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Estimation of cut-off points under 
complex-sampling design data 

Amaia Iparragirre∗,1, Irantzu Barrio1,3, Jorge Aramendi2 

and Inmaculada Arostegui1,3 

Abstract 

In the context of logistic regression models, a cut-off point is usually selected to di-
chotomize the estimated predicted probabilities based on the model. The techniques 
proposed to estimate optimal cut-off points in the literature, are commonly developed 
to be applied in simple random samples and their applicability to complex sampling de-
signs could be limited. Therefore, in this work we propose a methodology to incorporate 
sampling weights in the estimation process of the optimal cut-off points, and we evalu-
ate its performance using a real data-based simulation study. The results suggest the 
convenience of considering sampling weights for estimating optimal cut-off points. 

MSC: 62J12, 62P25, 62D05 

Keywords: Optimal cut-off points, complex survey data, sampling weights. 

1. Introduction 

Survey data are gaining popularity in a number of felds, including but not limited to, 
social and health sciences. This type of data is data collected from a fnite population, 
concerned to be studied, by some complex sampling design such as stratifcation or 
clustering, among others (Kalton, 1983). One of the differences between complex sur-
vey data and simple random samples is that, in the frst, each sampled observation has 
assigned a sampling weight, which indicates the number of units that this observation 
represents in the fnite population. Therefore, the straightforward application of the most 
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1 Departamento de Matemáticas, Universidad del Paı́s Vasco (UPV/EHU). 
2 Eustat - Euskal Estatistika Erakundea - Instituto Vasco de Estadı́stica. 
3 BCAM - Basque Center for Applied Mathematics, Bilbao, Spain. 

Received: September 2021. 
Accepted: May 2022. 

mailto:amaia.iparragirre@ehu.eus


138 Estimation of cut-off points under complex-sampling design data 

commonly applied statistical techniques, which are typically designed to be applied to 
simple random samples, is usually not suitable for complex survey data (Skinner, Holt 
and Smith, 1989). 

In this paper, we focus on the particular case of a binary response variable Y and, 
specifcally, on the logistic regression model to predict Y according to a collection of 
covariates whose distribution may be discrete or continuous. From a practical point 
of view, one of the most important characteristics of this kind of model is the support 
they provide for decision-making, since increasing knowledge about potential predictors 
helps the decision-making process (Steyerberg, 2008; Baker and Gerdin, 2017). In this 
context, decisions such as whether or not to recommend a patient to start treatment, or to 
give a diagnosis about a disease, are based on the individual risk (probability) of event 
given by the estimates of the logistic regression model. In order to make these decisions, 
frst, for each individual, the predicted probability of event is classifed based on a cut-off 
point. In this way, for example, if the individual’s probability of suffering from extreme 
poverty is greater than the selected cut-off point, he or she is assigned a social beneft, 
while in contrast, if that is lower no social support is provided (Steyerberg, 2008; Pauker 
and Kassirer, 1980). Hence, cut-off point estimation is widely employed in practice, 
in the feld of prediction models, especially, but not exclusively, in clinical prediction 
models (Steyerberg et al., 1999; Chen et al., 2015; Spence et al., 2018). 

At this point, the main issue is usually to select a valid cut-off point that will provide 
the best classifcation of individuals in practice. Many strategies have been proposed in 
the literature in order to estimate optimal cut-off points. It should be noted that we can 
not talk about optimal cut-off points in general terms. In contrast, a cut-off point will or 
will not be the optimal depending on the objective of a particular study. Therefore, when 
we talk about selecting an optimal cut-off point, we are talking about selecting the one 
which satisfes a certain optimality criterion. Hence, as we have mentioned above, dif-
ferent techniques have been proposed to select optimal cut-off points, given a particular 
criterion. For instance, some of those methods select the optimal cut-off point with the 
aim of obtaining a certain value of sensitivity/specifcity (i.e., probability of classifying 
correctly an individual with/without the event of interest) or to maximize a function of 
these two parameters as for example the Youden index (Youden, 1950). Some others 
select the cut-off point that maximizes some particular indexes, such as Kappa (Cohen, 
1960; Greiner, Pfeiffer and Smith, 2000). Greiner (1995, 1996) proposed a method to 
select the optimal cut-off point that minimizes the error or either maximizes the accu-
racy of the classifcation rule. There are some other methods that select optimal cut-off 
points based on some other criteria related to several parameters such as predicted values 
(i.e., probability of event/non-event for an individual classifed as event/non-event) (Ver-
mont et al., 1991) or prevalence (i.e., the probability of event in the population) (Manel, 
Williams and Ormerod, 2001), among others. Besides, other methods are based on the 
analysis of the cost of incorrect and the beneft of correct diagnosis (Swets, 1992; Pauker 
and Kassirer, 1980; Wynants et al., 2019). An extensive review of those techniques can 
be found in L´ on et al. (2014). opez-Rat´ 
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However, those techniques have usually been designed and applied for simple ran-
dom samples and, as far as we know, there is a lack of proposals to consider complex 
sampling designs, and in particular sampling weights, throughout the estimation pro-
cess of optimal cut-off points. It is widely known that when the sampling designs are 
not considered for the analysis of data derived from complex surveys the variances tend 
to be underestimated, which can lead to biased estimates of test statistics (Yao, Li and 
Graubard, 2015; Skinner et al., 1989; Heeringa, West and Berglund, 2017; Binder and 
Roberts, 2009). In the same way, we believe that sampling weights should not be ig-
nored when estimating optimal cut-off points when working with complex survey data. 
Therefore, in this work, we propose a methodology to modify some of the methods to 
select optimal cut-off points of the probability of event in the logistic regression frame-
work that have been previously proposed in the literature, so that they take into account 
sampling weights in the estimation process. In addition, the performance of the proposed 
methods is compared to the performance of those which ignore the sampling weights, 
by means of a simulation study. In particular, we focus on surveys which are based on 
one-step stratifed samples. 

