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Abstract
Motivated by the intersection theory of moduli spaces of curves, we introduce psi
classes in matroid Chow rings and prove a number of properties that naturally gen-
eralize properties of psi classes in Chow rings of Losev-Manin spaces. We use these
properties of matroid psi classes to give new proofs of (1) a Chow-theoretic interpre-
tation for the coefficients of the reduced characteristic polynomials of matroids, (2)
explicit formulas for the volume polynomials of matroids, and (3) Poincaré duality
for matroid Chow rings.

1 Introduction

Psi classes are special divisors that are ubiquitous in the study of the intersection theory
of moduli spaces of curves. Psi classes arise naturally when computing products of
boundary classes in A∗(Mg,n) whose strata have excess intersection. In particular,
any product of boundary classes can be written in terms of polynomials of psi classes
on other boundary classes, and the top degrees of these polynomials are determined
by the Witten–Kontsevich theorem [14, 17]. In genus zero, this procedure takes on an
especially simple form. Given k distinct boundary divisors D1, . . . , Dk ∈ A1(M0,n),
their product is also a (possibly empty) boundary class, and any monomial in these
boundary divisors can be written as

Dd1
1 · · · Ddk

k = D1 · · · Dk

k∏

i=1

(−ψ−
Di

− ψ+
Di

)di−1 ∈ A∗(M0,n), (1.1)
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where ψ±
D are certain psi classes associated to each divisor D. Moreover, if

∑
di =

dim(M0,n), then the degree of the expression in the right-hand side of (1.1) is a product
of polynomials of psi classes on smaller dimensional moduli spaces, all of which are
computable. The aim of this paper is to develop an analogue of these techniques in
Chow rings of matroids.

Matroids are combinatorial structures that generalize the behavior of finite sets of
vectors, and Chow rings of matroids were introduced by Feichtner and Yuzvinsky
[10]. In this work, we explore an appealing parallel between Chow rings of matroids
and Chow rings of moduli spaces of curves.We introduce matroid psi classes in Chow
rings of matroids and we show that they behave analogously to the usual psi classes
in the Chow rings of moduli spaces of genus zero curves. As a first application, we
then use psi classes to give simplified proofs of a number of recent foundational results
concerning matroid Chow rings.

1.1 Summary of results

Given a loopless matroid M = (E,L) consisting of a finite set E and a lattice of flats
L ⊆ 2E , the Chow ring A∗(M) is a graded Z-algebra generated by matroid divisors
DF ∈ A1(M), one for each proper flat F ∈ L∗ = L \ {∅, E} (see Sect. 3.1 for precise
definitions). The primary objects of study in this paper are the following classes.

Definition A (Definition 3.2) For any F ∈ L and e ∈ E , define ψ±
F ∈ A1(M) by

ψ−
F =
∑

G∈L∗
e∈G

DG −
∑

G∈L∗
G⊇F

DG and ψ+
F =
∑

G∈L∗
e/∈G

DG −
∑

G∈L∗
G⊆F

DG .

The Chow classes ψ±
F do not depend on the choice of e ∈ E , which is why it is

suppressed from the notation. As we will see, the definition of matroid psi classes
is an immediate generalization of an expression for psi classes in terms of boundary
divisors in Losev-Manin moduli spaces (see Lemma 2.16).

After defining matroid psi classes, we establish the following analogue of Equation
(1.1).

Result B (Corollary 3.5) If F1, . . . , Fk are distinct flats ofMandd1, . . . , dk are positive
integers, then

Dd1
F1

· · · Ddk
Fk

= DF1 · · · DFk

k∏

i=1

(−ψ−
Fi

− ψ+
Fi

)di−1 ∈ A∗(M).

This result allows us to express any monomial in matroid divisors as a squarefree
expression along with a polynomial in psi classes. In the case that the product is in the
top graded piece of the matroid Chow ring, our next result allows us to compute the
degrees of the terms in Result B in terms of degrees of the special classes ψ0 = ψ+

∅
and ψ∞ = ψ−

E .
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Result C (Proposition 3.6) If ∅ = F0 � F1 � · · · � Fk � Fk+1 = E are flats of M
and a+

0 , a−
1 , a+

1 , . . . , a−
k , a+

k , a−
k+1 are nonnegative integers ,then

degM
(
DF1 · · · DFk

k∏

i=0

(ψ+
Fi

)a
+
i (ψ−

Fi+1
)a

−
i+1

)
=

k∏

i=0

degM[Fi ,Fi+1]
(
ψ

a+
i

0 ψ
a−
i+1∞
)

In the above formula,M[Fi , Fi+1] denotes the contraction by Fi of the restriction of
M to Fi+1. In order to useResults B andC to explicitly compute degrees of polynomials
in the generators, we use properties of psi classes to give a new proof of the following
result, which had previously been proved by Huh and Katz [11,Proposition 5.2].

Result D (Proposition 3.11) IfM is a matroid and a, b are nonnegative integers, then

degM(ψa
0ψb∞) =

{
μa(M) if a + b = rk(M) − 1,

0 else,

where μa(M) is the ath unsigned coefficient of the reduced characteristic polynomial
of M.

Results B, C, and D provide an efficient algorithm for computing the degree of any
monomial of matroid divisors. As a direct consequence of this algorithm, we recover
a recent theorem of Eur [9,Theorem 3.2] that computes the coefficients of the volume
polynomials of matroids.

Result E (Theorem 3.12) If ∅ = F0 � F1 � · · · � Fk � Fk+1 = E are flats ofM and
d1, . . . , dk are positive integers that sum to rk(M) − 1, then

degM(Dd1
F1

· · · Ddk
Fk

) = (−1)rk(M)−k−1
k∏

i=1

(
di − 1

d̃i − rk(Fi )

)
μd̃i−rk(Fi )(M[Fi , Fi+1]),

with

d̃ j =
j∑

i=1

di .

Ourdevelopments can also beused to recover a recent theoremofBackman,Eur, and
Simpson [4,Theorem 5.2.4] that computes degrees of monomials in the “simplicial”
generators, which, as it turns out, are nothing more than the psi classes ψ−

F .

Result F (Theorem 3.13) If F1, . . . , Fr are nonempty flats with r = rk(M) − 1, then

degM(ψ−
F1

. . . ψ−
Fr

) =
{
1 if 0 < i1 < · · · < ik ≤ r 	⇒ rk(Fi1 ∪ · · · ∪ Fik ) > k,

0 else.
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As a final application of our developments, we provide a new proof of Poincaré
duality for A∗(M), a result that was first proved by Adiprasito, Huh, and Katz
[3,Theorem 6.19].

Result G (Theorem 3.15) LetM be a matroid of rank r +1. Then for any k ∈ 0, . . . , r ,
we have an isomorphism of Z-modules:

Ak(M) → Ar−k(M)∨

γ �→ (μ �→ degM(μγ )).

To prove Result G, we simply use our computational algorithm to show that the
transformation is lower triangular when written in terms of a particular ordering of
the Feichtner–Yuzvinsky basis (see [10,Corollary 1]) for Ak(M) and its dual basis for
Ar−k(M)∨, with all diagonal entries equal to ±1.

1.2 Related work

As should be clear from the discussion above, this work is closely related and indebted
to prior contributions of several groups of mathematicians. The matroid psi classes
that we introduce in this work are built from two special psi classes: ψ0 = ψ+

∅ and
ψ∞ = ψ−

E . These two classes have already been studied extensively by Adiprasito,
Huh, and Katz [3], where they were denoted β and α, respectively. Furthermore, as we
mentioned above, the psi classes ψ−

F played an integral role in the work of Backman,
Eur, and Simpson [4],where theywere denoted hF . Our choice to use different notation
for these classes in this paper simply stems from our goal of highlighting the parallel
between Chow rings of matroids and Chow rings of moduli spaces of curves.

There is a related notion of “tropical psi classes” developed byKerber andMarkwig
[13]—these classes form the tropical analogue of the classical psi classes on M0,n .
Using the description of M0,n as a wonderful compactification of the complement
of the braid arrangement, due to DeConcini and Processi [8], tropical psi classes can
be interpreted as special elements of Chow rings of braid matroids with minimal
building sets. We note that Chow rings of matroids with building sets were defined
by Feichtner and Yuzvinsky [10] and are more general than the matroid Chow rings
studied herein, which correspond to the special case of maximal building sets. It would
be very interesting to develop a general theory of psi classes associated to matroids
with building sets that simultaneously generalizes the matroid psi classes developed
in this paper and the tropical psi classes developed by Kerber and Markwig.

1.3 Outline of the paper

Losev-Manin moduli spaces are the setting in which Chow rings of matroids intersect
Chow rings of moduli spaces of curves. Because of this, we start this paper with an
overview of the definition and key properties of psi classes in Losev-Manin spaces; this
is the content of Sect. 2.We conclude Sect. 2 by using psi classes to recover two known
formulas for the volumes of generalized permutahedra, due to Postnikov [16] and Eur
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[9]. The impetus for this work was the observation that, upon generalizing psi classes
to matroids, these proofs work nearly verbatim to compute volume polynomials in the
more general matroid context.

In Sect. 3, we introduce matroid psi classes, prove the natural generalizations of
the properties discussed in Sect. 2, and then we give new proofs of the results of Eur
and Backman, Eur and Simpson, generalizing the volume computations from Sect. 2,
and we also give a new proof of Poincaré duality. We note that Sect. 3 is entirely self-
contained and the matroid enthusiast may choose to skip Sect. 2. On the other hand,
we hope that the discussion of Losev-Manin spaces will help the reader understand
the context and motivation for the definition and development of matroid psi classes,
and that this discussion might even motivate the interested combinatorialist to learn a
little more about the beautiful subject of Chow rings of moduli spaces of curves.

