Skip to main content
Log in

Bijective Cremona transformations of the plane

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study the birational self-maps of the projective plane over finite fields that induce permutations on the set of rational points. As a main result, we prove that no odd permutation arises over a non-prime finite field of characteristic two, which completes the investigation initiated by Cantat about which permutations can be realized this way. Main ingredients in our proof include the invariance of parity under groupoid conjugations by birational maps, and a list of generators for the group of such maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Artin, E., Tate, J.T.: A note on finite ring extensions. J. Math. Soc. Jpn. 3, 74–77 (1951)

    Article  MathSciNet  Google Scholar 

  2. Atiyah, M.F., Macdonald, I.G.: Introduction to Commutative Algebra. Addison-Wesley Publishing Co., Reading (1969)

    MATH  Google Scholar 

  3. Badescu, L.: Algebraic Surfaces. Universitext. Springer, New York (2001). Translated from the 1981 Romanian original by Vladimir Masek and revised by the author

  4. Bashelor, A., Ksir, A., Traves, W.: Enumerative algebraic geometry of conics. Am. Math. Mon. 115(8), 701–728 (2008)

    Article  MathSciNet  Google Scholar 

  5. Bhattacharya, P.: On groups containing the projective special linear group. Arch. Math. (Basel) 37(4), 295–299 (1981)

    Article  MathSciNet  Google Scholar 

  6. Blanc, J.: Groupes de Cremona, connexité et simplicité. Ann. Sci. Éc. Norm. Supér. (4) 43(2), 357–364 (2010)

    Article  MathSciNet  Google Scholar 

  7. Blanc, J., Mangolte, F.: Cremona groups of real surfaces. Automorphisms in Birational and Affine Geometry. Springer Proceedings in Mathematics & Statistics, vol. 79, pp. 35–58 (2014)

  8. Bosma, W., Cannon, J., Playoust, C.: The Magma algebra system. I. The user language. J. Symb. Comput. 24(3–4), 235–265 (1997). Computational algebra and number theory (London, 1993)

  9. Cantat, S.: Birational permutations. C. R. Math. Acad. Sci. Paris 347(21–22), 1289–1294 (2009)

    Article  MathSciNet  Google Scholar 

  10. Cantat, S.: Generators for the Cremona group (2012). Online access https://perso.univ-rennes1.fr/serge.cantat/Articles/hudson-pan-derksen.pdf

  11. Cantat, S.: The Cremona group, Algebraic Geometry—Salt Lake City 2015. Part 1, pp. 101–142 (2018)

  12. Cantat, S., Lamy, S.: Normal subgroups in the Cremona group. Acta Math. 210(1), 31–94 (2013). With an appendix by Yves de Cornulier

  13. Cohen, S.D.: Primitive roots in the quadratic extension of a finite field. J. Lond. Math. Soc. (2) 27(2), 221–228 (1983)

    Article  MathSciNet  Google Scholar 

  14. Dolgachev, I.V., Iskovskikh, V.A.: Finite subgroups of the plane Cremona group, Algebra, arithmetic, and geometry: in honor of Yu. I. Manin. Vol. I, 443–548 (2009)

  15. Genevois, A., Lonjou, A., Urech, C.: Cremona groups over finite fields, Neretin groups, and non-positively curved cube complexes. Preprint arXiv:2110.14605v1 (2021)

  16. Gille, P., Szamuely, T.: Central Simple Algebras and Galois Cohomology. Cambridge Studies in Advanced Mathematics, vol. 165. Cambridge University Press, Cambridge (2017)

    Book  Google Scholar 

  17. Hudson, H.P.: Plane Homaloidal families of general degree. Proc. Lond. Math. Soc. (2) 22, 223–247 (1924)

    Article  MathSciNet  Google Scholar 

  18. Iskovskih, V.A.: Minimal models of rational surfaces over arbitrary fields. Izv. Akad. Nauk SSSR Ser. Mat. 43, 237(1), 19–43 (1979)

    MathSciNet  Google Scholar 

  19. Iskovskikh, V.A.: Generators of the two-dimensional Cremona group over a nonclosed field. Trudy Mat. Inst. Steklov. 200, 157–170 (1991)

