Skip to main content
Log in

First variation formula for discrete variational problems in two independent variables

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas Aims and scope Submit manuscript

Abstract

We introduce a geometric setup for discrete variational problems in two independent variables based on the theory of bundles modelled on cell complexes, and characterize geometrically a first variation formula and a discrete Noether theorem for symmetries of the discrete Lagrangian. We explore the existence of discrete variational integrators, which will conserve the discrete Noether currents in the theory. The range of applications of the theory includes discrete versions of variational problems with or without PDE constraints and energy-conserving integrators in mechanics of continua. We illustrate the theory with a variational integrator for the movement of a string.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Antman, S.S.: Nonlinear Problems of Elasticity. In: Applied Mathematical Sciences, vol. 107. Springer, New York (2005)

  2. Bridges T. and Reich S. (2006). Numerical method for Hamiltonian PDEs. J. Phys. A Math. Gen. 39: 5287–5320

    Article  MathSciNet  MATH  Google Scholar 

  3. Casimiro, A.C., Rodrigo C.: First variation formula and conservation laws in several independent discrete variables, preprint 14/2009 of the Departamento de Matemática, Universidade Nova de Lisboa. J. Geom. Phys (2009). http://www.dmat.fct.unl.pt/fct/servlet/DownloadFile;?file=1222&modo=prepub

  4. Cortés J. and Martínez S. (2001). Non-holonomic integrators. Nonlinearity 14: 1365–1392

    Article  MathSciNet  MATH  Google Scholar 

  5. Garcia, P.L.: The Poincaré–Cartan invariant in the calculus of variations. In: Symposia Mathematica, vol. XIV, pp. 219–246 (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973). Academic Press, London (1974)

  6. García P. L., García A. and Rodrigo C. (2006). Cartan forms for first order constrained variational problems. J. Geom. Phys. 56(4): 571–610

    Article  MathSciNet  Google Scholar 

  7. Goldschmidt H. and Sternberg S. (1973). The Hamilton–Cartan formalism in the calculus of variations. Ann. Inst. Fourier(Grenoble) 23(1): 203–267

    Article  MathSciNet  MATH  Google Scholar 

  8. Gotay, M., Isenberg, J., Marsden, J.E.: Momentum maps and Classical Relativistic Fields, Part I: Covariant Field Theory (Preprint) (1997). http://www.arxiv.org: [2004] physics/9801019 (1997)

  9. Guo H.-Y. and Wu K. (2003). On variations in discrete mechanics and field theory. J. Math. Phys 44(12): 5978–6004

    Article  MathSciNet  MATH  Google Scholar 

  10. Jonckheere E.A. (1997). Algebraic and Differential Topology of Robust Stability. Oxford University Press, New York

    Google Scholar 

  11. Lange C.: Combinatorial curvatures, group actions and colourings: aspects of topological combinatorics. Ph.D. Thesis, Technische Universität zu Berlin (2005)

  12. Leok M.: Foundations of computational Geometric Mechanics. Ph.D. Thesis, California Institute of Technology (2004)

  13. de León M., Martín de Diego D. and Santamaría Merino A. (2004). Geometric integrators and nonholonomic mechanics. J. Math. Phys. 45(3): 1042–1064

    Article  MathSciNet  MATH  Google Scholar 

  14. de León M., Marrero J.C. and Martín de Diego D. (2008). Some applications of semi-discrete variational integrators to classical field theories. Qual. Th. Dyn. Sys 7: 195–212

    Article  MATH  Google Scholar 

  15. Lew A., Marsden J.E., Ortiz M. and West M. (2003). Asynchronous variational integrators. Arch. Rat. Mech. Anal. 167: 85–146

    Article  MathSciNet  MATH  Google Scholar 

  16. Logan J.D. (1973). First integrals in the discrete variational calculus. Aequationes Math. 9(2/3): 210–220

    Article  MathSciNet  MATH  Google Scholar 

  17. Marsden J.E., Patrick G.W. and Shkoller S. (1998). Multisymplectic geometry, variational integrators and nonlinear PDEs. Commun. Math. Phys. 199: 351–395

    Article  MathSciNet  MATH  Google Scholar 

  18. Marsden J.E. and West M. (2001). Discrete mechanics and variational integrators. Acta Numer. 10: 357–514

    Article  MathSciNet  MATH  Google Scholar 

  19. McLachlan R.I. and Quispel G.R.W. (2006). Geometric integrators for ODEs. J. Phys. A Math. Gen 39: 5251–5285

    Article  MathSciNet  MATH  Google Scholar 

  20. Moser J. and Veselov A.P. (1991). Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys. 139: 217–243

    Article  MathSciNet  MATH  Google Scholar 

  21. Patrick G.W. and Cuell C. (2009). Error analysis of variational integrators of unconstrained Lagrangian systems. Numer. Math. 113(2): 243–264

    Article  MathSciNet  MATH  Google Scholar 

  22. Vankerschaver J. (2007). Euler–Poincaré reduction for discrete field theories. J. Math. Phys. 48(3): 32902–32917

    Article  MathSciNet  Google Scholar 

  23. Wendlandt J.M. and Marsden J.E. (1997). Mechanical integrators derived from a discrete variational principle. Physica D 106: 223–246

    Article  MathSciNet  MATH  Google Scholar 

  24. West, M.: Variational integrators, Ph.D. Thesis, California Institute of Technology (2004)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Cristina Casimiro.

Additional information

A. C. Casimiro has been partially supported by Junta de Castilla y León (Spain), Project SA112A07. C. Rodrigo has been partially supported by Plan Nacional de I+D+i, Ministerio de Educación y Ciencia (Spain), Project MTM2007-60017.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casimiro, A.C., Rodrigo, C. First variation formula for discrete variational problems in two independent variables. RACSAM 106, 111–135 (2012). https://doi.org/10.1007/s13398-011-0034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13398-011-0034-6

Keywords

Mathematics Subject Classification (2010)

Navigation