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Resumen

La principal idea de este articulo es revisar las pruebas de las mejores estimaciones
conocidas para la conjetura KLS de salto espectral, demostradas por Eldan y Lee &
Vempal, aplicando el esquema de localizaciéon de Eldan a dos sistemas de ecuaciones
diferenciales estocésticas diferentes. Damos una prueba unificada de estas dos acota-
ciones obteniendo la estimacion de Eldan desde el sistema de ecuaciones diferenciales

estocéasticas considerado por Lee & Vempala.

Abstract

The main idea of this paper is to review the proof on the best known estimates for
the KLS spectral gap conjecture, given by Eldan and Lee & Vempala by applying El-
dan’s localization scheme to two different systems of stochastic differential equations.
We give a unified proof for these two best bounds obtaining Eldan’s estimate from

the system of stochastic equations considered by Lee & Vempala.

1 Introduction

The Kannan-Lovasz-Simonovits spectral gap conjecture (KLS) is a major problem in
asymptotic geometric analysis. Its origin comes from theoretical computer sciences as a

problem arising in the study of the complexity of an sampling algorithm and it is related to
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many other branches of mathematics like convex geometry, probability, PDE’s, Riemannian
geometry and information or learning theory (see [ABI], [BGVV] and the references therein
(or [AB2] for a presentation of the conjecture written in Spanish)).

It concerns log-concave probabilities and can be stated in the following way:

Conjecture 1.1 (KLS spectral gap conjecture). There exists an absolute constant C' > 0

such that, for any log-concave probability p in R™

C

(1) pt(A) > Wit min{u(A), p(A)},

for any Borel set A C R"

where

pt(A) = liminf M,

e—0 £

being A° = {a+x:a € A, lz| <e}, and ||Cov,||,p is the operator norm of the covariance

matriz of u

This is a Cheeger type isoperimetric inequality. This conjecture was posed in [KLS],

_C
B, |zl

(where E,|z| denotes the expected value of the Euclidean norm with respect to the proba-

bilit instead of —4—.
= /TCovulor
The KLS conjecture has an equivalent expression as a corresponding Poincaré type

where the authors proved the Cheeger type isoperimetric inequality with constant

inequality: there exists an absolute constant C' > 0 such that

@) [ 1 = Butpn < ClCovly [ 191
R™ R™

for any log-concave probability p in R™ and Lipschitz u-integrable function f.

The factor ||Cov,||o, appearing in both expressions and is just a normalization
factor. Indeed, since the conjecture involves every Borel set A C R", or every Lipschitz
pu-integrable function in its equivalent form, making a change of variables, we can assume
that p is centered and that Cov,, = I, (identity matrix), i.e. the new log-concave measure
is isotropic and then we can reformulate both conjectures in the following way: there exists

an absolute constant C' such that for any isotropic log-concave probability in R”

(3) pt(A) > Cmin{u(A), u(A%)}, for any Borel set A C R"
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or, equivalently, there exists an absolute constant C

() [ -Eufpdu<c [ Vi

for any isotropic log-concave probability x4 in R™ and any Lipschitz u-integrable function
f.

This conjecture remains open and the best estimates known up to now, which depend
on the dimension, for the value of the constant in and have been obtained in two
different papers by Eldan (|E1], see also |[E2| for another approach) and Lee & Vempala
(JLV1], see also [LV2] for a nice survey on this conjecture), respectively.

The results whose proofs we want to unify are given by the following two theorems:

Theorem 1.1 (Eldan, [EI|). There exists an absolute constant C > 0 such that for any

1sotropic log-concave probability p in R™

(5) pt(A) > min{p(A), p(A°)} for any Borel set A C R"

onlogn

where o, = \/sup Eu‘|X| — \/5‘2 and the sup runs over all isotropic log-concave random

vectors X in R™.

Theorem 1.2 (Lee & Vempala, [LV1]). There exists an absolute constant C' > 0 such that

for any isotropic log-concave probability p in R™
t(A) > C i A), (A€ [ set A "
(6) p(A) > mmm{p( ), (A9} for any Borel set A C R".

The parameter o, appearing in Eldan’s result is related with a different conjecture,
which is the thin shell width conjecture proposed by Bobkov-Koldobsky ([BK]): there exists
an absolute constant C' > 0 such that for any isotropic, log-concave probability in R™ we
have 0, = \/E,||z| — \/5‘2 <C.

