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Resumen

La principal idea de este artículo es revisar las pruebas de las mejores estimaciones

conocidas para la conjetura KLS de salto espectral, demostradas por Eldan y Lee &

Vempal, aplicando el esquema de localización de Eldan a dos sistemas de ecuaciones

diferenciales estocásticas diferentes. Damos una prueba unificada de estas dos acota-

ciones obteniendo la estimación de Eldan desde el sistema de ecuaciones diferenciales

estocásticas considerado por Lee & Vempala.

Abstract

The main idea of this paper is to review the proof on the best known estimates for

the KLS spectral gap conjecture, given by Eldan and Lee & Vempala by applying El-

dan’s localization scheme to two different systems of stochastic differential equations.

We give a unified proof for these two best bounds obtaining Eldan’s estimate from

the system of stochastic equations considered by Lee & Vempala.

1 Introduction

The Kannan-Lovász-Simonovits spectral gap conjecture (KLS) is a major problem in
asymptotic geometric analysis. Its origin comes from theoretical computer sciences as a
problem arising in the study of the complexity of an sampling algorithm and it is related to
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many other branches of mathematics like convex geometry, probability, PDE’s, Riemannian
geometry and information or learning theory (see [AB1], [BGVV] and the references therein
(or [AB2] for a presentation of the conjecture written in Spanish)).

It concerns log-concave probabilities and can be stated in the following way:

Conjecture 1.1 (KLS spectral gap conjecture). There exists an absolute constant C > 0

such that, for any log-concave probability µ in Rn

(1) µ+(A) ≥ C√
‖Covµ‖op

min{µ(A), µ(Ac)}, for any Borel set A ⊂ Rn

where
µ+(A) = lim inf

ε→0

µ(Aε)− µ(A)

ε
,

being Aε = {a + x : a ∈ A, |x| < ε}, and ‖Covµ‖op is the operator norm of the covariance
matrix of µ

This is a Cheeger type isoperimetric inequality. This conjecture was posed in [KLS],
where the authors proved the Cheeger type isoperimetric inequality with constant C

Eµ|x|

(where Eµ|x| denotes the expected value of the Euclidean norm with respect to the proba-
bility µ) instead of C√

‖Covµ‖op
.

The KLS conjecture has an equivalent expression as a corresponding Poincaré type
inequality : there exists an absolute constant C > 0 such that

(2)
∫
Rn
|f − Eµf |2dµ ≤ C‖Covµ‖op

∫
Rn
|∇f |2dµ

for any log-concave probability µ in Rn and Lipschitz µ-integrable function f .
The factor ‖Covµ‖op appearing in both expressions (1) and (2) is just a normalization

factor. Indeed, since the conjecture involves every Borel set A ⊆ Rn, or every Lipschitz
µ-integrable function in its equivalent form, making a change of variables, we can assume
that µ is centered and that Covµ = In (identity matrix), i.e. the new log-concave measure
is isotropic and then we can reformulate both conjectures in the following way: there exists
an absolute constant C such that for any isotropic log-concave probability in Rn

(3) µ+(A) ≥ C min{µ(A), µ(Ac)}, for any Borel set A ⊂ Rn
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or, equivalently, there exists an absolute constant C

(4)
∫
Rn
|f − Eµf |2dµ ≤ C

∫
Rn
|∇f |2dµ

for any isotropic log-concave probability µ in Rn and any Lipschitz µ-integrable function
f .

This conjecture remains open and the best estimates known up to now, which depend
on the dimension, for the value of the constant in (1) and (2) have been obtained in two
different papers by Eldan ([E1], see also [E2] for another approach) and Lee & Vempala
([LV1], see also [LV2] for a nice survey on this conjecture), respectively.

The results whose proofs we want to unify are given by the following two theorems:

Theorem 1.1 (Eldan, [E1]). There exists an absolute constant C > 0 such that for any
isotropic log-concave probability µ in Rn

(5) µ+(A) ≥ C

σn log n
min{µ(A), µ(Ac)} for any Borel set A ⊂ Rn

where σn =
√

supEµ
∣∣|X| − √n∣∣2 and the sup runs over all isotropic log-concave random

vectors X in Rn.

Theorem 1.2 (Lee & Vempala, [LV1]). There exists an absolute constant C > 0 such that
for any isotropic log-concave probability µ in Rn

(6) µ+(A) ≥ C

n1/4
min{µ(A), µ(Ac)} for any Borel set A ⊂ Rn.

The parameter σn appearing in Eldan’s result is related with a different conjecture,
which is the thin shell width conjecture proposed by Bobkov-Koldobsky ([BK]): there exists
an absolute constant C > 0 such that for any isotropic, log-concave probability in Rn we
have σµ =

√
Eµ
∣∣|x| − √n∣∣2 ≤ C.

If this conjecture were true it would imply that the mass in the isotropic log-concave
probabilities is concentrated in a thin shell around a distance

√
n from the origin, Besides,

the result (5) would imply that the KLS conjecture is true up to a log n factor. As it is also
very well known that the KLS conjecture is stronger than the thin shell width conjecture,
the result (6) implies the best known estimate for the the last conjecture, i.e. σn ≤ Cn1/4.
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Previous estimates for this parameter were found by Klartag [K] and Guedon-Milman [GM].
More information on these relations can be seen, for instance, in [BGVV] and [AB1].

The proof of both results, Theorems 1.1 and 1.2, follow the original idea developed by
Eldan, the localization scheme introduced in [E1]: given an isotropic log-concave probability
µ in Rn, a stochastic system of differential equations originates a stochastic process of (not
necessarily isotropic) log-concave probabilities (µt)t≥0 which are an Itô process. We can
get “good” information from some µT and then come back to the original µ. However
the two proofs propose different stochastic systems of differential equations in order to get
stochastic process (µt)t≥0 from which we can obtain estimates.

