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Abstract
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1 Introduction

The deformation theory of algebras due toGerstenhaber furnishes the guiding example
for algebraic deformation theory. For an algebra A, the Hochschild complex C(A) is
a dg Lie algebra governing the deformation theory of A through the Maurer–Cartan
formalism. This dg Lie structure is the shadow of a richer operadic structure, which
can be expressed by saying that C(A) is a homotopy G-algebra [6]. This structure,
which captures both the brace operations and the cup product, is a special case of a
B∞-structure [7]. Importantly, this purely algebraic structure constitutes a stepping
stone in the proof of the Deligne conjecture, proving C(A) to be an algebra over the
chain little disk operad [10,13].

The deformation theory of algebras was later extended to presheaves of algebras
by Gerstenhaber and Schack, who in particular introduced a bicomplex computing the
natural bimodule Ext groups [4,5]. However, this GS-complex C(A) of a presheaf A
does not control deformations ofA as a presheaf, but rather as a twisted presheaf, see
for instance [2,11]. From this point of view, it is more natural to develop deforma-
tion theory at once on the level of twisted presheaves or, more generally prestacks,
that is, pseudofunctors taking values in the 2-category of linear categories (over
some fixed commutative ground ring). In [2], Dinh Van and Lowen established a
Gerstenhaber–Schack complex for prestacks, involving a differential which features
an infinite sequence of higher components in addition to the classical simplicial and
Hochshild differentials. Further, for a prestack A, they construct a homotopy equiv-
alence CGS(A) ∼= CC(A!) between the Gerstenhaber–Schack complex CGS(A) and
the Hochschild complex CC(A!) of the Grothendieck constructionA! ofA. Through
homotopy transfer, this endows the GS-complex with an L∞-structure. This result
improves upon the existence of a quasi-isomorphism, which is a consequence of the
Cohomology Comparison Theorem due to Gerstenhaber and Schack for presheaves
[5] and to Lowen and Van den Bergh for prestacks [12].

Although the GS-complex does not possess a B∞-structure, its elements - linear
maps involving different levels of the prestack - can be composed in an operadic
fashion. As such, it makes sense to investigate this higher structure in its own right,
and use it directly in order to establish an underlying L∞-structure. For particular
types of presheaves, explicit L∞-structures on the GS-complex have been established
by Frégier et al. [3] and by Barmeier and Frégier [1].

Let Brace be the brace operad and F2S the homotopy G-operad. In the case of
a presheaf (A,m, f ), in [8], Hawkins introduces an operad Quilt ⊆ F2S⊗H Brace
which he later extends to an operad mQuilt acting on the GS-complex. These operads
are naturally endowed with L∞-operations as desired. The action of Quilt on the
GS-complex considered by Hawkins only involves the restriction functors f of the
presheaf, the multiplication m being incorporated later on in mQuilt. Unfortunately,
the way in which functoriality of f is built into these actions, does not allow for an
extension to twisted presheaves or prestacks.

The goal of this paper is to solve the problem of establishing a natural operadic
structure with underlying L∞-structure on CGS(A) in the case of a general prestack
(A,m, f , c) with twists c. As part of our solution, we use Quilt in a fundamentally
different way in relation to the GS-complex, but still allowing us to make use of the
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naturally associated L∞-structure from [8]. In Sect. 3, we capture the higher structure
of CGS(A) by introducing the new operad Patch ⊆ mNSOp⊗H NSOp over which
CGS(A) is shown to be an algebra (see Theorem 3.24). Here, (m)NSOp is the operad
of nonsymmetric operads (with multiplication).

In [6], Gerstenhaber and Voronov obtain a brace algebra structure on an operad
and a homotopy G-algebra structure on an operad with multiplication. Based upon
the expression of these results in terms of the underlying operads NSOp and mNSOp
in Sect. 2, we construct a morphism Quilt −→ Patchs (see Proposition 3.27) as a
restriction of

F2S⊗H Brace −→ mNSOpst ⊗H NSOps,

where the operads with subscript denote the (uncolored) graded operads associated to
the unsubscripted colored operads. This gives rise to the composition

R : Quilt −→ Patchs −→ End(sCGS(A))

which incorporates the multiplication m and the restrictions f of A.
In Sect. 4, we extend the action R to

Rc : Quiltb[[c]] −→ End(sCGS(A))

in order to incorporate the twists (seeTheorem4.17).Here,Quiltb[[c]] is obtained from
an operad of formal power series. Further, we establish L∞-operations on Quiltb[[c]]
extending those on Quilt from [8] (see Theorem 4.10) by adding an infinite series of
higher components containing twists. Under the action of Quilt this neatly corresponds
to and extends the differential on CGS(A) obtained in [2]. In the final Sect. 4.5 we
briefly discuss the relation of this L∞-structure with the deformation theory of the
prestack A.

The present work naturally grew out of [2], and at the time when [8] appeared
large parts of an operadic approach to the GS complex of a prestack had already been
developed independently by us. Given the efficient way inwhichHawkins’ description
of Quilt gives rise to an L∞-structure, we decided it was worthwhile to build on this
approach to the presheaf case, albeit in a way which “flips and refines” the action of
Quilt in order to make it useful for general prestacks. As a consequence, when we
follow through Hawkins’ approach, in comparison we manage to incorporate not only
the restrictions f , but also the multiplications m in an initial action of Quilt on the GS
complex. In analogy with the way in which Hawkins extends his action from Quilt to
mQuilt in order to incorporate the multiplications m, we establish an extension from
Quilt to Quiltb[[c]] in order to incorporate the twists c.

The current paper is part of a larger project in which it is our goal to understand
the homotopy equivalence CGS(A) ∼= CC(A!) from [2] operadically, showing in
particular that the L∞-structure from [2] and the one established in the present paper
actually coincide.
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2 Gerstenhaber–Voronov operadically

In the seminal paper [6], Gerstenhaber and Voronov define a brace-algebra structure
on the totalisation of a non-symmetric operadO. Moreover, in presence of a multipli-
cation, they define a homotopy G-algebra structure on O incorporating both the cup
product and the Gerstenhaber-bracket.

In this section we describe the morphisms of operads underlying these results. To
this end, in Sect. 2.3, we recall the colored operad NSOp encoding non-symmetric
operads, and we describe the natural extension mNSOp which adds a multiplication.
Let NSOps and mNSOpst be their totalised graded (uncolored) operads with sus-
pended, respectively standard degree ( see Sects. 2.5 and 2.6). Let Brace be the brace
operad (see Sect. 2.1) and F2S the Gerstenhaber–Voronov operad encoding homotopy
G-algebras (see Sect. 2.2). The main goal of this section is the definition of morphisms
of dg-operads

φ : Brace −→ NSOps

and

φ̄ : F2S −→ mNSOpst

(see Theorems 2.16 and 2.34 respectively). In these definitions, we have to pay par-
ticular attention to the choice of signs. For this, we will make use of morphisms of
operads (m)NSOp −→ Multi� landing in themulticategory associated to the simplex
category � (see Proposition 2.11).

For both uncolored as colored operads, we use the term morphism of operads. In
case confusion may arise, we add a subscript to differentiate the uncolored operads
from their colored counterparts.

2.1 The operad Brace

Throughout, we work over a fixed commutative ground ring k.
The operad Brace encoding brace algebras is defined using trees, that is, planar

rooted trees. Following the presentation from [8, §2.2], for a tree T we denote the set
of vertices by VT , the set of edges by ET , the “vertical” partial order on VT generated
by ET by ≤T , and the “horizontal” partial order on VT by �T . For (u, v) ∈ ET we
call u the parent of v and v a child of u.

For n ∈ N, put [n] := {0, . . . , n} and 〈n〉 := {1, . . . , n}.
Let Tree(n) denote the set of trees with vertex set 〈n〉 and let Brace(n) be the free

k-module on Tree(n) endowed with the Sn-action given by permuting the vertices, i.e.,
T σ is the tree defined by replacing vertex i in T by σ−1(i). The operadic composition
on Brace is based upon substitution of trees, as follows. For trees T ∈ Tree(m),
T ′ ∈ Tree(n) and 1 ≤ i ≤ m, we denote by Ext(T , T ′, i) ⊆ Tree(m + n − 1) the set
of trees extending T by T ′ at i (that is, U ∈ Ext(T , T ′, i) has T ′ as a subtree which
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upon removal reduces to the vertex i of T ). We then define

T ◦i T ′ :=
∑

U∈Ext(T ,T ′,i)
U .

Underlying every such extension lie two maps 〈n〉 α
↪→ 〈n + m − 1〉 β

� 〈m〉 acting on
the vertices, where α embeds n vertices consecutively and β contracts the image of
α to the vertex i . We call the pair (α, β) the extension of m by n at i . We refer to [8,
§2.2] for more details.

2.2 The operad F2S

The operad F2S encodes homotopy G-algebras [6]. Again, we largely follow the
exposition from [8, §2.3]. Given a set A, a word over A is an element of the
free monoid on A. For a word W = a1a2 . . . ak , correspondiong to the function
W : 〈k〉 −→ A : i −→ ai , the i-th letter of W is the couple (i, ai ). We will often
identify a word with its graphW = {(i, ai ) | i ∈ 〈k〉} ⊆ 〈k〉× A, writing (i, ai ) ∈ W .

For a ∈ A, a letter (i, a) ∈ W is called an occurrence of a inW . The letter (i, a) is a
caesura if there is a later occurrence of a inW , that is, a letter ( j, a)with i < j .We say
that a ∈ A is interposed in W if W = · · · ba . . . b . . .. The length of W : 〈k〉 −→ A
is |W | = k.

By definition, F2S(n) is the free k-module generated by the wordsW over 〈n〉 such
that:

(1) W : 〈k〉 −→ 〈n〉 is surjective,
(2) W �= · · · uu . . . (nondegeneracy), and
(3) For any u �= v ∈ 〈n〉, W �= · · · u . . . v . . . u . . . v . . . (no interlacing).

The set F2S(n) is graded by setting deg(W ) := |W | − n and naturally carries a
Sn-action by permuting letters, i.e. W σ = σ−1W .

For a word W ∈ F2S(n) and u ∈ 〈n〉, let (iu, u) be the first occurrence of u in W .
Then we obtain a total order u ↓ v ⇐⇒ iu ≤ iv on 〈n〉.

The operadic composition on F2S is based upon merging of words, as follows. For
words W ∈ F2S(m),W ′ ∈ F2S(n) and 1 ≤ i ≤ m, we denote by Ext(W ,W ′, i) ⊆
F2S(m + n − 1) the set of extensions of W by W ′ at i (that is, X ∈ Ext(W ,W ′, i) if
up to relabelling and deleting repetitions, W ′ is a subword of X and upon collapsing
the letters from W to i , relabelling and deleting repetitions, we recover W ).

In order to define the composition, we need the sign of an extension.
Sign of Extension. Let W ∈ F2S(m) and let int(W ) be the set of interposed elements
of 〈m〉 ordered by their first occurrence in W . For X ∈ Ext(W ,W ′, i) the relabelling
gives rise to two maps α : int(W ′) −→ int(X) and γ : int(W ) −→ int(X) where
γ := β−1 except if i is interposed in W , then γ (i) := α(a) for (1, a) the first letter
of W ′.
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As |int(W )| = deg(W ), an extension X defines a unique (deg(W ), deg(W ′))−
shuffle χ and we define

sgnW ,W ′,i (X) := (−1)χ

Moreover, it is possible to talk about the boundary of a word, inducing a differential.
Boundary. Given a word W ∈ F2S(n) and a letter (i, a) of W for which a is repeated
inW , then define ∂iW ∈ F2S(n) as the word obtained by deleting the letter (i, a) from
W (and relabelling). If a is not repeated, then set ∂iW = 0.
Sign of Deletion. Given a word W ∈ F2S(n) of length k, then we define sgnW :
〈k〉 −→ {−1, 1} by setting sgnW (i) = (−1)k if (i, ai ) is the k-th caesura of W , and
otherwise sgnW (i) = (−1)k+1 if it is the last occurrence, but the previous occurrence
is the k-th caesura of W .

The S-module F2S defines a dg-operad with operadic composition given by

W ◦i W ′ :=
∑

X∈Ext(W ,W ′,i)
sgnW ,W ′,i (X)X

and boundary given by

∂W :=
∑

i∈〈|W |〉
sgnW (i)∂iW

The following lemma, which we include for the convenience of the reader, shows
how F2S encodes the algebraic operations of a homotopy G-algebra.
Notations. To avoid too large expressions, we leave out certain bracketings by setting
as default the bracketing

a ◦i b ◦ j c := (a ◦i b) ◦ j c

Moreover, we compress the following

a(◦it at )t := a ◦i1 a1 ◦i2 · · · ◦in an
Lemma 2.1 Let M2 := 12, M1,0 = 1 and M1,k := 121 . . . 1(k + 1)1 for k ≥ 1, then
F2S is generated by these elements and the following holds

(1) ∂(M2) = 0
(2) ∂(M1,k) = −(M (12)

2 ◦2 M1,k−1) + ∑k
i=2(−1)i M1,k−1 ◦i M2 + (−1)k+1

M2 ◦1 M1,k−1

Proof It is a straightforward computation to determine that M2 and M1,k satisfy these
relations.

Let W ∈ F2S(n), we then show that it lies in the suboperad generated by
M2, (M1,k)k≥1 using only the above relations. We prove this by induction on n. If
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n = 1, thenW = 1. So assume n > 1 and apply a permutation such that the first letter
of W is 1, then W is of the form

W = 1W11 . . . 1Wk1Wk+1

whereWi is the image of a non-emptywordW ′
i ∈ F2S(ni ) under themap γi : 〈ni 〉 −→

〈n〉, exceptWk+1 which is possibly empty. Due to no interlacing we also know that the
images Im(γi ) are pair-wise disjoint. Hence, we can apply a permutation to assume
that max Im(γi ) < min Im(γi ′) holds for every i < i ′. In this case, we have that

W = M1,k ◦k+1 W
′
k ◦k · · · ◦2 W ′

1

if Wk+1 = ∅, and

W = (M2 ◦2 W ′
k+1) ◦1 (M1,k ◦k+1 W

′
k ◦k . . . ◦2 W ′

1)

otherwise. By induction, this shows that W is generated by M2 and (M1,k)l≥0. ��

2.3 The operads NSOp andmNSOp

It is well-known that non-symmetric operads can be encoded using a colored operad
NSOp which can be defined using indexed trees, that is, for q1, . . . , qn ∈ N and q ′ =
1+∑n

i=1(qi − 1), NSOp(q1, . . . , qn; q ′) is the set of pairs (T , I ) where T ∈ Tree(n)

and I : ET −→ N a function such that

• For (u, v) ∈ ET , 1 ≤ I (u, v) ≤ qu
• (t, u), (t, v) ∈ ET and u �T v �⇒ I (t, u) < I (t, v)

We will often write I to denote the indexed tree (T , I ). Moreover, NSOp is generated
by those trees with a single edge, that is,

Ei :=
1

2
i ∈ NSOp(q1, q2; q1 + q2 − 1)

for every q1, q2 and 1 ≤ i ≤ q1, with the following pair of relations

(I)

1

2
i ◦2

1

2
j =

1

2
i

3
j

=
1

2
i − 1 + j ◦1

1

2
i for 1 ≤ j ≤ q2 and

1 ≤ i ≤ q1,

(II)

1

2
i ◦1

1

2
k =

1

23

i k =
⎛

⎝

1

2
k − 1 + q2 ◦1

1

2
i

⎞

⎠
(23)

for

1 ≤ i < k ≤ q1.
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Note that these are the well-known associativity relations for non-symmetric operads.

Definition 2.2 Let mNSOp be the N-colored operad generated by NSOp and an ele-
ment m ∈ mNSOp(; 2) satisfying the relation

1

2
1 ◦1 m ◦1 m =

1

2
2 ◦1 m ◦1 m

Remark 2.3 We often write

m

m

1 where we have already filled in the plugged in m’s.

More explicitly, every representative of an element X ∈ mNSOp(q1, . . . , qn; q) is
of the form I ◦i1 m ◦i2 . . . ◦ik m for I ∈ NSOp and appropriate i1, . . . , ik ∈ N. Due to
equivariance, we can always consider a representative of X of the form

I ◦n+1 m ◦n+1 . . . ◦n+1 m

for I ∈ NSOp(q1, . . . , qn, 2, . . . , 2; q).

Lemma 2.4 Let X = [I ◦n+1m◦n+1 · · ·◦n+1m] ∈ mNSOp(q1, . . . , qn; q), the partial
orders <I and �I on 〈n〉 are independent of the representative of X. We denote them
by <X and �X .