The rest of the paper is organized as follows. Section 2 describes the real survey that 
has motivated this work. Section 3 defnes some basic notation that will be used along 
the rest of the paper. Furthermore, we describe some of the methods that are usually 
applied in practice to estimate optimal cut-off points of the probability of event in the 
logistic regression framework and fnally we propose a new methodology which takes 
into account the effect of the sampling weights in the cut-off point estimation process. In 
Section 4, we describe the simulation process that has been carried out so as to study the 
performance and effectiveness of the proposed method to incorporate sampling weights 
into the estimation process of optimal cut-off points and we show the results we have 
obtained in the mentioned simulation study. The methodology proposed in this work has 
been applied to real survey data and this application is described in Section 5. Finally, 
we conclude with a discussion in Section 6. 

2. Motivating data set 

This work has been motivated by the Survey on the Information Society in Companies1, 
which has been designed, conducted and collected by the Offcial Statistics Basque Of-
fce (Eustat). This survey, which is usually denoted as ESIE survey due to its Spanish 
acronym, is carried out annually among the companies in the Basque Country (BC) in or-
der to collect information about the implementation of New Information and Communi-
cation Technology in the companies of the BC. In particular, the information considered 
in this study is related to the survey carried out in 2010. 

The fnite population is defned by a total of 14 200 companies, all of which have 
at least 10 employees. From this population a sample of 2 852 was obtained by means 

1https://en.eustat.eus/estadisticas/tema 150/opt 1/tipo 7/temas.html 
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of one-step stratifed sampling technique with simple random sampling in each stra-
tum. Strata are defned by means of the combination of three categorical variables: the 
province where the company is located (3 categories), activity of the company (65 cate-
gories) and the number of employees (2 categories). In this way, a total of 390 different 
strata have been defned. However, it should be noted that in some of these strata there 
are no units in the population, so in fact we have 325 strata in total (h = 1, . . . ,H, where 
H = 325). Once the sample is obtained, a sampling weight is assigned to the companies 
sampled in each stratum. The sampling weight (wi, ∀i ∈ S) is calculated per stratum as 
the total number of companies in the fnite population of the stratum (let us denote it 
as Nh, ∀h ∈ {1, . . . ,H}) divided by the number of companies sampled in that stratum 
(denoted as nh, ∀h ∈ {1, . . . ,H}). In other words, for a unit i sampled from stratum h its 
sampling weight is computed as follows: 

Nh wi = , ∀i ∈ S. (1)
nh 

Each sampling weight indicates the number of companies that this sampled company 
represents in the fnite population. 

In the survey data considered for this paper, strata sizes in the fnite population (i.e., 
Nh, ∀h ∈ {1, . . . ,H}) ranges from 1 to 860, where the median is 12 and the interquartile 
range 4 −44. An unequal probability sampling design has been applied in the sampling 
process, in which the probabilities of being sampled from each stratum (i.e., nh/Nh, ∀h ∈ 
{1, . . . ,H}) range from 0.0391 to 1 (with a median of 0.6667 and an interquartile range 
of 0.2604 − 1). The dichotomous response variable considered for this work indicates 
whether a company has its own website (1) or not (0). The probability of event in 
the sample (without considering the sampling weights) is 0.8222, while the weighted 
estimate of the probability of event (computed by taking into account the number of 
units that each element represents in the fnite population by means of the sampling 
weights wi, ∀i ∈ S) is 0.7544. 

3. Methods 

In this section, frst of all, we introduce the basic notation that we will use throughout 
this document. In addition, we describe some of the methods that are usually applied 
for estimating optimal cut-off points in this context based on different optimality criteria 
for simple random samples. Finally, we develop a new estimation method, in which 
we propose to introduce the sampling weights in these methods so that they are valid in 
complex design samples. 

3.1. Basic notation and preliminaries 

Let X = (X1, . . . ,Xp)
T be a vector of p random predictor variables denoting the covariates 

and Y a random variable denoting the dichotomous response variable. Without loss of 
generality, and in order to ease the notation, suppose that the covariates X are continuous 
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and the response variable Y takes the value 1 to represent the event or the presence of 
the characteristic of interest, and 0 otherwise. Let P(Y = 1|X) represent the conditional 
probability of event given the vector of covariates X . Then, the linear form of the logistic 
regression model for Y is written as follows: 

˜ ° 
P(Y = 1|X)

logit (P(Y = 1|X)) = ln = β T X , (2)
1 − P(Y = 1|X) 

being β = (β0, . . . ,βp)
T the vector of regression coeffcients. 

Consider U = {1, . . . ,N} a fnite population of N units. In the context of complex 
survey data, let S be a sample of n units drawn from the fnite population by some 
complex sampling design. To each sampled observation i ∈ S, a set of values (yi,xi,wi) 
is associated where each sampling weight wi indicates the number of units that i ∈ S 
represents in the fnite population (note that ∑i∈S wi = N) and yi and xi indicate the 
realizations of the variables Y and X for the sampled units, respectively. For each i ∈ S 
let us defne its probability of event as p(xi) = P(Y = 1|X = xi), which can be estimated 
as follows: 

T
β̂ xie 

p̂(xi) =  T (i ∈ S), (3)
β̂ xi1 + e 

Twhere the estimated regression coeffcients β̂ = (β̂0, . . . , β̂ 
p) , are usually obtained by 

maximizing the weighted pseudo-likelihood function, defned as (Binder, 1981, 1983): 

PL(β ) = ∏ p(xi)
yiwi (1 − p(xi))

(1−yi)wi . (4) 
i∈S 

3.2. Optimal cut-off point estimation methods 

It is usually very useful in practice to select a cut-off point in order to distinguish between 
units with and without the event of interest. In our particular case, we are interested 
in discriminating between units with and without the event of interest based on their 
estimated probability of event. In this context, one observation i ∈ S is usually classifed 
as event if its estimated probability of event exceeds a determined threshold c which has 
been previously selected (Magder and Fix, 2003; Pepe, 2003). The correct classifcation 
of an observation with the event of interest is usually denoted as true positive (TP), while 
the correct classifcation of an observation without the event of interest is commonly 
denoted as true negative (TN). But usually, those classifcations are not entirely accurate. 
Therefore, some of the observations are commonly classifed incorrectly: an observation 
with the event of interest may be classifed as non-event (false negative (FN)) or an 
observation without the event of interest may be classifed as event (false positive (FP)). 