The main purpose of this paper is to unify the two approaches and give a proof of both
results together, which will follow from the same stochastic system of differential equations.
Even though we are not introducing any truly new ideas in this paper, rather than carefully
mixing and gluing the arguments from the aforementioned authors, it is our desire to clarify
and shed light on the arguments of this beautiful and interesting theory what has moved
us to write this work and bring it closer to the interested people even if they are less expert
in the field.

The theorem we are going to prove in this work is the following, which collects both
Theorems 1.1 and 1.2.

Theorem 1.3. There exists an absolute constant C > 0 such that for any isotropic log-
concave probability µ in Rn the following isoperimetric inequality holds

µ+(A) ≥ C

min{σn log n, n1/4}
min{µ(A), µ(Ac)}

for any Borel set A ⊆ Rn.

The paper is organized in the following way. In Section 2 we will introduce notation,
some definitions and some previous results we are going to use in order to develop our
proof. In Section 3 we will introduce Eldan’s localization scheme, presenting the system
of stochastic differential equations we will consider in this work, which will define the
aforementioned stochastic process of log-concave probabilities (µt)t≥0. In Section 4 we will
give an overview of the strategy we follow in order to stress out the event whose probability
is needed so that the estimates for the KLS constant can be obtained. The trace of the
covariance matrix of the probabilities (µt)t≥0 will be needed to bound the probability of
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such event from below. They will be proved to be small enough with some probability in
Section 5. Finally, in Section 6 we will put all the inequalities together to complete the
proof of Theorem 1.3.

2 Notation and definitions

In this section we will introduce some notation and definitions which are common in this
framework. Some well-known results will also be explained either by giving their proof or
a reference to it.

We will denote by | · | the Euclidean norm in Rn and also the absolute value on R. Sn−1

will denote the Euclidean unit sphere. A probability measure µ on Rn is called log-concave
if for any compact subsets A,B ⊆ Rn and for any 0 ≤ λ ≤ 1

µ((1− λ)A+ λB) ≥ µ(A)1−λµ(B)λ.

The following theorem by Borell [B], characterizes this kind of probabilities: Let µ be
a non degenerate log-concave probability measure on Rn, (i.e. not concentrated in any
hyperplane). Then, µ is log-concave if and only if µ is absolutely continuous with respect
to the Lebesgue measure and its density f is log-concave, i.e. dµ(x) = f(x)dx = e−V (x)dx,
where the function V : Rn → (−∞,∞] is convex.

In the sequel we will use the probabilistic notation Eµg :=
∫
Rn g(x)dµ(x) and Varµg :=

Eµ(g − Eµg)2 for any µ-integrable function g.

First reductions:

We say that µ is isotropic if its barycenter bµ := Eµx = 0 and its covariance matrix

Covµ = Aµ := Eµ(x− bµ)⊗ (x− bµ) = In,

where In is the identity matrix. Every non degenerate log-concave probability dµ(x) =

f(x)dx admits an affine transformation such that dν(y) = |det(Aµ)|1/2f(bµ + A
1/2
µ y)dy is

an isotropic log-concave probability. In particular with this change of variables, it is easy
to prove that if an isotropic probability µ satisfies Poincaré’s inequality (2) with some
constant C, then for any non-degenerate linear map T the log-concave probability measure
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µ ◦ T , given by (µ ◦ T )(A) = µ(T (A)) for any Borel set A, satisfies (2) with the same
constant C. Therefore, if there exists a constant Cn such that every isotropic log-concave
probability in Rn satisfies (2) with constant Cn, then every log-concave probability in Rn

satisfies (2) with the same constant Cn and if there exists a constant C̃n such that every
isotropic log-concave probability in Rn with compact support satisfies (2) with constant
C̃n, then every log-concave probability in Rn with compact support satisfies (2) with the
same constant C̃n.

Furthermore, if any log-concave probability in Rn with compact support satisfies (2)
with some constant Cn > 2

√
2 (which we can always assume), then any isotropic log-

concave probability satisfies (2) with constant 5Cn and so any log-concave (non-necessarily
isotropic) probability in Rn satisfies (2) with constant 5Cn. Indeed, let µ be an isotropic
log-concave probability, dµ = e−V (x)dx, with V : Rn → (−∞,∞] convex and let f be any
Lipschitz µ integrable function f . If we take K a convex body such that

•
∫
K
e−V (x)dx ≥ 1

2

•
∫
K

(f(x)− Eµf(x))2dµ(x) ≥ 1
2

∫
Rn(f(x)− Eµf(x))2dµ(x),

• (EµKf − Eµf)2 ≤ Eµ|∇f |2

denoting by µK the probability supported on K with density

dµK(x) =
e−V (x)dx∫
K
e−V (x)dx

,

and taking into account that for any log-concave probability ν one has that the operator
norm of its covariance matrix verifies ‖Covν‖op = sup

θ∈Sn−1

(
Eν〈x, θ〉2 − (Eν〈x, θ〉)2

)
, we obtain

Varµf ≤ 2
√

2VarµKf + 2
√

2(EµKf − Eµf)2 ≤ 2
√

2VarµKf + 2
√

2Eµ|∇f |2

≤ Cn‖CovµK‖opEµK |∇f |2 + 2
√

2Eµ|∇f |2

= Cn sup
θ∈Sn−1

(
EµK 〈x, θ〉2 − (EµK 〈x, θ〉)2

)
EµK |∇f |2 + 2

√
2Eµ|∇f |2

≤ Cn sup
θ∈Sn−1

EµK 〈x, θ〉2EµK |∇f |2 + 2
√

2Eµ|∇f |2

≤ 4Cn sup
θ∈Sn−1

Eµ〈x, θ〉2Eµ|∇f |2 + 2
√

2Eµ|∇f |2

= (4Cn + 2
√

2)Eµ|∇f |2 ≤ 5CnEµ|∇f |2.
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Therefore, one can consider only compactly supported isotropic log-concave probabilities
in Rn in order to prove (2).