2 Losev-Manin spaces and psi classes

In order to motivate matroid psi classes, we begin with a discussion of psi classes
in the setting of Losev-Manin spaces. Our purpose in this section is to describe the
key properties of psi classes that are useful in computations in order to motivate the
properties that we require upon generalizing psi classes to matroid Chow rings. The
results in this section are well-known, so we do not provide complete proofs, only
remarking on where the proofs can be found (or derived) in the literature. At the end
of this section, we show how psi classes can be used to compute formulas for volumes
of generalized permutahedra. All of the definitions and results in this section will be
combinatorially generalized to matroid Chow rings in the next section.

2.1 Losev-Manin spaces

Losev-Manin spaces, introduced in [15], parametrize collections of points on chains
of projective lines. To describe these spaces, let us first establish some terminology.

A chain of projective lines of length k is a complex variety of the form

C = C1 � · · · � Ck/ ∼

where Ci = P
1 for all i = 1, . . . , k and ∼ is the relation that identifies ∞i = [0 :

1] ∈ Ci with 0i+1 = [1 : 0] ∈ Ci+1 to form a node. The projective lines C1, . . . ,Ck

are referred to as the components of the chain C , and we define 0 = 01 ∈ C1 and
∞ = ∞k ∈ Ck .

Given a chain of projective lines C , a configuration of n points p1, . . . , pn ∈ C
is called stable if {p1, . . . , pn} is disjoint from 0, ∞, and the nodes of C , and if
each component of C contains at least one pi . We do not require the points to be
distinct. Two stable configurations (C; p1, . . . , pn) and (C ′; p′

1, . . . , p
′
n) are said to

be isomorphic if there exists an isomorphism of varieties f : C → C ′ such that
f (0) = 0, f (∞) = ∞, and f (pi ) = p′

i for all i = 1, . . . , n.
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Definition 2.1 For any n ≥ 1, the Losev-Manin space LMn is the set of all stable
configurations of n points on chains of projective lines, up to isomorphism. A point in
LMn is an equivalence class [C, p1, . . . , pn] where C is a chain of projective lines
and p1, . . . , pn ∈ C is a stable configuration of n points.

The sets LMn were first constructed as smooth projective varieties by Losev and
Manin [15]; in fact, they proved that LMn is the toric variety associated to the (n −
1)-dimensional permutahedron. In particular, LMn is a disjoint union of tori, one
corresponding to each face of the permutahedron.Wenowdescribe those tori explicitly.

To every flag of nonempty subsets

F = (∅ = F0 � F1 � · · · � Fk � Fk+1 = [n])

define a subset of LMn by

TF =
{
[C; p1, . . . , pn]

∣∣∣∣ C has k + 1 components C0,...,Ck
and p j∈Ci if and only if j∈Fi+1\Fi

}
.

We depict a general element of TF as follows:

· · ·

•
0

/
/

/

F1 \ F0 \ | /

F2 \ F1

/|\
Fk \ Fk−1

•
∞\\

\
Fk+1 \ Fk

Notice that every element of LMn is an element of exactly one set of the form
TF , so the sets TF partition LMn . Moreover each TF is an algebraic torus. To see
why, consider a particular TF and choose one point from each set Fi+1 \ Fi . Notice
that there is a unique automorphism of C that maps the chosen point in Fi+1 \ Fi to
[1, 1] ∈ Ci . After fixing this isomorphism, the remaining points in Fi+1 \ Fi can vary
throughout any point of Ci except 0i and ∞i . It follows that

TF = (C∗)|F1|−|F0|−1 × (C∗)|F2|−|F1|−1 · · · × (C∗)|Fk+1|−|Fk |−1 = (C∗)n−k−1.

The toriTF are not closed subvarieties ofLMn , but wemay take their closures, which
leads to the following important subvarieties.

Definition 2.2 The stratum XF ⊆ LMn associated to a flag F of subsets of [n] is the
Zariski closure of the torus TF :

XF = TF .

We say that a subvariety Z ⊆ LMn is a stratum if it is equal to XF for some flag F .
For a subset ∅ � F � [n], we use the shorthand

XF = X∅�F�[n].
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Each stratum is, again, a disjoint union of tori. To describe these inclusions, it is
useful to introduce the notion of refinements. We say that a flag

F ′ = (∅ � F ′
1 � · · · � F ′

� � [n])

is a refinement of the flag

F = (∅ � F1 � · · · � Fk � [n])

and write F ′ � F if, for every i ∈ {1, . . . , k}, there exists some j ∈ {1, . . . , �} such
that Fi = F ′

j . With this notion, it can be checked that

XF =
⊔

F ′�F
TF ′ .

In particular, it follows that XF1 ∩ XF2 = XF3 where F3 is the maximal common
refinement of F1 and F2 (the intersection is empty if no common refinement exists).

2.2 Chow rings and volumes of generalized permutahedra

The Chow ring of LMn is well-known and can be expressed as a quotient of the
formal polynomial ring generated by XF with F a proper subset of [n]. By general
results in toric geometry [7,Theorem 12.5.3], we have

A∗(LMn) = Z
[
XF | ∅ � F � [n]]

I + J (2.3)

where the ideals I and J are defined by

I = 〈XF XG | F and G are incomparable
〉

and

J =
〈∑

i∈F
XF −
∑

j∈F
XF

∣∣∣ i, j ∈ [n]
〉
.

The generators DF = [XF ] ∈ A1(LMn), are called boundary divisors. The Chow
ring has a natural grading by codimension

A∗(LMn) =
n−1⊕

k=0

Ak(LMn)

and a degree map

degLMn
: An−1(LMn) → Z,
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which is a linear isomorphism uniquely determined by the property that the degree of
the class of any point is one.

Any divisor D ∈ A1(LMn) can be written in the form

D = D(x) =
∑

∅�F�[n]
xF DF ∈ A1(LMn)

with xF ∈ Z and, in this setting, D(x) is nef if and only if the numbers xF are
submodular, meaning that, for all F1, F2 ⊆ [n], we have

xF1 + xF2 ≥ xF1∩F2 + xF1∪F2 , (2.4)

where, by convention, we always assume x∅ = x[n] = 0. Given a nef divisor D(x),
we consider the corresponding polytope �n(x) ⊆ R

n defined by

t1 + · · · + tn = 0 and
∑

i∈F
ti ≤ xF for all ∅ � F � [n]. (2.5)

These polytopes were studied under the name of generalized permutahedra by Post-
nikov [16], wherein several formulas for their volumes were discovered and proved
(see Theorem 2.18 below).

By standard results in toric geometry ( [7,Theorem 13.4.3]), the volumes of gener-
alized permutahedra can also be derived by computations in the Chow ring:

Vol(�n(x)) = 1

(n − 1)! degLMn
(D(x)n−1). (2.6)

In order to utilize (2.6), one needs to expand the product D(x)n−1, then use rela-
tions in I and J to write the result as a linear combination of products of the form
DF1 . . . DFn−1 where the indexing sets form a complete flag

∅ � F1 � · · · � Fn−1 � [n],

then use the fact that, for any complete flag, degLMn
(DF1 . . . DFn−1) = 1.This process

was carried out in the more general matroid context by Eur [9], which led to a new
formula for volumes of generalized permutahedra (see Theorem 2.17 below). The
heart of Eur’s argument is figuring out how to systematically express general products
of divisors in terms of products of divisors indexed by complete flags. Phrased another
way, the difficulty in this computation is dealing with self-intersections of divisors.
In the context of Losev-Manin spaces, there is a useful tool for just this type of self-
intersection: psi classes.

2.3 Psi classes on Losev-Manin spaces

To understand the utility of psi classes, it is useful to discuss themultiplicative structure
of A∗(LMn). If F andG are two distinct proper subsets of [n], then the corresponding
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subvarieties XF and XG either intersect transversally, or they don’t intersect at all. In
particular, if F and G are distinct, then

DFDG =

⎧
⎪⎨

⎪⎩

[X∅�F�G�[n]] if F � G,

[X∅�G�F�[n]] if G � F,

0 if F and G are incomparable.

More generally, if F1, . . . , Fk ⊆ [n] are distinct subsets, we have

DF1 · · · DFk

=

⎧
⎪⎨

⎪⎩

[XF ] if, after possibly relabeling, F1, . . . , Fkform a flag

F = (∅ � F1 � · · · � Fk � [n]),
0 if Fi and Fj are incomparable for some i, j .

For convenience, for any flag F = (∅ � F1 � · · · � Fk � [n]), we define

DF = [XF ] = DF1 . . . DFk ∈ Ak(LMn).

Themain question, then, is: How dowemultiply divisors when they are not all indexed
by distinct subsets? This is where psi classes are useful. In the setting of Losev-Manin
spaces, there are two basic psi classes upon which the others are built.

Definition 2.7 Let n ≥ 1. The psi class ψ0 ∈ A1(LMn) is the first Chern class of the
line bundle L0, whose fiber over a point [C, p1, . . . , pn] ∈ LMn is the cotangent line
of C at 0. The psi class ψ∞ ∈ A1(LMn) is the first Chern class of the line bundle
L∞, whose fiber over a point [C, p1, . . . , pn] ∈ LMn is the cotangent line of C at
∞.

A more combinatorial characterization of psi classes, which will be our starting
point for the matroid generalization, appears in Lemma 2.16 below. To understand
why the psi classes are useful for computing self-intersections, we require a bit of
additional notation. For a finite set F , let LMF denote the Losev-Manin space with
marked points indexed by F . Of course, LM[n] = LMn . If |F | > 2, then for each
i ∈ F , there is a forgetful map

fi : LMF → LMF\{i}.