Methods of estimation of the optimal cut-off point have been developed in the liter-
ature, with the aim of optimizing diverse measures. In particular, many methods consist 
on the optimization of an objective function of the Receiver Operating Characteristic 
(ROC) curve, which is a curve that describes the global accuracy of a model (Bamber, 
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1975; Pepe, 2003). Coming back to our particular case, taking into account that the pre-
dicted probabilities range from 0 to 1, the ROC curve of a logistic regression model can 
be defned as follows (Hosmer and Lemeshow, 2000; Pepe, 2003): 

ROC(·) = {(1 − Sp(c), Se(c)) , c ∈ (0,1)} , (5) 

where Se(c) and Sp(c) are defned as follows and denoted as sensitivity and specifcity, 
respectively: 

Se(c) = P [P(Y = 1|X)≥ c|Y = 1] , 
(6)

Sp(c) = P [P(Y = 0|X)< c|Y = 0] . 

In practice, following the notation defned so far, assume that to each sampled ob-
servation i ∈ S a set of values (yi,xi,wi) is associated. Suppose that the vector β̂ is 
obtained by means of the pseudo-likelihood function in (4) and p̂(xi) are estimated for 
i ∈ S following (3). Let us defne the following groups of correctly or incorrectly classi-
fed observations, for a specifc cut-off point c: 

T Pc = {i ∈ S : yi = 1 and p̂(xi)≥ c} , T Nc = {i ∈ S : yi = 0 and p̂(xi)< c} , 
(7)

FPc = {i ∈ S : yi = 0 and p̂(xi)≥ c} , FNc = {i ∈ S : yi = 1 and p̂(xi)< c} . 

In addition, let us defne an indicator function associated to each of the sets defned in 
(7) as follows. For example, for the set T Pc: 

˜ 
1 if i ∈ T Pc,1T Pc(i) =  (8)
0 if i ∈/ T Pc. 

In the same way, indicator functions can be defned as in (8) for the rest of the sets 
described in (7), which will be denoted as 1T Nc(i), 1FPc(i) and 1FNc(i), hereinafter. Then, 
for a specifc cut-off point c, sensitivity and specifcity parameters can be estimated based 
on sample S as follows: 

° ∑i∈S 1T Pc(i) ˛ ∑i∈S 1T Nc(i)Se(c) =  , Sp(c) =  . (9)
∑i∈S [1FNc(i)+1T Pc(i)] ∑i∈S [1T Nc(i)+1FPc(i)] 

For this study, we have selected some of those methods which are based on several 
optimality criteria related to sensitivity and specifcty parameters: 

• Youden (Youden, 1950; Greiner et al., 2000): This method selects the cut-off point 
(cYouden) that maximizes the Youden Index, which is defned as the sum of sensi-
tivity and specifcity parameters minus one, i.e., 

˝ ˙ 
Youden ° c = Se(c)+˛ . (10)argmax Sp(c)− 1 

c∈(0,1) 

• MaxProdSpSe (Lewis et al., 2008): This method selects the cut-off point c that 
maximizes the product between sensitivity and specifcity parameters, i.e., 

˝ ˙ 
MaxProdSpSe ° ˛c = argmax Se(c) · Sp(c) . (11) 

c∈(0,1) 
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• ROC01 (Metz, 1978; Vermont et al., 1991): This method selects the cut-off point 
c that minimizes the distance between the ROC curve and the point (0,1), i.e., 

˜ ˝ 
ROC01c = argmin ( ° Sp(c)− 1)2 . (12)Se(c)− 1)2 +(˛ 

c∈(0,1) 

• MaxEffciency (Greiner, 1995, 1996): This method selects the cut-off point c that 
maximizes the effciency or, in other words, minimizes the error, i.e., 

˜ ˝ 
MaxEff ° pY pY )˛ 

c∈(0,1) 
c = argmax ° Se(c)+(1 − ° Sp(c) , (13) 

where p° Y is the estimated prevalence which is calculated as follows: 

p° Y = 
1 ∑ [1FNc (i)+1T Pc (i)] . (14)
n i∈S 

3.3. Cut-off point estimation proposal with sampling weights 

Although sensitivity and specifcity parameters, as well as the prevalence, can be esti-
mated by expressions (9) and (14) in any kind of data, including complex survey data, 
these expressions have been defned in a simple random sampling scenario. However, in 
complex survey data each of the sampled units has a sampling weight associated, which 
indicates the importance of each of them within the sample. Thus, the infuence of all 
sampled units is not uniform. Therefore, we believe that the estimates obtained by means 
of the above-mentioned formulas may be misleading for complex survey data and they 
should be pondered, so that they incorporate the sampling weights. In this way, instead 
of the number of correct or incorrect classifcations in sample S, it should be considered 
the number of units that these correctly or incorrectly classifed observations represent 
in the fnite population. For this reason, we propose to consider the sampling weights wi 

to estimate sensitivity (Se° w(c)) and specifcity (˛ (c)) parameters as follows: Spw 

∑i∈S wi · 1T Pc (i) ∑i∈S wi · 1T Nc (i)° , ˛ (c) =  . (15)Sew(c) =  Spw∑i∈S wi · [1FNc (i)+1T Pc (i)] ∑i∈S wi · [1T Nc (i)+1FPc (i)] 

where the indicator functions are the ones described in (8). 
In addition, note that sampling weights should also be considered to estimate the 

prevalence (p° Y,w): 

p° Y,w = 
1 ∑wi · [1FNc (i)+1T Pc (i)] . (16)
N i∈S 

Therefore, we propose to estimate the optimal cut-off points based on the modifed pa-
rameters of sensitivity (Se° w(c)) and specifcity (˛ (c)) when working with complex Spw 
survey data, i.e.: ˜ ˝ 

Youden ° c = argmax Sew(c)+˛ (c)− 1 , (17)Spww 
c∈(0,1) 
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˜ ˝ 
MaxProdSpSe ° c = argmax Sew(c) ·˛ (c) , (18)Spww 

c∈(0,1) ˜ ˝ 
ROC01c = argmin ( ° Spw , (19)Sew(c)−1)2 +(˛ (c)−1)2 
w 

c∈(0,1) 
˜ ˝ 

MaxEff ° c = argmax ° Sew(c)+(1 − ° Spw(c) . (20)pY,w pY,w)˛ 
w 

c∈(0,1) 

4. Simulation study 

This section describes the simulation process developed in this work and the scenarios 
that have been drawn. The results obtained in this simulation study are also presented in 
this section. 