By using a nice result by E. Milman, [EM], in order to prove (2) it is enough to give an
upper bound of the variance of f by an absolute constant times ‖∇f‖2

∞ for any Lipschitz
µ integrable function. Besides, if f is a 1-Lipschitz µ-integrable function one has

Varµf ≤ Eµ|f − f(0)|2 ≤ Eµ|x|2 = n.

As a consequence one obtains that for every fixed n ∈ N, the value of the constant such
that (2) holds for every log-concave probability µ in Rn and Lipschitz µ-integrable function
f is bounded by a constant Cn, depending on N, Therefore, it is enough to prove Theorem
1.3 for every n ∈ N larger than some fixed n0, since, changing the value of the constant C,
one can immediately obtain the result for every dimension n ∈ N.

In conclusion, one can consider only compactly supported log-concave isotropic proba-
bilities in Rn for n ≥ n0 for some n0 ∈ N in order to prove (2).

We will include some preliminary facts o results we are going to use.

Lemma 2.1. Let µ be any probability on Rn and z ∈ Rn, then

Eµ〈x− bµ, z〉2 = 〈Aµz, z〉.

Proof. Simply expand both expressions.

Proposition 2.2 (Reverse Hölder’s inequality). There exists an absolute constant C > 0

such that for every log-concave probability µ on Rn, any seminorm g : Rn → R and 1 ≤
p ≤ q we have

(Eµgp)1/p ≤ (Eµgq)1/q ≤ C
q

p
(Eµgp)1/p .

Proof. See [BGVV, Theorem 2.4.6.],

The next result says that we only need to take into account Borel sets with probability
1/2.

Proposition 2.3. Let µ be an isotropic log-concave probability on Rn. Assume that there
exist two positive numbers Θ, C > 0 such that

µ(EΘ \ E) ≥ C
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for any Borel set E ∈ Rn such that µ(E) = 1
2
, where EΘ is the Θ-dilation of E, i.e.

EΘ = {e+ x ∈ Rn : e ∈ E, |x| < Θ}. Then

µ+(A) ≥ C

Θ
min{µ(A), µ(Ac)} for any Borel set A ⊂ Rn.

Proof. See [EM2].

In order to control the probability of dilations of Borel sets, the following concentration
results for more convex than Gaussian probabilities can be applied

Proposition 2.4. Let φ be a convex function φ : Rn → R and let t > 0. Assume that

dµ(x) = e−φ(x)− t
2
|x|2dx,

is a centered probability on Rn. Then for every Borel set A ⊂ Rn such that

1

10
≤ µ(A) ≤ 9

10

we have
µ
(
A

D√
t

)
≥ 95

100
,

where D > 0 is a suitably chosen absolute constant independent of every other parameter
and AD/

√
t is the D/

√
t-dilation of A.

The proof of this fact follows from [BGVV, Theorem 14.6.6] (see also [AB1, Theorem
3.8]).

Next we are going to describe some results on Itô processes we are going to use. (see
for instance, [O], [Kle]).

Let (Ω,F ,P) a probability space and (Ft)t∈[0,T ] a filtration in Ω, i.e., a family of sub-σ-
algebras on Ω such that Ft1 ⊆ Ft2 ⊆ F , whenever 0 ≤ t1 ≤ t2 ≤ T .

A one-dimensional Itô process (X(t))t∈[0,T ] on Ω is a real stochastic process having the
form

X(t) = X(0) +

∫ t

0

U(s)ds+

∫ t

0

V (s)dW (s), 0 ≤ t ≤ T,

where X(0) is F0-measurable and the processes U(t) and V (t) are Ft-adapted and such that
EP
∫ T

0
|U(t)|dt < ∞, EP

∫ T
0
V 2(t)dt < ∞, and (W (t))t≥0 is a Wiener process (or Brownian
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motion). It is said that the process (X(t))t∈[0,T ] has the stochastic differential on [0, T ]

dX(t) = U(t)dt+ V (t)dW (t), 0 ≤ t ≤ T.

The process (U(t))t∈[0,T ] is called the drift and (V (t))t∈[0,T ] is called the diffusion of
(X(t))t∈[0,T ]. Note that the processes (U(t))t∈[0,T ] and (V (t))t∈[0,T ] may (and often do)
depend on (X(t))t∈[0,T ] or the Wiener process (W (t))t≥0 as well.

In the case that the processes (U(t))t∈[0,T ] is Rn-valued, (V (t))t∈[0,T ] is an (n×n) matrix
and (W (t))t≥0 is an n-dimensional Wiener process, we say that X is an n-dimensional Itô
process.

Let (X1(t))t∈[0,T ], (X2(t))t∈[0,T ] be two 1-dimensional Itô processes. The quadratic co-
variation of [X1, X2]t is defined by

[X1, X2]t = lim
‖P‖→0

N∑
k=0

(
X1(τk+1)−X1(τk)

)(
X2(τk+1)−X2(τk)

)
where P = {0 = τ0 ≤ τ1 ≤ · · · ≤ τN ≤ T} is a stochastic partition of the non-negative
real numbers, ‖P‖ = max(τn − τn−1) is called the mesh of P and the limit is defined using
convergence in probability. If X2 = X1 we will denote [X1]t := [X1, X1]t for every t ∈ [0, T ].