Proof We proceed by induction on k the number ofm’s in X . For k = 0 or k = 1, there
is nothing to show, so assume k > 1. It is clear that if the lemma holds for X , then
the relations that hold for < and � for trees, also hold for <X and �X . In particular,
if the lemma holds for X and X ′ and (α, β) is the extension of n by m at i , then for
a, b /∈ Im(α) we have

a <X◦i X ′ b ⇐⇒ βa <X βb and a �X◦i X ′ b ⇐⇒ βa �X βb

Now, let X0,i := X0 ◦n+1

1

2
i such that X = X0,1 ◦n+1 m ◦n+1 m = X0,2 ◦n+1

m ◦n+1m, then we have by induction that the lemma holds for X0. Moreover, we have
for a, b ∈ 〈n〉 that

a <X0,1 b ⇐⇒ a <X0 b ⇐⇒ a <X0,2 b and

a �X0,1 b ⇐⇒ a �X0 b ⇐⇒ a �X0,2 b

which proves the lemma for X . ��



Operadic structure on the Gerstenhaber–Schack complex... Page 9 of 63 47

2.4 Themorphisms (m)NSOp −→ Multi1

Let C be a small category. We denote by MultiC the Ob(C)-colored operad for which
MultiC(c1, . . . , cn; c) is freely generated as a k-module by n-tuples (ζ1, . . . , ζn) of
C-morphisms with ζi : ci −→ c, Sn acts by permutating labels, and composition is
defined in the obvious way.

Let � be the simplex category. Next, we construct a morphism of operads

NSOp −→ Multi�,

by associating to every indexed tree I in NSOp(q1, . . . , qn; q) a n-tuple ζI in
Multi�(q1, . . . , qn; q) which assigns to each vertex a, considered as an qa-corolla, a
numbering denoting where its inputs are amongst the inputs of the indexed tree as a
whole.

It suffices to define the morphism on the generators Ei ∈ NSOp and show that it
respects the relations.

Construction 2.5 Let Ei ∈ NSOp(q1, q2; q1 +q2 −1) for 1 ≤ i ≤ q1, then we define

ζEi ,1(t) :=
{
t t < i

t + q2 − 1 t ≥ i
and ζEi ,2(t) := t + i − 1

Then, ζEi ∈ Multi�(q1, q2; q1 + q2 − 1), that is, it is a tuple of non-decreasing maps.
Moreover, if q2 > 0, then these are strictly increasing.

We will employ it as in the following example.

Example 2.6 Let A be a k-linear category, then its Hochschild complex is defined as

Cn(A) =
∏

A0,...,An∈A
Homk (A(A1, A0) ⊗ · · · ⊗ A(An, An−1),A(An, A0))

For a Hochschild cochain φ ∈ Cn(A) and a n-simplex A0
a1← A1

a2← · · · an−1← An−1
an←

An in A, we have that φA0,...,An (a1, . . . , an) ∈ A(An, A0).
Let φ1 ∈ Cq1(A) and φ2 ∈ Cq2(A), then each Ei ∈ NSOp(q1, q2; q1 + q2 − 1)

determines a cochain φ1 ◦i φ2 ∈ Cq1+q2−1(A) as follows

(φ1 ◦i φ2)
A0,...,Aq1+q2−1 = φ

AζEi ,1
(0),...,AζEi ,1

(q1)

1 ◦i φ
AζEi ,2

(0),...,AζEi ,2
(q2)

2
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which we can visualize using n-corollas

A0 A1 Ai−1

Ai−1+q2Ai−1

Ai−1+q2 Aq1+q2−1

φ2

φ1

a1

ai ai−1+q2

aq1+q2−1

A0 Aq1+q2−1

Lemma 2.7 Construction 2.5 extends to a morphism of operads

NSOp −→ Multi� : (T , I ) −→ ζI

Proof It suffices to verify the relations (I) and (II) of NSOp. These are two simple
computations and thus we only verify the first relation (I) as an example. Let ζ :=
ζEi ◦2 ζE j denote the left-hand side, then we compute

ζ1(t) = ζEi ,1(t) =
{
t t < i

t + q2 + q3 − 2 t ≥ i

ζ2(t) = ζEi ,2 ◦ ζE j ,1(t) =
{
t + i − 1 t < j

t + i − 1 + q3 − 1 t ≥ j

ζ3(t) = ζEi ,2 ◦ ζE j ,2(t) = t + i − 1 + j − 1

On the other hand, we compute the right-hand side ζ ′ := ζEi−1+ j ◦1 ζEi and obtain

ζ ′
1(t) = ζEi−1+ j ,1 ◦ ζEi ,1(t) =

{
t t < i

t + q2 − 1 + q3 − 1 t ≥ i

ζ ′
2(t) = ζEi−1+ j ,1 ◦ ζEi ,2(t) =

{
t + i − 1 t < j

t + i − 1 + q3 − 1 t ≥ j

ζ ′
3(t) = ζEi−1+ j ,1(t) = t + i − 1 + j − 1

��
Remark 2.8 In appendix A we have added a generator-free description of this mor-
phism and an alternative proof of Lemma 2.7, which we consider insightful and
valuable, especially for concrete computations of signs in later sections.
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Example 2.9 Consider the indexed tree

I =

1

32

1 2

54

1 3
∈ NSOp(3, 0, 4, 1, 0; 4)

then we compute ζI and obtain

ζI ,1
0
1
2
3

0
1
2
3
4

ζI ,2
0 0

1
2
3
4

ζI ,3
0
1
2
3
4

0
1
2
3
4

ζI ,4
0
1

0
1
2
3
4

ζI ,5
0 0

1
2
3
4

It is also possible to associate to an element of mNSOp an element of Multi�.

Lemma 2.10 Let X = [I ◦n+1 m ◦n+1 · · · ◦n+1 m] ∈ mNSOp(q1, . . . , qn; q), then
ζI ,t : [qt ] −→ [q] for t ∈ 〈n〉 is independent of the representative I of X.

In this case, we write ζX .

Proof We prove the lemma by induction on k the number of occurrences of m. The

cases k = 0 and k = 1 are trivial, so assume k > 1. Let X0,i := X0 ◦n+1

1

2
i such

that X = X0,1 ◦n+1 m ◦n+1 m = X0,2 ◦n+1 m ◦n+1 m, then by induction and Lemma
2.7 we have for t ∈ 〈n〉 that

ζX0,1,t = ζX0,t = ζX0,2,t

which proves the lemma. ��

Proposition 2.11 We have morphisms of operads

NSOp −→ Multi� : I −→ ζI

and its extension

mNSOp −→ Multi� : X −→ ζX .

Moreover, this last morphism is surjective, but not an isomorphism. This is due to
the existence of vertices with zero inputs which collapse information. We consider a
simple example.
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Example 2.12 Consider the indexed 2-corolla I :=
1

32

1 2 and its permuted form

I (2,3) =
1

23

1 2 as elements of NSOp(2, 0, 0; 0), then they have the same image in

Multi�. Note that this example holds for both NSOp and mNSOp.

Hence, we can consider mNSOp as a finer operad than Multi� and thus encoding
more information.

2.5 Themorphism Brace −→ NSOps

In order to define the morphism φ : Brace −→ NSOps properly we need to compile
the colored operad NSOp into a graded non-colored operad

NSOps(n) ⊆
∏

p1,...,pn

NSOp(p1, . . . , pn; p).

where an element x ∈ NSOp(p1, . . . , pn; p) is graded as |x | = ∑r
i=1(pi −1)− (p−

1) = 0 (this is the suspended grading, whence the subscript) and NSOps(n) is the
subspace generated by sequences of elements with constant grading. The composition
on NSOps is derived from the composition of NSOp where it is set to 0 when the
colors do not match. Note in particular that the Sn-action on NSOps(n) is affected by
this grading: permuting two vertices i and j introduces the signs (−1)(pi−1)(p j−1).

Definition 2.13 Let (T , I ) ∈ NSOp(p1, . . . , pn; p), then (T , I ) is a coloring of T
and we write Clr(T , p1, . . . , pn) as the set of all such colorings of T .

In order to define the sign sgnT (I ) for T ∈ Brace(n), we use the morphism of
operads

NSOp −→ Multi� : (T , I ) −→ ζI

and base this definition on the sign sgnQ(ζ, I ) from [8, Def. 4.20].

Construction 2.14 We work with the following alphabet

1i , . . . , (pi − 1)i

for i = 1, . . . , n and define the word

J s(p1, . . . , pn) = 11 . . . (p1 − 1)1 . . . 1n . . . (pn − 1)n

We define a second word J sT (I ) having in the ζI ,k(i)-th position ik for 1 ≤ i ≤ qk −1.
Note that we start from position 1 for J sT (I ) (instead of 0).
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Definition 2.15 For I ∈ NSOp(p1, . . . , pn; p) where we replace those pi = 0 by 2,
we define sgnT (I ) as the sign of the shuffle transforming J s(p1, . . . , pn) to J sT (I ).

Theorem 2.16 We have a morphism of operads

φ : Brace −→ NSOps : T −→
⎛

⎝
∑

I∈Clr(T ,p1,...,pn)

sgnT (I )(T , I )

⎞

⎠

p1,...,pn

.

Proof Per definition of sgnT (I ) we see that φ is equivariant. Hence, we only need to
verify that sgnT ◦1T ′(I ◦1 I ′) = sgnT (I ) sgnT ′(I ′) for T ∈ Brace(n), T ′ ∈ Brace(m)

and I ∈ Clr(T , p1, . . . , pn) and I ′ ∈ Clr(T ′, p′
1, . . . , p

′
m). This equation holds as we

can decompose the shuffle χ ′′ : J s(p′
1, . . . , p

′
m, p2, . . . , pn) � JT ◦i T ′(I ◦i I ′) into

two shuffles

J s(p′
1, . . . , p

′
m, p2, . . . , pn)

χ ′
� J sT ′(I ′)J s(p2, . . . , pm)

χ� J sT ◦1T ′(I ◦1 I ′)

where χ and χ ′ are the corresponding shuffles determining sgnT (I ) and sgnT ′(I ′). ��

2.6 Themorphism F2S −→ mNSOpst

In order to define the morphism φ̄ : F2S −→ mNSOpst properly, we again need to
compile the colored operad mNSOp to obtain a graded non-colored operad

mNSOpst (n) ⊆
∏

q1,...,qn ,q

mNSOp(q1, . . . , qn; q)

where an element x ∈ mNSOp(q1, . . . , qn; q) is graded as deg(x) = ∑r
i=1 qi − q

(standard grading) andmNSOpst (n) is generated by the sequences of constant grading.
The composition on mNSOpst is derived from the composition of mNSOp where it
is set to 0 when the colors do not match. Note in particular that the Sn-action on
mNSOpst (n) is affected by this grading: permuting two vertices i and j introduces
the sign (−1)qi q j .

2.6.1 Colorings

Definition 2.17 Let X := [I ◦n+1 m ◦n+1 · · · ◦n+1 m] ∈ mNSOp(q1, . . . , qn; q) for I
having n + k vertices, then X is a coloring of W ∈ F2S(n) if

• Each vertex n + 1, . . . , n + k has exactly two children in I
• For u, v ∈ 〈n〉 holds
(1) u <X v ⇐⇒ W = . . . u . . . v . . . u . . .

(2) u �X v ⇐⇒ every occurrence of u in W is left of every occurrence of v

in W .

We write Clr(W , q1, . . . , qn) for the set of all such colorings for W .
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Remark 2.18 An element X ∈ Clr(W , q1, . . . , qn) has n − deg(W ) − 1 many m’s
plugged in. Hence, X ∈ mNSOp(q1, . . . , qn;∑n

i=1(qi − 1) + n − deg(W )).

We give some examples.

Example 2.19 The following three elements of mNSOp

m

21

1 2 ∈ mNSOp(q1, q2; q1+q2), m

32

1 2

1

i

∈ mNSOp(q1, q2, q3; q1+q2+q3−1)

for 1 ≤ i ≤ q1

and

m

54

1 2

m

3

1 2

1

2

j k

∈ mNSOp(q1, ..., q5;
5∑

i=1

qi − 2) for 1 ≤ j < k ≤ q1

color respectively the words

12 ∈ F2S(2), 1231 ∈ F2S(3) and 1213451 ∈ F2S(5).

Note however that not all elements of mNSOp color a word of F2S: the following set
of elements

m

1
r ∈ mNSOp(q1; q1 + 1)

for r ∈ {1, 2}, colors no word in F2S because the vertex plugged by m does not have
two children.

Lemma 2.20 Definition 2.17 is well-defined, that is, it is independent of the chosen
representative I of X.

Proof Due to Lemma 2.4, both <X and �X are well-defined. We show that the condi-
tion stipulating that all vertices of I that are plugged bym’s have exactly two children,

is independent of the representative of X . Thus, suppose I = I0 ◦k
1

2
1 for some

I0 ∈ NSOp, such that both vertices k and k + 1 of I are plugged by m’s in X . Due to
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the relations in mNSOp, X can equivalently be represented using I ′ := I0 ◦
1

2
2 . In

this case, we have that vertices k and k+1 each have exactly 2 children in I iff vertex k
has exactly 3 children in I0 iff vertices k and k+1 each have exactly 2 children in I ′. ��

We construct a word for every element of mNSOp satisfying the above criteria.

Construction 2.21 Let X := [I ◦n+1 m ◦n+1 · · · ◦n+1 m] ∈ mNSOp(q1, . . . , qn; q)

such that each vertex a > n in I has exactly two children, then we construct a word
WX ∈ F2S(n) such that X ∈ Clr(WX , q1, . . . , qn, q).

• To every tree T we can associate a word WT ∈ F2S(n + k) (see [8, §2.3]).
• Suppose for X0 ∈ mNSOp such that X0 ◦n+1 m = X we have an associated word

WX0 ∈ F2S(n + 1), then let WX be the word given by deleting all occurrences of
n + 1. Then WX ∈ F2S(n) because n + 1 had two children, so no degeneracy can
occur.

We consider an example of this procedure.

Example 2.22 We consider the element

m

32

1 2

1

i

∈ mNSOp(q1, q2, q3; q1 + q2 + q3 − 1)

for some 1 ≤ i ≤ q1 from Example 2.19 and show how Construction 2.21 assigns a
word. First, we associate to the indexed tree

4

32

1 2

1

i

∈ NSOp(q1, q2, q3, 2; q1 + q2 + q3 − 1)

the word 1424341 and then delete all occurrences of 4 as it is plugged by an instance
of m. As a result, we obtain the word 1231.

Lemma 2.23 For X ∈ mNSOp(q1, . . . , qn; q) we have X ∈ Clr(WX , q1, . . . , qn) and
if X ∈ Clr(W , q1, . . . , qn), then W = WX.

Proof This clearly holds for X = I ∈ NSOp(q1, . . . , qn; q). Assume the lemma holds
for X0 ∈ mNSOp and X = X0◦n+1m, thenWX0 = W0(n+1)W1(n+1)W2(n+1)W3
for W0 and W3 possibly empty. In this case, WX = W0W1W2W3 and it is easy to see
that X ∈ Clr(WX , q1, . . . , qn).

Now reversely, if X ∈ Clr(W , q1, . . . , qn) and a � b are the two children of
n + 1 in X0, then W = W0W1W2W3 where W1 = a . . . a,W2 = b . . . b and W0
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and W3 are possibly empty. In that case, X0 ∈ Clr(W0(n + 1)W1(n + 1)W2(n +
1)W3, q1, . . . , qn, 2) and thus by inductionWX0 = W0(n+1)W1(n+1)W2(n+1)W3.
Hence, WX = W0W1W2W3 = W . ��
Lemma 2.24 Let X ∈ Clr(V , q1, . . . , qn, q) and Y ∈ Clr(W , q ′

1, . . . , q
′
m, qi ), then

there exists a unique U ∈ Ext(V ,W , i) such that X ◦i Y ∈ Clr(U , q1, . . . ,
q ′
1, . . . , q

′
m, . . . , qn, q)

Proof By Construction 2.21 we obtain a word U ∈ F2S(n + m − 1) such that Z :=
X ◦i Y ∈ Clr(U , . . .). We show that U ∈ Ext(V ,W , i): let Uα be the word obtained
from deleting from U occurrences of vertices not in the image of α and eliminating
consecutive repetitions (uu → u). It is easy to check that W = · · · u . . . v . . . u . . . iff
Uα = · · ·α(u) . . . α(v) . . . α(u) . . ., and that all occurrences of u are left to those of v

in W iff the same holds for α(u) and α(v) in Uα .
LetUβ be theword obtained fromU by relabelling byβ and eliminating consecutive

repetitions. To verify that Uβ = V is straight forward, except in the following case:
Uβ = · · · i . . . β(u) . . . i . . . where β(u) �= i . In this case, there exist v, v′ such that
U = · · · α(v) . . . u . . . α(v′) . . .. Now, we argue that there exists a vertex v′′ such that
α(v′′) <Z u. If neither α(v) nor α(v′) do, then U implies that α(v) �Z u �Z α(v′).
As α(v) and α(v′) are part of the same subtree α(Y ), i.e. the image of Y under α in
Z , there must be some vertex a in the tree underlying α(Y ) (possibly plugged by m)
such that a lies underneath u. As Y is a coloring of a word, the conditions imply that
a is not plugged by an instance of m (otherwise it would not have two children in Y ).
As a result, there is some vertex v′′ in Y such that α(v′′) = a <Z u. Thus, i <X β(u)

which verifies that V = · · · i . . . β(u) . . . i . . .. This clearly also holds reversibly. ��
Lemma 2.25 Let U ∈ Ext(V ,W , i) and Z ∈ Clr(U , q1, . . . , q ′

1, . . . , q
′
m, . . . , qn, q),

then there exist unique colorings X ∈ Clr(V , q1, . . . , qn, q) and Y ∈ Clr(W ,

q ′
1, . . . , q

′
m, qi ) such that Z = X ◦i Y .