If this conjecture were true it would imply that the mass in the isotropic log-concave
probabilities is concentrated in a thin shell around a distance y/n from the origin, Besides,
the result would imply that the KLS conjecture is true up to a logn factor. As it is also
very well known that the KLS conjecture is stronger than the thin shell width conjecture,

the result @ implies the best known estimate for the the last conjecture, i.e. o, < Cnl'/%.
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Previous estimates for this parameter were found by Klartag [K| and Guedon-Milman [GM].
More information on these relations can be seen, for instance, in [BGVV]| and [ABI].

The proof of both results, Theorems and [1.2] follow the original idea developed by
Eldan, the localization scheme introduced in [E1]: given an isotropic log-concave probability
w1 in R a stochastic system of differential equations originates a stochastic process of (not
necessarily isotropic) log-concave probabilities (ut):>o which are an Itd process. We can
get “good” information from some pr and then come back to the original . However
the two proofs propose different stochastic systems of differential equations in order to get
stochastic process (y¢):>0 from which we can obtain estimates.

The main purpose of this paper is to unify the two approaches and give a proof of both
results together, which will follow from the same stochastic system of differential equations.
Even though we are not introducing any truly new ideas in this paper, rather than carefully
mixing and gluing the arguments from the aforementioned authors, it is our desire to clarify
and shed light on the arguments of this beautiful and interesting theory what has moved
us to write this work and bring it closer to the interested people even if they are less expert
in the field.

The theorem we are going to prove in this work is the following, which collects both
Theorems [L.1] and .2

Theorem 1.3. There exists an absolute constant C' > 0 such that for any isotropic log-

concave probability p in R™ the following isoperimetric inequality holds

C

min{o, logn,n

pt(A) > iy min{u(A), p(A°)}

for any Borel set A C R™.

The paper is organized in the following way. In Section 2] we will introduce notation,
some definitions and some previous results we are going to use in order to develop our
proof. In Section [3] we will introduce Eldan’s localization scheme, presenting the system
of stochastic differential equations we will consider in this work, which will define the
aforementioned stochastic process of log-concave probabilities (f):>0. In Section || we will
give an overview of the strategy we follow in order to stress out the event whose probability
is needed so that the estimates for the KL.S constant can be obtained. The trace of the

covariance matrix of the probabilities (p);>0 will be needed to bound the probability of
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such event from below. They will be proved to be small enough with some probability in
Section bl Finally, in Section [6] we will put all the inequalities together to complete the
proof of Theorem

2 Notation and definitions

In this section we will introduce some notation and definitions which are common in this
framework. Some well-known results will also be explained either by giving their proof or
a reference to it.

We will denote by |- | the Euclidean norm in R" and also the absolute value on R. S™~!
will denote the Euclidean unit sphere. A probability measure 1 on R" is called log-concave
if for any compact subsets A, B C R" and for any 0 < A <1

p((1 = NA+AB) = u(A) " u(B)™

The following theorem by Borell [B], characterizes this kind of probabilities: Let p be
a non degenerate log-concave probability measure on R", (i.e. not concentrated in any
hyperplane). Then, p is log-concave if and only if u is absolutely continuous with respect
to the Lebesgue measure and its density f is log-concave, i.e. du(z) = f(x)dr = e™V@dx,
where the function V' : R — (—o00, 00] is convex.

In the sequel we will use the probabilistic notation E,g := [, g(z)du(z) and Var,g :=
E,.(9 — E,g)? for any p-integrable function g.

First reductions:

We say that p is esotropic if its barycenter b, := E,x = 0 and its covariance matrix
Cov,=A,=E,(z—-0b,) ®(x—-0,) =1,

where I, is the identity matrix. Every non degenerate log-concave probability du(z) =
f(x)dz admits an affine transformation such that dv(y) = |det(A,)["/2f(b, + APy dy is
an isotropic log-concave probability. In particular with this change of variables, it is easy
to prove that if an isotropic probability u satisfies Poincaré’s inequality with some

constant C', then for any non-degenerate linear map 7" the log-concave probability measure
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wo T, given by (o T)(A) = u(T(A)) for any Borel set A, satisfies with the same
constant C. Therefore, if there exists a constant C), such that every isotropic log-concave
probability in R™ satisfies with constant C),, then every log-concave probability in R"
satisfies with the same constant C, and if there exists a constant C, such that every
isotropic log-concave probability in R™ with compact support satisfies with constant
C,, then every log-concave probability in R™ with compact support satisfies with the
same constant CN'n