In the case where dXi(t) = Ui(t)dt+ 〈Vi(t), dW (t)〉, for i = 1, 2, where (Ui(t))t∈[0,T ] and
(Vi(t))t∈[0,T ] (i = 1, 2), are n-dimensional adapted stochastic processes and (W (t))t≥0 is an
n-dimensional Wiener process [X1, X2]t is also an Itô process without diffusion and

(7) d[X1, X2]t = 〈V1(t), V2(t)〉dt.

Proposition 2.5 (Itô’s formula). Let (X(t))t∈[0,T ] be an n-dimensional Itô process given
by dX(t) = U(t)dt+ V (t)dW (t), where U(t) ∈ Rn, V (t) is an n× n matrix and W (t) is a
n-dimensional Wiener process. Let g : Rn → R be a function with g ∈ C2)(Rn). Then the
stochastic process (Y (t))t∈[0,T ] given by Y (t) = g(X(t)) verifies

dY (t) = dg(X1(t), . . . , Xn(t)) =
n∑
i=1

∂

∂xi
g(X1(t), . . . , Xn(t))dXi(t)

+
1

2

n∑
i,j=1

∂2

∂xi∂xj
g(X1(t), . . . , Xn(t))d[Xi, Xj]t.
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Proposition 2.6 (Reflection principle). Given a Wiener process (W (t))t≥0, γ > 0, and
T ≥ 0, then we have that

P
(

max
s∈[0,T ]

W (s) ≥ γ

)
= 2P

(
W (T ) ≥ γ).

It is important to remark that any Itô process without drift is also a martingale. Con-
versely, we have

Proposition 2.7 (Dambis, Dubins-Schwarz). Every continuous local martingale, (M(t))t≥0

can be obtained as a Brownian motion (W̄[M ]t)t≥0, i.e.

M(t)−M(0) = W̄[M ]t ∀ t ≥ 0.

3 Eldan’s localization scheme

In the sequel we are going to prove Theorem 1.3. As mentioned in Section2 we may assume
that µ is compactly supported.

In his work [E1], R. Eldan introduced the stochastic localization scheme through the
following system of stochastic differential equations. Given an isotropic log-concave distri-
bution dµ(x) = f(x)dx in Rn, consider

dct = Ctbtdt+ C
1/2
t dWt, c0 = 0

dBt = Ctdt, B0 = 0

where Ct ∈ Rn × Rn is a symmetrical positive definite matrix to be precised later, Wt a
n-dimensional Wiener process and bt is the barycenter of the density ft(x) given by

ft(x) =
e〈ct,x〉−

1
2
〈Btx,x〉f(x)∫

Rn e
〈ct,x〉− 1

2
〈Btx,x〉f(x)dx

, bt =

∫
Rn
xft(x)dx.

Eldan’s choice for Ct is the matrix A−1
t , the inverse of the covariance matrix of the

probability dµt = ft(x)dx, At = Eµt(x − bt) ⊗ (x − bt), while Lee & Vempala use Ct = In

(the identity (n× n) matrix).
Our idea now is to use the same approach to get both results. We will follow Lee &
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Vempala’s choice. So the system of stochastic differential equations is

(8) dct = btdt+ dWt, c0 = 0

whereWt a n-dimensional Wiener process and bt is the barycenter of the density ft(x) given
by

(9) ft(x) =
e〈ct,x〉−

t
2
|x|2f(x)∫

Rn e
〈ct,x〉− t2 |x|2f(x)dx

bt =

∫
Rn
xft(x)dx.

The probability measure with density ft(x) will be denote by µt.

Lemma 3.1 (Existence and uniqueness). Assume f(x) is a compactly supported function
on Rn, then the stochastic system of differential equations (8) has a unique solution for all
t > 0.

Proof. See, for instance [O].

Proposition 3.2. Given the system of stochastic differential equations (8), the density
ft(x) defined by (9) is log-concave as a function of x and for every x ∈ Rn it is an Itô
process verifying

dft(x) = ft(x)〈x− bt, dWt〉.

Proof. We denote
Yt = 〈ct, x〉 −

t

2
|x|2, Zt = eYt

for fixed x ∈ Rn. Then Yt is an Itô process

dYt = 〈dct, x〉 −
1

2
|x|2dt = (〈bt, x〉 −

1

2
|x|2)dt+ 〈x, dWt〉

and d[Y ]t = |x|2 dt. So, by Itô’s formula,

dZt = eYt(dYt +
1

2
d[Y ]t) = Zt 〈x, btdt+ dWt〉 .

If Vt =
∫
Rn Zt(x)f(x)dx, the function

ft(x) =
Zt
Vt
f(x),
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as a function of x is a log-concave density in Rn. Applying Itô’s formula for fixed x ∈ Rn

we have

dft(x) = f(x)

(
dZt
Vt
− Zt
V 2
t

dVt +
1

2

(
−2

1

V 2
t

[dZt, dVt] +
2Zt
V 3
t

d[V ]t

))
= ft(x)

(
dZt
Zt
− dVt

Vt
− [dZt, dVt]

ZtVt
+
d[V ]t
V 2
t

)
.

We compute dVt using Itô’s formula:

dVt = d

(∫
Rn
Zt(x)f(x)dx

)
=

∫
Rn
f(x)dZt(x)dx

=

∫
Rn
f(x)Zt 〈x, btdt+ dWt〉 dx =

〈∫
Rn
xf(x)Ztdx, btdt+ dWt

〉
= Vt 〈bt, btdt+ dWt〉

Then

[dZt, dVt]

ZtVt
= 〈x, btdt+ dWt〉〈bt, btdt+ dWt〉 = 〈x, dWt〉〈bt, dWt〉 = 〈x, bt〉dt

and

d[V ]t
V 2
t

= |bt|2 dt.

