Skip to main content
Log in

Categorical primitive forms of Calabi–Yau \(A_\infty \)-categories with semi-simple cohomology

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We study categorical primitive forms for Calabi–Yau \(A_\infty \) categories with semi-simple Hochschild cohomology. We classify these primitive forms in terms of certain grading operators on the Hochschild homology. We use this result to prove that, if the Fukaya category \({{\textsf {Fuk}}}(M)\) of a symplectic manifold M has semi-simple Hochschild cohomology, then its genus zero Gromov–Witten invariants may be recovered from the \(A_\infty \)-category \({{\textsf {Fuk}}}(M)\) together with the closed-open map. An immediate corollary of this is that in the semi-simple case, homological mirror symmetry implies enumerative mirror symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Since we require \({\mathcal {C}}\) has only finitely many objects, deformations of such \(A_\infty \)-category is, by definition, given by deformations of the total \(A_\infty \)-algebra over the semi-simple ring spanned by the identity morphisms of objects in \({\mathcal {C}}\).

References

  1. Abouzaid, M.: A geometric criterion for generating the Fukaya category. Publ. Math. Inst. Hautes Études Sci. 112, 191–240 (2010)

    Article  MathSciNet  Google Scholar 

  2. Abouzaid, M., Fukaya, K., Oh, Y.G., Ohta, H., Ono, K.: Quantum cohomology and split generation in Lagrangian Floer theory (in preparation)

  3. Barannikov, S.: Quantum periods, I: semi-infinite variations of hodge structures. Internat. Math. Res. Not. 23, 1243–1264 (2001)

    Article  MathSciNet  Google Scholar 

  4. Barannikov, S.: Semi-infinite Hodge structures and mirror symmetry for projective spaces. arXiv:math/0010157v2 [math.AG]

  5. Căldăraru, A., Li, S., Tu, J.: Categorical primitive forms and Gromov–Witten invariants of \(A_n\) singularities. Int. Math. Res. Not. (2018). https://doi.org/10.1093/imrn/rnz315

    Article  MATH  Google Scholar 

  6. Căldăraru, A., Tu, J.: Curved \(A_\infty \) algebras and Landau–Ginzburg models. N Y J. Math. 19, 305–342 (2013)

    MathSciNet  MATH  Google Scholar 

  7. Candelas, P., de la Ossa, X., Green, P., Parkes, L.: A pair of Calabi–Yau manifolds as an exact soluble superconformal theory. Nucl. Phys. B 359, 21–74 (1991)

    Article  Google Scholar 

  8. Cho, C.: Holomorphic discs, spin structures, and Floer cohomology of the Clifford torus. Int. Math. Res. Not. 1803–1843 (2004)

  9. Cho, C.: Products of Floer cohomology of torus fibers in toric Fano manifolds. Commun. Math. Phys. 260(3), 613–640 (2005)

    Article  MathSciNet  Google Scholar 

  10. Dubrovin, B.: Geometry of 2D topological field theories. In: Integrable Systems and Quantum Groups (Montecatini Terme, 1993), Lecture Notes in Math. 1620, pp. 120–348. Springer, Berlin (1996)

  11. Fiorenza, D., Kowalzig, N.: Higher brackets on cyclic and negative cyclic (Co) homology. Int. Math. Res. Not. 23, 9148–9209 (2020)

    Article  MathSciNet  Google Scholar 

  12. Fukaya, K.: Cyclic symmetry and adic convergence in Lagrangian Floer theory. Kyoto J. Math. 50(3), 521–590 (2010)

    Article  MathSciNet  Google Scholar 

  13. Fukaya, K., Oh, Y., Ohta, H., Ono, K.: Lagrangian Intersection Floer Theory: Anomaly and Obstruction. Parts I and II, vol. 46, AMS/IP Studies in Advanced Mathematics. American Mathematical Society, Providence (2009)

  14. Fukaya, K., Oh, Y., Ohta, H., Ono, K.: Lagrangian Floer theory on compact toric manifolds. I. Duke Math. J. 151(1), 23–174 (2010)

    MathSciNet  MATH  Google Scholar 

  15. Fukaya, K., Oh, Y., Ohta, H., Ono, K.: Lagrangian Floer theory and Mirror symmetry on compact toric manifolds. Astérisque No. 376 (2016)

