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Abstract
Let (X , o) be a complex normal surface singularity with rational homology sphere
link and let ˜X be one of its good resolutions. Consider an effective cycle Z supported
on the exceptional curve and the isomorphism classes Pic(Z) of line bundles on Z .
The set of possible values h1(Z ,L) for L ∈ Pic(Z) can be understood in terms of
the dimensions of the images of the Abel maps, as subspaces of Pic(Z). In this note
we present two algorithms, which provide these dimensions. Usually, the dimension
of Pic(Z) and of the dimension of the image of the Abel maps are not topological.
However, we provide combinatorial formulae for them in terms of the resolution graph
whenever the analytic structure on ˜X is generic.
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1 Introduction

1.1. Fix a complex normal surface singularity (X , o) and let ˜X be one of its good
resolutions. We assume that the link of (X , o) is a rational homology sphere. Before
we start a more technical introduction, let us give some motivation for the objectives
of the note.

A very important set of analytic invariants of the singularity is provided by the
dimensions h1(˜X ,L) of the cohomology groups, where L is a line bundle on ˜X . In
general, it is convenient to fix the Chern class l ′ of the line bundle. Hence, we search
for the set of integers {h1(˜X ,L)}L∈Picl′ (˜X)

. Note that this problem is the analogue
of the famous Brill–Noether problem for curves, which aims to determine the list
{h1(C,L)}, where C is a fixed smooth curve and L is a line bundle on C with a given
degree. The possible h1-values provide a stratification of the affine space Picl

′
(˜X).

This provides a very deep information about the analytic type of (X , o), and it is very
hard to compute even for very specific analytic structures. In some sense, the final
aim of the series of articles of the authors (regarding the Abel maps) is exactly the
understanding of this stratification.

In the case of curves, a major tool is the introduction of the effective divisors and
the corresponding Abel map, which associates to a divisor the corresponding line
bundle. In the present situation, in the case of ˜X , when we run this program we face
several obstructions. Firstly, ˜X is not compact, and the space of divisors (even if we
fix their Chern class) is an infinite dimensional space. Therefore, we need to use a
‘truncation’: we replace ˜X by an effective cycle Z supported on the exceptional curve,
and we consider the space Ecal

′
(Z) of effective divisors on the scheme Z and the

corresponding Abel map cl
′
(Z) : Ecal

′
(Z) → Picl

′
(Z). Note that for Z � 0 we

have an isomorphism h1(˜X ,L) = h1(Z ,L|Z ) for any L ∈ Pic(˜X), hence we loose
no information from the original problem.

A second difficulty appears from the fact that the spaces Ecal
′
(Z) and Picl

′
(Z) are

not compact and cl
′
(Z) is not proper.

However, and this is one of the main points of the construction, the fiber structure of
the Abel map carries a key information about the needed cohomology ranks: h1(Z ,L)

can be related with the dimension of the fiber (cl
′
(Z))−1(L), and the dimension of the

image of cl
′
(Z) with h1(Z ,Lim

gen), where Lim
gen is a generic element of the image of

cl
′
(Z). Even more, if L has fixed components (i.e. it is not in the image of the corre-

spondingAbelmap), thenmodifying the Chern class by the cycle of fixed components,
L will be in the image of the new Abel map. Hence analysing all the Abel maps and
the dimensions of their images provides a valuable information about the cohomology
of line bundles (in particular, by Riemann Roch, about the ranks h0(Z ,L) too, which
are important in the study of different linear system and maps).

1.2.Now, we start a more concrete introduction and the presentation of the new results.
Denote by L the lattice H2(˜X , Z) endowed with its negative definite intersection

form, by L ′ its dual lattice H2(˜X , Z) identified with {l ′ ∈ L ⊗ Q : (l ′, L) ∈ Z}, and
by S ′ ⊂ L ′ the Lipman cone of antinef cycles {l ′ ∈ L ′ : (l ′, Ev) ≤ 0 for all v}. The
irreducible exceptional curves are denoted by {Ev}v∈V , their duals in L ′ by {E∗

v }v∈V ,
E := ∪vEv . (For details see Sect. 2).
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In [14] for any effective cycle Z ≥ E and Chern class l ′ ∈ −S ′ the authors intro-
duced (based on [4, 6, 7]) and investigated the set of effective Cartier divisors ECal