Hence

dft(x) = ft(x) (〈x− bt, btdt+ dWt〉 − 〈x, bt〉dt+ 〈bt, bt〉 dt) = ft(x)〈x− bt, dWt〉.

In the following proposition we analyze how the covariance matrix evolves.

Proposition 3.3. Given the system of stochastic differential equations (8), let bt be the
barycenter and At the covariance matrix of the measure µt defined by (9). Then

dAt =
〈
Eµt(x− bt)⊗ (x− bt)(x− bt), dWt

〉
− A2

t dt.
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Proof. First we compute the variation of the barycenter

dbt =

∫
Rn
xdft(x)dx =

∫
Rn
xft(x)〈x− bt, dWt〉dx = Eµt〈x− bt, dWt〉x(10)

= Eµt(x− bt)⊗ xdWt = (Eµt(x− bt)⊗ (x− bt)) dWt = AtdWt,(11)

since (Eµt(x− bt)⊗ bt) = 0 and At is the covariance matrix of µt, i.e., At = Eµt(x − bt) ⊗
(x− bt).

It is clear that
dAt =

∫
Rn
d ((x− bt)⊗ (x− bt)ft(x)) dx.

In order to use Itô’s formula in matrix calculus we introduce, for every x ∈ Rn, the matrix
g(u, v) , defined by g(u, v) = v(x− u)⊗ (x− u) where u ∈ Rn and v ∈ R. One can check
that

∂g

∂uk
= −v

n∑
i,j=1

(δik(xj − uj) + δjk(xi − ui))ei ⊗ ej

= −v
n∑
j=1

(xj − uj)ek ⊗ ej − v
n∑
i=1

(xi − ui)ei ⊗ ek,

∂g

∂v
= (x− u)⊗ (x− u),

∂2g

∂v2
= 0,

∂2g

∂v∂uk
= −

n∑
j=1

(xj − uj)ek ⊗ ej −
n∑
i=1

(xi − ui)ei ⊗ ek,

∂2g

∂uk∂ul
= v

n∑
i,j=1

δikδjleij = v(ek ⊗ el + el ⊗ ek).

where (ei)
n
i=1 is the canonical basis and δik is the Kronecker’s delta. Then, using Itô’s
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formula,

dAt =− Eµtdbt ⊗ (x− bt)− Eµt(x− bt)⊗ dbt +

∫
Rn

(x− bt)⊗ (x− bt)dft(x)dx

−
∫
Rn

(dbt ⊗ (x− bt) + (x− bt)⊗ dbt) dft(x)dx

+

∫
Rn
ft(x)dbt ⊗ dbtdx.

As above, Eµtdbt ⊗ (x − bt) = dbt ⊗ Eµt(x − bt) = 0. Also, by (7) and (10), the entry

(i, j) of the matrix dbt ⊗ dbt is
n∑

k,l=1

(At)ik(At)jldt, so, dbt ⊗ dbt = AtAtdt. Eventually

∫
Rn
dbt ⊗ (x− bt)dft(x)dx = dbt ⊗

∫
Rn

(x− bt)dft(x)dx = dbt ⊗ dbt.

Gluing all this computations we obtain the result.

4 Strategy

Let µ be an isotropic log-concave probability. Our goal is to find two values Θ, C > 0 such
that for any Borel set E ⊆ Rn with µ(E) = 1/2.

µ(EΘ \ E) ≥ C

in order to apply Proposition 2.3 ([EM2]).

In the sequel dµ(x) = f(x)dx is an isotropic log-concave probability on Rn and E is a
fixed Borel set in Rn such that µ(E) = 1/2. We introduce the stochastic process

gE(t) = g(t) = µt(E) =

∫
E

ft(x)dx, t ≥ 0,

where µt and ft(x) are defined by the system of stochastic differential equations (8) and
by (9). It is obvious that g(0) = 1/2, ∀ω ∈ Ω, since f0(x) = f(x) for every ω ∈ Ω and also
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that g is an Itô process with

dg(t) =

∫
E

dft(x)dx =

〈∫
E

ft(x)(x− bt)dx, dWt

〉
.

In particular the process (g(t))t≥0 is a martingale and for every t ≥ 0 the expected value
of g(t) is EPg(t) = 1/2.

Let T > 0 be a time to be precised later and notice that for any Θ > 0, since also
(gEΘ\E(t))t≥0 is a martingale,

µ(EΘ \ E) =

∫
EΘ\E

f(x)dx =

∫
EΘ\E

EPfT (x)dx

= EP

∫
EΘ\E

fT (x)dx = EPµT (EΘ \ E).

In order to apply the preceding propositions we will consider the event G = {ω ∈
Ω; |g(T ) − 1/2| ≤ 1/4}. By Proposition 2.4 and the way that the densities ft are defined,
we will have that there exists some absolute constant D > 0 such that for ω ∈ G we will
have µT (ED/

√
T ) ≥ 0.95 and therefore, by Markov’s inequality,

µ(ED/
√
T \ E) = EPµT (ED/

√
T \ E) ≥ (0.95− 0.5)P(G) =

9

20
P(G).

Hence, if we find T,C1 > 0 independent of E such that P(G) > C1 then we will get that

µ+(A) ≥ C1D√
T

min{µ(A), µ(Ac)} ∀A Borel set ⊂ Rn.