Proof Let Z = [I ′′ ◦n+m m ◦n+m · · · ◦n+m m] with l + k added m’s. The word W can
be uniquely written as

W = W1 . . .Wt

where two subwordsWj andWj ′ do not share any occurrence of the same number, and
Wj is of the form a j . . . a j . As Z is a coloring of U , we have that α(a1) �Z . . . �Z

α(at ) and no vertex of Im(α) lies under any a j . In this case, there exists some vertex
a ∈ {n + m, . . . , n + m + k + l − 1} such that a ≤I ′′ α(a j ) which is ≤I ′′ -maximal
for these conditions (otherwise when applying β to U we will not obtain V ).

Let I ′ be the minimal subtree of I ′′ on the root a containing Im(α). By contracting
this subtree to a point we obtain a tree I such that, after permutation of some vertices,
we obtain I ◦i I ′ = I ′′. Consider also the permutation such that Z = [I ′′ ◦m+i m ◦m+i

· · · ◦m+i m ◦n+m m ◦n+m · · · ◦n+m m].
It now suffices to show that X := [I ◦n+1 m ◦n+1 · · · ◦n+1 m] ∈ Clr(V , . . .)

and Y := [I ′ ◦m+1 m ◦m+1 · · · ◦m+1 m] ∈ Clr(W , . . .), which is a straight forward
computation using the facts X ◦i Y = Z , Z ∈ Clr(U , . . .) and U ∈ Ext(V ,W , i). ��
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2.6.2 Signs

In order to define a sign sgnW (X) for W ∈ F2S(n) and X ∈ Clr(W , q1, . . . , qn) we
use the morphism of operads

NSOp −→ Multi� : (T , I ) −→ ζI

which extends to

mNSOp −→ Multi� : X −→ ζX

We base this definition of the sign on the sign sgnQ(ζ, I ) defined in [8, §4.7].

Lemma 2.26 Let X ∈ Clr(W , q1, . . . , qn; q) for W ∈ F2S(n) and qi > 0, then ζX is
a coloring of W in the sense of [8, Def. 4.13], that is,

• ζX ∈ Multi�+,
• ⋃n

i=1 Im(ζX ,i ) = [q]
• For each a ∈ 〈n〉 there exists a function πa : [qa] −→ W such that

(1) The image of πa is the set of occurrences of a in W,
(2) For an (i, a) ∈ W, ζX ,a(π

−1
a (i, a)) is an interval

(3) If W = · · · ab . . ., then

max ζX ,a(π
−1
a (i, a)) = min ζX ,b(π

−1
b (i + 1, b))

Proof We first show it holds for X = (T , I ) ∈ NSOp by induction on the number of
vertices: let

I =
u

. . .

ik

I 1 I k

i1

be its decomposition into its root u with maximal subtrees I i . In this case, we have
W = uW 1u . . . uWku where the subwords Wi represent the subtrees I i . Let γi :
〈ki 〉 ↪→ 〈n〉 be the maps embedding the tree I i0 onto I i in I and I i0 ∈ Clr(Wi

0, . . .),
then they extend to a map γi : Wi

0 ↪→ W insertingWi
0 asW

i intoW . By induction, the
lemma holds for I i0 ∈ Clr(Wi

0, . . .). Let (p1, u), . . . , (pk+1, u) be all the occurrences
of u in W , then we define

πγi (a) = γi ◦ π
I i0
a and πu(t) =

⎧
⎪⎨

⎪⎩

(p1, u) t < i1
(p j , u) i j−1 ≤ t < i j
(pk+1, u) ik ≤ t

then it is easy to verify that these satisfy the above conditions.
Now assume X = [X0 ◦n+1 m] such that the lemma holds for X0 ∈ Clr(WX0 , . . .),

then WX is obtained from WX0 by deleting all occurrences of (n + 1). As the vertex
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n+1 has exactly two children in X0 and qn+1 = 2, we still have that
⋃n

i=1 Im(ζX ,i ) =⋃n+1
i=1 Im(ζX0,i ) = [q] and that

max ζX0,a(π
−1
a (i, a)) = min ζX0,b(π

−1
b (i, b))

for W = · · · ab . . .. Hence, ζX satisfies the lemma. ��
Let us define analogously the sign corresponding to the horizontal part of

sgnQ(ζX , I ).

Construction 2.27 We work with the following alphabet

0i , . . . , (qi − 1)i

for i = 1, . . . , n and define the word

J (q1, . . . , qn) = 01 . . . (q1 − 1)1 . . . 0n . . . (qn − 1)n

The second word JW (X) is the concatenation of two words J0,W (X) and J1,W (X)

defined as follows

• J0,W (X) consists of all 0k for k interposed in W , put in reverse ↓-order.
• J1,W (X) has in the ζX ,k(i)-th position ik for 1 ≤ i ≤ qk − 1 for k interposed, and
in the ζI ,k(i) position ik for 0 ≤ i ≤ qk −1 for k not interposed. Note that we start
from position 0.

Definition 2.28 For X ∈ mNSOp(q1, . . . , qn; q) where we replace those qi = 0 by 2,
we define sgnW (X) as the sign of the shuffle transforming J (q1, . . . , qn) to JW (X).

Example 2.29 Consider the words

W = 13121, W ′ = 1231

and colorings

X =
1

23

i j , X ′ =
1

3

m

2

k

1 2

for which we calculate the words JW (X) and JW ′(X ′) and their corresponding signs.
In the first case, we have

JW (X) = 030201 . . . (i − 1)113 . . . (q3 − 1)3i1 . . . ( j − 1)112 . . . (q2 − 1)2 j1 . . . (q1 − 1)1
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which corresponds to the sign sgnW (X) = (−1)(q2−1)(q1− j)+(q3−1)(q1−i)+q3q2+q3−1.
For the second case, we calculate

JW ′(X ′) = 0201 . . . (k − 1)112 . . . (q2 − 1)203 . . . (q3 − 1)3k1 . . . (q1 − 1)1

which corresponds to the sign sgnW ′(X ′) = (−1)(q2+q3)(q1−k)+q1 . Note in particular
that in JW ′(X ′) the letter 03 is not taken to the front of the word as 3 is not interposed
in W ′.

Lemma 2.30 Let X ∈ Clr(W , q1, . . . , qn) and X ′ ∈ Clr(W ′, q ′
1, . . . , q

′
m), and W ′′ ∈

Ext(W ,W ′, 1), then sgnW (X) sgnW ′(X ′) = sgnW ′′(X ◦1 X ′) sgnW ,W ′,1(W
′′).

Proof We can assume that all qi and q ′
j are not zero. We can decompose sgnW (X) in

three components

• Sign of the shuffle σ shuffling J0,W (X) to 0v1 . . . 0vk for v1 < . . . < vk the
interposed vertices of X ,

• Sign of the shuffle τ shuffling J1,W (X) to concatenation of 1i . . . (qi − 1)i for i
interposed and 0i . . . (qi − 1)i for i not interposed. We call this latter sequence
J intW (q1, . . . , qn).

• Sign of the shuffle ρ shuffling

0v1 . . . 0vk J
int
W (q1, . . . , qn) � J (q1, . . . , qn)

We add ′ and ′′ to denote the correspondings shuffles for X ′ and X ′′ := X ◦1 X ′.
First we have that (−1)σ

′′ = (−1)σ+σ ′
sgnW ,W ′,1(W

′′) per definition of

sgnW ,W ′,1(W
′′). Further we clearly have (−1)τ

′′ = (−1)τ+τ ′
by simply applying

them one after the other and renaming using α and β−1

J1,W ′′(X) � J1,W ′ JW (q2, . . . , qn) � JW ′(q ′
1, . . . , q

′
m)JW (q2, . . . , qn)

as ζX ′′ = ζX ◦1 ζX ′ . We also have that (−1)ρ
′′ = (−1)ρ+ρ′

because the length of the
sequence J intW ′ (q ′

1, . . . , q
′
m) is q1 − 1 if 1 is interposed, and q1 if 1 is not interposed. ��

2.6.3 The morphism

Proposition 2.31 We have a morphism of graded operads

φ̄ : F2S −→ mNSOpst : W −→
⎛

⎝
∑

X∈Clr(W ,q1,...,qn)

sgnW (X)X

⎞

⎠

q1,...,qn

Proof By definition of sgnW (X) the above linear maps are equivariant. By Lemmas
2.24, 2.25 and 2.30 they define a morphism of graded operads. ��

We make mNSOpst into a dg-operad with the hochschild differential, then φ will
be a morphism of dg-operads.
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Definition 2.32 Define for every q ∈ N the element

Dq =
m

1
2 +

q∑

i=1

(−1)i

1

m

i + (−1)q+1

m

1
1 ∈ mNSOp(q; q + 1) (1)

which compile into an element of degree −1

D := (Dq)q≥0 ∈ mNSOpst (1).

We consider the associated derivation

∂D(X) := D ◦1 X − (−1)deg(X)
n∑

i=1

X ◦i D

for X ∈ mNSOpst (n).

Proposition 2.33 ∂D defines a differential makingmNSOp into a dg-operad, for which
holds

∂D
(
φ̄(W )

) = φ̄ (∂(W ))

Proof The first part follows directly if D ◦1 D = 0 which is an easy computation (see
[6, Prop. 2]).

In order to prove the second part we only need to show this for the generators of
W , i.e. 12 and 121 . . . 1k1 for k ≥ 1.

• For q1, q2 ∈ N, it is easy to compute that

∂D
(
φ̄(12)

) = ∂D

⎛

⎝
m

21

1 2

⎞

⎠ = 0

in mNSOp(q1, q2; q1 + q2).
• For q1, . . . , qk ∈ N, we also have

φ̄(121 . . . 1k1) =
∑

1≤i1<···<ik−1≤q1

(−1)ε

1

. . .

ik−1

2 k

i1

where ε =
k∑

j=2

(q j − 1)(q1 − i j +
∑

l> j

(ql − 1))

and

∂(121 . . . 1k1) = −2131 . . . 1 +
k−1∑

i=2

(−1)i1 . . . 1i(i + 1)1 . . . 1 + (−1)k1 . . . 1k
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for which it is also a standard computation to see that ∂D(φ̄(121 . . . 1k1)) =
φ̄(∂(121 . . . 1k1)) (see [6, Thm 3]).

��
Theorem 2.34 We have a morphism of dg-operads

φ̄ : F2S −→ mNSOpst

Proof This is the direct consequence of Propositions 2.31 and 2.33. ��

3 The Gerstenhaber–Schack complex for prestacks

Let (A,m, f , c)be a prestack over a small categoryU and letCGS(A)be the associated
Gerstenhaber–Schack complex as defined in [2] (see Sect. 3.1). In loc. cit., a homotopy
equivalenceCGS(A) ∼= CC(A!) is constructed with the Hochschild complexCC(A!)
of the Grothendieck construction A! of A. Through homotopy transfer, this allows to
endow the GS-complex with an L∞-structure. However, it is desirable to have a direct
description available of this structure, without reference to transfer.

In the case of a presheaf, originally considered by Gerstenhaber and Schack, in
[8], Hawkins introduces an operad Quilt ⊆ F2S⊗H Brace which he later extends to
an operad mQuilt acting on the GS-complex. These operads are naturally endowed
with L∞-operations as desired. The action of Quilt on the GS-complex considered by
Hawkins only involves the restriction functors f of the presheaf, the multiplication m
being incorporated later on in mQuilt. Unfortunately, the way in which functoriality
of f is built into these actions, does not allow for an extension to twisted presheaves
or prestacks.

In our solution for the prestack case, we propose to use Quilt in a fundamentally
different way in relation to the GS-complex, but still allowing us to make use of the
naturally associated L∞-structure. In this section we capture the higher structure of
CGS(A) by introducing the operad Patch ⊆ mNSOp⊗H NSOp (see Sect. 3.3) over
which the bicomplex C•,•(A), of which CGS(A) is the totalisation, is shown to be an
algebra (see Theorem 3.24). Next, we construct a morphism Quilt −→ Patchs (see
Proposition 3.27) as a restriction of

φ̄ ⊗H φ : F2S⊗H Brace −→ mNSOpst ⊗H NSOps .

This morphism is such that the resulting composition

R : Quilt −→ End(sCGS(A))

incorporates the multiplications m and the restrictions f . Note that in Hawkins’
approach to the presheaf case, the initial action of Quilt on End(sCGS(A)) only
incorporates the restrictions. As far as the structure of both approaches goes, the aux-
iliary operad Patch we use is the counterpart of the operad ColorQuilt from [8, Def.
4.6].

In Sect. 4, we will further extend the action R in order to incorporate the twists.
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3.1 The GS complex

In this section, we recall the notions of prestack and its associated Gerstenhaber–
Schack complex, thus fixing terminology and notations. We use the same terminology
as in [2,12].

A prestack is a pseudofunctor taking values in k-linear categories. Let U be a small
category.

Definition 3.1 A prestack A = (A,m, f , c) over U consists of the following data:

• For every object U ∈ U , a k-linear category (A(U ),mU , 1U ) where mU is the
composition of morphisms in A(U ) and 1U encodes the identity morphisms of
A(U ).

• For every morphism u : V −→ U in U , a k-linear functor f u = u∗ : A(U ) −→
A(V ). For u = 1U the identity morphism of U in U , we require that (1U )∗ =
1A(U ).

• For every couple of morphisms v : W −→ V , u : V −→ U in U , a natural
isomorphism

cu,v : v∗u∗ −→ (uv)∗.

For u = 1 or v = 1, we require that cu,v = 1. Moreover, the natural isomorphisms
have to satisfy the following coherence condition for every triple w : T −→ W ,
v : W −→ V and u : V −→ U :

cu,vw(cv,w ◦ u∗) = cuv,w(w∗ ◦ cu,v).

Given such a prestack A, we have an associated Gerstenhaber–Schack complex
CGS(A). In [2] this is defined as the totalisation of a bicomplex C•,•(A). We first
review some notations.
Notations. Let σ = (U0

u1→ U1 → . . .
u p→ Up) be a p-simplex in the category U , then

we have two functors A(Up) −→ A(U0), namely

σ # := u∗
1 ◦ · · · ◦ u∗

p and σ ∗ := (u p ◦ · · · ◦ u1)
∗

For each 1 ≤ k ≤ p − 1, denote by Lk(σ ) and Rk(σ ) the following simplices

Lk(σ ) =(U0
u1→ U1 → · · · uk→ Uk)

Rk(σ ) =(Uk
uk+1→ Uk+1 → · · · u p→ Up)

and we consider the following natural isomorphisms

cσ,k =cuk ...u1,u p ...uk+1 : (Lkσ)∗(Rk(σ ))∗ −→ σ ∗

εσ,k =u∗
1 . . . u∗

k−1c
uk ,uk+1u∗

k+2 . . . u∗
p : σ # −→ u∗

1 . . . (uk+1uk)
∗ . . . u∗

p
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We write cσ,k,A = cσ,k(A) and εσ,k,A = εσ,k(A) for A ∈ A(Up).
We also define a set P(σ ) of formal paths from σ # to σ ∗ inductively. A formal path

is finite sequence of couples (τ, i) consisting of a simplex σ and a natural number i .
We set

P(u1, u2) := {((u1, u2), 1)}

and

P(σ ) := {(r1, . . . , rp−2, (σ, i)) : 1 ≤ i ≤ p − 1 and (r1, . . . , rp−2) ∈ P(∂iσ)}

where ∂i denotes the i th face-operator of the nerve Np(U). Given such a formal path
r = (r1, . . . , rp−1) we define its sign

(−1)r =
p−1∏

i=1

(−1)ri where (−1)(σ,i) = (−1)i .

By interpreting the data (σ, i) as the natural isomorphism εσ,i , every formal path r ∈
P(σ ) induces a sequence of natural isomorphisms r ∈ Np−1(Fun(A(Up),A(U0))).
Note that ε(u1,u2),1 = cu1,u2 and its associated sign is −1.

Let St,p−1 denote the set of (t, p− 1)-shuffles, then given a formal path r ∈ P(σ ),

a shuffle β ∈ St,p−1 and a tuple a = (A0
a1← A1 ← · · · at← At ) ∈ Nt (A(Up)) let

β(a, r) ∈ Np−1+t (A(U0)) be its shuffle product with respect to evaluation of functors
as defined in [2, Ex. 3.2, Ex. 3.4].