′
(Z)

and the corresponding Abel maps cl
′
(Z) : ECal ′(Z) → Picl

′
(Z). Here Picl

′
(Z) is the

affine subspace of the Picard group of line bundles over Z with Chern class l ′. The
image of the Abel map consists of line bundles without fixed components. [14] and
follow-up articles contain several properties of the Abel map, e.g. characterisation
when it is dominant, or its relationship with cohomological properties of line bundles.
See [15, 16] for the study in the case of generic and elliptic singularities. In all these
investigations results regarding the dimension of the image Im(cl

′
(Z)) have crucial

role. The main goal of the present article is the computation of dim Im(cl
′
(Z)) in the

most general case and the deduction of several new consequences. We consider these
as necessary steps towards a long-termfinal goal: the development of theBrill–Noether
theory of normal surface singularities.

Though the dimension (l ′, Z) (and the homotopy type) of the connected complex
manifold ECal

′
(Z) is topological, (i.e. it depends only on the link, or on the lattice L),

cf. [14], the dimension h1(OZ ) of the target affine space Picl
′
(Z) depends essentially

on the analytic structure: if we fix the topological type (and Z ), the cohomology group
H1(OZ ) usually depends on the chosen analytic structure supported by the fixed
topological type. The same is true for both dim Im(cl

′
(Z)) and codim Im(cl

′
(Z)).

Though (surprisingly) there is a topological characterisation of those cases when
cl

′
(Z) is dominant, oppositely, the cases when (e.g.) cl

′
(Z)) is a point, or it is a

hypersurface, have no such topological characterisations. In particular, both integers
dim Im(cl

′
(Z)) and codim Im(cl

′
(Z)) are subtle analytic invariants. In fact, it turns

out that codim Im(cl
′
(Z)) equals h1(Z ,Lim

gen), where Lim
gen is a generic line bundle

from Im(cl
′
(Z)). For more about such general facts regarding the Abel maps (and also

about several concrete examples) see [14–16].
Maybe it is worth to emphasize that in the case of the Abel map associated with a

smooth projective curve the dimension of the image is immediate (for this classical
case consult e.g. [1, 3]). This (and almost any other comparison) shows the huge tech-
nical differences between the classical smooth curve cases and our situation (which,
basically, is the Brill–Noether theory of a non-reduced exceptional curve supported
by the exceptional set of a surface singularity resolution).

1.3. The algorithms In the body of the article we present two inductive algorithm
for the computation of dZ (l ′) := dim Im(cl

′
(Z)). The induction follows a sequential

blow up procedure starting from the resolution ˜X . Write−l ′ = ∑

v∈V avE∗
v ∈ S ′ \ {0}

(hence each av ∈ Z≥0). Then, for every v ∈ V with av > 0 we fix av generic points
on Ev , say pv,kv , 1 ≤ kv ≤ av . Starting from each pv,kv we consider a sequence
of blowing ups: first we blow up pv,kv and we create the exceptional curve Fv,kv,1,
then we blow up a generic point of Fv,kv,1 and we create Fv,kv,2, and we do this,
say, sv,kv times (an exact bound is given in Sect. 3). We proceed in this way with all
points pv,kv , hence we get

∑

v av chains of modifications. Hence, a set of integers
s = {sv,kv }v∈V, 1≤kv≤av

provides a modification πs : ˜Xs → ˜X . In ˜Xs we find the
exceptional curves
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(
⋃

v∈V
Ev

) ∪
⋃

v,kv

⋃

1≤t≤sv,kv

Fv,kv,t .

At each level s we set Zs := π∗
s (Z) and −l ′s := ∑

v,kv
F∗

v,kv,sv,kv
(in L ′(˜Xs), where

Fv,kv,0 = Ev). We also write ds := dim Im(cl
′
s(Zs)). Note that d0 = dZ (l ′), and it

turns out that ds = 0 whenever the entries of s are large enough. (Sometimes we
abridge the pair (v, kv) by (v, k).)

In order to run an induction, for any s and (v, k) let sv,k denote that tuple which is
obtained from s by increasing sv,k by one. The inductive algorithm compares ds with
all possible dsv,k .