As stated above, the aim of this work is to study the infuence of sampling weights in 
the estimation process of optimal cut-off points for the methods described in Section 3.2. 
Since the decision of which optimal cut-off point estimation method to use in practice 
depends on the research of interest, the objective of this work is not to compare the 
behaviour of the methods among them, but to compare the estimates that we obtain for 
each of these methods when sampling weights are considered or not in the estimation of 
sensitivity and specifcity parameters. 

In addition, we study the impact that the proposed estimators have in the estima-
tion of the probability of event in the fnite population. Therefore, a theoretical fnite 
population is required, in which the response variable is known for all the units in the 
fnite population. Thus, a pseudo-population has been generated based on real survey 
data. The real survey on which this pseudo-population is based is described in Section 2 
and the process followed to generate it is explained in detail in Appendix A. The pseudo-
population sampling process, which is replicated several times in the simulation study, is 
also based on the same real-life survey. This sampling process is described in Appendix 
B. 

4.1. Scenarios and set up 

Let U = {1, . . . ,N} be the pseudo-population generated by following the steps described 
in Appendix A to which {(yi,xi)}N 

1 are assigned. From this pseudo-population, a totali= 
of R = 500 samples have been obtained and the sampling weights have been assigned to 
the sampled units by the sampling process described in Appendix B. The optimal cut-off 
points estimation methods that have been applied in this study are the ones described in 
Section 3.2, i.e., m ∈ {Youden, MaxProdSpSe, ROC01, MaxEffciency}. 

The steps that have been followed in the simulation study are described below. For 
r = 1, . . . ,500: 

Step 1. Draw a sample Sr ⊂ U by one-step stratifcation with simple random sampling 
without replacement in each stratum (Appendix B, mimicking the sampling pro-
cess carried out for the real-life dataset described in Section 2). 
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r
Step 2. Fit the logistic regression model to Sr and estimate β̂ by (4). 

r
Step 3. For i ∈ Sr, estimate p̂r(xi) by means of β̂ following (3). 

m,rStep 4. Estimate the optimal cut-off points, cm,r (see (10), (11), (12), (13)) and cw (see 
(17), (18), (19), (20)) for each method m. 

As mentioned above, the selection of the optimality criteria for selecting the cut-off 
points is based on the particular goal of each study. Therefore, our goal is not to 
compare the performance of the described methods between them. That is, the aim 
is not to compare the performance of a method m ∈ {Youden, MaxProdSpSe, ROC01, 
MaxEffciency}, to the rest of the methods, but to compare the cut-off points selected by 
means of the method m when sampling weights are considered or not in the estimation 
process. Thus, we defne the difference and absolute difference between weighted and 
unweighted cut-off points as follows: 

m,r m,rDiff m,r = cm,r − c and AbsDiff m,r = |cm,r − c | . (21)w w 

In addition, we would also like to regard the impact that may have the decision to 
select weighted or unweighted optimal cut-off points in the classifcation of all the units 
in the fnite population. Thus, we continue with the simulation study as follows: 

r
Step 5. For i = 1, . . . ,N calculate p̂r(xi) by means of β̂ (Step 3.) following (3). 

Step 6. For i = 1, . . . ,N classify each unit as event or non-event based on p̂r(xi). Defne 
m,r m,rtwo estimated responses ( ̂y and ŷw,i ) for each unit based on the cut-off pointsi 

m,r cm,r and cw (selected in Step 4.) as follows. For each method m and i = 1, . . . ,N: 

˜ ˜ m,r 
m,r 1 if p̂r(xi)≥ cm,r , m,r 1 if p̂r(xi)≥ cw ,ŷ = and ŷ = m,ri p̂r(xi)< cm,r w,i0 if , 0 if p̂r(xi)< cw . 

Finally, in order to account for the error that may be introduced in the classifcation 
of the units in the fnite population by the selected optimal cut-off points, one more 
parameter is defned. The error is estimated by comparing the prevalence estimated by 
means of the estimated responses (Step 6) to the true prevalence in the fnite population. 
We split the fnite population U in K disjointed subsets of the same size where U = 
U1 ∪ . . .∪UK . We repeat this process L = 10 times, where for each l = 1, . . . ,L, U = 
U1 

l ∪ . . .∪UK
l . In this way, we get L ×K subsets from U and the prevalence will be 

estimated in each one of these subsets. Let us defne the following indicator functions: 

˜ 
1 if i ∈Uk

l ,
1Ul (i) =  for l = 1, . . . ,L and k = 1, . . .K. (22)

k 0 if i ∈/ Uk
l , 
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We denote as global mean squared error (GMSE) of the prevalence with L = 10 replicates 
the following parameters: 

˜ m,r ° 2 
1 ∑N

i=1 ŷi · 1Ul (i) ∑N
i=1 yi · 1Ul (i)

k kGMSEm,r = ∑L 
1 ∑

K − ,l= k=1L × K ∑N 
1 1Ul (i) ∑N 

1 1Ul (i)
k k˜ 

i= i= ° 2 (23)m,r 
1 ∑N

i=1 ŷw,i · 1Uk
l (i) ∑N

i=1 yi · 1Ul (i)
kGMSEm,r = ∑L 

1 ∑
K − .w l= k=1L × K ∑N 

1 1Ul (i) ∑N 
1 1Ul (i)i= i= k k 

Different number of subsets have been selected in order to evaluate the impact the sam-
ple size of each subset may have: K ∈ {1,10,100,500}. In addition, we considered 
the GMSE evaluated considering the H strata as the subsets where Uh, ∀h = 1, . . . ,H ˛Hindicates the subset corresponding to stratum h and U = h=1 Uh: 

˝ m,r ˙21 
∑H ∑N

i=1 ŷi · 1Uh (i) ∑N
i=1 yi · 1Uh (i)GMSEm

h 
,r = h=1 ∑N − 

∑N ,
H i=1 1Uh (i) i=1 1Uh (i)˜ ° 2 (24)m,r
1 ∑N

i=1 ŷw,i · 1Uh (i) ∑N
i=1 yi · 1Uh (i)GMSEm,r = ∑H − ,w,h h=1H ∑N 

1 1Uh (i) ∑N 
1 1Uh (i)i= i= 

where, ˆ 
1 if i ∈ Uh,1Uh (i) =  for h = 1, . . . ,H. (25)
0 if i ∈/ Uh, 

This simulation study has been carried out by means of the statistical software R. In 
particular, some functions of the R package OptimalCutpoints (López-Ratón et al., 
2014) have been modifed in order to incorporate an argument that provides us with the 
option to consider sampling weights in the estimation process of the optimal cut-off 
points for the described methods. 