  16. Ganatra, S.: Automatically generating Fukaya categories and computing quantum cohomology. arXiv:1605.07702

  17. Ganatra, S.: Cyclic homology, \(S^1\)-equivariant Floer cohomology, and Calabi–Yau structures. arXiv:1912.13510

  18. Ganatra, S., Perutz T., Sheridan N.: Mirror symmetry: from categories to curve counts. arXiv:1510.03839

  19. Getzler, E.: Cartan homotopy formulas and the Gauss–Manin connection in cyclic homology, Quantum deformations of algebras and their representations (Ramat-Gan, 1991/1992; Rehovot, 1991/1992), pp. 65–78, Israel Math. Conf. Proc., 7, Bar-Ilan Univ., Ramat Gan (1993)

  20. Hertling, C., Manin, Y., Teleman, C.: An update on semisimple quantum cohomology and F-manifolds ISSN 0081–5438. Proc. Steklov Inst. Math. 264, 62–69 (2009)

    Article  MathSciNet  Google Scholar 

  21. Katzarkov, L., Kontsevich, M., Pantev, T.: Hodge theoretic aspects of mirror symmetry. From Hodge theory to integrability and TQFT tt*-geometry. In: Proc. Sympos. Pure Math., 78, pp. 87–174. Amer. Math. Soc., Providence (2008)

  22. Kontsevich, M.: Homological algebra of mirror symmetry. In: Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), pp. 120–139. Birkhäuser, Basel (1995)

  23. Kontsevich, M., Soibelman, Y.: Notes on A-infinity algebras, A-infinity categories and non-commutative geometry. In: I, Homological Mirror Symmetry. Lecture Notes in Phys., 757, pp. 153–219. Springer, Berlin (2009)

  24. Lee, Y.-P.: Invariance of tautological equations. II. Gromov–Witten theory. With an appendix by Y. Iwao and the author. J. Amer. Math. Soc. 22(2), 331–352 (2009)

    Article  MathSciNet  Google Scholar 

  25. Li, C., Li, S., Saito, K.: Primitive forms via polyvector fields. arXiv:1311.1659

  26. Milanov, T., Tseng, H.: The spaces of Laurent polynomials, Gromov-Witten theory of \({\mathbb{P}}^1\)-orbifolds, and integrable hierarchies. J. Reine Angew. Math. 622, 189–235 (2008)

    MathSciNet  MATH  Google Scholar 

  27. Ohta, H., Sanda, F.: Meromorphic connections in filtered \(A_\infty \) categories. Pure Appl. Math. Q. 16(3), 515–556 (2020)

    Article  MathSciNet  Google Scholar 

  28. Pandharipande, R.: Cohomological field theory calculations. In: Proceedings of the International Congress of Mathematicians–Rio de Janeiro 2018. Plenary Lectures, vol. I, pp. 869–898. World Sci. Publ., Hackensack, (2018)

  29. Ritter, A., Smith, I.: The monotone wrapped Fukaya category and the open-closed string map. (N.S.). Selecta Math 23(1), 533–642 (2017)

  30. Saito, K.: The higher residue pairings \(K_F^{(k)}\) for a family of hypersurface singular points, Singularities, Part 2 (Arcata, Calif., 1981), pp. 441–463 (1983)

  31. Saito, K.: Period mapping associated to a primitive form. Publ. Res. Inst. Math. Sci. 19(3), 1231–1264 (1983)

    Article  MathSciNet  Google Scholar 

  32. Saito, K., Takahashi, A.: From primitive forms to Frobenius manifolds. From Hodge theory to integrability and TQFT tt*-geometry. In: Proc. Sympos. Pure Math., 78, pp. 31–48. Amer. Math. Soc., Providence (2008)

  33. Sheridan, N.: On the Fukaya category of a Fano hypersurface in projective space. Publ. Math. Inst. Hautes Études Sci. 124, 165–317 (2016)

    Article  MathSciNet  Google Scholar 

  34. Sheridan, N.: Formulae in noncommutative Hodge theory. J. Homotopy Relat. Struct. 15(1), 249–299 (2020)

    Article  MathSciNet  Google Scholar 

  35. Shklyarov, D.: Hirzebruch-Riemann-Roch-type formula for DG algebras. Proc. Lond. Math. Soc. 106(1), 1–32 (2013)

    Article  MathSciNet  Google Scholar 

  36. Shklyarov, D.: On a Hodge theoretic property of the Künneth map in periodic cyclic homology. J. Algebra 446, 132–153 (2016)