Here, we give a more explicit definition of β(a, r): first we construct inductively
a sequence (b1, . . . , bt+p−1) which formally represents a sequence of morphisms in
A(U0). Every bi is either of the form (τ, ai , Ai−1) or (ri , A j ) for τ a simplex, ai and
A j respectively a morphism and an object occurring in a, and ri an element of the
formal path r . Define

bt+p−1 =
{

(σ, at , At−1) if β(t) = t + p − 1

(rp−1, At ) if β(t + p − 1) = t + p − 1

then for 1 < i ≤ t + p − 1, we have two cases: if bi+1 = (τ, a j , A j−1) for some j ,
then define

bi =
{

(τ, a j−1, A j−2) if β( j − 1) = i for j ≤ t

(rk, A j−1) if β(t + k) = i

If bi+1 = (rk, A j ) for rk = (τ, l), then define

bi =
{

(∂lτ, a j , A j−1) if β( j) = i for j < t

(rk−1, A j ) if β(t + k − 1) = i
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Finally, we define β(a, r) as the realization b = (B0
b1← B1 ← · · · bt← Bp−1+t ) of b

where bi = τ #a j if bi = (τ, a j , A j ) and bi = rk(A j ) if bi = (rk, A j ).

Definition 3.2 Let p, q ≥ 0, then define

Cp,q(A) =
∏

σ∈Np(U)

∏

A∈A(Up)q+1

Hom(

q⊗

i=1

A(Up)(Ai , Ai−1),A(U0)(σ
#Aq , σ

∗A0))

and set

Cn
GS(A) =

⊕

p+q=n

Cp,q(A)

The differential d on the GS-complex is defined for θ ∈ Cp,q(A) as

d(θ) =
q+1∑

j=0

d j (θ)

where d j : Cp,q(A) −→ Cp+ j,q+1− j (A) is defined as

•

d0(θ)σ (A)(a) =mU0(σ ∗(a1), θσ (A1, . . . , Aq+1)(a2, . . . , aq+1))

+
q∑

i=1

(−1)iθσ (A0, . . . , Ai−1, Ai+1, . . . , Aq+1)

(a1, . . . ,m
Up (ai , ai+1), . . . , a1)

+ (−1)q+1mU0(θσ (A0, . . . , Aq)(a1, . . . , aq), σ
#(aq+1))

•

d1(θ)σ (A)(a) = (−1)p+q+1mU0(cσ,1,A0 , u∗
1(θ

∂0σ (A)(a)))

+
p∑

i=1

(−1)p+q+1+imU0(θ∂iσ (A)(a), εσ,i,Aq )

+ (−1)qmU0(cσ,p,A0 , θ∂p+1σ (A)(u∗
p+1a1, . . . , u

∗
p+1aq))

•

d j (θ)σ (A)(a) =
∑

r∈P(Rp(σ ))

β∈Sq− j+1, j−1

(−1)r+β+q− j+1mUp+ j (cσ,p,A0 , θ L p(σ )(B)(β(a, r))
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for σ = (u1, . . . , u p+ j ) ∈ Np+ j (U)(U0,Up+ j ), a = (a1, . . . , aq− j+1) where ai ∈
A(Up+ j )(Ai , Ai−1) and such that B is the sequence of objects underlying β(a, r).

We will also be interested in the subcomplex CGS(A) ⊆ CGS(A) of normalized
and reduced cochains which is shown to be quasi-isomorphic to the GS complex
(see [2, Prop. 3.16]). A simplex σ = (u1, . . . , u p) is reduced if ui = 1Ui for some
1 ≤ i ≤ p. A cochain θ = (θσ (A))σ,A ∈ CGS(A) is reduced if θσ (A) = 0 for every
reduced simplex σ . A simplex a = (a1, . . . , aq) in A(U ) is normal if ai = 1U for
some 1 ≤ i ≤ q. A cochain θ is normalized if θσ (A)(a) = 0 for every normal simplex
a in A(Up). We come back to this in Sect. 4.

Elements of the GS complex have a neat geometric interpretation as rectangles: for
θ ∈ Cp,q(A) and the data (σ, A, a) from above, we can represent θσ (A)(a) as the
rectangle of data

A1A0 AqAq−1
a1 aq

u∗
2 . . . u∗

p Aq

σ #Aq

u∗
p Aq

u∗
1

u∗
p

σ ∗A0

σ ∗

θσ (A)(a1, . . . , aq)

θσ (A)

Similarly, we can draw different components of the differential d using rectangles,
providing more insight in its rather technical definition. For the hochschild component
d0 we have

d0(θ)σ (A) =

a1 aq+1

u∗
1

u∗
p

θσ (A)

a2

mU0

σ ∗σ ∗

+
q∑

i=1

(−1)i
θσ (A)

mUp

u∗
1

u∗
p

a1 aq+1

ai ai+1

σ ∗
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+ (−1)q+1

a1 aq+1

θσ (A)

a2

mU0

σ ∗ σ #

u∗
1

u∗
p

The first component d1 can similarly be drawn as

d1(θ)σ (A) = (−1)p+q+1

a1 aq

θ∂0σ (A)

mU0

cσ,1,A0

u∗
2

u∗
p+1

u∗
1 u∗

1

σ ∗

A0

+
q∑

i=1

(−1)p+q+i+1

a1 aq

θ∂pσ (A)

mU0

cui ,ui+1(Aq)

u∗
1

u∗
p+1

σ ∗
u∗
i

u∗
i+1

Ri+1σ
#

Li−1σ
#

Aq

+ (−1)q

a1 aq

θ∂0σ (A)

mU0

cσ,p,A0

u∗
p

u∗
p+1u∗

p+1

u∗
1

u∗
p+1

σ ∗

Finally, we will draw d2 as an example from which it is easy to deduce the higher
components d j for j > 2. Namely, we have
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d2(θ)σ (A) =
q∑

i=1

(−1)r+β+q−2+1

a1 aq−1

θ L p(σ )(B)(a1, . . . , cu p+1,u p+2(As), . . . , aq−1)

mU0

cσ,p,A0

u∗
p

u∗
p+2

(u p+2u p+1)
∗

u∗
1

u∗
p+1u

∗
p+2

σ ∗

cu p+1,u p+2(Ai−1)

Ai−1

u∗
p+1

A0

for shuffle β(q) = i , β(s) = s for s < i and β(s) = s + 1 for s ≥ i , and formal path
r = ((u p, u p+1), 1). Note in particular that we can draw β(a, r) as follows

u∗
p+2

(u p+2u p+1)
∗ u∗

p+1u
∗
p+2cu p+1,u p+2(As)

Ai−1

u∗
p+1

A1A0 Aq−1Aq−2
a1 aq−1

Ai−1

Bi−1B1B0 BqBq−1Bi

u∗
p+2u

∗
p+1

b1 bi bq

where bs = aβ−1(s) for s �= i , and bi = cu p+1,u p+2(Ai−1).
We will use this rectangular interpretation as a guide in the next sections.

3.2 Endomorphism operad of a prestack

Although the GS-complex does not have partial compositions ◦i , its elements θ =
(θσ (A))(σ,A) consist of parts that lie in the endomorphism operad End(A).

Definition 3.3 Let Ob(U ,A) be the set consisting of the triples (U , A, A′) forU ∈ U
and A, A′ ∈ A(U ), then we define the Ob(U ,A)-colored operad End(A) as

End(A)((U1, A1, A
′
1), . . . , (Un, An, A

′
n); (U , A, A′))

:= Hom(

n⊗

i=1

A(Ui )(Ai , A
′
i ),A(U )(A, A′))

with partial compositions defined by composition of linear maps.

Remark 3.4 Note that θσ (A) ∈ End(A)((Up, A1, A0), . . . , (Up, Aq , Aq−1); (U0, σ
#Aq ,

σ ∗A0)).
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3.3 The operad Patch

In this section we define an N × N-colored operad Patch ⊆ mNSOp×NSOp. Its
elements encode concrete (planar) patchworks of rectangles of size (pi , qi ) to form a
rectangle of size (p, q).

Definition 3.5 Let Patch((q1, p1), . . . , (qn, pn); (q, p)) consists of the elements
(X , J ) ∈ mNSOp(q1, . . . , qn; q) × NSOp(p1, . . . , pn; p) such that
(1) a <J b �⇒ a �X b
(2) a <X b �⇒ b �J a

Remark 3.6 Note that in order for Patch not to be empty, we need to allow a multipli-
cation in one of its coordinates which is not present in the other coordinate.

This has a neat geometric interpretation as well: a (p, q)-rectangle has p inputs on the
right-hand side, q inputs on top and a single output on respectively the bottom and the
left-hand side

1 . . . q

1

...

p

We then interpret a patchwork (X , J ) as an ordering of these rectangles: the first
coordinate X represent the vertical ordering (from top to bottom) and the second
coordinate J the horizontal ordering (from right to left). The multiplications m form
a single exception: they appear only vertically, thus we draw them as flat rectangles,
that is, having no horizontal input and output. From this perspective, the conditions
impose planarity on the patchwork such that we have

below <X above above �J below

left �X right left <J right

Note that whenwewrite down a patchwork using rectangles, possible ‘open spaces’
can appear. Moreover, it is possible that multiple rectangles are vertically the ‘lowest’
elements due to the insertion of multiplication elements m. However, horizontally
there can only appear a single most left rectangle which is (horizontally) connected to
all other rectangles. We give an example.
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Example 3.7 The following pair determines an element in Patch((3, 5), (3, 2), (2, 1),
(0, 2); (6, 7))

(X , J ) =

⎛

⎜⎜⎜⎜⎝

m

21

1 2

43

1 3
, 1

2

32

4

4
1

⎞

⎟⎟⎟⎟⎠

which we can draw as the following patchwork of rectangles

1 2 3 4 5 6

1

2

3

4

5

6

7

1

2

3 4

m

where the grey areas denote the open spaces.

Lemma 3.8 Patch is a suboperad of mNSOp⊗H NSOp.

Proof Let (X , J ) ∈ Patch((q1, p1), . . . , (qn, pn); (q, p)) and (X ′, J ′) ∈
Patch((q ′

1, p
′
1), . . . , (q

′
m, p′

m); (qi , pi )) and we set X ′′ := X ◦i X ′ and J ′′ := J ◦i J ′.
Let (α, β) be the extension of n by m at i , then for a, b ∈ 〈m〉 we compute

α(a) <X ′′ α(b) ⇐⇒ a <X ′ b �⇒ b �J ′ a ⇐⇒ α(b) �J ′′ α(a)

and for c, d /∈ Im(α) we compute

c <X ′′ d ⇐⇒ βc <X βd �⇒ βd �J βc ⇐⇒ d �J ′′ βc

For c /∈ Im(α) and b ∈ 〈m〉, we have

c <X ′′ α(b) �⇒ βc <X i �⇒ i = βα(b) �J βα(b) �⇒ α(b) �J ′′ c

and the same reasoning shows α(b) <X ′′ c �⇒ c �J ′′ α(b). Completely symmetri-
cally, this also shows that c <J ′′ d �⇒ c �X ′′ d for c, d ∈ 〈n + m − 1〉. ��
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We again compile the colored operad Patch to obtain a graded non-colored operad

Patchs(n) ⊆
∏

q1,...,qn ,q
p1,...,pn

Patch((q1, p1), . . . , (qn, pn); (q, p))

where an element x ∈ Patch((q1, p1), . . . , (qn, pn); (q, p)) is graded as

|x | =
n∑

i=1

(qi + pi − 1) − (q + p − 1)

and Patchs(n) is generated as a k-module by the sequences of constant degree. Its
composition is derived from Patch where it is set to 0 when the colors do not match.
Note in particular that the Sn-action on Patch(n) is affected by this grading: permuting
two vertices i and j introduces a sign (−1)(qi+pi−1)(q j+p j−1).

Lemma 3.9 Patchs is a dg-suboperad of (mNSOpst ⊗H NSOps, (∂D, I d)).

Proof It suffices to see that the elements (Dq , 1) ∈ Patch((q, p); (q+1, p)) for every
p, q ∈ N. ��

3.4 Themorphism Patchs −→ End(sCGS(A))

In this sectionwemake theGS-complexCGS(A) of a prestackA into a Patchs-algebra.
We do so by making its underlying bicomplex C•,•(A) into a Patch-algebra. We first
fix some notations.

Definition 3.10 Let σ = (U0
u1→ U1 → . . .

u p→ Up) be a p-simplex in the category
U and ζ : [p′] −→ [p] a non-decreasing map (or equivalently a non-decreasing
sequence), then let ζ be the reflection of ζ , that is,

ζ (t) := p − ζ(p′ − t)

and define

ζ(σ ) := N•(U)(ζ )(σ )

a p′-subsimplex of σ , where N•(U) denotes the nerve construction on U .
Remark 3.11 Note that we apply the reflection as we count the horizontal inputs of a
patchwork from top to bottom (see Example 3.7) instead of bottom to top (see further,
Example 3.22).

Given a patchwork (X , J ) ∈ Patch, we now determine which simplices we need to
fill in the ‘open spaces’ in between the rectangles. We first sketch the idea.

Given a simplex σ in U and a vertex a, we want to determine two sorts of simplices:
for every vertical input i = I (a, b) for some vertex b, we want to determine a simplex
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σ(a, b) that we place between them. For the other vertical inputs 1 ≤ i ≤ qa , we
determine a simplex σa(i) to place on top of a at input i . To do so, we determine
the set of left-most vertices which do not “surpass” the i th input and that lie higher
than vertex a. In the drawing below, this set consists of the vertices e1, e2 and e3. To
calculate σ(a, b), we restrict this set to those vertices that still lie below vertex b, in
this case, the vertices e2 and e3.

a

b

σ(a, b)

i

σa(i) e1

e2
e3

We observe that each element of the GS complex composes in U the subsimplex
corresponding to its horizontal inputs. Hence, using our auxiliary set, we contract the
corresponding subsimplices and obtain σ(a, b) and σa(i).

Note that we have not yet treated the multiplications m. In order to do so, we have
to add the following complexity. Let X = [I ◦n+1 m ◦n+1 · · · ◦n+1 m] where I is an
indexed tree with n+ k vertices, then we call a vertex a of I non-plugged in X if in X
it is not inserted by a multiplication element m. We continue with the above chosen
representation of X where a non-plugged is equivalent to stating a ≤ n.

Definition 3.12 We define a function ↓ : 〈n + k〉 −→ [n] on the vertices of I which
associates to every vertex a the closest non-plugged vertex in X under or equal to a,
or 0 if no such vertex exists. Concretely,

↓ a := max
<I

{y ∈ 〈n〉 : y ≤I a} and ↓ a = 0 if the set is empty

We also set a �J 0 for every vertex a and define

ζJ ,a := ζJ ,↓ a and ζJ ,0 := p

where p is the total number of inputs of J .

Remark 3.13 This is clearly independent of the representative I of X . Moreover, ↓ is
for the given representative I the identity on 〈n〉.

Next, we determine the auxiliary set.
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Definition 3.14 Consider a vertex a of I and let b1 �I . . . �I bt be the children of a
in I lying in 〈n〉 with is := I (a, bs). We then define

La(i) =

⎧
⎪⎨

⎪⎩

{e ∈ 〈n〉 : e ��I ↓ a and e �J ↓ a} i < i1
{e ∈ 〈n〉 : bs �I e and e �J ↓ a} is ≤ i < is+1

{e ∈ 〈n〉 : bt �I e and e �J ↓ a} it ≤ i

for i ∈ [qa], and

L(a, bs) := {e ∈ 〈n〉 : bs �I e and bs �J e �J ↓ a}

and let min La(i) and min L(a, bs) be respectively the set of <J -minimal elements of
La(i) or L(a, bs).

Remark 3.15 Remark that La(i), L(a, bs) ⊆ 〈n〉 and thus that it contains only vertices
which are not plugged by m. By default, we will set the subsimplex underneath the
plugged children of a as empty (see Definition 3.18).

Remark 3.16 Note that the condition e ��I↓ a appearing in the first case becomes
superfluous in the others.******

Definition 3.17 Let a be a vertex of I and min La(i) = {e1 �J . . . �J el}, then we
have the sequence of inequalities

0 ≤ ζJ ,e1(0) ≤ ζJ ,e1(pe1) ≤ · · · ≤ ζJ ,el (pel ) ≤ ζJ ,a(0)

and thus the non-decreasing sequence

(0, 1, . . . , ζJ ,e1(0), ζJ ,e1(pe1), . . . , ζJ ,el (0), ζJ ,el (pel ), . . . , ζJ ,a(0))

from which we delete ζJ ,ei (pei ) if ζJ ,ei (pei ) = ζJ ,ei+1(0) or ζJ ,el (pel ) = ζJ ,a(0).
This defines a subsimplex σa(i) of σ by Definition 3.10.

Definition 3.18 Let a, b be vertices of I such that b is a child of a, and min L(a, b) =
{e1 �J . . . �J el}, then we have the sequence of inequalities

• If i = I (a, b) for some vertex b ∈ 〈n〉 (non-plugged)

ζJ ,b(pb) ≤ ζJ ,e1(0) ≤ ζJ ,e1(pe1) ≤ · · · ≤ ζJ ,el (pel ) ≤ ζJ ,a(0)

• If i = I (a, b) for some vertex b > n (plugged)

ζJ ,b(pb) = ζJ ,a(0)

and thus the non-decreasing sequence

(ζJ ,b(pb), . . . , ζJ ,e1(0), ζJ ,e1(pe1), . . . , ζJ ,el (0), ζJ ,el (pel ), . . . , ζJ ,a(0))
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from which we delete ζJ ,ei (pei ) if ζJ ,ei (pei ) = ζJ ,ei+1(0) or ζJ ,el (pel ) = ζJ ,a(0). We
also delete ζJ ,b(pb) if it equals ζJ ,e1(0). This defines a subsimplex σ(a, b) of σ by
Definition 3.10.