Furthermore, if any log-concave probability in R™ with compact support satisfies
with some constant C, > 2v/2 (which we can always assume), then any isotropic log-
concave probability satisfies with constant 5C,, and so any log-concave (non-necessarily
isotropic) probability in R™ satisfies with constant 5C,,. Indeed, let i be an isotropic
log-concave probability, du = eV @ dx, with V : R* — (—o00, 00| convex and let f be any
Lipschitz u integrable function f. If we take K a convex body such that

* fK T2
o [((f(x) —E.f(x)*du(z) > 3 [pu(f(x) = B, f(2))*du(z),

b (Euxf - E,uf)2 S E,u|vf|2

N[

denoting by g the probability supported on K with density

—V(:c)dx

d:uK(x) = fK G_V(x)dl"

and taking into account that for any log-concave probability v one has that the operator

norm of its covariance matrix verifies ||Cov, ||lop = sup (E,(z,60)* — (E,(z,6))?), we obtain
fesn—1

Var,f < 2V2Var,, f+2V2(E,, f —E,.f)* < 2V/2Var,, f + 2V2E,|V f|?
< CollCoviug llopBe |V fI* + 2V2E, |V 1
= Cy sup (B, (2,0)” — (B, (2,0))*) By [V f* + 2V2E, |V f|”
fesSn—1
< Co sup By (w, 0)Ey, [V + 2V2E,|VfI?
0es
< 4C, sup E,(z,0) IE*3M|Vf|2+2\/—IF£M|Vf|2
E n 1

(4C,, 4+ 2V2)E, |V f|* < 5C,E,|Vf|>.
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Therefore, one can consider only compactly supported isotropic log-concave probabilities
in R™ in order to prove .

By using a nice result by E. Milman, [EM], in order to prove it is enough to give an
upper bound of the variance of f by an absolute constant times |V f]||%, for any Lipschitz

1 integrable function. Besides, if f is a 1-Lipschitz p-integrable function one has
Var, f <E,|f — f(O)]° < Eylz* = n.

As a consequence one obtains that for every fixed n € N, the value of the constant such
that holds for every log-concave probability x4 in R™ and Lipschitz u-integrable function
f is bounded by a constant C),, depending on N, Therefore, it is enough to prove Theorem
for every n € N larger than some fixed ng, since, changing the value of the constant C,
one can immediately obtain the result for every dimension n € N.

In conclusion, one can consider only compactly supported log-concave isotropic proba-
bilities in R™ for n > nq for some ng € N in order to prove .

We will include some preliminary facts o results we are going to use.

Lemma 2.1. Let p be any probability on R™ and z € R", then
Eu@ — by, Z>2 = (Auz,z>.

Proof. Simply expand both expressions. n

Proposition 2.2 (Reverse Holder’s inequality). There exists an absolute constant C' > 0
such that for every log-concave probability 1 on R", any seminorm g : R" — R and 1 <

p < q we have
(Eugp)l/p < (Eugq)l/q = C}% (Eugp)l/p'

Proof. See [BGVV], Theorem 2.4.6.], O

The next result says that we only need to take into account Borel sets with probability
1/2.

Proposition 2.3. Let y be an isotropic log-concave probability on R™. Assume that there

exist two positive numbers ©,C > 0 such that

WEC\E) > C
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for any Borel set E € R"™ such that pn(E) = %, where E® is the ©-dilation of E, i.e.
E® ={e+z€R":c€ E,|z| <O} Then

pt(A) > % min{p(A), n(A°)} for any Borel set A C R".

Proof. See [EM2]. O

In order to control the probability of dilations of Borel sets, the following concentration

results for more convexr than Gaussian probabilities can be applied

Proposition 2.4. Let ¢ be a convex function ¢ : R™ — R and let t > 0. Assume that
dp(z) = e=®@) =315 gg.

s a centered probability on R"™. Then for every Borel set A C R™ such that

1

9
< u(A) < =
10 S A = 15

we have
I (A%) > ﬁ,
100
where D > 0 s a suitably chosen absolute constant independent of every other parameter

and APV is the D /+/t-dilation of A.

The proof of this fact follows from [BGVV) Theorem 14.6.6] (see also [ABI, Theorem
3.8]).

Next we are going to describe some results on It6 processes we are going to use. (see
for instance, [O], [Kle]).

Let (©, F,P) a probability space and (F3):cjo,r] a filtration in 2, i.e., a family of sub-o-
algebras on (2 such that F;, C F, C F, whenever 0 <t; <t; <T.