    Article  MathSciNet  Google Scholar 

  37. Shklyarov, D.: Matrix factorizations and higher residue pairings. Adv. Math. 292, 181–209 (2016)

    Article  MathSciNet  Google Scholar 

  38. Teleman, C.: The structure of 2D semi-simple field theories. Invent. Math. 188(3), 525–588 (2012)

    Article  MathSciNet  Google Scholar 

  39. Tu, J.: Categorical Saito theory, I: a comparison result. Adv. Math. 383, 107683 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

L. A. would like to thank Cheol-Hyun Cho for useful conversations about closed-open maps. J. T. is grateful to Andrei Căldăraru and Si Li for useful discussions around the topic of categorical primitive forms. We would also like to thank Nick Sheridan for very helpful discussions about sign conventions for the Mukai pairing. We thank an anonymous referee for helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lino Amorim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A. Hochschild invariants of Calabi–Yau \(A_\infty \)-algebras

In this appendix we prove Theorem 2.4. We start with the following proposition.

Proposition A.1

Given a Hochschild cochain class \(\varphi \in HH^{\bullet }\left( A \right) \) and chains \(\alpha , \beta \in HH_{\bullet }\left( A\right) \) we have

$$\begin{aligned} \langle \varphi \cap \alpha , \beta \rangle _{\mathsf{Muk} } =(-1)^{|\varphi ||\alpha |}\langle \alpha , \varphi \cap \beta \rangle _{\mathsf{Muk} } \end{aligned}$$

In other words, capping with a fixed class is a self-adjoint map.

Proof

The proof is identical to that of Lemma 5.39 in [34]. Given a closed cochain \(\varphi \) we define the maps \(H_1, H_2, H_3: CC_\bullet (A)^{\otimes 2}\rightarrow CC_\bullet (A)\), as follows, for \(\alpha =\alpha _0|\alpha _1|\ldots |\alpha _r\) and \(\beta =\beta _0|\beta _1|\ldots |\beta _s\), we set

$$\begin{aligned}&H_1(\alpha , \beta )\\&\quad = \sum {\textsf {tr}}\left[ c \rightarrow (-1)^{\dagger _1}{\mathfrak {m}}_* \left( \alpha _j,\ldots \varphi _*(\alpha _k,\ldots ),\ldots ,\alpha _0,\ldots , {\mathfrak {m}}_*(\alpha _i,\ldots ,c,\beta _n,\ldots ,\beta _0,\ldots ),\ldots \right) \right] \end{aligned}$$

where \(\dagger _1= |c||\beta | +|\varphi |'+ |\varphi |(|\alpha _j|'+\cdots +|\alpha _{k-1}|') + |\alpha _0|'+\cdots +|\alpha _{i-1}|'+|\alpha _k|'+\cdots +|\alpha _{r}|' + @ \).

$$\begin{aligned}&H_2(\alpha , \beta )\\&\quad = \sum {\textsf {tr}}\left[ c \rightarrow (-1)^{\dagger _2} {\mathfrak {m}}_*\left( \alpha _j,\ldots ,\alpha _0,\ldots ,{\mathfrak {m}}_* \left( \alpha _i,\ldots ,c,\beta _n,\ldots ,\varphi _* (\beta _p,\ldots ), \ldots ,\beta _0,\ldots \right) ,\ldots \right) \right] \end{aligned}$$

where \(\dagger _2 = |c|(|\beta |+|\varphi |') +|\varphi ||\alpha |+|\varphi |'(|\beta _n|'+\cdots +|\beta _{p-1}|') +|\alpha _i|'+\cdots +|\alpha _{j-1}|'+ @\).

$$\begin{aligned}&H_3(\alpha , \beta )\\&\quad = \sum {\textsf {tr}}\left[ c \rightarrow (-1)^{\dagger _3} \varphi _*\left( \alpha _j,\ldots ,{\mathfrak {m}}_*\left( \alpha _k,\ldots , \alpha _0,\ldots ,{\mathfrak {m}}_*(\alpha _i,\ldots ,c,\ldots ,\beta _0,\ldots ),\ldots \right) , \beta _n,\ldots \right) \right] \end{aligned}$$

where \(\dagger _3= 1+|c||\beta | + |\alpha _0|'+\cdots +|\alpha _{i-1}|'+ |\alpha _k|'+\cdots +|\alpha _{r}|'+@\).