We consider an example.

Example 3.19 Given the simplex σ = (u1, . . . , u8) and the following patchwork of
rectangles

m

m

m

2 1

5
4

3

6 u1

u2

u3

u4

u5

u6

u7

u8

7

we analyse the case for rectangle 6: we have

L6(0) = L6(1) = {1, 3, 4, 5, 7} and min L6(0) = min L6(1) = {1, 3, 5, 7},
L6(2) = L6(3) = {3, 4, 5} and min L6(2) = min L6(3) = {3, 5}
L(6, 1) = {3} and min L(6, 1) = {3}

and thus

σ6(0) = σ6(1) = (u3u2, u5u4, u6, u8u7),

σ6(2) = σ6(3) = (u3u2, u4, u5, u6, u8u7),

σ (6, 1) = (u3u2).

Now, we can assemble for every element of Patch a concrete patchwork of elements
ofCGS(A)where the first coordinate determines a vertical patching using the operadic
structure and the second component determines the horizontal patching to fill in and
align the corresponding simplices.

Construction 3.20 Given (X , J ) ∈ Patch ((q1, p1) , . . . , (qn, pn) ; (q, p)) and θi ∈
Cpi ,qi (A), then we set θs = m ∈ C0,2 (A) for s = n + 1, . . . , n + k.
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Let σ be a p-simplex in U and A = (
A0, . . . , Aq

)
(q + 1)-tuple of objects in

A (
Up

)
, then we define for every vertex a in I

�a := θ
ζJ ,a(σ )
a

(
σa (0)# AζI ,a(0), . . . , σa (qa)

# AζI ,a(qa)

)

and for every i ∈ 〈qa〉 we make the compositions

• If i = I (a, b) for some vertex b,

�a ◦i
(
σ (a, b)# ◦1 �b

)

• Otherwise,

�a ◦i σa (i)#
(
AζI ,a(i−1),AζI ,a(i)

)

All these compositions together define

L (X , J ) (θ1, . . . , θn)
σ (A) ∈Hom

( q⊗

i=1

A (
Up

)
(Ai , Ai−1) ;A (U0)

(
σ #Aq , σ

∗A0

))

Lemma 3.21 Construction 3.20 is independent of the representative I of X.

Proof It suffices to verify the relation on the formal multiplication elements m in
mNSOp. This follows directly from the associativity of the local composition mU of
the category A(U ) for every U ∈ U . ��

Let us work out an example.

Example 3.22 Consider the patching (X , J ) fromExample 3.7. Let θ1 ∈ C5,3(A), θ2 ∈
C2,3(A), θ3 ∈ C1,2(A) and θ4 ∈ C2,0(A), then we computeL(X , J )(θ1, θ2, θ3, θ4) ∈
C7,6(A). Given the simplex (u1, . . . , u7) ∈ N7(U)(U0,Up) and the objects
(A0, . . . , A6) ∈ A(Up), we first compute

�1 = θ
(u1,u3u2,u4,u6u5,u7)
1 (A0, A1, A2, A3)

�2 = θ
(u2,u3)
2 (u∗

4(u6u5)
∗u∗

7A3, u
∗
4(u6u5)

∗u∗
7A5, u

∗
4(u6u5)

∗u∗
7A6, u

∗
4u

∗
5u

∗
6u

∗
7A6)

�3 = θ
(u6u5)
3 (u∗

7A3, u
∗
7A4, u

∗
7A5)

�4 = θ
(u5,u6)
4 (u∗

7A6)

Then, given (a1, . . . , a6) where ai ∈ A(Up)(Ai , Ai−1), we finally compute

mU0(�1(a1, a2, a3), u
∗
1�2(u

∗
4�3(u

∗
7(a4), u

∗
7(a5)), u

∗
4(u6u5)

∗u∗
7(a6), u

∗
4�4)
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which we can draw as follows

A1A0
a1

A2
a2

A3
a3

A4
a4

A5
a5

A6
a6

A6

u∗
2

u∗
3

u∗
4

u∗
5

u∗
6

u∗
7

u∗
1

�4

�1

�2

�3

u∗
4 u∗

4 u∗
4

(u6u5)∗

u∗
1

u∗
7u∗

7u∗
7

mU0

Proposition 3.23

L(X , J ) ◦a L(X ′, J ′) = L(X ◦a X ′, J ◦a J ′)

Proof We can assume without loss of generality that a = n asL is clearly equivariant.
Let (X ′′, J ′′) := (X , J ) ◦n (X ′, J ′), then we add ′ or ′′ to denote the notions

associated to (X ′, J ′) or (X ′′, J ′′). Let I and I ′ be the underlying trees representing X
and X ′ having respectively n + k and m + k′ vertices, then let (α, β) be the extension
of n + k by m + k′ at n. Let (α, β) be the extension of n by m at n.

We compute

L(X , J )(θ1, . . . , θn−1,L(X ′, J ′)(θn, . . . , θn+m−1))
σ (A) (2)

and show that it equals

L(X ′′, J ′′)(θ1, . . . , θn+m−1)
σ (A) (3)

for σ ∈ Np(U) and A = (A0, . . . , Aq) objects in A(Up).
It is clear that per construction the blocks involved are composed according to

X ′′ = X ◦n X ′. Hence it suffices to verify that they correspond to the blocks �′′
x in

L(X ′′, J ′′) and that the functors used to fill in the open spaces, agree.
First, for x a non plugged vertex of I ′′ in X ′′, it is clear that �′′

x is either �β(x), or
�′

α−1(x)
evaluated at σ ′ = ζJ ,n(σ ). Next, we verify the simplices σ ′′

i (x). For its i th
input, we have the following two cases:
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• If x does not lie in the image of (X ′, J ′), then σβx (i) = σ ′′
x (i) because if

n ∈ min Lβx (i) then it is replaced by α(r ′) for r ′ the root of J ′ for which holds
ζJ ′′,α(r ′) = ζJ ,nζJ ′,r ′ .

xi

σx (i) = σ ′′
x (i) (X ′, J ′)

r ′

n

As a result, in both (2) and (3) we have the term �βx ◦i σβx (i)#.
• If x is part of (X ′, J ′), i.e. x = α(x ′) for some vertex x ′, then min L ′′

α(x ′)(i) is the
union ofmin L ′

x ′(i) andmin Ln(i ′) for some i ′. Hence,we obtain the concatenation
of σ ′

x ′(i) for σ ′ = ζJ ,n(σ ) and σn(i ′). As ζ ′′
J ′′ = ζJ ◦n ζJ ′ , this corresponds exactly

to σ ′′
x (i).

α(x ′)i

σ ′
x ′(i)

σn(i ′)

Hence, the corresponding term in both calculations agrees.

Next, we calculate σ ′′(x, b) for b a child of x in (X ′′, J ′′) that is not plugged. We
again have three cases

• If both x and b lie either outside or inside the image of (X ′, J ′), then clearly
σ ′′(x, b) = σ(βx, βb) or σ ′(α−1x, α−1b) for σ ′ = ζJ ′,n(σ ) due to the previous
reasoning and thus the terms agree.

• If b lies in the image of (X ′, J ′), i.e. b = α(b′), and x does not, then b′ is clearly
the root of X ′. As a result, σ ′′(x, b) = σ(βx, n) and thus the terms agree.

• If x lies in the image of (X ′, J ′), i.e. x = α(x ′), and b does not, then min L ′′
α(x ′)(i)

is the union of min L ′
x ′(i) and min Ln(i ′) for some i ′.

α(x ′)i

σx ′(i)

σ (n, βb)

b

Hence, we obtain in (2) the concatenation of σ(n, βb) and σ ′
x ′(i) for σ ′ = ζJ ,n(σ ),

which corresponds exactly to σ ′′(x, b).
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In case either x or b is plugged, we possibly have to apply the functorial property of
the restrictions, i.e. u∗ ◦ mU = mV ◦ (u∗ ⊗ u∗) for u : V → U in U , to pull down

�βx = mUζJ ,βx (0) or �′
α−1x

= m
UζJ ,nζ

J ′,α−1x
(0) . Specifically, in the following cases

• Let βx lie on top of n in (X , J ) and ↓ x = α(y) for some vertex y of (X ′, J ′).

α(y)i

τ

σ (βx, βb)

b

x

σβx ( j)

In this case, �βx = mUζJ ,n (0) occurs in (2) and �′′
x = m

UζJ ,nζJ ′,y (0) occurs in (3).

Using functoriality, in (2) we equivalently have τ # ◦ mUζJ ,n (0) = m
UζJ ,nζJ ′,y (0) ◦

(τ # ⊗ τ #) for an appropriate simplex τ . As a result they agree.
Next, it is clear from the drawing that σ ′′

x ( j) is the concatenation of σβx ( j) and τ .
Moreover, for some vertex b, we have σ ′′(x, b) as the concatenation of σ(βx, βb)
and τ , except in the case that b is plugged as well. In the latter case, we can also

pull �βb in (2) down to �βx and obtain m
UζJ ,nζJ ′,y (0) = �′′

x = �′′
b as in (3).• Let βx lie on top of n, but ↓ x /∈ Im(α).

τ

x

α(u′)

↓ x

σ(y, n)

Again, we can pull down �βx in (2) past both functors τ # and σ(y, n)# and obtain

m
UζJ ,β ↓ y (0) = �′′

x . The same reasoning as before also holds for the functors σ ′′
x ( j)

and σ ′′(x, b) in (3) and its counterparts σβx ( j) and σ(βx, βb) in (2).
• The case where x lies in the image of (X ′, J ′) such that ↓ x /∈ Im(α), is analogous
to the previous one.

This finishes the proof. ��
Theorem 3.24 We obtain a morphism of dg-operads

L : Patchs −→ End(sCGS(A), d0).
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Proof The map L : Patch −→ End(C•,•(A)) is clearly equivariant and thus it is a
morphism of operads due to Proposition 3.23. Hence, the inducedmapL : Patchs −→
End(sCGS(A)) is a morphism of graded operads. Moreover, it is a morphism of dg-
operads as L(D, 1) = d0. ��

3.5 Themorphism Quilt −→ Patchs

In [8], Hawkins defines a suboperad Quilt ⊆ F2S⊗H Brace for which Quilt(n) is the
free k-module generated by (W , T ) ∈ F2S(n) × Tree(n) such that

(1) W = . . . u . . . v . . . �⇒ u �>T v;
(2) W = . . . u . . . v . . . u . . . �⇒ v �T u.

Here, deg(W , T ) := deg(W ) and the boundary operator is ∂(W , T ) := (∂W , T ).
Insightfully, elements of Quilt can also be drawn as a stacking of rectangles in

the plane, as extensively explained in [8, §3.2]. We will use Quilt in a fundamentally
differentway by switching the roles of its first and second component, and thus flipping
the rectangles on their side. As such, we also draw the elements of Quilt on their side.
We give an example.

Example 3.25 Weconsider an example from [8, Ex. 3.2] andflip it on its side as follows

⎛

⎜⎜⎝14234, 1 3

2

4

⎞

⎟⎟⎠ = 1

2

3

4

Note the double line above rectangle 4: this reflects the fact that 3 is not interposed,
otherwise the corresponding word would be 142434.

By definition, we have Patchs ⊆ mNSOps ⊗H NSOpst . In this section, we will
construct a morphism of operads Quilt −→ Patchs as a restriction of

φ̄ ⊗H φ : F2S⊗H Brace −→ mNSOps ⊗H NSOpst .

Lemma 3.26 Let Q = (W , T ) ∈ Quilt, X ∈ Clr(W , q1, . . . , qn) and I ∈
Clr(T , p1, . . . , pn), then (X , I ) ∈ Patch.

Proof Let u, v ∈ 〈n〉, if u <I v, then u <T v and thus W �= · · · v . . . u . . . and thus
every occurrence of u in W is left of every occurrence of v in W . Hence, u �X v.

The other way around, if u <X v, then W = · · · u . . . v . . . u . . . and thus v �T u
which is equivalent to v �I u. ��

We obtain a morphism of graded operads

φ̄ ⊗H φ : Quilt −→ Patchs
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defined as

(φ̄ ⊗H φ)((q1, p1), . . . , (qn, pn))(W , T ) =
∑

X∈Clr(W ,q1,...,qn)
I∈Clr(T ,p1,...,pn)

sgnW (X) sgnT (I )(−1)σ (X , I )

where the sign (−1)σ is defined as the Koszul sign obtained from switching

q1, . . . , qn, p1 − 1, . . . , pn − 1 � q1, p1 − 1, . . . , qn, pn − 1

This is the consequence of the Hadamard product of two graded operads

Patch((q1, p1), . . . , (qn, pn); (q, p)) ⊆ mNSOp(q1, . . . , qn; q) ⊗ NSOp(p1, . . . , pn; p)

where we have switched the order of the inputs.
Note in particular that this sign corresponds to the sign defined in [8, §4.7] and that

we write sgnQ(X , J ) := sgnW (X) sgnT (J )(−1)σ .
As a direct consequence of Lemma 3.9 we have the following.

Proposition 3.27 We have a morphism of dg-operads

φ̄ ⊗H φ : (Quilt, ∂) −→ (Patchs, ∂(D,1))

Corollary 3.28 We have a morphism of dg-operads

R := L ◦ (φ̄ ⊗H φ) : Quilt −→ End(sCGS(A), d0)

Proof Immediate from Theorem 3.24 and Proposition 3.27. ��
Our action of Quilt on the GS-complex of a prestack is orthogonal to the action

constructed in [8, Thm. 4.26] in the case of presheaves, and thus also new for the
latter case. This can be interpreted in a geometric sense: our action encodes a quilt
Q = (W , T ) as a vertical patchwork according to W and a horizontal patchwork
according to T . In Hawkins’ action their roles are reversed, where the role of the
multiplication is filled in by the identity 1u,v : v∗u∗ = (uv)∗. This does not translate
to the case of prestacks due to the occurring twists cu,v : v∗u∗ −→ (uv)

∗
.

4 Incorporating twists

The morphism R : Quilt −→ End(sCGS(A)) from Corollary 3.28 only involves the
multiplication m and the functors f of the data of a prestack (A,m, f , c). In this
section, we will incorporate the twists c by adding a formal element with certain rela-
tions, resulting in the bounded powerseries operad Quiltb[[c]]. In Sect. 4.4, we extend
R above to a morphism Rc : Quiltb[[c]] −→ End(sCGS(A)) (see Theorem 4.17). In
Hawkins’ approach to the presheaf case, the initial action of Quilt on End(sCGS(A)),
which only involves the restriction maps f , is later extended in order to incorporate
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the multiplications m. As far as the structure of both approaches goes, our operad
Quiltb[[c]] is the counterpart of the operad mQuilt from [8, Def. 5.2].

In [8, §7.1], Hawkins constructs a morphisms L∞ −→ Quilt (see Sect. 4.2). In
Sect. 4.2, we establish a more involved morphism L∞ −→ Quiltb[[c]] (see Theo-
rem 4.10) by extending to an infinite series of higher components incorporating the
element c.

Putting Theorems 4.10 and 4.17 together, we have thus endowed sCGS(A) with
an L∞-structure. In the case of presheaves, this coincides on reduced and normalised
cochains with the L∞-structure from [8, Thm. 7.13].

In the final Sect. 4.5 we briefly discuss the relation of this structure with the defor-
mation theory of the prestack A.

4.1 Powerseries operads

In order to obtain an L∞-structure incorporating twists, we will make use of operads
of formal power series.

Definition 4.1 Let O be a graded operad, then define O[x] as the graded operad gen-
erated by O and an element x of degree t and define the subspaces

O[x](n, r) := {γ ∈ O[x](n) : γ has r occurrences of x} ⊆ O[x](n)

which is well-defined as there are no relations on x . Define

O[[x]](n) :=
∏

r≥0

O[x](n, r)

with component-wise Sn-action and write their elements as
∑

r≥0 Qr for Qr ∈
O[x](n, r). For every 1 ≤ k ≤ n the composition of O[x] descends to a map

O[x](n, r) ⊗ O[x](n, s) −→ O[x](n, r + s)

which extends to a composition map

(
∑

r≥0

Qr ) ◦k (
∑

s≥0

Ps) :=
∑

t≥0

(
∑

i+ j=t

Qi ◦k Pj )

We call an element
∑

r≥0 Qr ∈ O[[x]] bounded if the set {deg(Qr ) : r ≥ 0} ⊆ Z is
bounded. Let Ob[[x]] be the S-submodule of bounded series which is graded by the
series with coefficients of constant degree.

Lemma 4.2 (1) O[[x]] is an operad.
(2) Ob[[x]] is a graded suboperad of O[[x]].
(3) We have a sequence of injective operad morphisms

O ↪→ O[x] ↪→ Ob[[x]] ↪→ O[[x]]
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Proof These are straight-forward computations. ��
We call O[[x]] the operad of powerseries with coefficients in O and Ob[[x]] the

operad of bounded powerseries with coefficients in O.