A one-dimensional It6 process (X ())co,r7 on € is a real stochastic process having the

form

X(t):X(O)+/tU(S)ds+/tV(s)dW(s), 0<t<T,

where X (0) is Fy-measurable and the processes U(t) and V (t) are Fi-adapted and such that
Ep fOT \U(t)|dt < oo, Ep fOT V2(t)dt < oo, and (W (t))s>0 is a Wiener process (or Brownian
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motion). It is said that the process (X(t)):cpo,m has the stochastic differential on [0, 7]
dX(t) = U(t)dt + V(t)dW (t), 0<t<T.

The process (U())cor) is called the drift and (V(t))icpm is called the diffusion of
(X(t))icjor;- Note that the processes (U(t))icp,m and (V(t))icjo,r) may (and often do)
depend on (X (t))scjo,r] or the Wiener process (W (t)):>o as well.

In the case that the processes (U(t))icpo,r) is R"-valued, (V (t))icpo,r) is an (n x n) matrix
and (W (t)):>0 is an n-dimensional Wiener process, we say that X is an n-dimensional Ito
process.

Let (X1())ejo,r, (Xa(t))eep,m be two 1-dimensional Ité processes. The quadratic co-
variation of [X7i, Xs]; is defined by

(X1, Xo]y = lim Z (X1 (7rr1) = Xa (7)) (X2 (7h11) — Xa(7h))

I1Pl—=0+

where P = {0 =719 <7 <--- <7y < T} is a stochastic partition of the non-negative
real numbers, ||P|| = max(7, — 7,,_1) is called the mesh of P and the limit is defined using
convergence in probability. If Xy = X; we will denote [X7]; := [X1, Xy]; for every ¢ € [0, T].

In the case where dX;(t) = U;(t)dt + (Vi(t), dW(t)), for i = 1,2, where (U;(t)):cjo,r) and
(Vi(t))teo,m (i = 1,2), are n-dimensional adapted stochastic processes and (W (t));>o is an

n-dimensional Wiener process [X7, X5]; is also an It process without diffusion and
(7) d[ X1, Xae = (VA(t), Va(t))dt.

Proposition 2.5 (Ito’s formula). Let (X (t))icor) be an n-dimensional 1té process given
by dX (t) = U(t)dt + V (t)dW(t), where U(t) € R", V(t) is an n x n matriz and W (t) is a
n-dimensional Wiener process. Let g : R* — R be a function with g € C?(R"). Then the
stochastic process (Y (t))ieo,r) given by Y (t) = g(X(t)) verifies

4V (1) = dg(X, 1), > X)X (1)
52 T 0 X)L X
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Proposition 2.6 (Reflection principle). Given a Wiener process (W (t))i>0, v > 0, and
T > 0, then we have that

P (max W(s) > 7> =2P(W(T) > 7).

s€[0,7

It is important to remark that any It6 process without drift is also a martingale. Con-

versely, we have

Proposition 2.7 (Dambis, Dubins-Schwarz). Every continuous local martingale, (M (t))i>0

can be obtained as a Brownian motion (W[M}t)tEO; i.e.
M(t)—M(@O)=Wpg,  Vt>0.

3 Eldan’s localization scheme

In the sequel we are going to prove Theorem [I.3] As mentioned in Section2] we may assume
that p is compactly supported.

In his work [EI], R. Eldan introduced the stochastic localization scheme through the
following system of stochastic differential equations. Given an isotropic log-concave distri-
bution du(x) = f(z)dx in R™, consider

de; = Cybydt + CH2dW,, o =0
dBt — Ctdt, B() — 0

where C; € R” x R" is a symmetrical positive definite matrix to be precised later, W; a

n-dimensional Wiener process and b; is the barycenter of the density f;(z) given by

e(ct,r>—%<th,x>f<x>
= fRn 6<ct7m>_%<th7m>f(CL’>d5(]7

fi(@) b= / rfia)dr

Eldan’s choice for C; is the matrix A, ', the inverse of the covariance matrix of the
probability du, = fi(z)dz, Ay = E,,(x — b)) ® (x — b;), while Lee & Vempala use C; = I,
(the identity (n x n) matrix).

Our idea now is to use the same approach to get both results. We will follow Lee &
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Vempala’s choice. So the system of stochastic differential equations is
(8) dCt = btdt + th, Co — 0

where W, a n-dimensional Wiener process and b, is the barycenter of the density f;(x) given
by

€<Ct,$>—%‘$|2f($)

(9) ft(z) = fRn 6<ct’x>7%‘x|2f($)d$

b = / o f,(x)da.

The probability measure with density f;(x) will be denote by ;.