For each point [C; (p j ) j∈F ] ∈ LMF , the function fi forgets the marked point pi and
then, if the component that contained pi no longer has any marked points, it contracts
that entire component to a single point. The second step is necessary in order to insure
that the image of f is a stable configuration.

More generally, if ∅ � G ⊆ F , then there is a forgetful map

rG : LMF → LMG .
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To define this map, label the points F \ G = {i1, . . . , ik} and define

rG = fi1 ◦ · · · ◦ fik .

In other words, rG forgets the points that are not in G. We use the letter r for “remem-
ber” because the map rG remembers the points in the index set G. It follows from the
definition that the order of the composition in the definition of rG is irrelevant, and if
∅ � G1 ⊆ G2 ⊆ F , then

rG1 = rG1 ◦ rG2 . (2.8)

Using the forgetful maps, we obtain a more general set of psi classes.

Definition 2.9 For n ≥ 1 and ∅ ⊆ F ⊆ [n], define classes ψ−
F , ψ+

F ∈ A1(LMn) by

ψ−
F = r∗

F (ψ∞) and ψ+
F = r∗

Fc(ψ0),

where r∗
F is the pullback of rF : LMn → LMF and Fc = [n] \ F .

Notice that ψ0 = ψ+
∅ and ψ∞ = ψ−

[n]. The reason we introduce psi classes is
because they naturally arise when self-intersecting divisors in the following way.

Lemma 2.10 If F is a proper subset of [n], then

D2
F = DF (−ψ−

F − ψ+
F ) ∈ A2(LMn).

Proof sketch This follows from the observation (see, for example, [12,Lemma 25.2.2])
that the normal bundle of XF in LMn is

g∗
F (r∗

F (L∨∞) ⊗ r∗
Fc(L

∨
0 )),

where gF : XF → LMn is the inclusion. ��
In particular, Lemma 2.10 allows us to compute any product of boundary divisors

in terms of psi classes. We have the following immediate corollary.

Corollary 2.11 If F1, . . . , Fk ⊆ [n] are distinct proper subsets and d1, . . . , dk are
positive integers, then

Dd1
F1

· · · Ddk
Fk

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

DF
k∏

i=1

(−ψ−
Fi

− ψ+
Fi

)di−1 if, after possibly relabeling

F1, . . . , Fk form a flag F = (∅ � F1 � · · · � Fk � [n]),
0 if Fi and Fj are incomparable for some i, j .
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In order to utilize psi classes in the volume computation of Eq. 2.6, it remains to
understand how to compute the degree of expressions of the form in Corollary 2.11.
The next result reduces these computations to computing degrees of monomials in ψ0
and ψ∞.

Lemma 2.12 If F = (∅ = F0 � F1 � · · · � Fk � Fk+1 = [n]) is a flag of subsets
and a+

0 , a−
1 , a+

1 , . . . , a−
k , a+

k , a−
k+1 are nonnegative integers, then

degLMn

(
DF

k∏

i=0

(ψ+
Fi

)a
+
i (ψ−

Fi+1
)a

−
i+1

)
=

k∏

i=0

degLMFi+1\Fi

(
ψ

a+
i

0 ψ
a−
i+1∞
)
.

Pictorially, we think of the psi classes ψ±
Fi

as being associated to the left and right
side of the node indexed by Fi :

· · ·

•
0

/
/

/

F1 \ F0 \ | /

F2 \ F1

/|\
Fk \ Fk−1

•∞\\\
Fk+1 \ Fk

ψ+
F0

ψ−
F1 ψ+

F1
ψ−
Fk

ψ+
Fk

ψ−
Fk+1

The products in Lemma 2.12 are over all of the components of the curves, which
should help explain the indices in the products.

Proof sketch of Lemma 2.12 Let gF : XF → LMn be the inclusion. By the projection
formula,

degLMn

(
DF

k∏

i=0

(ψ+
Fi

)a
+
i (ψ−

Fi+1
)a

−
i+1

)
= degXF

(
g∗
F
( k∏

i=0

(ψ+
Fi

)a
+
i (ψ−

Fi+1
)a

−
i+1

))

(2.13)

Notice that

XF =
k∏

i=0

LMFi+1\Fi .

If pi : XF → LMFi+1\Fi is the projection onto the i th component of this product,
then

g∗
F (ψ+

Fi
) = p∗

i (ψ0) and g∗
F (ψ−

Fi+i
) = p∗

i (ψ∞).

Thus, the degree in the right-hand side of (2.13) can be computed as a product of
degrees on each factor:
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degXF

(
g∗
F
( k∏

i=0

(ψ+
Fi

)a
+
i (ψ−

Fi+1
)a

−
i+1

))
= degXF

( k∏

i=0

p∗
i

(
ψ

a+
i−1

0 ψ
a−
i∞
))

=
k∏

i=0

degLMFi+1\Fi

(
ψ

a+
i

0 ψ
a−
i+1∞
)
.

��
Lastly, we simply need to know how to compute degrees of monomials in ψ0 and

ψ∞. The next result accomplishes that.

Lemma 2.14 If n > 1 and a and b are nonnegative integers, then

degLMn
(ψa

0ψb∞) =
(
n − 1

a, b

)
,

where, for any nonnegative integers k, �,m,

(
m

k, �

)
=
{(m

k

) = (m
�

) = m!
k!�! if k + � = m,

0 else.

Proof sketch Toour knowledge, this exact result is not stated in the literature anywhere.
However, it iswell knownand follows, using the results of [2], from the samearguments
used to compute degrees of monomials of psi classes onM0,n (see [12,Section 25.2]).
In the specific setting of LMn , this result is given as Exercise 52 in [6]. ��

The combination of the previous three results tell us everything we need to know
about effectively computing degrees of products of boundary divisors, such as those
that appear in the right-hand side of (2.6). We illustrate such a computation in the next
example.

Example 2.15 Let n = 7 and consider the sets

F1 = {1, 2}, F2 = {1, 2, 3, 4, 5}, and F3 = {1, 2, 3, 4, 5, 6}.

Let us compute degLM7
(D3

F1
D2

F2
DF3). By Corollary 2.11, we have

D3
F1D

2
F2DF3 = DF1DF2DF3(−ψ−

F1
− ψ+

F1
)2(−ψ−

F2
− ψ+

F2
).

Expanding the polynomial, we obtain

−DF1DF2DF3

(
(ψ−

F1
)2ψ−

F2
+ 2ψ−

F1
ψ+
F1

ψ−
F2

+ (ψ+
F1

)2ψ−
F2

+ (ψ−
F1

)2ψ+
F2

+2ψ−
F1

ψ+
F1

ψ+
F2

+ (ψ+
F1

)2ψ+
F2

)
.
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Using Lemmas 2.12 and 2.14, we see that the degree of the first monomial is zero,
because the first term in the product of binomials is

(
2 − 0 − 1

0, 2

)
=
(

1

0, 2

)
= 0.

By a similar argument, the degree is zero on all of the monomials except for the second
one. The degree of the second monomial is

deg
(

− DF1DF2DF32ψ
−
F1

ψ+
F1

ψ−
F2

)

= −2

(
2 − 0 − 1

0, 1

)(
5 − 2 − 1

1, 1

)(
6 − 5 − 1

0, 0

)(
7 − 6 − 1

0, 0

)

= −2(1)(2)(1)(1) = −4.

Thus, we conclude that degLM7
(D3

F1
D2

F2
DF3) = −4.

Since our ultimate goal is to generalize psi classes to the combinatorial setting of
matroids, we present one final result, which characterizes the psi classes as linear
combinations of boundary divisors.

Lemma 2.16 For any subset F ⊆ [n] and any i ∈ [n],

ψ−
F =
∑

∅�G�[n]
i∈G

DG −
∑

∅�G�[n]
G⊇F

DG and ψ+
F =
∑

∅�G�[n]
i /∈G

DG −
∑

∅�G�[n]
G⊆F

DG .

In particular, taking F = ∅ and F = [n], respectively, we obtain

ψ0 =
∑

∅�G�[n]
i /∈G

DG and ψ∞ =
∑

∅�G�[n]
i∈G

DG .

Proof (Proof sketch) The formulas for ψ0 and ψ∞ follow from repeated application
of the comparison lemma:

f ∗
i (ψ0) = ψ0 + D{i} and f ∗

i (ψ∞) = ψ∞ + D{i}c ,

and the fact that ψ0 = ψ∞ = 0 ∈ A∗(LM{i}). See [2,Theorem 5.8] or [6,Lemma 10]
for a discussion of the comparison lemma in the setting of Losev-Manin spaces. The
formulas for ψ±

F then follow from their definition in terms of forgetful maps along
with the observation that

r∗
F (DG) =

∑

∅�G ′�[n]
G⊆G ′⊆G∪Fc

DG ′ .

��
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We now illustrate the utility of psi classes by showing how the results reviewed
above lead to newproofs of twopreviously-known formulas for volumes of generalized
permutahedra.

2.4 Psi classes and Eur’s volume formula

Eur recently proved the following formula for volumes of generalized permutahedra.

Theorem 2.17 ( [9] Proposition 4.2) If {xF ∈ Z | ∅ � F � [n]} is submodular, then

Vol(�n(x)) = 1

(n − 1)!
∑

F1,...,Fk
d1,...,dk

(−1)n−k−1
(

n − 1

d1, . . . , dk

)

k∏

i=1

(
di − 1

d̃i − |Fi |
)(|Fi+1| − |Fi | − 1

d̃i − |Fi |
)
xdiFi

where the sum is over flags of subsets ∅ � F1 � · · · � Fk � Fk+1 = [n] and positive
integers d1, . . . , dk such that d1 + · · · + dk = n − 1, and the numbers d̃ j are defined
by

d̃ j =
j∑

i=1

di .