Using the fact (cf. the proof of Theorem 8.2.1) that ECal
′
sv,k (Zsv,k ) is birational with

a codimension one subspace of ECal
′
s(Zs), we obtain

ds − dsv,k ∈ {0, 1}. (1.3.1)

A very subtle part of the theory is to identify all those pairs (s, sv,k), where the
gaps/jumps occur (that is, when the difference in (1.3.1) is 0 or 1). The identifica-
tion of such places carries a deep analytic content (and even if in some cases it can be
characterised topologically—e.g., in the case of a generic analytic structure—it might
be guided by rather complicated combinatorial patterns).

Example 1.3.2 To create a good intuition for such a phenomenon, let us recall the
classical case of Weierstrass points. Let C be a smooth projective complex curve of
genus g and let us fix a point p ∈ C . For any s ∈ Z≥0 consider �(s) := h0(C,OC (sp)).
Then �(0) = 1 and �(2g−1+k) = g+k for k ≥ 0.Moreover, �(s)−�(s−1) ∈ {0, 1}
for any s ≥ 0. Those s valueswhen this difference is 0 are called the gaps, there are g of
them. For a generic point the gaps are {1, 2, . . . , g}, otherwise p is called aWeierstrass
point. ForWeierstrass point the set of gaps might depend on the choice of p and on the
analytic structure of C . The characterization of all possible gap-sets is still unsettled.

In order to characterize completely our gaps/jump places, wewill use test functions.
For such a test function, say τs, we will require the following properties. Firstly, it is a
function s �→ τs ∈ Z≥0, such that ds ≤ τs for any s. Usually, τs is defined by a weaker
(more robust) geometric construction, which approximates/bounds Im(cl

′
(Z)), and

which hopefully is easier to compute. Secondly, τs satisfies the following remarkable
testing property formulated by the next pattern theorem.

Pattern Theorem. The sequence of integers ds are determined inductively as follows:

(1) ds − dsv,k ∈ {0, 1} (cf. (1.3.1)),
(2) if for some fixed s the numbers {dsv,k }v,k are not the same, then ds = maxv,k{ dsv,k }.

In the case when all the numbers {dsv,k }v,k are the same, then if this common value
dsv,k equals τs, then ds = τs = dsv,k ; otherwise ds = dsv,k + 1.

More precisely, we wish to determine from the collection {dsv,k }v,k the term ds (as
a decreasing induction). Using (1) this is ambiguous only if all this numbers are the
same, say d. In this case ds can be d or d + 1. Well, if the inequality (†) ds ≤ τs is
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not obstructed by the choice of ds = d + 1, then this value is taken. Otherwise it is d.
That is, ds is as large as it can be, modulo (1) and (†).

This can be an interesting procedure even if s is a 1-entry parameter. E.g., in
the case of classical Weierstrass points, the inequality �(s) ≤ 1 + 
s/2� (valid for
s ≤ 2g − 1), given by Clifford’s theorem, by this ‘maximal-testing procedure’ gives
the sequence {1, 1, 2, 2, . . . } for s ≥ 0, with gaps {1, 3, . . . , 2g−1}. In fact, in the case
of hyperelliptic curves theWeierstrass points are the branch points of the hyperelliptic
projection and their gap-set is uniformly {1, 3, 5, . . . , 2g − 1}. (However, for non-
hyperelliptic curves we are not aware of the existence of a non-trivial test function.)

If the Pattern Theorem from above holds, then it turns out (see e.g. Corollary 3.2.4)
that ds = mins≤̃s{|̃s − s| + τ̃s} for any s. (Here |s| = ∑

v,k sv,kv .) In particular,

dZ (l ′) = d0 = min
0≤s

{|s| + τs}. (1.3.3)

Such type of formulas already appeared in the computation of dZ (l ′) for weighted
homogeneous singularities (and specific l ′) in [14], case which lead us to the present
general case. (The type of formula, and also the conceptual approach behind, can
also be compared e.g. with Pflueger’s formula regarding the dimension of the Brill–
Noether varieties of a generic smooth projective curve C with fixed gonality, cf. [5,
24].) Nevertheless, the approach of the testing function (and the corresponding min-
type close formulae) is the novelty of the present manuscript.

1.4. The testing functions for ds Obviously, the above theorem is valuable only if
τs is essentially different than ds and also if it is computable from other different
geometrical data. It is also clear that not any upper bound ds ≤ τs satisfies the testing
property (2): this is satisfied only for bounds τ(s) with very structural relationship,
symbiosis with the original ds. Hence it is not easy to find testing functions, they
must ‘testify’ about some deep geometric property: even the existence of computable
testing function(s) is really remarkable.