4.2. Results 

In this Section we show the results obtained in the simulation study described in Section 
4.1. Figures 1, 2, 3 and 4 depict the box-plots of unweighted and weighted estimates 
of the optimal cut-off points and the results of the parameters Diff and GMSE (see (21) 
and (23)) for Youden, MaxProdSpSe, ROC01 and MaxEffciency methods, respectively. 
Numerical results of the simulation study are summarized in Table 1. 

In general, except for the MaxEffciency method, the results suggest that the optimal 
cut-off point estimates differ when sampling weights are ignored or considered in the es-
timation process. The difference has always been positive (i.e. the unweighted estimates 
have been greater than the weighted ones), except in the MaxEffciency method where 
both positive and negative differences have been observed. For this reason, the mean 
and standard deviation of the difference and absolute difference parameters are equal 
for all the methods except for MaxEffciency (see Table 1). The error generated and 
accounted in terms of GMSE described in (23) decreases considerably when sampling 
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Figure 1. Box-plots of the results obtained for the Youden method across R = 500 samples: 
(a) unweighted and weighted estimates of the optimal cut-off points, (b) differences between un-
weighted and weighted estimates (Diff), and (c) GMSE produced by the unweighted and weighted 
estimates for K ∈ {1,10,100,500} and H. 

weights are taken into account. In addition, similar results have been obtained for differ-
ent K ∈ {1,10,100,500} values, which indicates that the difference between estimated 
and true prevalence is similar in smaller homogeneous subsets and in the total popula-
tion. However, it could be observed that the average of GMSE becomes slightly greater 
as the number of subsets K increases (for both, weighted and unweighted estimates), 
indicating that the differences between the estimated and true prevalence tend to be a 
little bit greater in smaller subsets. When considering the strata as non-homogeneous 
subsets defned by the H strata of the population, the GMSE obtained as described in 
(24) with the weighted estimates is still smaller than with the unweighted ones. How-
ever, the difference between weighted and unweighted GMSE is slightly smaller for the 
non-homogenous partition than for homogeneous partitions. We believe that the reason 
is that the difference obtained between estimated and true prevalence differs depending 
on the number of individuals sampled in each strata, being increased in very small strata. 
Note that if the population size of a particular stratum is 1 then the error in this stratum 
is 0 (if the unit is classifed correctly) or 1 (otherwise). This is not common when work-
ing with homogeneous strata where in all the randomly selected subsets the difference 
between estimated and true prevalence seem to be similar (results not shown). In ad-
dition, note that even though strata are of different sizes, the stratum size is not taken 
into account when computing the GMSE parameter. Below, the behaviour of each of the 
methods that have been studied throughout this work will be analysed one by one. 

The optimal cut-off point estimated by the Youden method in this simulation study, is 
0.8304 on average when sampling weights are not taken into account while the weighted 
estimates are smaller on average (0.7524), with standard deviations of 0.0208 and 0.0277, 
respectively. The difference among the unweighted and weighted estimates is on average 
0.0780 with a standard deviation of 0.0343 (see Figure 1). The smallest difference ob-
served among the unweighted and weighted estimates is 0 while the largest difference is 
0.2057, with a median of 0.0771. The impact of the differences between these estimates 
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Figure 2. Box-plots of the results obtained for the MaxProdSpSe method across R = 500 sam-
ples: (a) unweighted and weighted estimates of the optimal cut-off points, (b) differences be-
tween unweighted and weighted estimates (Diff), and (c) GMSE produced by the unweighted and 
weighted estimates for K ∈ {1,10,100,500} and H. 

in the total population was measured by the GMSE parameter. In terms of GMSE, the 
error produced by means of the weighted estimates in the fnite population is more or less 
5 times smaller than the error produced by means of the unweighted estimates on aver-
age. The standard deviation is also smaller for the weighted estimates. For example, for 
K = 1 the GMSE of the unweighted estimates is 0.3110 on average with a standard de-
viation of 0.0747, while the GMSE of the weighted estimates is 0.0630 on average with 
a standard deviation of 0.0503. When the GMSE is computed over the H = 325 strata, 
the GMSE turns out to be 0.1298 and 0.2809, for weighted and unweighted estimates, 
respectively. 

The unweighted estimates obtained by the MaxProdSpSe method are again greater 
than the weighted ones, being on average 0.8117 and 0.7534, respectively (see Figure 2). 
The difference between those estimates is 0.0584 on average with a standard deviation 
of 0.0190. The smallest difference observed among the unweighted and weighted esti-
mates is 0.0121 while the largest difference is 0.1198, with a median of 0.0573. GMSE 
becomes again 5 times smaller when sampling weights are considered in the estimation 
process and the standard deviation of the weighted estimates is half of that of the un-
weighted ones. For example, for K = 100 the GMSE is reduced from 0.2532 to 0.0556 
on average when considering sampling weights, being the standard deviations of 0.0708 
and 0.0342, respectively. The GMSE measured over the different strata for weighted and 
unweighted estimates is 0.1261 and 0.2425, respectively. 

For the ROC01 method weighted estimates are also lower than the unweighted ones 
(0.7526 and 0.8078 on average, respectively) and the standard deviations are slightly 
greater (0.0174 and 0.0151, respectively) (see Figure 3). The smallest difference ob-
served among the unweighted and weighted estimates is 0.0121 while the largest differ-
ence is 0.1088, being the median of 0.0540 and the average of 0.0552 with a standard de-
viation of 0.0166. The error generated by the weighted estimates in the fnite population 
is again lower than the error produced by the unweighted estimates in terms of GMSE. 