In fact, Eur generalized and proved this formula in a more general matroid set-
ting, which we will discuss in the next section. For now, let us give a short proof of
Theorem 2.17 using psi classes.

Proof Applying (2.6), we have

Vol(�n(x)) = 1

(n − 1)! deg
⎛

⎝
( ∑

∅�F�[n]
xF DF

)n−1
⎞

⎠

= 1

(n − 1)!
∑

F1,...,Fk
d1,...,dk

(
n − 1

d1, . . . , dk

)
deg(Dd1

F1
. . . Ddk

Fk
)xd1F1 . . . xdkFk ,

where the sum is over k-tuples of distinct proper subsets ∅ � F1, . . . , Fk � [n]
and positive integers d1, . . . , dk that sum to n − 1. Since DF1 · · · DFk = 0 when the
indexing sets cannot be rearranged into a flag, we can restrict the sum to be over all
flags of subsets of the form F = (∅ � F1 � · · · � Fk � Fk+1 = [n]). For such a
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flag, we may apply Corollary 2.11 to obtain

deg(Dd1
F1

. . . Ddk
Fk

) = deg
(
DF

k∏

i=1

(−ψ−
Fi

− ψ+
Fi

)di−1
)

= deg

(
DF (−1)n−k−1

∑

a−
i ,a+

i

k∏

i=1

(
di − 1

a−
i , a+

i

)
(ψ−

Fi
)a

−
i (ψ+

Fi
)a

+
i

)

= (−1)n−k−1
∑

a−
i ,a+

i

k∏

i=1

(
di − 1

a−
i , a+

i

)
deg
(
DF

k∏

i=1

(ψ−
Fi

)a
−
i (ψ+

Fi
)a

+
i

)
.

If we now use Lemmas 2.12 and 2.14 to compute the degree, we obtain

deg(Dd1
F1

. . . Ddk
Fk

) = (−1)n−k−1
∑

a−
i ,a+

i

k∏

i=1

(
di − 1

a−
i , a+

i

) k∏

i=0

(|Fi+1| − |Fi | − 1.

a+
i , a−

i+1

)
,

where a+
0 = a−

k+1 = 0. In order for the two sets of binomials to be nonzero, there are
two systems of equations that a−

i and a+
i must satisfy:

a−
i + a+

i = di − 1 for all i = 1, . . . , k

and

a+
i + a−

i+1 = |Fi+1| − |Fi | − 1 for all i = 0, . . . , k.

Along with the conditions a+
0 = a−

k+1 = 0, there is a unique solution given by

a+
i = d̃i − |Fi | for all i = 1, . . . , k.

It follows that

deg(Dd1
F1

. . . Ddk
Fk

) = (−1)n−k−1
k∏

i=1

(
di − 1

d̃i − |Fi |
) k∏

i=0

(|Fi+1| − |Fi | − 1.

d̃i − |Fi |
)

Eur’s formula then follows by noticing that the i = 0 term in the second product is
one. ��

2.5 Psi classes and Postnikov’s volume formula

A different formula for the volumes of generalized permutahedra had previous been
proved by Postnikov [16]. In order to set up Postnikov’s formula, we require a little
more notation.
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For any nonempty subset F ⊆ [n], define a corresponding simplex

�F = Conv{ei : i ∈ F} ⊆ R
n .

If yF is a nonnegative real number for every nonempty subset F ⊆ [n], then Postnikov
observed ( [16,Proposition 6.2]) that the polytope

��
n (y) =

∑

∅�F⊆[n]
yF�F ,

where the sum denotesMinkowski summation, consists of all points (t1, . . . , tn) ∈ R
n

such that:

t1 + · · · + tn = z[n] and
∑

i∈F
ti ≥ zF for all ∅ � F � [n].

where zF and yF are related by the invertible linear transformation

zF =
∑

G⊆F

yG .

Under the transformation (t1, . . . , tn) �→ (z[n] − t1,−t2, . . . ,−tn), notice that ��
n (y)

is identified with �n(x) (introduced in Equation (2.5)), where for any proper subset
∅ � F � [n], the variables xF and yF are related by

xF =

⎧
⎪⎪⎨

⎪⎪⎩

−zF = −
∑

G⊆F

yG if 1 /∈ F,

z[n] − zF =
∑

G⊆[n]
yG −
∑

G⊆F

yG if 1 ∈ F .

In addition, it can be checked that, when yF ≥ 0 for all nonempty subsets F , the
corresponding numbers xF are submodular, in the sense of (2.4), meaning that the
intersection-theoretic formula (2.6) is valid.

Postnikov proved the following formula for the volume of ��
n (y), which, by poly-

nomiality of volumes, determines the volume for all generalized permutahedra (this
last statement is carefully worked out by Ardila, Benedetti, and Doker [1]).

Theorem 2.18 ( [16] Corollary 9.4) If yG ≥ 0 for all nonempty subsets G ⊆ [n], then

Vol(��
n (y)) = 1

(n − 1)!
∑

G1,...,Gn−1

yG1 · · · yGn−1 ,

where the sum is over collections of nonempty subsets G1, . . . ,Gn−1 ⊆ [n] such that,
for any 0 < i1 < · · · < ik < n, we have

|Gi1 ∪ · · · ∪ Gik | > k.
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Proof Let us prove this formula using psi classes. By Equation (2.6), we have

Vol(��
n (y)) = 1

(n − 1)! deg
⎛

⎝
( ∑

∅�F�[n]
xF DF

)n−1
⎞

⎠ .

Applying the change of variables above, notice that

∑

∅�F�[n]
xF DF = −

∑

∅�F�[n]
1/∈F

( ∑

G⊆F

yG
)
DF +

∑

∅�F�[n]
1∈F

( ∑

G⊆[n]
yG −
∑

G⊆F

yG
)
DF

=
∑

∅�G⊆[n]
yG
(

−
∑

F⊇G
1/∈F

DF +
∑

F⊆[n]
1∈F

DF −
∑

F⊇G
1∈F

DF

)

=
∑

∅�G⊆[n]
yG
( ∑

F⊆[n]
1∈F

DF −
∑

F⊇G

DF

)

=
∑

∅�G⊆[n]
yGψ−

G ,

where the last equality follows from Lemma 2.16. Thus, Postnikov’s formula can be
reinterpreted as an intersection-theoretic property of psi classes. In particular, Post-
nikov’s formula is equivalent to the statement that

deg(ψ−
G1

. . . ψ−
Gn−1

) =
{
1 if 0 < i1 < · · · < ik < n 	⇒ |Gi1 ∪ · · · ∪ Gik | > k,

0 else.

(2.19)

To prove (2.19), we start by proving the second case. Suppose that there exists some
0 < i1 < · · · < ik < n such that

G = Gi1 ∪ · · · ∪ Gik

has at most k elements. By virtue of Equation (2.8), notice that

ψ−
Gi1

. . . ψ−
Gik

= r∗
Gi1

(ψ∞) · · · r∗
Gik

(ψ∞)

= r∗
G(r∗

Gi1
(ψ∞) · · · r∗

Gik
(ψ∞)).

Notice that the argument of r∗
G in the final expression is an element of Ak(LMG),

which is zero because dim(LMG) = |G| − 1, which we have assume to be strictly
less than k.
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Next, to prove the first case of (2.19), suppose that 0 < i1 < · · · < ik < n implies
|Gi1 ∪ · · · ∪ Gik | > k. Applying Lemma 2.16, notice that

ψ−
G1

· · · ψ−
Gn−1

=
(
ψ∞ −

∑

F⊇Gi1

DF

)
· · ·
(
ψ∞ −

∑

F⊇Gin−1

DF

)

=
n−1∑

k=0

ψn−1−k∞ (−1)k
∑

0<i1<···<ik<n
Fj⊇Gi j

DF1 · · · DFk .

We claim that the only nonzero term in the sum is the one indexed by k = 0. To
verify this, notice that multiplying DF1 · · · DFk will either be zero or a multiple of DF
for some flag F . In the latter case, notice that the largest set in the flag F must be
F = F1 ∪ · · · ∪ Fk , which contains Gi1 ∪ · · · ∪Gik . This implies that F has more than
k elements, showing that n − |F | − 1 < n − k − 1. It then follows that

deg(ψn−k−1∞ DF1 . . . DFk ) = 0

because, using Lemmas 2.12, it contains a factor of

degLM[n]\F
(
ψa
0ψn−k−1∞

) = 0.

Thus, the only nonzero term in the sum is the one indexed by k = 0, in which case we
compute

deg(ψn−1∞ ) = 1.

��

3 Matroid psi classes

We now describe a generalization of psi classes from Losev-Manin spaces to the
matroid setting. We then use matroid psi classes to give new proofs of formulas for
volume polynomials of matroids, and we use them to give a constructive proof of
Poincaré duality.

3.1 Matroid basics

Before discussing matroid psi classes, we begin by introducing the relevant matroid
background and terminology.

3.1.1 Definitions

Amatroid M = (E,L) consists of a finite set E , called the ground set, and a collection
of subsets L = LM ⊆ 2E , called flats, which satisfy the following two conditions:
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(1) if F1, F2 are flats, then F1 ∩ F2 is a flat, and
(2) if F is a flat, then every element of E \ F is contained in exactly one flat that is

minimal among the flats that strictly contain F .

Given a matroid M = (E,L), the set L is partially ordered by set inclusion. Fur-
thermore, given any subset S ⊆ E , it follows from Property (1) that there is a minimal
flat containing S, called the closure of S and denoted cl(S) ∈ L. Defining the join (∨)
of two flats to be the closure of their union and the meet (∧) of two flats to be their
intersection, it follows from the definitions that the flats L form a lattice, called the
lattice of flats of M.