Our first test function is defined as follows. Consider again Z ≥ E , l ′ ∈ −S ′
associated with a resolution ˜X , as above. Then, besides the Abel map cl

′
(Z) one can

consider its ‘multiples’ {cnl ′(Z)}n≥1. It turns out that n �→ dim Im(cnl
′
(Z)) is a non-

decreasing sequence, Im(cnl
′
(Z)) is an affine subspace for n � 1, whose dimension

eZ (l ′) is independent of n � 0, and essentially it depends only on the E∗-support
of l ′ (i.e., on I ⊂ V , where −l ′ = ∑

v∈I avE∗
v with all {av}v∈I nonzero). From

construction dZ (l ′) ≤ eZ (l ′), however they usually are not the same. Furthermore,
eZ (l ′) = eZ (I ) plays a crucial role in different analytic properties of ˜X (surgery
formula, h1(L)-computations, base point freeness properties). For details see [14] or
Sects. 2 and 2 here, especially Definition 3.1.1 and Theorem 2.2.5 (and also the proof
of Theorem 3.2.2). Now, at any step of the tower ˜Xs one can consider this invariant
eZs(l

′
s), an integer denoted by es.

Theorem 3.2.2 (the ‘first algorithm’) guarantees that es is a testing function for ds.
The invariants {es}s are still hard to compute (cf. 4). However, the first algorithm

is a necessary intermediate step for the second algorithm, valid for another testing
function.
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The advantage of the second testing function is that it is defined at the level of ˜X
only. It is based on Laufer’s perfect pairing H1(OZ ) ⊗ GZ → C, where GZ denoted
the space of classes of forms H0(˜X ,�2

˜X
(Z))/H0(˜X ,�2

˜X
). The vector space GZ has

a natural divisorial filtration {Gl}0≤l≤Z , where Gl is generated by forms with pole ≤ l.
Its dimension (via Laufer duality) is h1(Ol). (For more see [14] and 2 here.) Next, for
any s define the cycle ls ∈ L of ˜X by

ls := min
{

∑

v∈V
min

1≤kv≤av

{sv,kv }Ev, Z
}

∈ L.

Set also gs := dim Gls as well. It turns out (see 4) that ds ≤ es ≤ h1(OZ )−gs. Usually,
the equality es = h1(OZ )−gs rarely happens, however, it happenswhenever the testing
property requires it! Theorem 4.1.2 (the ‘second algorithm’) says that h1(OZ ) − gs is
a testing function for ds indeed.

The cases of superisolated singularities is exemplified.
The second algorithm has several consequences. E.g., a ‘numerical’ one, cf. (4.1.6):

dZ (l ′) = min
0≤Z1≤Z

{ (l ′, Z1) + h1(OZ ) − h1(OZ1) }, or,

codim Im(cl
′
(Z)) = max

0≤Z1≤Z
{ h1(OZ1) − (l ′, Z1) }.

The cycles Z1 for which the above minimum is realized have several additional geo-
metric properties (cf. Lemma 4.1.14 and 4 ). In particular, such a Z1 imposes the
following conceptual consequence:

Structure Theorem for the image of the Abel map. Fix a resolution ˜X , a cycle
Z ≥ E and a Chern class l ′ ∈ −S ′ as above. Then there exists an effective cycle
Z1 ≤ Z , such that: (i) the map ECal

′
(Z1) → H1(OZ1) is birational onto its image,

and (ii) the generic fibres of the restriction of r , r im : Im(cl
′
(Z)) → Im(cl

′
(Z1)), have

dimension h1(OZ ) − h1(OZ1). In particular, for any such Z1, the space Im(cl
′
(Z))

is birationally equivalent with an affine fibration over ECal
′
(Z1) with affine fibers of

dimension h1(OZ ) − h1(OZ1).