Lemma 3.1 (Existence and uniqueness). Assume f(x) is a compactly supported function
on R™, then the stochastic system of differential equations (@ has a unique solution for all

t>0.
Proof. See, for instance [O]. O

Proposition 3.2. Given the system of stochastic differential equations , the density
fi(z) defined by @D is log-concave as a function of x and for every x € R™ it is an Ito

process verifying

dfi(x) = fe(x)(z — by, dWy).

Proof. We denote
t
Y = (¢, x) — §|x|2, Z, = et

for fixed x € R™. Then Y, is an [t6 process
Lo Lo o
dY; = (dcy, x) — §|$| dt = ({by, x) — §|93| Ydt + (x, dW,)
and d[Y], = |z|* dt. So, by Ito’s formula,
1

If Vi = [on Zi(2) f(2)dz, the function



as a function of x is a log-concave density in R™. Applying [t6’s formula for fixed x € R"

we have

dz, Z; Z,
0) = ) (2 = Lo+ (~2piazi vy + oy, )
dz, dVy |dZ,dVy] d|V]
-0 (7 - T )

We compute dV; using [t6’s formula:

wi=d( [ zoswic) = [ iz

f(@)Z; (z, bydt + dWy) dx = < xf(x)Zydx, bydt + th>
R”L

Rn

— V; <bt, btdt + th>

Then
% = (z, bydt + dW}) (by, bydt + dWy) = (x, dWy) (b, dWy) = (x, by)dt
and
d&/jt 1,2 dt.
Hence

dfy(x) = fi(x) (& — by, bedt + dW) — (z, b )t + (by, by) dt) = fo(x){x — by, dW}).

In the following proposition we analyze how the covariance matrix evolves.

Proposition 3.3. Given the system of stochastic differential equations , let by be the

barycenter and A; the covariance matriz of the measure u; defined by @ Then

dA; = <Eut (ac - bt) ® (ac - bt)(ff — bt), th> — A? dt.
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Proof. First we compute the variation of the barycenter

(10) b, — / vdfy(z)dx — / ef(@) (@ — by, AW,z = By, (& — by, AWz
(11) = E,(z—b)®@xdW, = (E,,(z —b) @ (x — b)) dW, = A, dW,

since (E,, (z —b;) ® b;) = 0 and A, is the covariance matrix of p, i.e., A, =E, (z —b) ®
(x —by).
It is clear that
dA; = /n d((z — b)) @ (x — by) fi(x)) da.

In order to use [t6’s formula in matrix calculus we introduce, for every x € R”, the matrix
g(u,v) , defined by g(u,v) = v(zr — u) ® (r — u) where u € R" and v € R. One can check
that

dg -
= —v Z(xj —uj)er ®ej — v Z(% —u;)e; @ ey,
=1 i=1
Y -we ),
0?g
g2
0?g - -
oo = D (@ —uper®@e;— > (i — ui)e; ® ey,
=1 i=1
9? -
aURSUZ =v Z 5ik§jleij = ’U(Ek Re+e® ek)-

4,j=1

where (e;)"; is the canonical basis and d;, is the Kronecker’s delta. Then, using Ito’s
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formula,

dA, = — By dby @ (z — by) — By (x — b)) @ dby + /n@: Cb) @ (x — b)dfy(x)dz
- / (dby ® (x — by) + (& — by) ® dby) dfy(x)dx
[ Ry o vz
As above, E,, dby @ (x — b)) = dby @ E,, (v — b)) = 0. Also, by and (L0)), the entry
(7,7) of the matrix db; ® db, is z”: (Ap)ir(Ap) udt, so, dby @ dby = Ay Aydt. Eventually

k=1

/ db, @ (z — b)dfy(z)dz = db, @ / (z — b)dfy(x)dz = db, ® dby,.

n

Gluing all this computations we obtain the result.

4 Strategy

Let p be an isotropic log-concave probability. Our goal is to find two values ©,C > 0 such
that for any Borel set £ C R"™ with p(E) = 1/2.

WEC\E) > C

in order to apply Proposition (JEM2]).

In the sequel du(z) = f(z)dz is an isotropic log-concave probability on R™ and FE is a
fixed Borel set in R™ such that u(E) = 1/2. We introduce the stochastic process

ge(t) = 9(t) = pu(E) = /E f(@)de, >0,

where p; and fi(x) are defined by the system of stochastic differential equations and
by (9). It is obvious that g(0) = 1/2, Vw € €, since fo(x) = f(z) for every w € Q and also
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that ¢ is an [t6 process with

dﬂ@:é@m@mz<Lymm@—@m@mm>

In particular the process (g(t))i>0 is a martingale and for every ¢ > 0 the expected value
of g(t) is Epg(t) = 1/2.
Let T > 0 be a time to be precised later and notice that for any ©® > 0, since also