A subset I ⊆ E is called independent if, for any I1 � I2 ⊆ I , we have cl(I1) �

cl(I2). The rank of a subset S ⊆ E , denoted rk(S), is the size of its largest independent
subset. The rank of M is defined as the rank of E . An alternative characterization of
the rank of flats is given by lengths of flags. In particular, the number of nonempty
flats in a flag

F = (∅ � F1 � F2 � · · · � F�)

is called the length of the flag, denote �(F), and it can be checked from the above
definitions that every maximal flag of flats contained in a flat F has length equal to
rk(F).

There are several important types of elements in amatroidM = (E,L). A loop ofM
is an element e ∈ E such that rk({e}) = 0, and a coloop ofM is an element e ∈ E such
that {e}c ∈ L. Two elements e, f ∈ E are said to be parallel if rk({e}) = rk({ f }) =
rk({e, f }). A matroid without loops is called loopless and a matroid without loops or
parallel elements is called simple. In other words, a loopless matroid is one for which
the empty set is a flat, and a simplematroid is one for which, in addition, each rank-one
flat is a singleton.

3.1.2 Matroid constructions

Given a matroidM = (E,L) and a subset S ⊆ E , there are several important ways to
construct related matroids. The restriction of M to S, denoted M|S , is the matroid on
ground set S with flats

LM|S = {F ∩ S | F ∈ LM}.

The contraction ofM by S, denotedM/S is the matroid on ground set E \ S with flats

LM/S = {F \ S | F ∈ LM and S ⊆ F}.

Lastly, the deletion of M by S, denoted M \ S, is the restriction of M to E \ S:

M \ S = M|E\S .
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If F,G ∈ LM, then we introduce the notationM[F,G] = (M|G)/F . By definition,
M[F,G] is the matroid of rank rk(G) − rk(F) on the ground set G \ F with flats

LM[F,G] = {H \ F | H ∈ LM, F ⊆ H ⊆ G}.

Notice that the flats of M[F,G] are in natural inclusion-preserving bijection with the
flats of M that are weakly contained between F and G, which comprise the closed
interval [F,G]. We use the shorthand L[F,G] for the flats ofM[F,G] and we denote
the proper flats by L(F,G).

Given a matroid M = (E,L), the simplificiation of M, denoted M, is the matroid
obtained by choosing a distinguished element from each rank-one flat and deleting all
other elements of E . The simplification is unique up to relabeling the elements of the
ground set, so we do not stress the choice of distinguished elements. Notice that the
lattice of flats of M and M are naturally isomorphic.

3.1.3 Characteristic polynomials

Given a matroid M = (E,L), the characteristic polynomial of M is defined by

χM(λ) =
∑

S⊆E

(−1)|S|λrk(E)−rk(S).

From this definition, it is an excellent exercise to check the following three properties.

(χ1) If M has a loop, then χM(λ) = 0.
(χ2) If e is a coloop of M, then χM(λ) = (λ − 1)χM\{e}(λ).
(χ3) If e is neither a loop nor a coloop, then

χM(λ) = χM\{e}(λ) − χM/{e}(λ)

Property (χ3) is called the deletion-contraction property, and it generalizes the prop-
erty of the same name for chromatic polynomials of graphs. Notice that Properties
(χ1)–(χ3) determine χM(λ) recursively on the size of the ground set. In addition, it
follows from (χ1) and (χ3) that χM(λ) = χM(λ) for any loopless matroid M.

It also follows from Properties (χ1)–(χ3) that, for any nonempty matroid M, the
characteristic polynomial χM(λ) is divisible by λ − 1. The reduced characteristic
polynomial of a nonempty matroid M is define by

χM(λ) = χM(λ)

λ − 1
.

Naturally, the reduced characteristic polynomial also satisfies Properties (χ1)–(χ3).
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3.1.4 Chow rings

Let M = (E,L) be a loopless matroid and denote the collection of proper flats of M
by L∗ = L \ {∅, E}. The matroid Chow ring is defined by

A∗(M) = Z
[
XF | F ∈ L∗]

I + J ,

where

I = 〈XF1XF2 | F1 and F2 are incomparable
〉

and

J =
〈∑

e∈F
XF −
∑

f ∈F
XF

∣∣∣ e, f ∈ E

〉
.

We denote the generators of the matroid Chow ring by DF = [XF ] ∈ A1(M).
Notice that the Chow ring only depends on the lattice of flats, which implies that
A∗(M) = A∗(M).

Matroid Chow ringswere first defined by Feichtner andYuzvinsky [10] (in themore
general setting of atomic lattices). The presentation given by Feichtner and Yuzvinsky
slightly differs from the one give above in that it includes an additional generator
DE ∈ A1(M) and an additional relation

DE = −
∑

e∈F
F∈L∗

DF ,

where e is any element of E . An important result of Feichtner and Yuzvinsky is the
derivation of an integral basis for A∗(M), which we recall here.

Theorem 3.1 [10,Corollary 1] If M is a loopless matroid, then a Z-basis of A∗(M) is
given by all monomials of the form

Dd1
F1

· · · Dd�

F�

with ∅ = F0 � F1 � · · · � Fk ⊆ E and di < rk(Fi ) − rk(Fi−1) for all i = 1, . . . , �.

Suppose that rk(M) = r + 1. It follows from Theorem 3.1 that Ak(M) = 0 for any
k > r , and that Ar (M) is one-dimensional, generated by Dr

E . In particular, we can
define a linear isomorphism

deg : Ar (M) → Z

by setting deg
(
(−DE )r

) = 1. The class −DE played a central role in the work of
Adiprasito, Huh, and Katz, where it was denoted as α. In particular, Proposition 5.8
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of [3] implies that

DF1 · · · DFr = (−DE )r

for any complete flag ∅ � F1 � · · · � Fr � E . In other words, given any class
γ ∈ Ar (M), we can compute deg(γ ) as follows.

(1) Use the relations in I and J to find a linear combination

γ =
∑

F
aF (γ )DF

where the sum is over complete flags F = (∅ � F1 � · · · � Fr � E), the
coefficients aF (γ ) are integers, and DF = DF1 · · · DFr .

(2) Compute

deg(γ ) =
∑

F
aF (γ ).

The aforementioned result of Adiprasito, Huh, and Katz implies that the sum of the
coefficients in (2) is independent of the choice of linear combination in (1).

Finally, in closing this section, we note that for the specific matroidM = ([n], 2E ),
the matroid Chow ring specializes to the Chow ring of Losev-Manin space A∗(LMn)

and the matroid degree map is identified with the algebro-geometric degree map. This
observation motivates extending tools from A∗(LMn) to Chow rings of arbitrary
matroids.

3.2 Matroid psi classes

Throughout this subsection, we letM = (E,L) denote a looplessmatroid of rank r+1.
We begin by using the characterization of Lemma 2.16 to introduce a generalization
of psi classes to the matroid setting.

Definition 3.2 For any F ∈ L and e ∈ E , define classes ψ±
F ∈ A1(M) by

ψ−
F =
∑

G∈L∗
e∈G

DG −
∑

G∈L∗
G⊇F

DG and ψ+
F =
∑

G∈L∗
e/∈G

DG −
∑

G∈L∗
G⊆F

DG .

In the special case that F = ∅ or F = E , define

ψ0 = ψ+
∅ =
∑

G∈L∗
e/∈G

DG and ψ∞ = ψ−
E =
∑

G∈L∗
e∈G

DG .

Notice that ψ∞ = −DE , which, as we mentioned above, was also denoted as α in
[3], and we mention that ψ0 also appeared in [3], where it was denoted β. We already
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commented above on why the classψ∞ is independent of the choice of e ∈ E , and this
also implies that ψ−

F is independent of this choice for any flat F . It is a short exercise
to verify that ψ+

F is also independent of the choice of e ∈ E .
Equipped with a general definition of matroid psi classes, we now aim to generalize

the basic results from the setting of Losev-Manin spaces. We start with the following
generalization of Lemma 2.10.

Proposition 3.3 For any F ∈ L∗, we have

D2
F = DF (−ψ−

F − ψ+
F ) ∈ A2(M).

Proof Choose e ∈ E and write

DF = DF +
∑

e∈G
DG −
∑

e∈G
DG

= DF +
∑

G

DG −
∑

e/∈G
DG −
∑

e∈G
DG . (3.4)

When we multiply the first two terms of (3.4) by DF and use the fact that DFDG = 0
when F and G are incomparable (by definition of I), we have

DF

(
DF +
∑

G

DG

)
= DF

( ∑

G⊇F

DG +
∑

G⊆F

DG

)
.

Including the final two terms of (3.4), we conclude that

D2
F = DF

(
−
(∑

e∈G
DG −
∑

G⊇F

DG

)
−
(∑

e/∈G
DG −
∑

G⊆F

DG

))

= DF (−ψ−
F − ψ+

F ).

��
Repeatedly applying Proposition 3.3 results in the following corollary.

Corollary 3.5 If F1, . . . , Fk ∈ L∗ are distinct proper flats and d1, . . . , dk are positive
integers, then

Dd1
F1

· · · Ddk
Fk

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

DF
k∏

i=1

(−ψ−
Fi

− ψ+
Fi

)di−1 if, after possibly relabeling

F1, . . . , Fk form a flag F = (∅ � F1 � · · · � Fk � E),

0 if Fi and Fj are incomparable for some i, j .

Now that we know how to multiply arbitrary products of generators in A∗(M),
it remains to compute the degree of the resulting expression. The first step is the
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next result—generalizing Lemma 2.12—which reduces the computation to degrees of
monomials in ψ0 and ψ∞.