1.5. The case of generic analytic structure In Sect. 5 we prove that if ˜X has a
generic analytic structure (in the sense of [9, 15]), and Z ≥ E and l ′ ∈ −S ′ then both
dim Im(cl

′
(Z)) and codimIm(cl

′
(Z)) are topological. E.g., we have (where χ is the

usual Riemann–Roch expression):

codim Im(cl
′
(Z)) = max

0≤Z1≤Z

{ − (l ′, Z1) − χ(Z1) + χ(E|Z1|)
}

. (1.5.1)

The maximum at the right hand side is realized e.g. for the cohomology cycle of
Lim
gen ∈ Im(cl

′
(Z)) ⊂ Picl

′
(Z). Furthermore,

h1(Z ,L) ≥ max
0≤Z1≤Z

{ − (l ′, Z1) − χ(Z1) + χ(E|Z1|)
}
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for any L ∈ Im(cl
′
(Z)) and equality holds for generic Lim

gen ∈ Im(cl
′
(Z)).

The identity (1.5.1), valid for a generic analytic structure of ˜X , extends to an optimal
inequality valid for any analytic structure.

Theorem 1.5.2 Consider an arbitrary normal surface singularity (X , o), its resolution
˜X, Z ≥ E and l ′ ∈ −S ′. Then codim Im(cl

′
(Z)) = h1(Z ,Lim

gen) satisfies

codim Im(cl
′
(Z)) ≥ max

0≤Z1≤Z

{ − (l ′, Z1) − χ(Z1) + χ(E|Z1|)
}

. (1.5.3)

In particular, for any L ∈ Im(cl
′
(Z)) one also has

h1(Z ,L) ≥ h1(Z ,Lim
gen)

= codim Im(cl
′
(Z)) ≥ max

0≤Z1≤Z

{ − (l ′, Z1) − χ(Z1) + χ(E|Z1|)
}

.

The right hand side of (1.5.3) is a sharp topological lower bound for codim Im(cl
′
(Z)).

The inequality (1.5.3) can also be interpreted as the semi-continuity statement

codim Im(cl
′
(Z))(arbitrary analytic structure) ≥ codim Im(cl

′
(Z))(generic analytic structure).

1.6. Generalization Sections 7 and 8 target generalizations of the previous parts,
valid for {h1(Z ,L)}L∈Imcl′ (Z)

, to the shifted case, valid for {h1(Z ,L0⊗L)}L∈Imcl′ (Z)
,

where L0 ∈ Picl
′
0(Z) is a fixed bundle without fixed components. In order to run a

parallel theory based on Abel maps, we have to create the new Abel map cl
′
L0

(Z) :
ECal

′
(Z) → Picl

′
L0

(Z), where Picl
′
L0

(Z) is an affine space associated with the vector

space Pic0L0
(Z) � H1(Z ,L0). (Picl

′
L0

(Z) appears also as an affine quotient of the

classical Picl
′
(Z) as well.) Section 7 contains the definitions and the needed exact

sequences. Section 8 contains the extension of the two algorithms to this situation.

2 Preliminaries

2.1. Notations regarding a good resolution [14, 19–21] Let (X , o) be the germ
of a complex analytic normal surface singularity, and let us fix a good resolution
φ : ˜X → X of (X , o). Let E be the exceptional curve φ−1(0) and ∪v∈V Ev be its
irreducible decomposition. Define EI := ∑

v∈I Ev for any subset I ⊂ V .
We will assume that each Ev is rational, and the dual graph is a tree. This happens

exactly when the link M of (X , o) is a rational homology sphere.
Define the lattice L as H2(˜X , Z), it is endowed with a negative definite intersection

form ( , ). It is freely generated by the classes of {Ev}v∈V . The dual lattice is L ′ =
HomZ(L, Z) = {l ′ ∈ L ⊗ Q : (l ′, L) ∈ Z}. It is generated by the (anti)dual classes
{E∗

v }v∈V defined by (E∗
v , Ew) = −δvw (where δvw stays for the Kronecker symbol).

It is also identified with H2(˜X , Z), where the first Chern classes live.
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All the Ev-coordinates of any E∗
u are strict positive. We define the Lipman cone

as S ′ := {l ′ ∈ L ′ : (l ′, Ev) ≤ 0 for all v}. As a monoid it is generated over Z≥0 by
{E∗

v }v .
L embeds into L ′ with L ′/L � H1(M, Z), abridged by H . Each class h ∈ H =

L ′/L has a unique representative rh ∈ L ′ in the semi-open cube {∑v rvEv ∈ L ′ :
rv ∈ Q ∩ [0, 1)}, such that its class [rh] is h.

