn. 7, 221–238 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  130. Van Dooren R.: The generalized Hamilton–Jacobi method for non-holonomic dynamical systems of Chetaev’ s type. Z. Angew. Math. Mech. 55, 407–411 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  131. Van Dooren R.: Motion of a rolling disc by a new generalized Hamilton–Jacobi method. J. Appl. Math. Phys. 27, 501–505 (1976)

    Article  MATH  Google Scholar 

  132. Van Dooren R.: Second form of the generalized Hamilton–Jacobi method for nonholonomic dynamical systems. J. Appl. Math. Phys. 29, 828–834 (1978)

    Article  MATH  Google Scholar 

  133. Van Dooren, R.: On the generalized Hamilton–Jacobi method for nonholonomic dynamical systems. Dienst Anal. Mech. Tw, Vub. 1–6 (1979)

  134. Vander Schaft A.J., Maschke B.M.: On the Hamiltonian formulation of nonholonomic mechanical systems. Rep. Math. Phys. 34(2), 225–233 (1994)

    Article  MathSciNet  Google Scholar 

  135. Vankerschaver J.: The momentum map for nonholonomic field theories with symmetry. Int. J. Geom. Methods Mod. Phys. 2(6), 1029–1041 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  136. Vankerschaver, J.: Classical field theories with external constraints. XIV Fall Workshop on Geometry and Physics. Publ. R. Soc. Mat. Esp., vol. 10, pp. 285–291, R. Soc. Mat. Esp., Madrid (2006)

  137. Vankerschaver J.: A class of nonholonomic kinematic constraints in elasticity. J. Phys. A 40(14), 3889–3913 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  138. Vankerschaver, J., Martín de Diego, D.: Symmetry aspects of nonholonomic field theories. J. Phys. A 41(3), 035401 (2008)

  139. Vankerschaver J., Cantrijn F., de León M., Martín de Diego D.: Geometric aspects of nonholonomic field theories. Rep. Math. Phys. 56(3), 387–411 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  140. Vershik A.M., Faddeev L.D.: Differential geometry and lagrangian mechanics with constraints. Sov. Phys. Doklady 17(1), 34–36 (1972)

    MATH  Google Scholar 

  141. Veselov, A.P.: Integrable systems with discrete time, and difference operators (Russian). Funktsional. Anal. i Prilozhen. 22(2), 1–13, 96 (1988) (translation in Funct. Anal. Appl. 22(2), 83–93 (1988))

    Google Scholar 

  142. Veselov, A.P: Integrable Lagrangian relations and factorization of matrix polynomials. (Russian). Funktsional. Anal. i Prilozhen. 25(2), 38–49, 96 (1991) (translation in Funct. Anal. Appl. 25(2), 112–122 (1991))

  143. Veselov A.P., Veselova L.E.: Flows on Lie groups with a nonholonomic constraint and integrable non-Hamiltoian systems. (Russian). Funktsional. Anal. i Prilozhen. 20(4), 65–66 (1986)

    MathSciNet  Google Scholar 

  144. Veselov, A.P., Veselova, L.E.: Integrable nonholonomic systems on Lie groups. (Russian) Mat. Zametki 44(4), 604–619, 701 (1988) (translation in Math. Notes 44(5–6) (1988), 810–819 (1989))

  145. Vierkandt, A.: Über gleitende und rollende Bewegung. Monatshefte für. Math. 3(1), 97–116. doi:10.1007/BF01692429

  146. Voronetz P.: On the Equations of Motion for Nonholonomic Systems. Mat. Sbornik XXII, 659–686 (1901)

    Google Scholar 

  147. Walker G.T.: On a dynamical top. Q. J. Pure Appl. Math. 28, 175–184 (1896)

    Google Scholar 

  148. Weber R.W.: Hamiltonian systems with constraints and their meaning in mechanics. Arch. Ration. Mech. Anal. 91(4), 309–335 (1986)

    Article  MATH  Google Scholar 

  149. Weinstein, A.: Lagrangian mechanics and groupoids. In: Mechanics day (Waterloo, ON, 1992). Fields Institute Communications vol. 7, pp. 173–239. American Mathematical Society, RI (1996)

  150. Zhuravlev V.F., Fufayev N.A.: Mechanics of Systems with Unilateral Constraints, Nauka, Moscow (1993). Prikl. Mat. Mekh., 70(6), 902–914 (2006)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel de León.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de León, M. A historical review on nonholomic mechanics. RACSAM 106, 191–224 (2012). https://doi.org/10.1007/s13398-011-0046-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-011-0046-2

Keywords

Mathematics Subject Classification (2000)

Navigation