Definition 4.3 Consider Quilt[x], Quiltb[[x]] and Quilt[[x]] for x a 0-ary element x ∈
Quilt(0) of degree −1, then let Quilt[c], Quiltb[[c]] and Quilt[[c]] be their respective
quotients under the following relations

(1) ∂(c) = 0
(2) (12, 1 2) ◦1 c ◦1 c = 0
(3) (W , T ) ◦i c = 0 if i has more than two children in T or i is repeated inW (that is,

it has a child in W ).

Remark 4.4 In Definition 4.3, (1) determines that c encodes a natural transformation,
(2) embodies the cocycle condition and (3) determines the form of c. The letter c will
always stand for the twist subject to its relations, and should not be confused with a
free variable.

On inspection of mQuilt from [8, Def. 5.2], we see that our conditions on c are a
subset of those imposed on m in mQuilt. Hence, we obtain a morphism Quilt[c] −→
mQuilt sending c to m.

4.2 Themorphism L∞ −→ Quilt

In [8, Thm 7.8] a morphism L∞ −→ Quilt : ln −→ L0
n is defined by setting

L0
n :=

∑

Q∈Quilt(n)
deg(Q)=n−2

sgn(Q) Q

In particular, this means that for every n ≥ 2 the equation

0 = ∂L0
n +

∑

p+q=n+1
p,q≥2

∑

σ∈Sh p−1,q

(−1)(p−1)q(−1)σ (L0
p ◦p L0

q)
σ−1

(4)

holds.
An important feature which we will need, is that we can write L0

n as the antisym-
metrization of elements P0

n . Namely, we set

P0
n :=

∑

Q∈Quilt(n)
deg(Q)=n−2

Q labelled in ↓order

(−1)1+
n(n−1)

2 Q

then we have

L0
n =

∑

σ∈Sn
(−1)σ (P0

n )σ .
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In fact, the L∞-relations translate to the following

∂P0
n +

∑

p+q=n+1
p,q≥2

p∑

j=1

(−1)(p−1)q+(p− j)(q−1)P0
p ◦ j P

0
q ∈〈Q − Qσ |σ ∈ Sn〉 ⊆ Quilt(n)

(5)

where 〈−〉 denotes ‘free k-module generated by−’.

4.3 Themorphism L∞ −→ Quiltb[[c]]

Next we will define more involved L∞-operations incorporating c.

Definition 4.5 For n + r ≥ 2 we define

Pr
n :=

∑

1≤y1<...<yr≤n+r

(−1)y1,...,yr P0
n+r ◦y1 c ◦y2−1 · · · ◦yr−r+1 c

where (−1)y1,...,yr denotes the sign of the (r , n)-shuffle defined by (y1, . . . , yr ). Using
these we set

Lr
n :=

∑

σ∈Sn
(−1)σ

(
Pr
n

)σ

Remark 4.6 Note that Lr
n live in Quilt[c].

Let us compute Pr
n for some low n and r .

Example 4.7 In case no elements c are added, we obtain the original P0
n

P0
2 = 1 2 , P0

3 = 1
2

3
,

P0
4 = − 1

2

3 4 −
1

2

4

3
−

1
2

4

3 , . . .

Similar to how we drew elements from mNSOp as trees with vertices plugged by m,
elements of Quilt[c] can be drawn as quilts with rectangles plugged by c. For example,
we have

P1
1 = c 1 − 1 c
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or

P2
2 = c

1

c 2 − c
1

2 c − 1
2

c c −
1

2

c

c −
1

2

c

c

Note that depending on where we plug the elements c a sign is added.

This enables us to define the following.

Definition 4.8

Ln :=
∑

r≥0

Lr
n for n ≥ 2 and L1 :=

∑

r≥1

Lr
1

Set

∂ ′ := ∂ + ∂L1

where

∂L1(A) := L1 ◦1 A − (−1)|A| ∑

i

A ◦i L1

(a derivation by an element) which will be the new differential.

Remark 4.9 Note that Ln are bounded because their components have constant degree
n − 2. Hence, Ln live in Quiltb[[c]].
The main theorem of this section is the following.

Theorem 4.10 The map

L∞ −→ (Quiltb[[c]], ∂ ′) : ln −→ Ln

defines a morphism of dg-operads.

First we need some lemmas.

Lemma 4.11 For r ≥ 2 we have Lr
0 = 0.

Proof Due to relation (3) in Definition 4.3 of c, there cannot be a vertical composition
of c. Hence, Lr

0 = 0 for r ≥ 3. L2
0 = 0 due to condition 2 of the definition of c. ��

Remark 4.12 Note that we have used 2 out of the three conditions on c to prove this
lemma.

The following lemma extends the L∞-equation of (L0
n)n for higher L

r
n .
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Lemma 4.13 For n ≥ 1 and r ≥ 0, we have

−∂(Lr
n) =

∑

i+ j=r
k+l=n+1
k+i≥2
l+ j≥2

∑

χ∈Shk−1,l

(−1)χ (−1)(k−1)l
(
Li
k ◦k L j

l

)χ−1

.

Proof By applying ∂ and using Eq. (5) and ∂(c) = 0, we deduce

−∂(Lrn) =
∑

p+q=n+r+1
p,q≥2

∑

σ∈Sn

∑

1≤y1<...<yr≤n+r
x=1,...,p

(−1)y1,...,yr (−1)σ (−1)(p−1)q (−1)(p−x)(q−1)

(
P0
p ◦x P0

q
(◦ye−e+1c

)
e

)σ

Given 1 ≤ y1 < . . . < yr ≤ n + r and 1 ≤ x ≤ p, we have a subdivision into
two groups where ◦ys−s+1c is inserted into either P0

p or P0
q . Hence, if we are also

given a permutation σ ∈ Sn , then we show that there exists unique integers i + j =
r , k + l = n + 1, indices 1 ≤ z1 < . . . < zi ≤ k + i and 1 ≤ z′1 < . . . < z′j ≤ j + l,
permutations τ ∈ Sk+i , τ

′ ∈ S j+l and a shuffle χ ∈ Shk−1,l such that

(−1)y1,...,yr (−1)σ (−1)(p−1)q(−1)(p−x)(q−1)
(
P0
p ◦x P0

q

(◦ye−e+1c
)
e

)σ

= (−1)(z1,...,zi )+(z′1,...,z′j )(−1)χ+τ+τ ′
(−1)(k−1)l

((
P0
k+i

(◦ze−e+1c
)
e

)τ ◦k
(
P0
l+ j (◦z′f − f +1c) f

)τ ′)χ−1

(6)

In this case, we obtain

− ∂(Lr
n) =

∑

i+ j=r
k+l=n+1
k+i≥2
l+ j≥2

∑

χ∈Shk−1,l

(−1)χ (−1)(k−1)l

∑

τ∈Sk ,τ ′∈Sl

∑

1≤z1<...<zi≤k+i
1≤z′1<...<z′j≤ j+l

(−1)τ+τ ′+(z1,...,zi )+(z′1,...,z′j )

((
P0
k+i

(◦ze−e+1c
)
e

)τ ◦k
(
P0
l+ j (◦z′f − f +1c) f

)τ ′)χ−1

(7)

By applying the definition of Ln , this proves the lemma.
We show that Eq. (6) holds: the set y1 < . . . < yr splits into three subsets

• z11 < . . . < z1i1 such that z1t < x ,

• z21 < . . . < z2i2 such that z2t > x + q − 1,
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• z
′0
1 < . . . < z

′0
j = {y1 < . . . < yr } \ {z11 < . . . < z1i1 , z

2
1 < . . . < z2i2}.

from which we define

zt :=
{
z1t t ≤ i1
z2t−i1

− q t > i1
z′t := z

′0
t − x + 1

i := i1 + i2 and j := r − i, k := p − i and l := q − j

We then compute

P0
p ◦x P0

q
(◦ye−e+1c

)
e = (−1)i(l+ j)+i2 j

(
P0
k+i

(◦ze−e+1c
)
e

)
◦x−i1

(
P0
l+ j (◦z′f − f +1c) f

)

(8)

where the sign appears because we move the c’s corresponding to z
′0
t past j c’s

corresponding to z
′0
t and also i c’s past P0

q . Note that if we know x and i1, then given
i, j, k, l, z1, . . . , zi , z′1, . . . , z′j we can uniquely determine p, q, r , n, y1, . . . , yr .

We also compute the sign of y1, . . . , yr : let θ and θ ′ be the shuffles such that

z11, . . . , z
1
i1

θ� 1, . . . , i1

z
′0
1 , . . . , z

′0
j

z′1,...,z′j� x, . . . , x + j
j(x−i1−1)� i1 + 1, . . . , i1 + j

z21, . . . , z
2
i2

θ ′
� x + q, . . . , x + q + i2 − 1

i2(l+x−i1−1)� i1 + j + 1, . . . , r

then we obtain that

(−1)y1,...,yr = (−1)θ+(z′1,...,z′j )+ j(x−i1−1)+θ ′+i2(l+x−i1−1)

On the other hand,

z1, . . . , zi1 , zi1+1, . . . , zi
θ+θ ′
� 1, . . . , i1, x + 1, . . . , x + i2

i2(x−i1)� 1, . . . , i

and thus we have

(−1)y1,...,yr = (−1)(z1,...,zi )+(z′1,...,z′j )+ j(x−i1−1)+i2(l+1)

Given σ ∈ Sn , let b1 < . . . < bl ⊆ 〈k + l − 1〉 such that σ(bt ) ∈ {x − i1, . . . , x −
i1 + l − 1} and let a1 < . . . < ak1 := 〈k + l − 1〉 \ {b1 < . . . < bl}. We then define
the (k − 1, l)-shuffle χ = (a1 < . . . < ak−1, b1 < . . . < bl) and

τ(t) =
{

σχ(t) t < k

x − i1 t = k
and τ ′(t) = σ(bt ) − (x − i1 − 1)
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It is then easy to see that

(
P0
k+i

(◦ze−e+1c
)
e ◦x−i1

(
P0
l+ j (◦z′f − f +1c) f

))σχ = (
P0
k+i

(◦ze−e+1c
)
e

)τ ◦k
(
P0
l+ j (◦z′f − f +1c) f

)τ ′

Note that τ and z1, . . . , zi determine x and i1 uniquely. Hence, given
z1, . . . , zi , z′1, . . . , z′j , k, l we can uniquely determine y1, . . . , yr , p, q, n, r in the
above manner. In order to show that Eq. (6) holds, we only need to verify the corre-
sponding signs: let τ0 be the permutation such that

σχ(1), . . . , σχ(k − 1)
τ0� 1, . . . , x − i1 − 1, x − i1 + l, . . . , k + l − 1

σχ(k), . . . , σχ(k + l − 1)
τ ′
� x − i1, . . . , x − i1 + l

and thus we have that (−1)σ+χ=(−1)τ0+τ ′+l(k−x+i1). On the other hand, we have that
τ corresponds to

τ(1), . . . , τ (k)
τ0� 1, . . . , x − i1 − 1, x − i1 + 1, . . . , k − 1, τ (k)

k−x+i1� 1, . . . , k − 1

and thus we have

(−1)σ+χ = (−1)τ+τ ′+(l+1)(k−x+i1)

As such, we can compute

(−1)(z1,...,zi )+(z′1,...,z′j )(−1)χ+τ+τ ′
(−1)(k−1)l(−1)i(l+ j)+i2 j

= (−1)y1,...,yr+σ (−1)i2(l+1)+ j(x−i1−1)+(l+1)(k−x+i1)+(k−1)l+i(l+ j)+i2 j

and

i2(l + 1) + j(x − i1 − 1) + (l + 1)(k − x + i1) + (k − 1)l + i(l + j) + i2 j

= (l + 1)(k − x + i) + j(x − i − 1) + (k − 1)l + i(l + j)

= (l + 1)(p − x) + j(p − x + (k − 1)) + (k − 1)l + iq

= (q − 1)(p − x) + (k − 1)q + iq

= (q − 1)(p − x) + (p − 1)q

which completes the proof. ��
Lemma 4.14 Ln are skew symmetric and ∂ ′ is a differential making Quiltb[[c]] into a
dg-operad.

Proof It is clear from the definition of Lr
n that they are skew symmetric and thus also

Ln .
Per definition ∂L1 is a derivation by construction and so is ∂ , and thus so is ∂ ′.
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It is clear from the definition of c that ∂ ′(c) = 0. Hence, we only need to show that
∂ ′∂ ′(Q) = 0 for every Q ∈ Quilt. Using Lemmas 4.11 and 4.13 we first prove that
−∂L1 = L1 ◦1 L1. Namely, we compute

− ∂(L1) =
∑

r≥1

∑

i+ j=r
k+l=2
k+i≥2
l+ j≥2

∑

χ∈Shk−1,l

(−1)χ (−1)(k−1)l(Li
k ◦k L j

l )
χ−1

=
∑

i+ j=r
i, j≥1
r≥1

Li
1 ◦1 L j

1 = L1 ◦1 L1 (9)

Now let us compute

∂ ′∂ ′Q = ∂∂Q + ∂∂L1Q + ∂L1∂Q + ∂L1∂L1Q

we compute separately

∂L1∂Q = L1 ◦1 ∂Q − (−1)|Q|−1
∑

i

∂Q ◦i L1

and

∂∂L1Q = ∂(L1 ◦1 Q) − (−1)|Q| ∑

i

∂(Q ◦i L1)

= ∂L1 ◦1 Q + (−1)|Q|L1 ◦1 ∂Q − (−1)|Q| ∑

i

∂Q ◦i L1 − (−1)|Q|−1
∑

i

∂L1

adding them gives

∂L1∂Q + ∂∂L1Q = ∂L1 ◦1 Q − (−1)|Q|−1
∑

i

Q ◦i ∂L1

Next, we compute ∂L1∂L1Q. As L1 has only a single input and has degree −1, we
have for i �= j that Q ◦i L1 ◦ j L1 = −Q ◦ j L1 ◦i L1. Hence, by also using using Eq.
(9), we obtain

∂L1∂L1Q = L1 ◦1 (L1 ◦1 Q) − (−1)|Q| ∑

i

L1 ◦1 (Q ◦i L1)

+ (−1)|Q| ∑

i

(L1 ◦1 Q) ◦i L1 −
∑

i, j

Q ◦i L1 ◦ j L1

= L1 ◦ L1 ◦1 Q −
∑

i

Q ◦i (L1 ◦1 L1)

= ∂L1∂Q + ∂∂L1Q
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As ∂∂Q = 0 we thus obtain ∂ ′∂ ′Q = 0. ��
Proof of Theorem 4.10 We need to show for every n ≥ 2 that the equation

0 = ∂ ′(Ln) +
∑

k+l=n+1
k,l≥2

∑

σ∈Shk−1,l

(−1)(k−1)l(−1)σ (Lk ◦k Ll)
σ−1

holds, which is equivalent to

0 = ∂(Ln) +
∑

k+l=n+1
k,l≥1

∑

σ∈Shk−1,l

(−1)(k−1)l(−1)σ (Lk ◦k Ll)
σ−1

This is equivalent to showing for every r ≥ 0 that the equation

0 = ∂(Lr
n) +

∑

i+ j=r
k+l=n+1
k,l≥1

(l, j) �=(1,0) �=(k,i)
(l, j) �=(0,1) �=(k,i)

∑

σ∈Shk−1,l

(−1)(k−1)l(−1)σ (Li
k ◦k L j

l )
σ−1

(10)

holds, which follows from Lemma 4.13 and Li
0 = 0 for i ≥ 0 (Lemma 4.11). ��

Remark 4.15 Under the natural morphism Quilt[c] −→ mQuilt sending c to m our
L∞-structure corresponds to the L∞-structure from [8, Thm. 7.13], that is, we have
the commutative diagram

Quiltb[[c]]

L∞ mQuilt Quiltb[[m]]

where Quiltb[[m]] denotes the quotient of the operad of bounded powerseries by the
relations on m in mQuilt.

4.4 Themorphism Quiltb[[c]] −→ End(sCGS(A))

In this section, we make (the suspension of) CGS(A) into a Quiltb[[c]]-algebra.
The morphism R : Quilt −→ End(sCGS(A)) naturally extends to a morphism of

graded operads Rc : Quilt[c] −→ End(sCGS(A)) by sending c to c ∈ CGS(A) as
the axioms of Quilt[c] correspond respectively to c being a natural transformation, the
cocycle condition of c and c ∈ C2,0(A). Next, we will show that it further extends to
the operad of bounded power series.