Finally we define \(H:=H_1+H_2+H_3\). Then the result follows from the following statement: for any chains \(\alpha \) and \(\beta \),

$$\begin{aligned} \langle \varphi \cap \alpha , \beta \rangle _{{\textsf {Muk}}} -(-1)^{|\varphi ||\alpha |}\langle \alpha , \varphi \cap \beta \rangle _{{\textsf {Muk}}} + H(b(\alpha )\otimes \beta + (-1)^{|\alpha |}\alpha \otimes b(\beta ))=0 \end{aligned}$$

This is a direct, albeit long, computation (that we omit) using only the \(A_\infty \) relations, the closedness of \(\varphi \) and the fact that \({\textsf {tr}}(A\circ B)={\textsf {tr}}(B\circ A)\). \(\square \)

Proposition A.2

Given a Hochschild cochain classes \(\varphi , \psi \in HH^{\bullet }\left( A \right) \) we have

$$\begin{aligned} D(\varphi \cup \psi )=(-1)^{|\varphi |d}\varphi \cap D(\psi ). \end{aligned}$$

In other words, D is a map of \(HH^\bullet (A)\)-modules (of degree d).

Proof

Since the Mukai pairing is non-degenerate it is enough to check

$$\begin{aligned} \langle D(\varphi \cup \psi ) , \alpha \rangle _{{\textsf {Muk}}} =\langle (-1)^{|\varphi |d}\varphi \cap D(\psi ) , \alpha \rangle _{{\textsf {Muk}}}, \end{aligned}$$
(26)

for all \(\alpha \in HH_{\bullet }\left( A \right) \). By definition of D, we have

$$\begin{aligned} \langle D(\varphi ) , \alpha \rangle _{{\textsf {Muk}}} =(-1)^{|\alpha _0|'|\alpha _{1,n}|'}\langle \varphi (\alpha _1, \ldots , \alpha _n) , \alpha _0 \rangle , \end{aligned}$$

where \(|\alpha _{1,n}|':=|\alpha _1|'+\cdots +|\alpha _n|'\). Therefore, using commutativity of \(\cup \), the left-hand side of (26) equals

$$\begin{aligned}&(-1)^{|\varphi ||\psi |+|\alpha _0|'|\alpha _{1,n}|'} \langle (\psi \cup \varphi )(\alpha _1,\ldots , \alpha _n), \alpha _0 \rangle \nonumber \\&\quad = (-1)^{\Diamond } \sum \langle {\mathfrak {m}}_p(\alpha _1, \ldots ,\psi _a(\alpha _{i+1}, \ldots ), \ldots , \varphi _b (\alpha _{j+1}, \ldots ), \ldots \alpha _n), \alpha _0\rangle . \end{aligned}$$
(27)

where \(\Diamond = |\varphi ||\psi |+|\alpha _0|'|\alpha _{1,n}|'+ |\psi |'|\alpha _{1,i}|'+|\varphi |'|\alpha _{1,j}|'\). On the other hand, using Proposition A.1, the right hand side of (26) equals

$$\begin{aligned}&(-1)^{|\varphi |d+ |\varphi |(|\psi |+d+1)}\langle D(\psi ) , \varphi \cap \alpha \rangle _{{\textsf {Muk}}}\nonumber \\&\quad = \sum (-1)^{\delta _1 } \langle D(\psi ), {\mathfrak {m}}_q(\ldots \varphi _b(\alpha _{j+1}\ldots ), \ldots \alpha _0, \ldots ) \alpha _{i+1} \ldots \alpha _{i+a}\rangle \nonumber \\&\quad = \sum (-1)^{\delta _2}\langle \psi _a(\alpha _{i+1} \ldots ) , {\mathfrak {m}}_q(\ldots \varphi _b(\alpha _{j+1}\ldots ), \ldots \alpha _0, \ldots )\rangle . \end{aligned}$$
(28)

where \(\delta _1=|\varphi ||\psi |+|\varphi |'|\alpha _{i+a+1,j}|' +|\alpha _{0,i}|'|\alpha _{i+1,n}|'\) and

$$\begin{aligned} \delta _2\!=\!|\varphi ||\psi |+|\varphi |'|\alpha _{i+a+1,j}|' \!+\!|\alpha _{0,i}|'|\alpha _{i+1,n}|'+|\alpha _{i+1,i+a}|' (|\varphi |+|\alpha _{0,i}|'\!+\!|\alpha _{i+a+1,n}|'). \end{aligned}$$