    MATH  Google Scholar 

  20. Iskovskikh, V.A.: Factorization of birational mappings of rational surfaces from the point of view of Mori theory. Uspekhi Mat. Nauk 51(4(310)), 3–72 (1996)

    Article  MathSciNet  Google Scholar 

  21. Kantor, W.M., McDonough, T.P.: On the maximality of PSL(d \(+\) 1, q), \(d \ge 2\). J. Lond. Math. Soc. (2) 8, 426 (1974)

    Article  MathSciNet  Google Scholar 

  22. Kollar, J.: Rational Curves on Algebraic Varieties. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge/A Series of Modern Surveys in Mathematics. Springer, Berlin (1999)

  23. Kollar, J.: Lectures on Resolution of Singularities. Annals of Mathematics Studies, vol. 166. Princeton University Press, Princeton (2007)

    MATH  Google Scholar 

  24. Lamy, S., Schneider, J.: Generating the Cremona groups by involutions. Preprint arXiv:2110.02851v1 (2021)

  25. List, R.: On permutation groups containing PSL\(_{n}\) (q) as a subgroup. Geometriae Dedicata 4((2/3/4)), 373–375 (1975)

    MathSciNet  MATH  Google Scholar 

  26. Lonjou, A.: Non simplicité du groupe de cremona sur tout corps. Ann. Inst. Fourier (Grenoble) 66, 2021–2046 (2016)

    Article  MathSciNet  Google Scholar 

  27. Manin, Y.I.: Cubic Forms, Second, North-Holland Mathematical Library, vol. 4, North-Holland Publishing Co., Amsterdam (1986). Algebra, geometry, arithmetic. Translated from the Russian by M, Hazewinkel

  28. Pogorelov, B.A.: Maximal subgroups of symmetric groups that are defined on projective spaces over finite fields. Mat. Zametki 16, 91–100 (1974)

    MathSciNet  Google Scholar 

  29. Poonen, B.: Rational Points on Varieties. Graduate Studies in Mathematics, vol. 186. American Mathematical Society, Providence (2017)

    Book  Google Scholar 

  30. Schneider, J.: Relations in the Cremona group over perfect fields. Annales de l’Institut Fourier (2020). (To appear)

  31. Silverman, J.H.: The Arithmetic of Elliptic Curves, Second. Graduate Texts in Mathematics, vol. 106. Springer, Dordrecht (2009)

    Book  Google Scholar 

  32. Waterhouse, C.W.: Two generators for the general linear groups over finite fields. Linear Multilinear Algebra 24(4), 227–230 (1989)

    Article  MathSciNet  Google Scholar 

  33. Weil, A.: Abstract versus classical algebraic geometry. Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, pp. 550–558 (1956)

Download references

Acknowledgements

We thank Brendan Hassett for suggesting us the problem in the present paper. We also thank Zinovy Reichstein for a quick proof that \({\mathrm {BCr}}_2(k)\) is not finitely generated when k is uncountable. We thank Julia Schneider for discussing with us on the key ideas that allowed us to attack the quintic transformations. Before we are able to prove our conjecture, Lian Duan assisted us designing a Magma code that can compute efficiently the parities of all possible quintic transformations over \(\mathbb {F}_q\) for \(q=4,8,16\). We are very grateful for his generous help. Finally, we thank the anonymous referee for their valuable suggestions. During this project, the first author was partially supported by funds from NSF Grant DMS-1701659. The second author is supported by the ERC Synergy Grant ERC-2020-SyG-854361-HyperK. The third author was supported by EPSRC grant EP/R021422/2. The last author was supported by FIBALGA ANR-18-CE40-0003-01, PEPS 2019 “JC/JC” and Étoiles Montantes de la Région Pays de la Loire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Nakahara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgarli, S., Lai, KW., Nakahara, M. et al. Bijective Cremona transformations of the plane. Sel. Math. New Ser. 28, 53 (2022). https://doi.org/10.1007/s00029-022-00768-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00768-0

Keywords

Navigation