(9ge\p(t))i>0 is a martingale,

W(E°\E) = [

E

f(x)dx = / Ep fr(z)dx
O\E EO\E

_m/ Fr(@)dz = Bap(E® \ E).
EO\E

In order to apply the preceding propositions we will consider the event G = {w €
Qs |g(T) — 1/2| < 1/4}. By Proposition and the way that the densities f; are defined,
we will have that there exists some absolute constant D > 0 such that for w € G we will
have pp(EP/ ﬁ) > 0.95 and therefore, by Markov’s inequality,

MEWW\ED:EwﬂEwﬁ\EpNO%—OwP@%:%P@)

Hence, if we find T',C; > 0 independent of E such that P(G) > C then we will get that

D
put(A) > %min{u(/l), w(A)} VA Borel set C R".

5 Computing the trace

We will bound || A||op by computing the trace of A; raised to some power. The main result

is the following

Proposition 5.1. Given the system of stochastic differential equations , let A; be the
covariance matriz of the measure pu; defined by @ Let p > 2 be an integer. Then

d(Tr(AP)) = 6,dt + (v;, dW,)
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where 0, is an adapted, with bounded variation process, such that

5 < CpPo2logn (A" 5, ifp>3
CTr(A7)*2, if p=2

and
| < CpTr(AYF5  Yp > 2,

where C > 0 is an absolute constant and o2 = sup ]E“X] — \/5}2 and the sup runs over all

1sotropic log-concave random vectors in R™.

Proof. We follow Eldan’s method to compute d(Tr(AY})). However, for p = 2 we will use
the idea given by Lee-Vempala. In order to do that we will express A, in terms of a special
orthonormal basis.

Let o > 0 be a fixed time. Let (v;); be an orthonormal basis composed by the eigen-
vectors of Ay, and («;(to))i, the corresponding eigenvalues. Assume that the orthonormal
basis (v;); is ordered in such way that aqi(tg) > @aea(to) > -+ > aun(ty). Let also, for

any t > 0, a;; = o, j(t) :== (Awv;, v;). We can express, for any ¢ > 0,
n
At = Z QU4 X vy
ij=1

It is not difficult to see that for any natural number p > 2 and for any t > 0,

= E jyio Qinig « - - Qg

where the sum runs over all indices iy,...4, € {1,...,n}. Notice that if ¢ = ¢, then

a;;(to) = (Agvi, v;) = 017, the Kronecker delta. Therefore, differentiating at t = ¢,

d(TI‘ Ap |t " Z d Oz“wozmm . 'aiP“)‘t:to
k k %
- Z ()] 1=, + Z d(ej aijaiagia 3)}t=to
i=1 i#j
ki+ko+ks=p—2

_Zd “|t t0+ Z d o fjk2z2j)

i#
0<k<p 2

t=to
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(the rest of the terms are 0 by It6’s formula). According to the expression of d(A;) we have
that

d(aij>|t=t0 = <d(At)|t:to Vs, V)
= <Em0 <:Ij - btov U2><LE - btm Uj>(x - bt0)7 th> <A2 Ui, U1>dt
= <§ija th) - <Atovia AtO/Uj>dt == <5ij, th> — OéiiOéjjéijdt,

where §;; are the vectors §;; = & ;(to) = B, (¥ — by, vi) (T — by, v5) (¥ — by,) € R?

By It6’s formula we obtain the following estimates

1 _
d(af;)|,— to = pag; ' dav;,— —to T ép(p — 1ag; Zd[aii]to

1 i 2 i1
(2]?(]7_ 1) |£ | — pa P+l) dt—l—poz <§ d”7t>
Oé (677}

[ (4

and for i < j and 0 <k <p — 2, since o;; = 0 and a;; > a5,

()" ()P (ai)?) = (i) ()P 2oy,

|2
—_ (aii)k+1(aﬂ)p k—1 |§ZJ ELLVAREY S (aii)p |€’LJ| dt
Qi O Qi O

| 2

Therefore, Tr(A}) is an Ito6 process with
d(Tr(A7)) = didt + (v, dW3),

where for any t = t,

1 - &Z 2 -
5150 = §p<p - 1) Z(azz | | pz Oéu p+1

i=1

+ Z Oz”)kH p k—1 |§m‘

] all a]]
ogkgp 2

and
pz p gzz )

It is now enough to bound form above ¢, and |v;| at each particular t = ¢y. First of all
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we estimate |vy|.
By using Cauchy-Schwartz and Borell’s reverse Holder inequalities (Proposition 2.2)),

there exists an absolute constant C' > 0 such that for every 1 <i <n

§ii 2 &ii
il — ity ]Ep,t _bu i _b)
l <5 |5“|> @ = b vi) < f |§n|>
2
< \/E,, (z— b \/Em b, §u|>

2
S OEMt bt,'UZ \/]E',ut bt, 5 |>

Taking into account that, by Lemma [2.1]

E,, (z — by, 2)? = (A2, 2) VzeR"

we obtain that for every 1 <i <mn

i i >1/2
il < C(Aw;,v) (A )
ul < Cldw “>< Gl T

< Cau||At||1/2.