Using cyclic symmetry of the pairing \(\langle - , -\rangle \), a straightforward computation shows that the expressions in (27) and (28) are equal, which proves the desired result. \(\square \)

We can now prove Theorem 2.4. Indeed, Part (a) of the theorem is exactly Proposition A.2 proved above. In particular, for any \(\varphi \in HH^{\bullet }\left( A \right) \), we have \(D(\varphi )= (-1)^{|\varphi |d}\varphi \cap D({\mathbb {1}})= (-1)^{|\varphi |d}\varphi \cap \omega \). For part (b), it is well known that the cup product is associative and graded-commutative. The only condition left to check is the compatibility between product and pairing. We use Proposition A.1 to compute

$$\begin{aligned} D^*\langle \varphi \cup \psi , \rho \rangle _{{\textsf {Muk}}}&=(-1)^{(|\varphi |+|\psi |)d}\langle D(\varphi \cup \psi ), D(\rho )\rangle _{{\textsf {Muk}}} \\&= (-1)^{(|\varphi |+|\psi |)d+|\varphi ||\psi | + (|\varphi | +|\psi |+ |\rho |)d} \langle (\psi \cup \varphi )\cap \omega , \rho \cap \omega \rangle _{{\textsf {Muk}}}\\&= (-1)^{|\varphi ||\psi | + |\rho |d}\langle \psi \cap (\varphi \cap \omega ),\rho \cap \omega \rangle _{{\textsf {Muk}}}\\&= (-1)^{|\varphi ||\psi | + |\rho |d+ |\psi |(|\varphi |+d)} \langle \varphi \cap \omega , \psi \cap (\rho \cap \omega )\rangle _{{\textsf {Muk}}}\\&= (-1)^{ (|\psi | + |\rho |)d}\langle \varphi \cap \omega , (\psi \cup \rho )\cap \omega )\rangle _{{\textsf {Muk}}}\\&= (-1)^{ |\varphi |d} \langle D(\varphi ), D(\psi \cup \rho ) \rangle _{{\textsf {Muk}}}=D^*\langle \varphi , \psi \cup \rho \rangle _{{\textsf {Muk}}} \end{aligned}$$

Appendix B. Proof of Proposition 2.6

Let H be the map introduced in the proof of Proposition A.1 and extend it sesquilinearly to \(CC_\bullet (A)[[u]]^{\otimes 2}\). We claim that for any negative cyclic chains \(\alpha \) and \(\beta \)

$$\begin{aligned} \frac{{d}}{{d}u}\langle \alpha , \beta \rangle _{{\textsf {hres}}}&= \langle \nabla _{\frac{{d}}{{d}u}} \alpha , \beta \rangle _{{\textsf {hres}}} -\langle \alpha , \nabla _{\frac{{d}}{{d}u}} \beta \rangle _{{\textsf {hres}}}\nonumber \\&\quad + \frac{1}{2u^2}H\left( (b+uB)(\alpha ), \beta \right) +\frac{(-1)^{|\alpha |}}{2u^2}H\left( \alpha , (b+uB)(\beta ) \right) , \end{aligned}$$
(29)

which immediately implies the result.

Indeed, writing \(\displaystyle \alpha =\sum _{n\ge 0}\alpha _n u^n\), \(\displaystyle \beta =\sum _{n\ge 0}\beta _n u^n\) and using the definitions of the pairing and the connection to expand the above expression we see that the left-hand side equals \(\sum _{n\ge 0} \sum _{k=0}^{n+1}(-1)^{n-k+1}(n+1)\langle \alpha _k , \beta _{n-k+1} \rangle _{{\textsf {Muk}}}u^n\). The right hand side equals