Proposition 3.6 If F = (∅ = F0 � F1 � · · · � Fk � Fk+1 = E) is a flag of flats
and a+

0 , a−
1 , a+

1 , . . . , a−
k , a+

k , a−
k+1 are nonnegative integers, then

degM
(
DF

k∏

i=0

(ψ+
Fi

)a
+
i (ψ−

Fi+1
)a

−
i+1

)
=

k∏

i=0

degM[Fi ,Fi+1]
(
ψ

a+
i

0 ψ
a−
i+1∞
)
.

Proof For each i = 0, . . . , k, define an algebra homomorphism from the polynomial
ring Z[XG | G ∈ L(Fi , Fi+1)] to the matroid Chow ring of M as follows:

ϕi : Z[XG | G ∈ L(Fi , Fi+1)] → A∗(M)

XG �→ DG∪Fi .

Unfortunately, the ideal J is not in the kernel of ϕi , so ϕi does not descend to a
homomorphism from theChow ring A∗(M[Fi , Fi+1]). Let usmodifyϕi bymultiplying
by DF :

ϕ̂i : Z[XG | G ∈ F(Fi , Fi+1)] → A∗(M)

γ �→ DFϕi (γ ).

Notice that ϕ̂i is linear, but not multiplicative.We claim that the linearmap ϕ̂i descends
to theChow ring A∗(M[Fi , Fi+1]). To prove this, it suffices to check that the generators
of both I and J are contained in the kernel of ϕ̂i .

First, notice that if ∅ � G1,G2 � Fi+1 \ Fi are incomparable, then G1 ∪ Fi and
G2 ∪ Fi are also incomparable. This implies that ϕ̂i (XG1XG2) = 0 for incomparable
G1,G2 ∈ L(Fi , Fi+1), proving that ϕ̂i descends to the quotient by I. Secondly, if
e, f ∈ Fi+1 \ Fi , then

ϕ̂i

( ∑

G∈L(Fi ,Fi+1)
e∈G

XG −
∑

G∈L(Fi ,Fi+1)
f ∈G

XG

)
= DF
( ∑

Fi�H�Fi+1
e∈H

DH −
∑

Fi�H�Fi+1
f ∈H

DH

)

= DF
( ∑

H∈L∗
e∈H

DH −
∑

H∈L∗
f ∈H

DH

)
= 0.

The second equality above uses the following observations.

(1) The only flats H ∈ L∗ that survive multiplication by DF are those that are com-
parable with both Fi and Fi+1.

(2) If e ∈ H or f ∈ H , then the only way that H is comparable with Fi is if H � Fi .
(3) If H ⊇ Fi+1, then e, f ∈ H , so the terms cancel in the difference in the final

formula.
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Thus, ϕ̂i descends to the quotient byI+J , and by a slight abuse of notation, we use the
same notation to represent the induced linear map: ϕ̂i : A∗(M[Fi , Fi+1]) → A∗(M).

Using multi-linearity, we combine the linear maps ϕ̂i to obtain a linear map

ϕF :
k⊗

i=0

A∗(M[Fi , Fi+1]) → A∗(M)

γ0 ⊗ · · · ⊗ γk �→ DF
k∏

i=0

ϕi (γi )

Notice that, for any e ∈ Fi+1 \ Fi , we have

ϕ̂i (ψ0) = ϕ̂i

( ∑

G∈L(Fi ,Fi+1)
e/∈G

DG

)
= DF

∑

Fi�H�Fi+1
e/∈H

DH

= DF
(∑

e/∈H
DH −
∑

H⊆Fi

DH

)
= DFψ+

Fi
.

Similarly, it can be checked that ϕ̂i (ψ∞) = DFψ−
Fi+1

. It then follows from the defi-
nition of ϕF that

ϕF
( k⊗

i=0

ψ
a+
i

0 ψ
a−
i+1∞
)

= DF
k∏

i=0

(ψ+
Fi

)a
+
i (ψ−

Fi+1
)a

−
i+1 .

Notice that, to compute degM[Fi ,Fi+1]
(
ψ

a+
i

0 ψ
a−
i+1∞
)
, we can use the relations in I and

J to find an express ψ
a+
i

0 ψ
a−
i+1∞ as a linear combination of the form

ψ
a+
i

0 ψ
a−
i+1∞ =

∑

complete flags F (i)

in M[Fi ,Fi+1]

aF (i)DF (i) , (3.7)

and then compute

degM[Fi ,Fi+1](ψ
a+
i

0 ψ
a−
i+1∞ ) =
∑

F (i)

aF (i) .

Making one choice of expression (3.7) for each i = 0, . . . , k, we can apply ϕF to
obtain
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ϕF
( k⊗

i=0

ψ
a+
i

0 ψ
a−
i+1∞
)

= ϕF
( k⊗

i=0

∑

F (i)

aF (i)DF (i)

)

= DF
∑

F (0),...,F (k)

aF (0) · · · aF (k)DF (1)∪F0 · · · DF (k)∪Fk , (3.8)

where, for any flag F (i) = (F (i)
1 � · · · � F (i)

ki
) of flats in M[Fi , Fi+1], we define

F (i) ∪ Fi = (F (i)
1 ∪ Fi � · · · � F (i)

ki
∪ Fi ),

which is a flag of flats inM. Since each F (i) is a complete flag of flats inM[Fi , Fi+1],
it follows that the sets in

F ∪
k⋃

i=0

(F (i) ∪ Fi )

form a complete flag of flats in M. Therefore, the products of generators in (3.8) are
indexed by complete flags in M, and we conclude that

degM

(
DF

k∏

i=0

(ψ+
Fi

)a
+
i (ψ−

Fi+1
)a

−
i+1

)
=
∑

F (0),...,F (k)

aF (0) · · · aF (k)

=
k∏

i=0

∑

F (i)

aF (i)

=
k∏

i=0

degM[Fi ,Fi+1](ψ
a+
i

0 ψ
a−
i+1∞ ).

��
It now remains to compute degrees of monomials in ψ0 and ψ∞. The key result

in this regard—which is listed as Proposition 3.11 below—relates these degree com-
putations to the coefficients of reduced characteristic polynomials. This result was
previously proved by Adiprasito, Huh, and Katz [3,Proposition 9.5], but we find it
instructive to give an alternative proof, motivated by the proof of Lemma 2.14, which
uses properties of psi classes. We begin by introducing an analogue of the pullbacks
of the forgetful maps.

Proposition 3.9 If S ⊆ E is any subset, then there is a well-defined homomorphism
ρS : A∗(M|S) → A∗(M) defined on generators by

ρS(DG) =
∑

G ′∈L∗
G⊆G ′⊆G∪Sc

DG ′ .

In addition, if S1 ⊆ S2 are nonempty flats, then ρS1 = ρS1 ◦ ρS2 .
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Notice that the sum in the definition of ρS is over all flats of M that are obtained
from G � S by adding elements of Sc. In particular, the set G is determined by any
of the G ′ via G = G ′ ∩ S. In the special case of M = ([n], 2[n]),we have ρS = r∗

S .

Proof of Proposition 3.10 Define the homomorphism

ρS : Z[XG | G ∈ L∗
M|S ] → A∗(M)

XG �→
∑

G ′∈L∗
G⊆G ′⊆G∪Sc

DG ′ .

To show that ρS descends to a homomorphism from the Chow ring, we must verify
that I and J are contained in the kernel of ρS . First, suppose that G1 and G2 are
incomparable flats of M|S . Then there exists e, f ∈ S such that e ∈ G1 \ G2 and
f ∈ G2 \ G1. Notice that every term in the sum defining ρS(XG1) is indexed by a set
that contains e but not f and every term in the sum defining ρS(XG2) is indexed by a
set that contains f but not e. It follows that

ρS(XG1XG2) = ρS(XG1)ρS(XG2) = 0 ∈ A∗(M),

showing that ρS descends to the quotient by I. Next, to show that ρS descends to the
quotient by J , suppose that e, f ∈ S. Then

ρS

(∑

e∈G
XG −
∑

f ∈G
XG

)
=

∑

e∈G⊆G ′⊆G∪Sc

DG ′ −
∑

f ∈G⊆G ′⊆G∪Sc

DG ′

=
∑

e∈G ′
G ′�S

DG ′ −
∑

f ∈G ′
G ′�S

DG ′

=
∑

e∈G ′
DG ′ −

∑

f ∈G ′
DG ′ = 0.

The second equality above is implied by the following observations.

(1) We are assuming that ∅ � G � S. Since G = G ′ ∩ S, this condition is equivalent
to ∅ � G ′ ∩ S � S. Since G ′ ∩ S is nonempty (it always contains e in the first
sum and f in the second), this is equivalent to G ′

� S.
(2) Since G = G ′ ∩ S and e ∈ S, it follows that

e ∈ G ⇐⇒ e ∈ (G ′ ∩ S) ⇐⇒ e ∈ G ′.

The third equality above is implied by the fact that every set G ′ ⊇ S appears in both
sums in the final expression, so these terms cancel. This completes the proof that ρS

descends to the quotient byJ . Thus, ϕS descends to the quotient by I+J and induces
the homomorphism whose existence is asserted in the proposition.
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To finish the proof of the proposition, it remains to check that ρS1 = ρS1 ◦ ρS2 .
Notice that

ρS1 ◦ ρS2(DG) =
∑

G⊆G ′⊆G∪Sc2
G ′⊆G ′′⊆G ′∪Sc1

DG ′′ =
∑

G⊆G ′′⊆G∪Sc1

DG ′′ = ρS1(DG),

where the second equality uses that G ′ is uniquely determined from G ′′ via G ′ =
G ′′ ∩ S1. ��

The next result describes how ψ0 and ψ∞ transform under the homomorphisms ρS

described in Proposition 3.10. The second statement of the result gives an alternative
characterization of ψ±

F that generalizing Definition 2.9.