5 Computing the trace

We will bound ‖At‖op by computing the trace of At raised to some power. The main result
is the following

Proposition 5.1. Given the system of stochastic differential equations (8), let At be the
covariance matrix of the measure µt defined by (9). Let p ≥ 2 be an integer. Then

d(Tr(Apt )) = δtdt+ 〈vt, dWt〉
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where δt is an adapted, with bounded variation process, such that

δt ≤

{
C p2σ2

n log nTr(Apt )
1+ 1

p , if p ≥ 3

CTr(A2
t )

3/2, if p = 2

and
|vt| ≤ CpTr(Apt )

1+ 1
2p ∀p ≥ 2,

where C > 0 is an absolute constant and σ2
n = supE

∣∣|X| − √n∣∣2 and the sup runs over all
isotropic log-concave random vectors in Rn.

Proof. We follow Eldan’s method to compute d(Tr(Apt )). However, for p = 2 we will use
the idea given by Lee-Vempala. In order to do that we will express At in terms of a special
orthonormal basis.

Let t0 ≥ 0 be a fixed time. Let (vi)
n
i=1 be an orthonormal basis composed by the eigen-

vectors of At0 and (αii(t0))ni=1 the corresponding eigenvalues. Assume that the orthonormal
basis (vi)

n
i=1 is ordered in such way that α11(t0) ≥ α22(t0) ≥ · · · ≥ αnn(t0). Let also, for

any t ≥ 0, αi,j = αi,j(t) := 〈Atvi, vj〉. We can express, for any t ≥ 0,

At =
n∑

i,j=1

αijvi ⊗ vj.

It is not difficult to see that for any natural number p ≥ 2 and for any t ≥ 0,

Tr(Apt ) =
∑

αi1i2αi2i3 . . . αipi1 ,

where the sum runs over all indices i1, . . . ip ∈ {1, . . . , n}. Notice that if t = t0 then
αij(t0) = 〈At0vi, vj〉 = δij, the Kronecker delta. Therefore, differentiating at t = t0,

d(Tr(Apt ))|t=t0 =
∑

d(αi1i2αi2i3 . . . αipi1)
∣∣
t=t0

=
n∑
i=1

d(αpii)|t=t0 +
∑
i 6=j

k1+k2+k3=p−2

d(αk1
ii αijα

k2
jjαjiα

k3
ii )
∣∣
t=t0

=
n∑
i=1

d(αpii)|t=t0 +
∑
i 6=j

0≤k≤p−2

d(αkiiα
p−k−2
jj α2

ij)
∣∣∣
t=t0

100



(the rest of the terms are 0 by Itô’s formula). According to the expression of d(At) we have
that

d(αij)|t=t0 = 〈d(At)|t=t0 vi, vj〉

= 〈Eµt0 〈x− bt0 , vi〉〈x− bt0 , vj〉(x− bt0), dWt〉 − 〈A2
t0
vi, vj〉dt

= 〈ξij, dWt〉 − 〈At0vi, At0vj〉dt = 〈ξij, dWt〉 − αiiαjjδijdt,

where ξij are the vectors ξij = ξi,j(t0) = Eµt0 〈x− bt0 , vi〉〈x− bt0 , vj〉(x− bt0) ∈ Rn

By Itô’s formula we obtain the following estimates

d(αpii)|t=t0 = pαp−1
ii dαii|t=t0 +

1

2
p(p− 1)αp−2

ii d[αii]t0

=

(
1

2
p(p− 1)αpii

|ξii|2

α2
ii

− pαp+1
ii

)
dt+ pαpii

〈
ξii
αii
, dWt

〉
and for i < j and 0 ≤ k ≤ p− 2, since αij = 0 and αii ≥ αjj,

d((αii)
k(αjj)

p−k−2(αij)
2) = (αii)

k(αjj)
p−k−2d[αij]t

= (αii)
k+1(αjj)

p−k−1 |ξij|2

αiiαjj
dt ≤ (αii)

p |ξij|2

αiiαjj
dt.

Therefore, Tr(Apt ) is an Itô process with

d(Tr(Apt )) = δtdt+ 〈vt, dWt〉,

where for any t = t0

δt0 =
1

2
p(p− 1)

n∑
i=1

(αii)
p |ξii|2

(αii)2
− p

n∑
i=1

(αii)
p+1

+
∑
i 6=j

0≤k≤p−2

(αii)
k+1(αjj)

p−k−1 |ξij|2

αiiαjj

and

vt0 = p
n∑
i=1

αpii
ξii
αii
.

It is now enough to bound form above δt and |vt| at each particular t = t0. First of all
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we estimate |vt|.
By using Cauchy-Schwartz and Borell’s reverse Hölder inequalities (Proposition 2.2),

there exists an absolute constant C > 0 such that for every 1 ≤ i ≤ n

|ξii| =
〈
ξii,

ξii
|ξii|

〉
= Eµt 〈x− bt, vi〉

2

〈
x− bt,

ξii
|ξii|

〉
≤
√
Eµt 〈x− bt, vi〉

4

√
Eµt
〈
x− bt,

ξii
|ξii|

〉2

≤ C Eµt 〈x− bt, vi〉
2

√
Eµt
〈
x− bt,

ξii
|ξii|

〉2

Taking into account that, by Lemma 2.1,

Eµt〈x− bt, z〉2 = 〈Atz, z〉 ∀ z ∈ Rn

we obtain that for every 1 ≤ i ≤ n

|ξii| ≤ C〈Atvi, vi〉
〈
At

ξii
|ξii|

,
ξii
|ξii|

〉1/2

≤ Cαii‖At‖1/2
op .