Lemma 4.16 Let θ1, . . . , θn ∈ CGS(A) where θi ∈ C pi ,qi (A) and Q ∈ Quilt[c](n, r)
of degree t, then Rc(Q)(θ1, . . . , θn) = 0 if r >

∑n
i=1 qi − t .
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Proof This follows from CGS(A) having only non-negative bidegree. Namely, given
Q = Q′ ◦i1 c ◦i2 . . . ◦ir c for a certain Q′ ∈ Quilt(n + r), the bidegree of Rc(Q′) is
(
∑n

i=1 pi +2r−(n+r−1),
∑n

i=1 qi −deg(Q′)). As deg(Q′) = deg(Q)+r = t+r ,
we have that

n∑

i=1

qi − deg(Q′) < 0 ⇐⇒ r >

n∑

i=1

qi − t

proving the lemma. ��

Theorem 4.17 For A = (A,m, f , c) a linear prestack over U , the map

Rc : (Quiltb[[c]], ∂ ′) −→ End(sCGS(A), d)

defined as Rc(Q) = R(Q) for Q ∈ Quilt and Rc(c) = c, is amorphism of dg-operads.

Proof The representation Rc extends to Quiltb[[c]] due to Lemma 4.16.
We verify that Rc∂

′Q = ∂d RcQ for Q ∈ Quilt. It suffices to verify that RcL
j
1 = d j

as ∂ corresponds to ∂d0 . Let θ ∈ Cp,q(A) and σ ∈ Np+ j (U) and note that we write
|θ | for the degree p + q of θ in CGS(A).
Step 2RcL1

1 = d1
We can write d1 = ∑p+1

s=0 (−1)p+q+1+sds1 where ds1 names the sth component of
d1. We write out the left-hand side

RcL
1
1(θ) = R(P0

2 )(c, θ) − (−1)|θ |−1R(P0
2 )(θ, c) (11)

where P0
2 = (−1)

2·1
2 +1(12, 1 2 ). There exists two colorings (X0, J0) and

(X p+1, Jp+1) of the quilt Q = (W , T ) in P0
2 (c, θ) given by the patchworks

(X1, J1) =

m

1 q

1

p
1

2

p + 1

(X p+1, Jp+1) =

m

1 q

1

2
1

2

p + 1

which correspond respectively to d01 and d p+1
1 . We verify their signs: the sign

sgnQ(X0, J0) = sgnW (X0) sgnT (J0)(−1)q is determined by two shuffles

011102 . . . (q − 1)2 � 011102
12 . . . (p − 1)211 � 1112 . . . (p − 1)2
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and thus sgnQ(X0, J0) = (−1)p−1+q . In the second case,wehave sgn(X p+1, Jp+1) =
sgnW (X p+1) sgnT (Jp+1)(−1)q determined by the two shuffles

011102 . . . (q − 1)2 � 011102
1112 . . . (p − 1)2 � 1112 . . . (p − 1)2

Hence, sgnQ(X p+1, Jp+1) = (−1)q .
There exists p colorings (Xi , Ji )

p
i=1 of P0

2 occuring in the second term of (11),
given by the patchworks

(Xi , Ji ) =

m

1 2

1 q

1

i

i + 1

p + 1

for i = 1, . . . , p. They correspond to d p+1−i
1 and we verify their signs: we have

sgnQ(Xi , Ji ) = sgnW (Xi ) sgnT (Ji ) determined by the two shuffles

01 . . . (q − 1)10212 � 01 . . . (q − 1)10212
11 . . . (i − 1)112i1 . . . (p − 1)1 � 11 . . . (p − 1)112

Hence, we obtain the sign

−(−1)p+q−1 sgnQ(Xi , Ji ) = (−1)q−i

Step 2RcL
j
1 = d j

First, we name the terms of d j and write

d j (θ)σ :=
∑

β∈Sq+1− j

∑

r∈P(Rp(σ ))

(−1)r+β+q− j+1d j (θ)σ (β, r)

such that

d j (θ)σ (β, r)∈
∏

A∈A(Up)q− j+2

Hom(

q⊗

i=1

A(Up)(Ai , Ai−1),A(U0)(σ
#Aq− j+2, σ

∗A0))

Next, we note that the only non-vanishing term of L j
1 is given by (−1)( j−1) P0

j+1 ◦1
c ◦2 c ◦2 . . . ◦2 c as c cannot have any children vertically. Moreover, the only non-
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vanishing quilts are of the form

QT = (
W ′, T ′) =

⎛

⎝123242 . . . 2 ( j + 1) 2, 1

2

T
⎞

⎠

for any binary tree T on j − 1 vertices whose numbering is compatible with the word
component W of QT . Hence, the possible colorings of QT are

(
X , J ′) =

⎛

⎜⎜⎜⎜⎝

m

32

1 2

j + 13

t1 t j−1

. . .

, 1

2

J1

2

⎞

⎟⎟⎟⎟⎠
=

m

j

j + 1
1

2

p + j

3 j + 1

1

. . .

for t1 < . . . < t j−1 in 〈q〉 and J an indexed tree coloring T .
As a result, we have that

RcL
j
1 (θ) = (−1)( j−1)+( j−1)(p+q−1) RP0

j+1 (c, θ, c, . . . , c)

which sums over the terms

sgnQT

(
X , J ′) (−1)

( j+1) j
2 +1 L (

X , J ′)

We finish the proof by showing that a formal path r and a shuffle β ∈ Sq+1− j, j−1
correspond uniquely to such a binary tree T and a coloring

(
X , J ′) of QT such that

(−1)r+β+(q+1− j) d j (θ)σ (β, r)

= sgnQ
(
X , J ′) (−1)

j( j+1)
2 +1 (−1)( j−1)+( j−1)(p+q−1) L (

X , J ′) (c, θ, c . . . , c) (θ)σ

Given a formal path r = (
r1, . . . , r j−1

) = (
(τ1, i1) , . . . ,

(
τ j−1, i j−1

))
we first define

T and its coloring J as trees with vertex set {3, . . . , j + 1} inductively:
• In the degenerate case j = 2, r is uniquely determined and we set T to be the one
vertex tree and J the empty function.

• For j > 2, let (T0, J0) be the indexed tree corresponding to(
(τ1, i1), . . . , (τ j−2, i j−2)

)
, in order to add vertex j + 1 we have three cases

(1) If i j−1 < i j−2, then set j �J ( j + 1) and start over with (i j−1, i j+1)
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(2) If i j−1 = i j−2 or i j−1 = i j−2 + 1, then let ( j, j + 1) ∈ ET and set resp.
J ( j, j + 1) = 2 or = 1.

(3) If i j−1 > i j−2 + 1, then set ( j + 1) �J j and start over with (i j−1, i j+1 − 1)

which we can draw as follows

j

j + 1

(1)

u∗
i j−2+2

u∗
i j−2+1

u∗
i j−1+1

u∗
i j−1

j
j + 1

(2)

u∗
i j−1+2

u∗
i j−1+1

u∗
i j−1

j
j + 1

u∗
i j−1+1

u∗
i j−1

u∗
i j−1−1

j

j + 1

(3)

u∗
i j−2+1

u∗
i j−2

u∗
i j−1+1

u∗
i j−1

Clearly, this process is reversible: given (T , J ) we obtain a unique sequence r ∈
P

(
Rp(σ )

)
. By identifying the shuffleβ ∈ Shq+1− j, j−1 and X via tl = β(q− j+1+l),

we clearly obtain that L(X , I ′)(θ)σ = d j (θ)σ (β, r).
The remaining work is to verify the signs: sgnQT

(X , J ′) consists of three compo-
nents

sgnW ′(X) sgnT ′(J ′)(−1)σ

where (−1)σ = (−1)q as it corresponds to the shuffle

0, q, 0, . . . , 0, 1, p − 1, 1, . . . , 1 � 0, 1, q, p − 1, 0, 1, . . . , 0, 1.

The sign sgnW ′(X) corresponds to the shuffle transforming the word

0( j+1) . . . 030111

(1)

02 . . . (β(t + 1) − 1)2 13β(t + 1)2 . . . 1( j+1)β(t + j − 1)2 . . . (q − 1)2

(2)

,

for t = q − j + 1, into the word

01 . . . (q1 − 1)1 . . . 0( j+1) . . . (q j+1 − 1)( j+1).

We observe that shuffling the second part (2)

02 . . . (β(t + 1) − 1)2 13 β(t + 1)2 . . . 1( j+1) β(t + j − 1)2 . . . (q − 1)2 � 02 . . . (q2 − 1)2 13 . . . 1( j+1)

almost corresponds to the shuffle β. However, there is in every interval β(s)2, . . . ,
(β(s + 1) − 1)2 exactly one element too many. We remedy this by moving 1( j−2) one



Operadic structure on the Gerstenhaber–Schack complex... Page 53 of 63 47

place to the right, then 1( j−3) two place, and so on. As such, its corresponding sign is

(−1)β+∑ j−2
i=1 i = (−1)β+ ( j−2)( j−1)

2 . Next, we shuffle

0( j+1) . . . 03011102 . . . (q2 − 1)213 . . . 1( j+1)

� 011102 . . . (q − 1)20313 . . . 0( j+1)1( j+1)

whose sign is (−1)( j−1)(q+2). Hence, we obtain that

sgnW ′(X) = (−1)β+ ( j−1)( j−2)
2 +( j−1)q .

Next, we determined sgnT ′(J ′) as the sign of the shuffle

[CJ ]1112 . . . (p − 1)2 � 1112 . . . (p − 1)213 . . . 1( j+1),

where [CJ ] denotes the word obtained from the indexed tree J . We will show that
the sign corresponding to the shuffle χ : [CJ ] � 13 . . . 1( j+1) is (−1)r+ j−1. As a
consequence, we obtain that

sgnT ′(J ′) = (−1)r+ j−1+p( j−1),

and thus that

sgn(X , J ′) = (−1)β+r+q+ j−1(−1)
( j−1) j

2 +( j−1)(p+q−1).

Hence, we have

sgnQ(X , J ′)(−1)
j( j+1)

2 +1(−1)( j−1)+( j−1)(p+q−1) = (−1)β+r+q− j+1

which completes the proof.
We compute χ inductively: we have that [CJ ] = A1( j+1)B for certain words A and

B and let χ0 denote the shuffle AB � 13 . . . 1 j . By induction we know that (−1)χ0 =
(−1)r0+ j−2 for the formal path r0 = (r1, . . . , r j−2) and (−1)r = (−1)r0+i j−1 where
r j−1 = (σ, i j−1). Moreover, we have (−1)χ = (−1)χ0+|B| where |B| denotes the
length of B. We determine |B|. First, observe that the sequence associated to two
indexed trees

3 4
1

3 4
2

and

is respectively 1h41h3 and 1h31h4. Thus, let 3 = v1 <T . . . <T vt = j + 1 be the
unique chain of vertices from the root of T to j + 1, then we can define the numbers

• l as the the number of vertices to the right of vertex j + 1 in T ,
• k as the number of vertices in the above chain such that J (vg, vg+1) = 1.

We then easily compute that
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• The height i j−1 of r j−1 = (∂i j−1σ, i j−1) is exactly (1 + l) + k,
• Length of B is l + k

and thus by induction we obtain

(−1)χ = (−1)χ0+|B| = (−1)χ0+i j−1+1 = (−1)r+( j−1)

where the last equality follows from induction. ��
Remark 4.18 In the case of presheaves, when looking at the subcomplex CGS(A) of
normalised and reduced cochains, the map Rc factorises through Quiltb[[m]] as m is
sent to the identity 1u,v : u∗v∗ = (vu)∗. Only in the case of normalised and reduced
cochains does the identity satisfy all the relations on m.

Note however that our induced morphism mQuilt −→ Quiltb[[m]] −→
End(sCGS(A)) does not correspond to the mQuilt-algebra structure [8, Thm. 5.6].

However, the resulting L∞-algebra structure, in the case of presheaves, does corre-
spond to the one obtained from [8, Thm. 5.6, Thm. 7.13]. This is essentially due to the
multiplication of the prestack being unital. A mQuilt-algebra structure also induces
a Gerstenhaber-algebra structure on cohomology [8, Thm. 6.11]. Writing down the
relevant quilts, it is also easy to see that both mQuilt-algebra structures (ours and [8,
Thm. 5.6]) induce the same Gerstenhaber-algebra structure on cohomology.

4.5 Deformations of prestacks

Let k be afield of characteristic 0. Let (C, d, (Ln)n≥2)be an L∞-algebra.Bydefinition,
the Maurer–Cartan equation for θ ∈ C is given by

MC(θ) = d(θ) +
∞∑

n=1

1

n! Ln(θ, . . . , θ).

We consider the set of (degree 1) Maurer–Cartan elements MC(C) = {θ ∈
C1 | MC(θ) = 0} and for the appropriate notion of gauge equivalence (see [9]),
we consider

MC(C) = {θ ∈ C1 | MC(θ) = 0}/ ∼ .

This gives rise to a functor MCC : Art −→ Set : (R,m) −→ MC(m ⊗ C) on the
category Art of Artin local k-algebras.

Consider the GS-complex (CGS(A), d) of a prestack (A, (m + f + c)). In [2,
Thm. 3.19] it is shown that normalised reduced 2-cocycles in CGS(A) correspond to
first order deformations ofA, that is, deformations in the direction of R = k[ε]. More
precisely, for (m′, f ′, c′) ∈ C2

GS(A), we have that (A[ε],m+m′ε, f + f ′ε, c+c′ε) is a
first-order deformation of (A,m, f , c) if and only if d(m′, f ′, c′) = 0 and (m′, f ′, c′)
is normalised and reduced. Further, it is shown in loc. cit. that the cohomology of the
GS-complex classifies the first-order deformations of A up to equivalence.
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Putting Theorems 4.10 and 4.17 together, sCGS(A) is endowed with an L∞-
structure which can be used to obtain higher order versions of these results.

For normalised, reduced cochains, it will be convenient to express theMC-equation
in terms of the unsymmetrised components (Pn)n≥1 fromDefinition 4.5. The following
characteristic-free expression of the MC-equation should be seen as the counterpart
of the equation MC(θ) = d(θ) + θ{θ} for the first brace operation (or “dot product”)
on the Hochschild complex of an algebra. Note that we omit writing Rc and consider
everything as elements of End(sCGS(A)).

Proposition 4.19 For a reduced and normalised cochain θ = (m′, f ′, c′) ∈ sC1
GS(A),

we have

MC(θ) = d(θ) + P1(θ) + P2(θ, θ) + P3(θ, θ, θ, θ) + P4(θ, θ, θ, θ).

In particular, the MC-equation is quartic.

Proof First note that as |θ | = 1, that Qσ (θ, . . . , θ) = (−1)σ Q(θ, . . . , θ). Moreover,
as we can consider c ∈ C2,0(A), the MC-equation consists of d0(θ ′) and summations
of Q(θ1, . . . , θn) for quilts Q of degree n − 2 and θi ∈ C2

GS(A). Let Q = (W , T ) be
such a quilt, part of some P0

n , then W = 12 . . . 2. For n ≥ 3, we know that 3 is also
a child in T of 1. As 1 can have at most two children in T , for n ≥ 4, we thus have 4
and 3 are children of 2 in W , i.e. W = 12324 . . . 2.

Q = 1

2

3 . . .

In this case, only the elements c′ or c, and m′ can be inserted in Q respectively in 1
and 2, with 2 a child of 1 in T . As c′ is reduced, this means that Q(θ, . . . , θ) = 0 for
n ≥ 4.

As c is not necessarily reduced, more quilts are possible. Note that we write θ [i]
to refer to the element θ inserted in vertex i . The above reasoning still applies and we
can once more apply this reasoning to obtain for n ≥ 6 that W = 12324546 . . . 42
and 1 and 3 have two children in T .

Q = 3

4

5 . . .

2

1

This means that 2 and 4 need be inserted by m′ and hence 3 and 1 by either c′ or c.
In case either one is c′, we already know it is zero as c′ is reduced. Thus, consider
vertex 1 and c inserted by c, then, as m′[4] is a child of c[3] in T , c[3] is the unit of
the corresponding category A(U ) and it is plugged into m′[2] which is normalised,
whence we obtain that Q(θ1, . . . , θn) = 0 for n ≥ 6. Hence, P0

n (θ1, . . . , θn) = 0 for
n ≥ 6.
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Combining the above reasonings, we have that Pn(θ, . . . , θ) = 0 for n > 5. In
the case n = 5 there has to be at least one c present and thus the non-zero terms are
contained in P4. ��
Proposition 4.20 For a prestack (A,m, f , c) and θ = (m′, f ′, c′) ∈ sC1

GS(A), we
have that (A,m + m′, f + f ′, c + c′) is a prestack if and only if MC(θ) = 0 and θ

is normalised and reduced.

Proof Using the fact that θ = (m′, f ′, c′) ∈ C2
GS(A) is reduced and normalised, we

compute MC(θ) and look at each component MC(θ)[p,q] ∈ Cp,q(A) for p + q = 3.
We will use that c1,− = 1 = c−,1, m is unital and that (m, f , c) satisfy the axioms of
a prestack. Note that for a cochain θ = (θσ (A))σ,A, we omit writing the set of objects
A explicitly where possible in order to lighten the equations below.