Proposition 3.10 For any subset S ⊆ E, we have

ρS(ψ0) = ψ0 −
∑

G⊆Sc
DG and ρS(ψ∞) = ψ∞ −

∑

G⊇S

DG .

In particular, if F ∈ L∗ is a proper flat, then

ψ−
F = ρF (ψ∞) and ψ+

F = ρFc(ψ0).

Proof For ψ0, we compute

ρS(ψ0) = ρS

(∑

e/∈G
DG

)

=
∑

e/∈G⊆G ′⊆G∪Sc

DG ′

Arguing as in the proof of the previous proposition, the index in the last sum can be
replaced with e /∈ G ′ and G ′

� Sc, proving that

ρS(ψ0) =
∑

e/∈G ′
DG ′ −

∑

G ′⊆Sc

DG ′ .

The argument for ρS(ψ∞) is similar. ��
We now come to the generalization of Lemma 2.14 to the matroid setting. As men-

tioned above, this result was previously proved by Huh and Katz [11,Proposition 5.2],
though our formulation is more closely aligned with the presentation of Adiprasito,
Huh, and Katz [3,Proposition 9.5]. Our proof relies on the recursive nature of the
characteristic polynomial, and we note that this proof technique, using the deletion-
contraction recursion, also appears in a different, more general form in recent work of
Berget, Eur, Spink, and Tseng [5,Theorem A].
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Proposition 3.11 [3,Proposition 9.5] For nonnegative integers a, b, we have

degM(ψa
0ψb∞) =

{
μa(M) if a + b = r ,

0 else,

whereμa(M) is the a-th unsigned coefficient of the reduced characteristic polynomial
of M:

χM(λ) =
r∑

a=0

(−1)aμa(M)λr−a .

Before proving Proposition 3.11, we briefly justify that it does, indeed, generalize
Lemma 2.14. Suppose that M = ([n], 2[n]) so that A∗(M) = A∗(LMn). Then, for
any subset S ⊆ [n], we have rk(S) = |S|, and it follows that

χM(λ) =
∑

S⊆[n]
(−1)|S|λn−|S| =

n∑

k=0

(−1)k
(
n

k

)
λn−k = (λ − 1)n .

Therefore,

χM(λ) = (λ − 1)n−1

and we conclude that μa(M) = (n−1
a

)
, as expected.

Proof of Proposition 3.11 We prove the proposition by induction on |E |. If |E | = 1,
then χM(λ) = 1 and μ0(M) = 1, so the base case follows from the fact that A∗(M) =
A0(M) = Z and deg(ψ0

0ψ0∞) = 1.
We now turn to the induction step. Since A∗(M) = A∗(M), it suffices to assume

throughout the induction step thatM is simple. First suppose that e ∈ E is not a coloop.
This implies that {e}c is not contained in any proper flats of M, and it then follows
from Proposition 3.10 that

ρM\{e}(ψ∞) = ψ∞.

In particular, using that rk(M \ {e}) = rk(M) = r + 1 and that the degree map is
determined by deg(ψr∞) = 1, this implies that

deg(ρM\{e}(γ )) = deg(γ ) for any γ ∈ A∗(M \ {e}).

Using our assumption thatM is simple, we have that {e} ∈ L, and it then follows from
Proposition 3.10 that

ρM\{e}(ψ0) = ψ0 − D{e}.
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Therefore, if a + b = r , then

degM\{e}(ψa
0ψb∞) = degM

(
(ψ0 − D{e})aψb∞

)

= degM(ψa
0ψb∞) + (−1)a degM(Da{e}ψb∞)

= degM(ψa
0ψb∞) − degM/{e}(ψa−1

0 ψb∞),

where the second equality follows from noting that we can write ψ0 =∑e/∈F DF , in
which case it followsψ0D{e} = 0, and the third equality follows from Proposition 3.6.
In the case where a = 0, the second term in the final expression is equal to zero. The
induction hypothesis then implies that

degM(ψa
0ψb∞) = μa(M \ {e}) + μa−1(M/{e}) = μa(M),

where the final equality is an application of Property (χ3) for χM(λ).
Next, suppose that e ∈ E is a coloop. Since e is a coloop andM is simple, both {e}

and {e}c are flats of M. It follows from Proposition 3.10 that

ρM\{e}(ψ0) = ψ0 − D{e} and ρM\{e}(ψ∞) = ψ∞ − D{e}c .

For any positive integer a, we have

ψa
0 = (ρM\{e}(ψ0) + D{e})a

= ρM\{e}(ψa
0 ) +

a∑

k=1

(
a

k

)
Dk{e}(−D{e})a−k

= ρM\{e}(ψa
0 ) − (−D{e})a,

where the second equality uses the fact that ψ0D{e} = 0 and the third equality uses
that
∑a

k=1

(a
k

)
(−1)a−k = (−1)a−1. Similarly,

ψb∞ = ρM\{e}(ψb
0 ) − (−D{e}c )b.

Thus, if a + b = r , we compute that

ψa
0ψb∞ = ρM\{e}(ψa

0ψb∞) − ρM\{e}(ψa
0 )(−D{e}c )b

− (−D{e})aρM\{e}(ψb∞) + (−D{e})a(−D{e}c )b

= −ρM\{e}(ψa
0 )(−D{e}c)b − (−D{e})aρM\{e}(ψb∞)

= D{e}cψa
0ψb−1

{e}c + D{e}ψa−1
{e} ψb∞

where the second equality follows fromobserving that rk(M\{e}) = r and D{e}D{e}c =
0, and the third equality follows from the facts that D{e}ψ0 = D{e}cψ∞ = 0 and
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Corollary 3.5. As before, terms with negative exponents are equal to zero. Computing
degrees via Proposition 3.6, we then see that

degM(ψa
0ψb∞) = degM\{e}(ψa

0ψb−1∞ ) + degM/{e}(ψa−1
0 ψb∞).

Since e is a coloop, it follows thatM \ {e} = M/{e}, because every flat not containing
e remains a flat when you add e to it. Therefore, applying the induction hypothesis,
we have

degM(ψa
0ψb∞) = μa(M \ {e}) + μa−1(M \ {e}) = μa(M),

where the final equality is an application of Property (χ2) for χM(λ). This completes
the induction step, and finishes the proof. ��

3.3 Volume polynomials

In this subsection, we illustrate the utility of psi classes by using them to reprove the
main result in [9] and one of the main results in [4], both of which give an explicit
formula for the volume polynomials of matroids. Given our parallel developments,
the arguments in this setting are essentially verbatim generalizations of the arguments
made in the setting of generalized permutahedra and Losev-Manin spaces.

Let M = (E,L) be a loopless matroid of rank r + 1. The volume polynomial of
A∗(M) is the function

VolM : A1(M) → Z

D �→ degM(Dr ).

Given a spanning set of generators B = (B1, . . . , Bm) for A1(M), the volume poly-
nomial can be written explicitly as a homogeneous polynomial of degree r :

VolM,B(x1, . . . , xm) = degM

(( m∑

i=1

xi Bi
)r) ∈ Z[x1, . . . , xm].

In fact, given that A∗(M) satisfies Poincaré duality (discussed in the next subsection),
it follows from Lemma 13.4.7 in [7] that the volume polynomial associated to any
generating set determines a presentation for the Chow ring A∗(M). Thus, it follows
that the matroid Chow ring is determined from computations of the form

degM(Bdm
1 · · · Bdm

m ),

where d1 + · · · + dm = r . The main result in [9] is the computation of these degrees
for the set of generators (DF | F ∈ L∗), and one of the main results in [4] is the
computations of these degrees for the set of generators (ψ−

F | ∅ �= F ∈ L). We
note that the authors of [4] stated their result in terms of classes that they denoted
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hF , but it follows from the definitions that hF = ψ−
F . We now recover both of these

computations using properties of psi classes.
The main result in [9], which implies Theorem 2.17, is the following.

Theorem 3.12 [9,Theorem 3.2] If F = (∅ � F1 � . . . Fk � E) is a flag of flats in M
and d1, . . . , dk are positive integers that sum to r. Then

degM(Dd1
F1

· · · Ddk
Fk

) = (−1)r−1
k∏

i=1

(
di − 1

d̃i − rk(Fi )

)
μd̃i−rk(Fi )(M[Fi , Fi+1]),

with

d̃ j =
j∑

i=1

di .

Proof To prove this using psi classes, start by applying Corollary 3.5:

Dd1
1 · · · Ddk

k = DF
k∏

i=1

(−ψ−
Fi

− ψ+
Fi

)di−1

= DF (−1)r−k
∑

a−
i ,a+

i

k∏

i=1

(
di − 1

a−
i , a+

i

)
(ψ−

Fi
)a

−
i (ψ+

Fi
)a

+
i

= DF (−1)r−k
di−1∑

a+
i =0

k∏

i=1

(
di − 1

a+
i

)
(ψ−

Fi
)di−a+

i −1(ψ+
Fi

)a
+
i

= DF (−1)r−k
di−1∑

a+
i =0

k∏

i=1

(
di − 1

a+
i

) k∏

i=0

(ψ+
Fi

)a
+
i (ψ−

Fi+1
)di+1−a+

i+1−1,

where, by convention, we define a+
0 = dk+1 − a+

k+1 − 1 = 0. By Proposition 3.11,
the degree of each summand in this class is zero unless

a+
i + di+1 − a+

i+1 − 1 = rk(Fi+1) − rk(Fi ) − 1.