Hence

lor] < Opl|A]| 2 Te(AP) < Cp(Tr(AD))+/C),

lop

for some absolute constant C' > 0.
Next we will estimate J;
i) Case p =2

Note that this necessarily implies £ = 0, and so we have a simpler expression for ¢,

Z ‘SUP - 22 CY“

i,7=1
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Thus, using again Borell’s reverse Holder’s inequality twice

<Y Gl = Z\Em — by, vi) (@ = by v5) (@ = by)[*

i,7=1 i,7=1
= Z |Eut<x_btavi><x_bt7vj><x_btavk>|2
i4,k=1

= Eut,a;@,ut,y <£E - btvy - bt> < C]E/Jt:v ( /—Lyt< - btv - bt>2)3/2
= CE,,,, (Ai(x = b), 2 — b)** = CE,, ,|A)*(z — b,)[?

3/2
< C? (B | AV (2 = 0)1) T < C (B, (A — bi), 2 — b))

— C(Tx(A2)>.

ii) Case p > 3. Now

< o= DS e pp 1) Y (S

i—1 ()? 1<i<j<n Qi O
. — [&;]?
<plp-1) E (cvii)? E 5 ”a
i=1 j=1 "7

Let us fix 1 <4 <n. Then

>
Qi

J=1 Jj=1

2

= (%)

V; (O
E — by, —— —b J —b
Mt <l‘ t) aii> <l‘ ty ,—ajj> (‘T t)

We perform in the integral defining the expectation the change of variables z — b; = A% / 2y.
The integral with respect to the new variable y can be regarded as an expectation with

respect to a probability 14, which is isotropic and, since the vectors (n;)", with n; =
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1/2 .
At/ v;/y/ay; form an orthonormal basis, we have

E, A1/2 U4 A1/2 Uy Al/z
t< t y?\/&—“ t yv\/a—j] t y

2

n

=2

j=1

_ Z ‘A,}/Q (B, (5, ) (g, 15)y)

2

< Z 1A (12, (B, (s 0} (s 1509

2
< ||At||0p08;1p E By, (v, 0) (v, )y
esn—17

= || A¢llop sup HEuty®y<y, 0) |55

fesn—1

Thus

8 < Cp?|| Aglop Tr(AD) ,sup 1B,y @ y(y, )] 3
c n—1

Eldan proved in [EI, Lemma 1.6] that the expression before is bounded from above by
sup B,y ®y(y,0)|5s < Cozlogn

fesSn—1

which gives us the corresponding estimate.

Proposition 5.2. There ezist ng € N and C' > 0 such that for any n > ng we have

1
P A o <4:7 t 7,_Z“' .J, T = —m"7F7——
{[Adlop < 4,V € [0, T]} > 0.9 Jor 4C(log n)202
and
V51 1
P (| Adllop < ~o—+/n,Vt € [0,T] p > 0. e N
{II tlop € —=vn,Vt € (0,710 209, for 256C/n

Proof. Let p > 2, fixed. Consider the function ®(¢) = —(n + Tr(A?))~/?. Then ®(#) is an
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1t6 Process and

1 d(Te(A)) L/ 1\ dTe(AD),
d = - — (14
) = w7~ 2\ p) Gt o)
. 1 515 o ]- +p |,Ut|2 dt
S\ T(AD) Y 2p? (o Te(AD))> P
Ut .
+ <p(7’L T TI‘(A?))1+1/p’th> = Oétdt + dZt,

where o4 is an adapted process of bounded variation and Z; a martingale term with Z, = 0.
By the preceding Proposition ¢; < L,(Tr(AY))'*1/? where L, is a different expression
depending on whether p = 2 or p > 3. Therefore,

o Ly(Te(AD))'*P L, _ | Cpoglogn, ifp=>3 |
= pn+Te(A7) e = p C, if p=2.