For (p, q) = (0, 3), let U ∈ U and A = (A0, A1, A2, A3) objects in A(U ), then
we compute

MC(θ)U[0,3](A) = dθU[0,3](A) + P2(θ, θ)U[0,3](A) + P3(θ, θ, θ)U[0,3](A) + P4(θ, θ, θ, θ)U[0,3](A)

= d0(m
′) + P0

3 (c,m′,m′)

= mU ◦ (1U ,m
′U ) − m

′U ◦ (mU , 1U ) + m
′U ◦ (1U ,mU ) − mU ◦ (m

′U , 1U )

− mU ◦ (c1U ,1U (A0),m
′U ◦ (m

′U , 1U )) + mU ◦ (c1U ,1U (A0),m
′U ◦ (1U ,m

′U ))

= (mU + m
′U ) ◦

(
1U , (mU + m

′U )
)

− (mU + m
′U ) ◦

(
(mU + m

′U ), 1U
)

For (p, q) = (1, 2), let u : U0 → U1 in U and A = (A0, A1, A2) objects inA(U1),
then we compute

dθu[1,2](A) = d0( f
′)u(A) + d1(m

′)u(A)

=mU0 ◦ ( f u, f
′u) − f

′u ◦ mU1 + mU0 ◦ ( f
′u, f u)

+ mU0 ◦
(
cu,1U0 (A0),m

′U0 ◦ ( f u, f u)
)

− mU0 ◦
(
c1U1 ,u(A0), f u ◦ m

′U1
)

P2(θ, θ)u[1,2](A) = P0
2 ( f ′, f ′)u(A) + P0

3 (c,m′, f ′)u(A) + P0
3 (c, f ′,m′)u(A)

=mU0 ◦ ( f
′u, f

′u) + mU0 ◦
(
cu,1U0 (A0),m

′U0 ◦ ( f
′u, f u)

)

+ mU0 ◦
(
cu,1U0 (A0),m

′U0( f u, f
′u)

)

− mU0 ◦
(
c1U1 ,u(A0), f

′u ◦ m
′U1

)

P3(θ, θ, θ)u[1,2](A) = P0
4 (c,m′, f ′, f ′)u(A)

=mU0 ◦
(
cu,1U0 (A0),m

′U0 ◦ ( f
′u, f

′u)
)

P4(θ, θ, θ, θ)u[1,2](A) = 0
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and thus

MC(θ)u[1,2](A) = −( f u + f
′u) ◦ (mU0 + m

′U0 ) + (mU0 + m
′U0 ) ◦

(
( f u + f

′u) ⊗ ( f u + f
′u)

)

For (p, q) = (2, 1), let σ = (U0
u1→ U1

u2→ U2) be a 2-simplex in U and A =
(A0, A1) objects in A(U2), then we compute

dθσ[2,1](A) = d0(c
′)σ (A) + d1( f

′)σ (A) + d2(m
′)σ (A)

=mU0 ◦
(
f u2u1 , c

′σ (A1)
)

− mU0 ◦
(
c

′σ (A0), f u2 ◦ f u2
)

− mU0 ◦
(
cσ (A0), f u1 ◦ f

′u2
)

+ mU0 ◦
(
f

′u2u1 , cσ (A1)
)

− mU0 ◦
(
cσ (A0), f

′u1 ◦ f u2
)

− mU0 ◦
(
c1U0 ,u2u1(A0),m

′U0 ◦ (
cu1,u2(A0), f u2 ◦ f u1

))

+ mU0 ◦
(
c1U0 ,u2u1(A0),m

′U0 ◦ (
f u2u1 , cu1,u2(A1)

))

P2(θ, θ)σ[2,1](A) = P0
2 ( f ′, c′)σ (A) + P0

2 (c′, f ′)σ (A)

+ P0
3 (c, f ′, f ′)σ (A) + P0

3 (c,m′, c′)σ (A)

+ P0
4 (c,m′, f ′, c)σ (A) + P0

4 (c,m′, c, f ′)σ (A)

=mU0 ◦
(
f

′u2u1 , c
′u1,u2(A1)

)
− mU0 ◦

(
c

′u1,u2(A0), f
′u1 ◦ f u2

)

− mU0 ◦
(
c

′u1,u2(A0), f u1 ◦ f
′u2

)

− mU0 ◦
(
cu1,u2(A0), f

′u1 ◦ f
′u2

)

+ mU0 ◦
(
c1U0 ,u2u1(A0),m

′U0 ◦
(
f u2u1 , c

′u1,u2(A1)
))

− mU0 ◦
(
c1U0 ,u2u1(A0),m

′U0 ◦
(
c

′u1,u2(A0), f u1 ◦ f u2
))

+ mU0 ◦
(
c1U0 ,u2u1(A0),m

′U0 ◦
(
f

′u2u1 , cu1,u2(A1)
))

− mU0 ◦
(
c1U0 ,u2u1(A0),m

′U0 ◦
(
cu1,u2(A0), f u1 ◦ f

′u2
))

− mU0 ◦
(
c1U0 ,u2u1(A0),m

′U0 ◦
(
cu1,u2(A0), f

′u1 ◦ f u2
))
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P3(θ, θ, θ)σ[2,1](A) = P0
3 (c′, f ′, f ′)σ (A) + P0

4 (c,m′, f ′, c′)σ (A)

+ P0
4 (c,m′, c′, f ′)σ (A) + P0

5 (c,m′, c, f ′, f ′)σ (A)

= − mU0 ◦
(
c

′u1,u2(A0), f
′u1 ◦ f

′u2
)

+ mU0 ◦
(
c1U0 ,u2u1(A0),m

′U0 ◦
(
f

′u2u1 , c
′u1,u2(A1)

))

− mU0 ◦
(
c1U0 ,u2u1(A0),m

′U0 ◦
(
c

′u1,u2(A0), f
′u1 ◦ f u2

))

− mU0 ◦
(
c1U0 ,u2u1(A0),m

′U0 ◦
(
c

′u1,u2(A0), f u1 ◦ f
′u2

))

− mU0 ◦
(
c1U0 ,u2u1(A0),m

′U0 ◦
(
cu1,u2(A0), f

′u1 ◦ f
′u2

))

P4(θ, θ, θ, θ)σ[2,1](A) = P0
5 (c,m′, c′, f ′, f ′)σ (A)

= − mU0 ◦
(
c1U0 ,u2u1(A0),m

′U0 ◦
(
c

′u1,u2(A0), f
′u1 ◦ f

′u2
))

and thus

MC(θ)σ[2,1](A) =
(
mU0 + m

′U0
)

◦
((

f u2u1 + f
′u2u1

)
,
(
cu1,u2(A0) + c

′u1,u2(A0)
))

−
(
mU0 + m

′U0
)

◦
((

cu1,u2(A0) + c
′u1,u2(A0)

)
,

(
f u1 + f

′u1
)

◦
(
f u2 + f

′u2
))

Lastly, for (p, q) = (3, 0), let σ = (U0
u1→ U1

u2→ U2
u3→ U3) be a 3-simplex in U

and A0 an object in A(U2), then we compute

dθσ[3,0](A0) = d3(m
′)σ (A0) + d2( f

′)σ (A0) + d1(c
′)σ (A0)

=mU0 ◦
(
c1U0 ,u3u2u1(A0),m

′U0 ◦ (
cu2u1,u3(A0), c

u1,u2 (u∗
3A0)

))

− mU0 ◦
(
cu1,u3u2 (A0), f

′u1 ◦ cu2,u3(A0)
)

− mU0 ◦
(
cu1,u3u2 (A0), f u1 ◦ c

′u2,u3(A0)
)

+ mU0 ◦
(
cu1,u3u2 (A0), c

′u1,u2 (A0)
)

+ mU0 ◦
(
c

′u2u1,u3(A0), c
u1,u2 (u∗

3A0)
)

− mU0 ◦
(
cu1,u3u2 (A0), f u1 ◦ c

′u2,u3(A0)
)

P2(θ, θ)σ[3,0](A0) = P0
2 (c′, c′)σ (A0) + P0

3 (c, f ′, c′)σ (A0)

+ P0
3 (c′, f ′, c)σ (A0) + P0

4 (c,m′, c′, c)σ (A0)

+ P0
4 (c,m′, c, c′)σ (A0) + P0

5 (c,m′, c, f ′, c)σ (A0)

=mU0 ◦
(
c

′u2u1,u3(A0), c
′u1,u2 (u∗

3A0)
)
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− mU0 ◦
(
c

′u1,u2 (A0), f u1 ◦ c
′u2,u3(A0)

)

− mU0 ◦
(
cu1,u2 (A0), f

′u1 ◦ c
′u2,u3(A0)

)

− mU0 ◦
(
c

′u1,u2 (A0), f
′u1 ◦ cu2,u3(A0)

)

+ mU0 ◦
(
c1U0 ,u3u2u1(A0),m

′U0 ◦
(
c

′u2u1,u3(A0), c
u1,u2 (u∗

3A0)
))

− mU0 ◦
(
c1U0 ,u3u2u1(A0),m

′U0 ◦
(
c

′u1,u3u2 (A0), f u1 ◦ cu2,u3(A0)
))

+ mU0 ◦
(
c1U0 ,u3u2u1(A0),m

′U0 ◦
(
cu2u1,u3(A0), c

′u1,u2 (u∗
3A0)

))

− mU0 ◦
(
c1U0 ,u3u2u1(A0),m

′U0 ◦
(
cu1,u3u2 (A0), f u1 ◦ c

′u2,u3(A0)
))

− mU0 ◦
(
c1U0 ,u3u2u1(A0),m

′U0 ◦
(
cu1,u3u2 (A0), f u1 ◦ c

′u2,u3(A0)
))

− mU0 ◦
(
c1U0 ,u3u2u1(A0),m

′U0 ◦
(
cu1,u3u2 (A0), f

′u1 ◦ cu2,u3(A0)
))

P3(θ, θ, θ)[3,0] = P0
3 (c′, f ′, c′)σ (A0) + P0

4 (c,m′, c′, c′)σ (A0)

+ P0
5 (c,m′, c′, f ′, c)σ (A0) + P0

5 (c,m′, c, f ′, c′)σ (A0)

= − mU0 ◦
(
c

′u1,u3u2 (A0), f
′u1 ◦ c

′u2,u2 (A0)
)

+ mU0 ◦
(
c1U0 ,u3u2u1 (A0),m

′U0 ◦
(
c

′u2u1,u3 (A0), c
′u1,u2 (u∗

3A0)
))

− mU0 ◦
(
c1U0 ,u3u2u1 (A0),m

′U0 ◦
(
c

′u1,u3u2 (A0), f u1 ◦ c
′u2,u3 (A0)

))

− mU0 ◦
(
c1U0 ,u3u2u1 (A0),m

′U0 ◦
(
c

′u1,u3u2 (A0), f
′u1 ◦ cu2,u3 (A0)

))

− mU0 ◦
(
c1U0 ,u3u2u1 (A0),m

′U0 ◦
(
cu1,u3u2 (A0), f

′u1 ◦ c
′u2,u3 (A0)

))

P4(θ, θ, θ, θ)σ[3,0](A0) = P0
5 (c,m′, c′, f ′, c′)σ (A0)

= − mU0 ◦
(
c1U0 ,u3u2u1 (A0),m

′U0 ◦
(
cu1,u3u2 (A0), f

′u1 ◦ c
′u2,u3 (A0)

))

and thus

MC(θ)σ[3,0](A0) =
(
mU0 + m

′U0
)

◦
((

cu2u1,u3(A0) + cu2u1,u3(A0)
)

,
(
cu1,u2(u∗

3A0) + c
′u1,u2(u∗

3A0)
))

−
(
mU0 + m

′U0
)

◦
((

cu1,u3u2(A0) + cu1,u3u2(A0)
)

,
(
f u1 + f

′u2
)

◦
(
cu2,u3(A0) + c

′u2,u3(A0)
))

These computations show that MC(θ) = 0 if and only if (A,m +m′, f + f ′, c+ c′)
is a prestack. ��
Remark 4.21 Note that for the functor condition we only need the cubic part and for
the twists the full quartic part of the equation.
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Based upon Proposition 4.20, with some more work taking gauge equivalence
into account, one may extend [2, Thm. 3.19] to higher order deformations. Recall
that for (R,m) ∈ Art an R-deformation of a k-linear prestack (A,m, f , c) is an
R-linear prestack (R ⊗k A, m̄, f̄ , c̄) of which the algebraic structure reduces to that
of A modulo m, and an equivalence of deformations is an isomorphism between the
deformed prestacks which reduces to the identity morphism. Let DefA : Art −→ Set
be the deformation functor ofA with DefA(R,m) the set of R-deformations ofA up
to equivalence of deformations. The following theorem, of which the proof will appear
elsewhere, expresses that the deformation theory ofA is controlled by the L∞-algebra
sCGS(A).

Theorem 4.22 Let (A,m, f , c) be a prestack. There is a natural isomorphism of func-
tors Art −→ Set:

DefA ∼= MCsCGS(A).
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Appendix A: Generator-free description of themorphism
NSOp −→ Multi1

In this appendix, we provide a generator-free description of the morphism NSOp −→
Multi� from Lemma 2.5. Although per construction we have a morphism of operads
induced from the generators Ei of NSOp, we consider it valuable in practice to have
an explicit definition.

For I an indexed tree inNSOp(q1, . . . , qn;∑n
i=1 qi−n+1), we call lI = ∑n

i=1 qi−
n + 1 the number of leaves of I . Given a number m ∈ N, we call the interval

[m,m + lI ] = {m,m + 1, . . . ,m + lI }

the numbering set of leaves of I .

Construction A.1 For I an indexed tree in NSOp(q1, . . . , qn;∑n
i=1 qi − n + 1), let

I j be the maximal subtree of I with root j . Let u be the root of I with children

http://creativecommons.org/licenses/by/4.0/


Operadic structure on the Gerstenhaber–Schack complex... Page 61 of 63 47

u1 �I . . . �I uk which have index i j := I (u, u j ), then I decomposes as follows

I =
u

. . .

ik

Iu1 Iuk

i1

Given a number m ∈ N, we define a non-decreasing map ζ(I ,m) : [qu] −→ [m,m +
lI ] as follows

ζ(I ,m)(t) =

⎧
⎪⎨

⎪⎩

m + t for 0 ≤ t < i1
m + ∑s

j=1 lI j + t for is ≤ t < is+1

m + ∑k
j=1 lI j + t for is ≤ t ≤ qu

which determines where the leaves of the root of I are placed in its numbering set of
leaves [m,m + lI ].

In order to define the tuple ζI = (ζI ,1, . . . , ζI ,n) ∈ Multi�(q1, . . . , qn;∑n
i=1 qi −

n + 1), we run inductively through the tree I from root u to leaves setting

ζI ,u := ζ(I , 0) : [qu] −→ [lI ]

and for vertex a with child b and index i := I (a, b) we set

ζI ,b := ζ(Ib, ζI ,a(i − 1)) : [qb] −→ [ζI ,a(i − 1), ζI ,a(i − 1) + lIb ] ↪→ [lI ]

with lI = ∑n
i=1 qi − n + 1.

Note that Construction 2.5 corresponds to the above construction applied to the
generators Ei . As such, if the generator-free description defines amorphismof operads,
they coincide.

Proposition A.2 Construction A.1 defines a morphism of operadsNSOp −→ Multi�.

Proof Let I ∈ NSOp(q1, . . . , qn; q) and I ′ ∈ NSOp(q ′
1, . . . , q

′
m; q ′) and consider

their composition I ′′ := I ◦i I ′. We will show that

ζI ′′ = ζI ◦i ζI ′

As in Construction A.1, let I j , I ′
j and I ′′

j be the maximal subtrees of respectively
I , I ′ and I ′′ with root j . Due to equivariance, we can assume that a vertex j belongs
to the subtree Ii iff j ≥ i . We then have three cases to consider which we depict
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diagrammatically as follows

i

(2)

(3)

(1)

(1) (1)

(1) For j < i , if we contract the subtree Ii and I ′′
i to a single vertex with number of

leaves lIi = lI ′′
i
, we obtain the same indexed tree I \ Ii = I ′′ \ I ′′

i in which I j and
I ′′
j coincide. Thus, it is easy to see that

ζI ′′, j = ζI , j

(2) If j ≥ i and j lies in the image Im(I ′) of I ′ in I ′′, then I ′′
j consists of the subtree

I ′
j−i+1 with a sequence of subtrees It , . . . , It ′ placed on top.

j

I ′
j

i

It It ′

In this case, ζI ′, j−i+1 determines where the leaves of j are placed in I ′ and ζI ,i
determines where the leaves of i in I are placed. As a result, we see that

ζI ′′, j = ζI ,i ◦ ζI ′, j−i+1

which determines where the leaves of j are put in I ′′.
(3) If j ≥ i and j does not lie in the image of I ′ in I ′′, then j −m + 1 lies in I above

i . In this case, the subtrees I j−m+1 and I ′′
j are equal. If the parent a of j in I ′′ does

not lie in Im(I ′), then we clearly have

ζI ′′, j = ζI , j−m+1.
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If a lies in Im(I ′), then ζI ′′,a = ζI ,i ◦ ζI ′,a−i+1 due to the previous case.

a

i

j

I ′

Moreover, the index I ′′(a, j) then equals I (i, j) − ζI ′,a−i+1(0). Hence, we have
that

ζI ′′, j = ζI , j−m+1

��
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