Unweighted Weighted 
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Figure 3. Box-plots of the results obtained for the ROC01 method across R = 500 samples: 
(a) unweighted and weighted estimates of the optimal cut-off points, (b) differences between un-
weighted and weighted estimates (Diff), and (c) GMSE produced by the unweighted and weighted 
estimates for K ∈ {1,10,100,500} and H. 
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Figure 4. Box-plots of the results obtained for the MaxEffciency method across R = 500 sam-
ples: (a) unweighted and weighted estimates of the optimal cut-off points, (b) differences be-
tween unweighted and weighted estimates (Diff), and (c) GMSE produced by the unweighted and 
weighted estimates for K ∈ {1, 10,100, 500} and H. 

For example, for K = 10, the error obtained by the weighted estimates is 0.0507 on av-
erage with a standard deviation of 0.0210, while for the unweighted estimates the error 
is 0.2368 on average with a standard deviation of 0.0462. The GMSE computed over 
the different strata takes the value of 0.1245 and 0.2340 for weighted and unweighted 
estimates, respectively. 

Finally, in contrast to the results obtained by the rest of the methods, for the Max-
Effciency method no signifcant differences are observed among the unweighted and 
weighted estimates. Optimal cut-off point estimates throughout the R = 500 samples are 
quite similar in terms of mean and standard deviation. The average of the unweighted 
estimates is of 0.5106 while for the weighted estimates the average is of 0.5297. The 
standard deviation of the weighted estimates (0.0522) is slightly lower than the stan-
dard deviation of the unweighted estimates (0.0579). The smallest absolute difference 
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Table 1. Average (mean) and standard deviation (sd) of the a) unweighted and weighted optimal 
cut-off points, b) difference (Diff) and absolute difference (AbsDiff) among them and, c) GMSE 
produced by the unweighted and weighted optimal cut-off points when classifying units in the 
fnite population for K ∈ {1,10,100,500} and H across R = 500 samples for all the methods 
considered. 

Youden MaxProdSpSe ROC01 MaxEff 
Mean (sd) Mean (sd) Mean (sd) Mean (sd) 

Cut-off Unweighted 0.8304 (0.0208) 0.8117 (0.0157) 0.8078 (0.0151) 0.5106 (0.0579) 
points Weighted 0.7524 (0.0277) 0.7534 (0.0183) 0.7526 (0.0174) 0.5297 (0.0522) 

Diff 0.0780 (0.0343) 0.0584 (0.0190) 0.0552 (0.0166) -0.0191 (0.0456) 
AbsDiff 0.0780 (0.0343) 0.0584 (0.0190) 0.0552 (0.0166) 0.0232 (0.0436) 

GMSE Unweighted 0.3110 (0.0747) 0.2509 (0.0525) 0.2366 (0.0440) 0.0482 (0.0132) 
(K=1) Weighted 0.0630 (0.0503) 0.0530 (0.0243) 0.0505 (0.0198) 0.0454 (0.0136) 

GMSE Unweighted 0.3112 (0.0762) 0.2511 (0.0544) 0.2368 (0.0462) 0.0483 (0.0140) 
(K=10) Weighted 0.0632 (0.0509) 0.0532 (0.0253) 0.0507 (0.0210) 0.0456 (0.0144) 

GMSE Unweighted 0.3131 (0.0899) 0.2532 (0.0708) 0.2390 (0.0642) 0.0496 (0.0211) 
(K=100) Weighted 0.0656 (0.0566) 0.0556 (0.0342) 0.0531 (0.0307) 0.0469 (0.0211) 

GMSE Unweighted 0.3219 (0.1361) 0.2628 (0.1203) 0.2488 (0.1153) 0.0556 (0.0419) 
(K=500) Weighted 0.0764 (0.0791) 0.0667 (0.0621) 0.0642 (0.0594) 0.0530 (0.0413) 

GMSE Unweighted 0.2809 (0.0470) 0.2425 (0.0325) 0.2340 (0.0270) 0.0706 (0.0022) 
(H) Weighted 0.1298 (0.0377) 0.1261 (0.0250) 0.1245 (0.0235) 0.0701 (0.0025) 

observed among the unweighted and weighted estimates is 0 while the largest absolute 
difference is 0.2318. In particular, in more than 50% of the cases the difference between 
weighted and weighted estimates is 0. The difference of the error produced by those 
estimates in the fnite population is also negligible. For K = 1 for example, the GMSE 
produced by the unweighted estimates is on average of 0.0482 with a standard deviation 
of 0.0132, while the average of GMSE of the weighted estimates is 0.0454 with a stan-
dard deviation of 0.0136. The GMSE calculated over the H = 325 strata, is 0.0701 for 
weighted estimates and 0.0706 for unweighted estimates. 

5. Application to a real survey data 

The methodology proposed in Section 3 could be applied to real-world surveys. In par-
ticular, for illustration purposes, we have applied this methodology to the ESIE survey 
data described in Section 2. 

In this case, the response variable Y in which we are interested in indicates the avail-
ability of the website for each company: it takes the value yi = 1 if a company has its 
own website and yi = 0 otherwise. Assume that the goal is to estimate the probability 
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Table 2. Optimal cut-off point estimates obtained by means of Youden, MaxProdSpSe, ROC01 
and MaxEffciency methods, considering or not the sampling weights. 

Youden MaxProdSpSe ROC01 MaxEff 
Unweighted 0.7998 0.7998 0.7998 0.3882 

Weighted 0.7518 0.7518 0.7470 0.3882 

of event for Y of the companies in the fnite population. Thus, we want to ft a logistic 
regression model to our sample. Four categorical variables that are also available in the 
fnite population will be used as predictors: X1 (which indicates the province where the 
company is located, in 3 categories), X2 (indicates the activity of the company, in 9 cat-
egories), X3 (indicates the ownership of the company, in 7 categories) and X4 (indicates 
the number of employees of the company, in 4 categories). In this way, a logistic re-
gression model was ftted to the sample considering these four covariates, the regression 
coeffcients where estimated and p̂(xi) where calculated for each sampled unit. 