Hence
|vt| ≤ Cp‖At‖1/2

op Tr(Apt ) ≤ Cp(Tr(Apt ))
1+1/(2p),

for some absolute constant C > 0.
Next we will estimate δt
i) Case p = 2

Note that this necessarily implies k = 0, and so we have a simpler expression for δt,

δt =
n∑

i,j=1

|ξij|2 − 2
n∑
i=1

(αii)
3.
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Thus, using again Borell’s reverse Hölder’s inequality twice

δt ≤
n∑

i,j=1

|ξij|2 =
n∑

i,j=1

∣∣Eµt〈x− bt, vi〉〈x− bt, vj〉(x− bt)∣∣2
=

n∑
i,j,k=1

|Eµt〈x− bt, vi〉〈x− bt, vj〉〈x− bt, vk〉|
2

= Eµt,x⊗µt,y〈x− bt, y − bt〉3 ≤ CEµt,x
(
Eµy,t〈x− bt, y − bt〉2

)3/2

= CEµt,x〈At(x− bt), x− bt〉3/2 = CEµt,x|A
1/2
t (x− bt)|3

≤ C2
(
Eµt,x |A

1/2
t (x− bt)|2

)3/2

≤ C2
(
Eµt,x〈At(x− bt), x− bt〉

)3/2

= C2(Tr(A2
t ))

3/2.

ii) Case p ≥ 3. Now

δt ≤
1

2
p(p− 1)

n∑
i=1

(αii)
p |ξij|2

(αii)2
+ p(p− 1)

∑
1≤i<j≤n

(αii)
p |ξij|2

αiiαjj

≤ p(p− 1)
n∑
i=1

(αii)
p

n∑
j=1

|ξij|2

αiiαjj
.

Let us fix 1 ≤ i ≤ n. Then

n∑
j=1

|ξij|2

αiiαjj
=

n∑
j=1

∣∣∣∣Eµt 〈x− bt, vi√
αii

〉〈
x− bt,

vj√
αjj

〉
(x− bt)

∣∣∣∣2 = (?)

We perform in the integral defining the expectation the change of variables x− bt = A
1/2
t y.

The integral with respect to the new variable y can be regarded as an expectation with
respect to a probability νt, which is isotropic and, since the vectors (ηi)

n
i=1 with ηi =
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A
1/2
t vi/

√
αii form an orthonormal basis, we have

(?) =
n∑
j=1

∣∣∣∣Eνt 〈A1/2
t y,

vi√
αii

〉〈
A

1/2
t y,

vj√
αjj

〉
A

1/2
t y

∣∣∣∣2
=

n∑
j=1

∣∣∣A1/2
t (Eνt〈y, ηi〉〈y, ηj〉y)

∣∣∣2
≤

n∑
j=1

‖A1/2
t ‖2

op |Eνt〈y, ηi〉〈y, ηj〉y|
2

≤ ‖At‖op sup
θ∈Sn−1

n∑
j=1

|Eνt〈y, θ〉〈y, ηj〉y|
2

= ‖At‖op sup
θ∈Sn−1

‖Eνty ⊗ y〈y, θ〉‖
2
HS

Thus

δt ≤ C p2‖At‖opTr(Apt ) sup
θ∈Sn−1

‖Eνty ⊗ y〈y, θ〉‖
2
HS

Eldan proved in [E1, Lemma 1.6] that the expression before is bounded from above by

sup
θ∈Sn−1

‖Eνty ⊗ y〈y, θ〉‖
2
HS ≤ Cσ2

n log n

which gives us the corresponding estimate.

Proposition 5.2. There exist n0 ∈ N and C > 0 such that for any n ≥ n0 we have

P{‖At‖op ≤ 4,∀t ∈ [0, T ]} > 0.9, for T =
1

4C(log n)2σ2
n

and

P

{
‖At‖op ≤

√
51

7

√
n,∀t ∈ [0, T ]

}
≥ 0.9, for T =

1

256C
√
n

Proof. Let p ≥ 2, fixed. Consider the function Φ(t) = −(n+ Tr(Apt ))−1/p. Then Φ(t) is an
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Itô Process and

d(Φ(t)) =
1

p

d(Tr(Apt ))
(n+ Tr(Apt ))1+1/p

− 1

2p

(
1 +

1

p

)
d[Tr(Apt )]t

(n+ Tr(Apt ))2+1/p

=

(
1

p

δt
(n+ Tr(Apt ))1+1/p

− 1 + p

2p2

|vt|2

(n+ Tr(Apt ))2+1/p

)
dt

+

〈
vt

p(n+ Tr(Apt ))1+1/p
, dWt

〉
= αtdt+ dZt,

where αt is an adapted process of bounded variation and Zt a martingale term with Z0 = 0.
By the preceding Proposition δt ≤ Lp(Tr(Apt ))1+1/p where Lp is a different expression

depending on whether p = 2 or p ≥ 3. Therefore,

αt ≤
Lp(Tr(Apt ))1+1/p

p(n+ Tr(Apt ))1+1/p
≤ Lp

p
=

{
C pσ2

n log n, if p ≥ 3

C, if p = 2.
.

The quadratic variation of Zt is

d[Z]t =
|vt|2

p2(n+ Tr(Apt ))2+2/p
dt ≤ C

(Tr(Apt ))2+1/p

(n+ Tr(Apt ))2+2/p
dt ≤ C

n1/p
dt.

Then
Φ(t)− Φ(0) =

∫ t

0

αsds+ Zt ∀t ≥ 0.

We fix T > 0, then
max

0≤t≤T
Φ(t) + (2n)−1/p ≤ Lp

p
T + max

0≤t≤T
Zt.