These conditions have a unique solution with

a+
i = d̃i − rk(Fi ).

Thus, computing the degrees by Proposition 3.11, we have

degM(Dd1
F1

· · · Ddk
Fk

) = (−1)r−k
k∏

i=1

(
di − 1

d̃i − rk(Fi )

) k∏

i=0

μd̃i−rk(Fi )(M[Fi , Fi+1]).
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Theorem 3.12 follows by noting that μ0(M) = 1 for any matroidM, so the i = 0 term
of the second product is 1. ��

One of the main results of [4], which implies Theorem 2.18, is the following.

Theorem 3.13 [4,Theorem 5.2.4] If F1, . . . , Fr are nonempty flats of M, then

degM(ψ−
F1

. . . ψ−
Fr

) =
{
1 if 0 < i1 < · · · < ik ≤ r 	⇒ rk(Fi1 ∪ · · · ∪ Fik ) > k,

0 else.

Proof To prove this result using properties of psi classes, first assume that there exists
some 0 < i1 < · · · < ik ≤ r such that rk(Fi1 ∪ · · · ∪ Fik ) ≤ k. Denote S =
Fi1 ∪ · · · ∪ Fik . By Proposition 3.10, we compute that

ψ−
Fi1

· · ·ψ−
Fik

= ρFi1
(ψ∞) · · · ρFik

(ψ∞) = ρS
(
ρFi1

(ψ∞) · · · ρFik
(ψ∞)
)
.

The input of ρS is a class in Ak(M|S), which is zero because

rk(M |S) = rk(S) ≤ k.

Thus,

degM(ψ−
F1

. . . ψ−
Fr

) = deg(0) = 0.

Next, suppose that 0 < i1 < · · · < ik ≤ r implies that rk(Fi1 ∪ · · · ∪ Fik ) > k. By
definition,

ψ−
F1

. . . ψ−
Fr

=
(
ψ∞ −

∑

G⊇F1

DG

)
· · ·
(
ψ∞ −

∑

G⊇Fr

DG

)

=
r∑

k=0

ψr−k∞ (−1)k
∑

0<i1<···<ik≤r
G j⊇Fi j

DG1 · · · DGk .

We claim that the only nonzero term in the sum is the one indexed by k = 0. To
see why, notice that multiplying DG1 · · · DGk will either be zero if Gi and G j are
incomparable for some i and j or it will be a multiple of DG for some flag G. In the
latter case, the largest flat in the flag G must be G = G1 ∪ · · · ∪ Gk , which contains
Fi1 ∪ · · · ∪ Fik . This implies that rk(G) > k. It follows that

degM(ψr−k∞ DG1 · · · DGk ) = 0,
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because, when expanded using Proposition 3.6, the exponent of ψ∞ appearing in the
final term of the product is r − k ≥ rk(E) − rk(G) = rk(M[G, E]). Thus, the only
nonzero term in the sum is

degM(ψr∞) = μ0(M) = 1.

��

3.4 Poincaré duality

In this final section, we describe one more application of our developments of psi
classes, which is a new proof of the Poincaré duality property for matroid Chow rings.
Our proof utilizes the following computational result.

Lemma 3.14 If F = (∅ � F1 � · · · � Fk � E) is a flag of flats in M and we have
integers d1, . . . , dk > 0 and dE ≥ 0 that sum to r, then

(1) degM(Dd1
F1

· · · Ddk
Fk
DdE

E ) = 0 if dE +
k∑

i=m

di > r − rk(Fm−1) for some m ∈
{1, . . . , k} and

(2) degM(Dd1
F1

· · · Ddk
Fk

) = (−1)r−k+1 if dE +
k∑

i=m

di = r − rk(Fm−1) for all m ∈
{1, . . . , k}.

Proof By Corollary 3.5, we have

Dd1
F1

· · · Ddk
Fk
DdE

E = DF (−ψ∞)dE
k∏

i=1

(−ψ−
Fi

− ψ+
Fi

)di−1

= (−1)r−k+1
di−1∑

a+
i =0

k∏

i=1

(
di − 1

a+
i

)
DF

k∏

i=0

(ψ+
Fi

)a
+
i (ψ−

Fi+1
)di+1−1−a+

i+1

where a+
0 = 0, Fk+1 = E , and a−

k+1 = d∞. Computing the degree using Proposi-
tion 3.6, we see that the degree is nonzero only if

a+
i + di+1 − 1 − a+

i+1 = rk(Fi+1) − rk(Fi ) − 1 for all i = 0, . . . , k.

The unique solution of this system is given by

a+
m = r − rk(Fm) − dE −

�∑

i=m+1

di for all m = 1, . . . , k.

Property (1) follows from the observation that a+
m ≥ 0 for all m = 1, . . . , k. Notice

that the condition in Property (2) implies that a+
m = 0 for all m = 1, . . . , k, and
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Property (2) then follows from Proposition 3.6 and the fact that

degM[Fi ,Fi+1]
(
ψ

rk(Fi+1)−rk(Fi )−1
∞

) = 1.

��
We now use the Feichtner–Yuzvinsky basis for A∗(M) to prove Poincaré duality.

Theorem 3.15 For any k ∈ 0, . . . , r , the map

ϕk : Ak(M) → Ar−k(M)∨

γ �→ (μ �→ degM(μγ ))

is an isomorphism of Z-modules.

Proof Recall that the Feichtner–Yuzvinsky basis for Ak(M) comprises all monomials
of the form

B = Dd1
F1

· · · Dd�

F�

where ∅ = F0 � F1 � · · · � F� ⊆ E and 0 < di < rk(Fi ) − rk(Fi−1) for
all i = 1, . . . , � with

∑�
i=1 di = k. Throughout this proof, we always assume that

F� = E while allowing for the possibility that d� = 0. For each such basis element
B, define a corresponding basis element B̂ ∈ Ar−k(M) by

B̂ = Dd̂1
F1

· · · Dd̂�

F�
,

where

d̂i =
{
rk(Fi ) − rk(Fi−1) − di if i < �,

r − rk(F�−1) − di if i = �.

Let B̂∨ ∈ Ar−k(M)∨ denote the dual of B̂. We can write ϕk as a square matrix whose
rows are indexed by the basis elements B and whose columns are indexed by the
corresponding basis elements B̂∨. The (B1, B̂∨

2 ) entry of this matrix is degM(B1 B̂2),
which can be computed explicitly by the results of Sect. 3.2. To prove the statement
in the theorem, we show that this matrix is invertible over Z.

First, notice that the element B̂ was constructed so that

�∑

i=m

(di + d̂i ) = r − rk(Fm−1) for all m ∈ {1, . . . , �},

so Lemma 3.14(2) implies that degM(B B̂) = (−1)r−�+1. This implies that the diag-
onal entries of the matrix are all ±1. To finish the proof, it suffices to prove that the
matrix is triangular with respect to some choice of ordering on the bases.
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For each basis element B = Dd1
F1

· · · Dd�

F�
as above, define a multidegree by

δ(B) = (d̂�, rk(F�−1), d̂�−1, rk(F�−2), . . . , rk(F1), d̂1, 0, 0, . . . ).

The multidegree defines a lexicographic partial ordering on the basis, and we let ≺ be
any total ordering of the basis that refines the lexicographic partial ordering induced
by δ. In other words, we insist that B ≺ B ′ only if δ(B) is less than or equal to δ(B ′)
in the lexicographic partial ordering. We claim that ϕk is lower triangular with respect
to this order. To prove this, suppose that B ≺ B ′; we must prove that degM(B B̂ ′) = 0.

First, consider the case where δ(B) = δ(B ′). It follows that � = �′, and rk(Fi ) =
rk(F ′

i ) and di = d ′
i for all i = 1, . . . , �. Since B and B ′ are not the same monomial,

it must be the case that Fi is incomparable to F ′
i for some i . Since B has a factor of

Fi and B̂ ′ has a factor of F ′
i , it follows that B B̂

′ = 0, so degM(B B̂ ′) = 0.
Next, consider the case where δ(B) �= δ(B ′). We first suppose that the first entry

where they differ is rk(Fm) < rk(F ′
m). This implies that d̂i = d̂ ′

i and rk(Fi ) = rk(F ′
i )

for all i > m. Since B has a nontrivial factor of Fi and B̂ ′ has a nontrivial factor of
F ′
i , and these are flats of the same rank for i > m, the only way that B B̂ ′ �= 0 is if

Fi = F ′
i for all i > m. Assuming that this is the case, we can write

B B̂ ′ = Fe�
� Fe�−1

�−1 · · · Fem+1
m+1 F

e
m′ · · ·

where the tail of the product consists of powers of flats of lower rank. Notice that

�∑

i=m+1

ei =
�∑

i=m+1

(di + d̂ ′
i )

=
�∑

i=m+1

(di + d̂i )

= r − rk(Fm)

> r − rk(F ′
m),

from which Lemma 3.14(1) implies that degM(B B̂ ′) = 0.
Lastly, suppose that the first entry where δ(B) and δ(B ′) differ is d̂m < d̂ ′

m . This
implies that d̂i = d̂ ′

i for all i > m and rk(Fi ) = rk(F ′
i ) for all i ≥ m. As in the

previous case, we can write

B B̂ ′ = Fe�
� Fe�−1

�−1 · · · Fem
m Fe · · · ,
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where F is equal to the flat in {Fm−1, F ′
m−1} with highest rank. We then compute

�∑

i=m

ei =
�∑

i=m

(di + d̂ ′
i )

>

�∑

i=m

(di + d̂i )

= r − rk(Fm−1)

≥ r − rk(F)

from which Lemma 3.14(1) implies that degM(B B̂ ′) = 0, completing the proof. ��
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