We have applied the methods described in Section 3 for the selection of optimal 
cut-off points, which have been estimated by both, ignoring and considering sampling 
weights. The results are shown in Table 2. It can be observed that the unweighted and 
weighted estimates differ when Youden, MaxProdSpSe and ROC01 methods are ap-
plied, which is in line with the results obtained in the simulation study. In particular, 
the unweighted estimates are greater than the weighted estimates, which are similar to 
the ones observed in Section 4.2 (see Table 1). The unweighted and weighted estimates 
obtained by means of the MaxEffciency method are equal, which is also in line with 
the results observed in the simulation study. Those estimates obtained by the MaxEf-
fciency method are lower than the average of the estimates obtained in the simulation 
study. However, it should be noted that this may be justifed by the large standard devia-
tion observed previously for the cut-off points estimated by means of the MaxEffciency 
method (see Figure 4 and Table 1). 

6. Discussion 

In this work, a methodology has been proposed for estimating optimal cut-off points of 
the probability of event in the logistic regression framework cons 

idering sampling weights in the estimation process. In particular, we have focused 
on data derived from complex sampling designs. For this purpose, four optimal cut-off 
point estimation methods (which are denoted as Youden, MaxProdSpSe, ROC01 and 
MaxEffciency (L´ on et al., 2014)) have been selected and modifed in order toopez-Rat´ 
incorporate sampling weights in the estimation process. These four methods have been 
selected for being the ones most commonly applied in the literature. In particular, the 
so widely used pROC package in R (Robin et al., 2011) has incorporated the Youden 
and ROC01 methods for the estimation of optimal cut-off points. All these methods are 
based on different optimality criteria that are related to sensitivity and specifcity param-
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eters. Therefore, we propose a methodology for considering sampling weights in the es-
timation process of sensitivity and specifcity parameters, as well as in the estimation of 
prevalence, in order to estimate optimal cut-off points based on these parameters by tak-
ing into account the sampling weights. A simulation study has been carried out in order 
to analyse the behaviour of both methodologies by comparing the optimal cut-off point 
estimates obtained by means of the above-mentioned methods when sampling weights 
are considered or ignored in the estimation process. The error that those estimates gen-
erate in the estimation of the probability of event of interest in the fnite population has 
also been analysed in this simulation study. In particular, we considered the GMSE in 
order to evaluate the behaviour of the prevalence once the cut-off point was estimated, 
by comparing it with the true prevalence. We also considered it interesting to study the 
differences in estimating sensitivity and specifcity based on the cut-off points estimated 
with and without sampling weights. However, in this case, the theoretical value of these 
parameters in the population are unknown and therefore the comparison is not so direct. 
Even so, we have observed (results not shown) that the differences are in line with those 
observed when studying the GMSE. 

In general, the results suggest the convenience of incorporating sampling weights 
into the estimation process of optimal cut-off points. For three out of the four meth-
ods studied, estimates obtained differ depending on whether the sampling weights were 
considered or not. Furthermore, it can be observed that the error in the estimates of 
the response variable obtained by taking into account sampling weights is much smaller 
than that generated by the estimates obtained by ignoring them for the units in the fnite 
population. Although the cut-off point estimates may not seem very different from each 
other in some cases, it is observed that the effect of applying one or the other estimate for 
the classifcation of units in the population is considerable. In our opinion, the reason for 
this is that a large amount of individuals of the fnite population (specifcally, more than 
20% of all the units on average) has estimated probabilities which range in the interval 
defned by the unweighted and weighted estimates and thus, choosing the unweighted 
cut-off point leads to misclassify a larger number of units in the fnite population. 

Nevertheless, the results related to the MaxEffciency method appear to be differ-
ent compared to Youden, MaxProdSpSe and ROC01. In general, in the results obtained 
using this method, there are no great differences between the estimates obtained by ig-
noring or considering the sampling weights, and furthermore, in most cases, the two 
estimates coincide. Therefore, the errors generated in the population by these estimates 
are also similar and there are no signifcant differences among them. Hence, we can 
say that, at least under the scenario we have worked on, there is no difference among 
the unweighted and weighted estimates obtained by the MaxEffciency method. How-
ever, we believe that this could be due to a particular characteristic of the scenario in 
which we have worked and not a specifc property of the method itself. Specifcally, 
we believe that differences among those estimates obtained by using or not sampling 
weights could occur when there are also signifcant differences between unweighted and 
weighted estimates of the prevalence, which is not the case in the scenario that has been 
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studied. In particular, the unweighted estimate of the prevalence is 0.8330 on average in 
the simulated samples, while the weighted estimate is 0.7552. Due to the properties of 
the effciency function, we believe that different cut-off point estimates may be obtained 
for this method when one of the prevalence estimates (either weighted or unweighted) is 
greater than 0.5, while the other is smaller (results not shown). Nevertheless, studying 
the mathematical properties of this behaviour is part of a further research, which is out 
of the scope of this paper. 

Finally, we would like to comment on the limitations of this study. First of all, it 
should be noted that we have conducted this simulation study based on a real survey 
data. Therefore, the effect that the sampling technique chosen may have on the differ-
ences between weighted and unweighted optimal cut-off point estimates remains to be 
studied as further work. For example, it should be mentioned that in this study we have 
only analysed the effect of the sampling weights obtained by means of one-stage strat-
ifcation. Data derived from other sampling techniques such as clustering or two-stage 
sampling have not been considered. It would also be interesting to study the behaviour 
of the studied methods under non-informative complex sampling designs. Secondly, it 
would be interesting to analyse and compare the behaviour of the methods that have 
been studied throughout this document in different scenarios, for instance, with different 
prevalence values. Nevertheless, it should be noted that as the simulation study we have 
used is based on a real survey, the prevalence of the scenario we have analysed was also 
described by the observed data. 