$$\begin{aligned}&\sum _{n\ge 0}\sum _{k=0}^{n+1} (-1)^{n-k+1}(n+1) \langle \alpha _k , \beta _{n-k+1} \rangle _{{\textsf {Muk}}}u^n \\&\quad +\sum _{n\ge -2}\sum _{k=0}^{n+2} \frac{(-1)^{n-k}}{2} \left( \langle b\{{\mathfrak {m}}'\}\alpha _k , \beta _{n-k+2} \rangle _{{\textsf {Muk}}} -\langle \alpha _k , b\{{\mathfrak {m}}'\}\beta _{n-k+2} \rangle _{{\textsf {Muk}}}\right) u^n\\&\quad +\sum _{n\ge -1}\sum _{k=0}^{n+1} \frac{(-1)^{n-k+1}}{2} \Big (\langle (\Gamma +B\{{\mathfrak {m}}'\})\alpha _k , \beta _{n-k+1} \rangle _{{\textsf {Muk}}} \\&\qquad \quad +\langle \alpha _k , (\Gamma +B\{{\mathfrak {m}}'\}) \beta _{n-k+1} \rangle _{{\textsf {Muk}}}\Big )u^n\\&\quad +\sum _{n\ge -2}\sum _{k=0}^{n+2} \frac{(-1)^{n-k}}{2} \left( H\left( b(\alpha _k), \beta _{n-k+2}\right) +(-1)^{|\alpha |} H\left( \alpha _k , b(\beta _{n-k+2})\right) \right) u^n \\&\quad +\sum _{n\ge -1}\sum _{k=0}^{n+1} \frac{(-1)^{n-k+1}}{2} \left( H\left( B(\alpha _k), \beta _{n-k+1}\right) -(-1)^{|\alpha |} H \left( \alpha _k , B(\beta _{n-k+1})\right) \right) u^n \end{aligned}$$

Therefore the claim follows from the following two identities

$$\begin{aligned}&\langle b\{{\mathfrak {m}}'\}x, y \rangle _{{\textsf {Muk}}} -\langle x , b\{{\mathfrak {m}}'\}y \rangle _{{\textsf {Muk}}} + H\left( b(x), y\right) +(-1)^{|x|} H\left( x, b(y)\right) =0, \\&\langle (\Gamma +B\{{\mathfrak {m}}'\})x , y \rangle _{{\textsf {Muk}}} + \langle x, (\Gamma +B\{{\mathfrak {m}}'\})y \rangle _{{\textsf {Muk}}} \\&\quad + H\left( B(x), y\right) -(-1)^{|x|} H\left( x , B(y)\right) =0, \end{aligned}$$

for arbitrary Hochschild chains \(x=x_0|x_1 \ldots x_r\) and \(y=y_0|y_1 \ldots y_s\). The first identity is exactly the content of the proof of Proposition A.1, since \(|{\mathfrak {m}}'|=0\). For the second one, we first show by direct computation that

$$\begin{aligned}&\langle B\{{\mathfrak {m}}'\}x , y \rangle _{{\textsf {Muk}}}+ \langle x, B\{{\mathfrak {m}}'\}y \rangle _{{\textsf {Muk}}} + H\left( B(x), y\right) -(-1)^{|x|} H \left( x , B(y)\right) \nonumber \\&\quad = - \sum {\textsf {tr}}\left[ c \rightarrow (-1)^{\dagger }{\mathfrak {m}}'_* \left( x_j,\ldots ,x_0,\ldots ,{\mathfrak {m}}_*(x_i,\ldots ,c,y_n,\ldots ,y_0,\ldots ), y_m,\ldots \right) \right] \nonumber \\&\qquad - \sum {\textsf {tr}}\left[ c \rightarrow (-1)^{\dagger }{\mathfrak {m}}_* \left( x_j,\ldots ,x_0,\ldots ,{\mathfrak {m}}'_*(x_i,\ldots ,c,y_n,\ldots ,y_0,\ldots ), y_m,\ldots \right) \right] \end{aligned}$$
(30)

where \(\dagger \) is as in (2). Then, counting the number of inputs as in the proof of Lemma 3.3, we see the right-hand side in (30) gives \((r+s)\langle x , y \rangle _{{\textsf {Muk}}}\). Finally we observe that

$$\begin{aligned} \langle \Gamma (x) , y \rangle _{{\textsf {Muk}}} +\langle x, \Gamma (y) \rangle _{{\textsf {Muk}}} = -(r+s)\langle x , y \rangle _{{\textsf {Muk}}} \end{aligned}$$

which therefore cancels with (30), proving the required identity.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amorim, L., Tu, J. Categorical primitive forms of Calabi–Yau \(A_\infty \)-categories with semi-simple cohomology. Sel. Math. New Ser. 28, 54 (2022). https://doi.org/10.1007/s00029-022-00769-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00769-z

Mathematics Subject Classification

Navigation