The quadratic variation of Z; is

_ o _ o (e
T P AR = A S et

d[Z],

Then .
B(t) — B(0) :/ auds+ 7, V>0,
0

We fix T' > 0, then

L
max ®(t) + (2n) VP < 2T + max Z,.
0<t<T p 0<e<T

By the Dambis and Dubins-Schwarz theorem (see Proposition we know that Z; is equal
in law to a Brownian motion W[Z}

(see Proposition [2.6), that

., so for any v > 0 we have, by the reflection principle

L
P { max ®(t) 4 (2n)" VP — 227 > 7} < P{max Zy > 7}

0<t<T P 0<t<T

:P{max W[Z]t>7}§IP>{ max W3>7}

0<t<T 0<s<CTn—1/p

2
~ v
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1
We take v = ——— and T' = P and we achieve

4Anl/p 256Lpn1/p

1 1 8L
F {0@%@@) - (4 256 2 ) } 2exp ( pC )

1 1 1 7
Since P Z 2, we have Z_L < 2—l/p - 1 — % < E and then
T i 8L,
_ < _r )
P {orél%}%q)(t) >~ 1" } < 2exp ( oC

We remark that

7 -1/p p 101)”
- > — —
Dax O(t) > Tl = I[%%( Tr(A}) > - 1)n

Hence we obtain that

10\? 8L
Py > =) - < S
Plagnn = ((7) 1) of <20 (5)

Eventually we will consider two values of p in order to get our result. On the one hand, if
1

__~ _and
256C/n

we choose p = 2 we have T =

1
P{max Tr(A7) > Z—gn} < 2exp (—8)

0<t<T
and
P {Orgg; [ Atllop > @\/ﬁ} < 2exp (-8)
On the other hand, if we choose p = logn. Then T' = L and
256Co2(logn)?

oo 10 logn
P {Org%xTTr(At &) > ((7 —1|np <2exp(—802(logn)?)
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Note that, considering the Gaussian distribution, we obtain 2 > 1/2 and then

1 logn
logn . 2
P {o?%}%Tr(At ) > (—7 ) n} < 2exp (—2(logn)?)

and
10e 9
PJ max ||A¢llop > = < 2exp (—2(logn)?)

0<t<T

6 Gluing the estimates

Proposition 6.1. There exists ng € N such that if n > ng, p is an isotropic log-concave

probability measure on R™ and E is a Borel set u(E) = o given the system of stochastic
differential equations (§)), p be the measure defined by (9), g(t) = pw(E), and

1 1

T—— ro_ L
1Co2(logn? 7 256C/n’

then we have that

ﬂﬂ—lzgﬁ%ﬂwﬁiédﬁﬂ=é<mdm>

where 7, = / fi(z)(x — by)dx, being f; the density of the probability measure p;.
E
The function g(t) is a martingale and so, by Dambis, Dubins-Schwarz theorem, Propo-
sition [2.7, we have that in distribution

9(T) = g(0) = Wig,, t>0

where W, is a Wiener process and [g]r is the quadratic variation of g, which is,

T
MT:/|m%t
0

107



Hence, for any M > 0,

PAla(T) ~ 1/2] > 1/4) = P{IWigp] > 14} < Pllslr > ) + P { e W > 1 }.

We will bound both summands from above. Taking into account that for every ¢t > 0

|77t|:<77ta > /ft < bt)>%>dff
E, ( (2 b ,£> - <At£,£> A,
S\/‘“<(5’3 " T \/ il Tl ) = Vel

T
gl < [ 1A < T g 14

we have that

and then

(12) Pllslr > M} < P{ s 14l > 7 |

On the other hand, (—Wt) 150 1s also a Brownian motion and then we have

1 - 1 - 1
P{max (W] > = }g]P{maX Wt>—}+P{maX —Wt>—}
0<t<M 4 0<t<M 4 0<t<M 4

(13) I 1
= 1 i< E—
4P{WM>4}_4eXp< 32M)

We consider now two cases:

1
In the case T' = W we choose M = 4T and then, by (12]) and Proposition
1

< < 0.1.

P{lglr > M} <P {Oriltax | Atllop > 4} <0.1

and by (T3)
P Wil > 5 oy Cologn)™y _ 4
osion = 2exp 32 =

for n large enough.
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1 1
In the case T' = m we choose M = 950" Then by and Proposition

P{[g]r > M} < P{Org%xT | Adlop > 2\/5} <0.1

and by
IP’{ max |W;| < 4} <exp (—4C) < 0.1,

0<t<M

assuming that C' > 2, which we can assume without loss of generality.
O

The latter result, together with the discussion in Section [} give the proof of Theorem
3l
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