In conclusion, in this work we have implemented four of the most commonly used 
optimal cut-off point estimation methods, which are implemented in diverse software. 
Out of these four methods, in three of them the use of sampling weights highly improve 
the results, while in the fourth, the results do not differ whether you use the sampling 
weights or not. Therefore, our recommendation is to incorporate the sampling weights 
in the estimation process of optimal cut-off points when working with data derived from 
complex sampling designs. However, it should be noted that if one is interested in ap-
plying other methods, different from those studied throughout this paper, it should be 
considered whether it is appropriate or not the use of sampling weights in each particu-
lar case. 
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A. Generation of the pseudo-population 

This section describes the process of generating the pseudo-population that has been 
implemented in the simulation study described in Section 4. The pseudo-population 
has been generated based on a real survey data, which is described in Section 2. Let 
us denote as SESIE the original survey sample and UESIE the real fnite population of 
size N (note that SESIE ⊂ UESIE). It should be noted that some information of the f-
nite population UESIE and the real sample SESIE is known for us. In particular, for the 
N units in the fnite population the values for the vector of covariates X1, . . . ,Xp are˜ ° 
known, i.e. (x1 j, . . . ,xp j) . In addition to the values for the covariates, thej∈UESIE 
values of the response variables Y1, . . . ,Yq are also known for the units in the sample, ˜ ° 
i.e. (y1 j, . . . ,yq j,x1 j, . . . ,xp j) . In the ESIE survey, a total of H strata have j∈SESIE 

been defned (i.e., {1, . . . ,H}) combining information of three categorical design vari-
ables, which will be denoted as X1,X2 and X3. Therefore, the fnite population can ˛Hbe partitioned in subsets defned by means of these strata, i.e., UESIE = h=1 UESIE,h. 
∀h ∈ {1, . . . ,H} let us indicate as Nh the size of stratum h in the fnite population UESIE 

(UESIE,h) and as nh the size of this stratum in the sample SESIE. Then, the sampling 
weight associated to a unit j ∈ SESIE from stratum h is the following: 

Nh w j = . (26)
nh 

Our goal is to generate a pseudo-population (U) based on the known real ESIE 
survey data, for which all the information of the covariates X1, . . . ,Xp and the response 
variables Y1, . . . ,Yq will be available. This new pseudo-population U will be the same 
size as the true ESIE population (N). In order to ease the notation, the variable names 
of the pseudo-population are the same as in the real fnite population and the units of 
the real ESIE population will be denoted as j ∈UESIE while the units that are artifcially 
generated for the pseudo-population will be denoted as i ∈U . 

Several dichotomous response variables are available in the original survey (being 
the response variable Y , which we have applied in the simulation study, one of them). All 
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possible combinations of these response variables have been examined. For instance, as-
suming that Y1, . . . ,Yq are all the response variables that are available in the survey (where 
Y ∈ {Y1, . . . ,Yq}), for some unit j ∈ SESIE: y j = (y1 j, . . . ,yq j) = α , ∀α ∈ {α1, . . . ,αA}, 
where {α1, . . . ,αA} is the set of all of possible combinations of the responses. For each 
stratum (i.e., ∀h ∈ {1, . . . ,H}) and for each possible combination of the responses (i.e., 
∀α ∈ {α1, . . . ,αA}) we generate Nh,α units in the pseudo-population (U) as: 

Nh,α = ∑ w j ·1UESIE,h( j) · [y j = α], (27) 
j∈SESIE 

where, ˜ 
1, if j ∈UESIE,h,( j) =  (28)1UESIE,h 0, if j ∈/ UESIE,h, 

and ˜ 
1, if (y1 j, . . . ,yq j) = α,

[y j = α] =  (29)
0, if (y1 j, . . . ,yq j) ̸= α. 

In this way, Nh,α is the number of units of the pseudo-population U in stratum h, which 
take the values of responses (y1 j, . . . ,yq j) = α . Once we repeat the process for ∀h ∈ 
{1, . . . ,H} and ∀α ∈ {α1, . . . ,αA} a pseudo-population of N = ∑h∈{1,...,H} ∑α∈{α1,...,αA} 

w j units will be generated with the information of response variables (Y ,Nh,α = ∑ j∈SESIE 

among others) and strata (hence, information of the design variables X1,X2 and X3 will 
also be generated). Note that the pseudo-population U has been created in such a way 
that has the same number of individuals N as the ESIE fnite population UESIE. 

Finally, we generate the rest of the covariates as follows. ∀s ∈ {4, . . . , p} assume that 
Xs is a categorical variable with a total of D categories: {1, . . . ,D}. Then, for each unit 
generated in the pseudo-population (∀i∈U) from stratum h, we generate xsi ∈ {1, . . . ,D} 
following a categorical distribution (i.e., xsi ∼ Cat(πs1, . . . ,πsD)) where the probability 
corresponding to each category d ∈ {1, . . . ,D} is calculated as follows based on the 
known ESIE fnite population UESIE. 

∑ j∈UESIE 
1UESIE,h( j) · [xs j  = d]

πsd = , ∀d ∈ {1, . . . ,D}, (30)
∑ j∈UESIE 

1UESIE,h( j) 

where 1UESIE,h( j) is defned in (28) and, 
˜ 

1 if xs j  = d,
[xs j  = d] =  ∀ j ∈UESIE and ∀d ∈ {1, . . . ,D}. (31)

0 if xs j  ≠ d, 

In this way, the pseudo-population has been generated with the response variable of 
interest Y , the vector of covariates X and the strata. 

B. Pseudo-population sampling process 

The pseudo-population generated following the steps described in Appendix A, has been 
sampled by one-step stratifed sampling with simple random sampling without replace-
ment in each stratum, in the same way as the real survey data described in Section 2. 
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In the sampling process, frst, we identify how many units have been sampled from 
a stratum h (∀h ∈ {1, . . . ,H}) in the real survey sample SESIE (let us denote this amount 
as nh). Then, we sample randomly nh units from stratum h of size Nh from the pseudo-
population U . In this way, repeating the process for ∀h ∈ {1, . . . ,H} we sample a total 
of n units (where n < N) to the sample S ⊂U . 

Finally, sampling weights are assigned to each sampled unit as follows. For ∀i∗ ∈ S 
(assume that i∗ ∈ h (∀h ∈ {1, . . . ,H})), then: 

Nh wi∗ = . (32)
nh 
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