By the Dambis and Dubins-Schwarz theorem (see Proposition 2.7) we know that Zt is equal
in law to a Brownian motion W̃[Z]t , so for any γ > 0 we have, by the reflection principle
(see Proposition 2.6), that

P
{

max
0≤t≤T

Φ(t) + (2n)−1/p − Lp
p
T > γ

}
≤ P

{
max

0≤t≤T
Zt > γ

}
= P

{
max

0≤t≤T
W̃[Z]t > γ

}
≤ P

{
max

0≤s≤CTn−1/p
W̃s > γ

}
= 2P

{
W̃CTn−1/p > γ

}
≤ 2 exp

(
− γ2

2CTn−1/p

)
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We take γ =
1

4n1/p
and T =

p

256Lpn1/p
and we achieve

P
{

max
0≤t≤T

Φ(t) > n−1/p

(
1

4
+

1

256
− 2−1/p

)}
≤ 2 exp

(
−8Lp
pC

)

Since p ≥ 2, we have
1

4
< 2−1/p − 1

4
− 1

256
<

7

10
and then

P
{

max
0≤t≤T

Φ(t) > − 7

10
n−1/p

}
≤ 2 exp

(
−8Lp
pC

)
.

We remark that

max
0≤t≤T

Φ(t) > − 7

10
n−1/p ⇐⇒ max

[0,T ]
Tr(Apt ) ≥

((
10

7

)p
− 1

)
n

Hence we obtain that

P
{

max
[0,T ]

Tr(Apt ) ≥
((

10

7

)p
− 1

)
n

}
≤ 2 exp

(
−8Lp
pC

)
Eventually we will consider two values of p in order to get our result. On the one hand, if
we choose p = 2 we have T =

1

256C
√
n

and

P
{

max
0≤t≤T

Tr(A2
t ) >

51

49
n

}
≤ 2 exp (−8)

and

P

{
max

0≤t≤T
‖At‖op >

√
51

7

√
n

}
≤ 2 exp (−8)

On the other hand, if we choose p = log n. Then T =
1

256Cσ2
n(log n)2

and

P

{
max

0≤t≤T
Tr(Alogn

t ) >

((
10

7

)logn

− 1

)
n

}
≤ 2 exp

(
−8σ2

n(log n)2
)
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Note that, considering the Gaussian distribution, we obtain σ2
n ≥ 1/2 and then

P

{
max

0≤t≤T
Tr(Alogn

t ) >

(
10

7

)logn

n

}
≤ 2 exp

(
−2(log n)2

)
and

P
{

max
0≤t≤T

‖At‖op >
10e

7

}
≤ 2 exp

(
−2(log n)2

)

6 Gluing the estimates

Proposition 6.1. There exists n0 ∈ N such that if n ≥ n0, µ is an isotropic log-concave
probability measure on Rn and E is a Borel set µ(E) =

1

2
, given the system of stochastic

differential equations (8), µt be the measure defined by (9), g(t) = µt(E), and

T =
1

4C σ2
n(log n)2

or T =
1

256C
√
n
,

then we have that
P
{∣∣∣∣g(T )− 1

2

∣∣∣∣ > 1

4

}
≤ 0.2.

Proof. We know that

g(T )− 1

2
= g(T )− g(0) =

∫ T

0

dg(t) =

∫ T

0

〈ηt, dWt〉

where ηt =

∫
E

ft(x)(x− bt)dx, being ft the density of the probability measure µt.

The function g(t) is a martingale and so, by Dambis, Dubins-Schwarz theorem, Propo-
sition 2.7, we have that in distribution

g(T )− g(0) = W̄[g]T , t ≥ 0

where W̄s is a Wiener process and [g]T is the quadratic variation of g, which is,

[g]T =

∫ T

0

|ηt|2dt.
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Hence, for any M > 0,

P{|g(T )− 1/2| > 1/4} = P{|W̄[g]T | > 1/4} ≤ P{[g]T > M}+ P
{

max
0≤t≤M

|W̄t| >
1

4

}
.

We will bound both summands from above. Taking into account that for every t ≥ 0

|ηt| =
〈
ηt,

ηt
|ηt|

〉
=

∫
E

ft(x)

〈
(x− bt),

ηt
|ηt|

〉
dx

≤

√
Eµt
〈

(x− bt),
ηt
|ηt|

〉2

=

√〈
At

ηt
|ηt|

,
ηt
|ηt|

〉
≤
√
‖At‖op

we have that
[g]T ≤

∫ T

0

‖At‖op dt ≤ T max
0≤t≤T

‖At‖op.

and then

(12) P{[g]T > M} ≤ P
{

max
0≤t≤T

‖At‖op >
M

T

}
On the other hand,

(
−W̄t

)
t≥0

is also a Brownian motion and then we have

P
{

max
0≤t≤M

|W̄t| >
1

4

}
≤ P

{
max

0≤t≤M
W̄t >

1

4

}
+ P

{
max

0≤t≤M
−W̄t >

1

4

}
= 4P

{
W̄M >

1

4

}
≤ 4 exp

(
− 1

32M

)
.

(13)

We consider now two cases:
In the case T =

1

4Cσ2
n(log n)2

we choose M = 4T and then, by (12) and Proposition

5.2
P{[g]T > M} ≤ P

{
max

0≤t≤T
‖At‖op >

1

4

}
≤ 0.1.

and by (13)

P
{

max
0≤t≤M

|W̄t| >
1

4

}
≤ 4 exp

(
−C

2σ2
n(log n)2

32

)
≤ 0.1

for n large enough.
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In the case T =
1

256C
√
n

we choose M =
1

128C
. Then by (12) and Proposition 5.2

P{[g]T > M} ≤ P
{

max
0≤t≤T

‖At‖op > 2
√
n

}
≤ 0.1

and by (13)

P
{

max
0≤t≤M

|W̄t| ≤ 4

}
≤ exp (−4C) ≤ 0.1,

assuming that C > 2, which we can assume without loss of generality.

The latter result, together with the discussion in Section 4, give the proof of Theorem
1.3.
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