There is a natural (partial) ordering of L ′ and L: we write l ′1 ≥ l ′2 if l ′1 − l ′2 =
∑

v rvEv with all rv ≥ 0. We set L≥0 = {l ∈ L : l ≥ 0} and L>0 = L≥0 \ {0}.
The support of a cycle l = ∑

nvEv is defined as |l| = ∪nv �=0Ev .
The (anti)canonical cycle ZK ∈ L ′ is defined by the adjunction formulae

(ZK , Ev) = (Ev, Ev)+2 for all v ∈ V .Wewriteχ : L ′ → Q for the (Riemann–Roch)
expression χ(l ′) := −(l ′, l ′ − ZK )/2.

2.1.1 Natural line bundles. Let φ : (˜X , E) → (X , o) be as above. Consider the
‘exponential’ cohomology exact sequence (with H1(˜X ,O∗̃

X
) = Pic(˜X), the group of

isomorphic classes of holomorphic line bundles on ˜X , and H1(˜X ,O
˜X ) = Pic0(˜X))

0 → Pic0(˜X) −→ Pic(˜X)
c1−→ H2(˜X , Z) → 0. (2.1.2)

Here c1(L) ∈ H2(˜X , Z) = L ′ is the first Chern class of L ∈ Pic(˜X). Since the link
M is a rational homology sphere, Pic0(˜X) � H1(˜X ,O

˜X ) � C
pg , where pg is the

geometric genus. Write also Picl
′
(˜X) = c−1

1 (l ′). Furthermore, see e.g. [20, 23], there
exists a unique homomorphism (split) s1 : L ′ → Pic(˜X) of c1, that is c1 ◦ s1 = id,
such that s1 restricted to L is l �→ O

˜X (l). The line bundles s1(l ′) are called natural
line bundles of ˜X . For several definitions of them see [20]. E.g., L is natural if and
only if one of its power has the form O

˜X (l) for some integral cycle l ∈ L supported
on E . In order to have a uniform notation we write O

˜X (l ′) for s1(l ′) for any l ′ ∈ L ′.
For any Z ≥ E letOZ (l ′) be the restriction of the natural line bundleO

˜X (l ′) to Z . In
fact,OZ (l ′) can be defined in an identical way asO

˜X (l ′) starting from the exponential
cohomological sequence 0 → Pic0(Z) → Pic(Z) → H2(˜X , Z) → 0 as well. Set
also Picl

′
(Z) = c−1

1,Z (l ′).

2.2. The Abel map [14] For any Z ≥ E let ECa(Z) be the space of (analytic)
effective Cartier divisors on Z . Their supports are zero-dimensional in E . Taking the
line bundle of a Cartier divisor provides the Abel map c = c(Z) : ECa(Z) → Pic(Z).
Let ECal

′
(Z) be the set of effective Cartier divisors with Chern class l ′ ∈ L ′, i.e.

ECal
′
(Z) := c−1(Picl

′
(Z)). The restriction of c is denoted by cl

′ : ECal
′
(Z) →

Picl
′
(Z).

A line bundleL ∈ Picl
′
(Z) is in the image im(cl

′
) if and only if it has a section with-

out fixed components, that is, if H0(Z ,L)reg �= ∅, where H0(Z ,L)reg := H0(Z ,L)\
∪vH0(Z − Ev,L(−Ev)). By this definition (see (3.1.5) of [14]) ECal

′
(Z) �= ∅ if and

only if −l ′ ∈ S ′ \ {0}. It is advantageous to have a similar statement for l ′ = 0 too,
hence we redefine ECa0(Z) as {∅}, a set/space with one element (the empty divisor),
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and c0 : ECa0(Z) → Pic0(Z) by c0(∅) = OZ . In particular,

H0(Z ,L)reg �= ∅ ⇔ L = OZ ⇔ L ∈ im(c0) whenever c1(L) = 0.

(2.2.1)

Hence, the extended statement valid for any l ′ is:

ECal
′
(Z) �= ∅ ⇔ −l ′ ∈ S ′. (2.2.2)

Sometimes even for L ∈ Picl
′
(˜X) we write L ∈ Im(cl

′
) whenever L|Z ∈ Im(cl

′
(Z))

for some Z � 0. This happens if and only if L ∈ Pic(˜X) has no fixed components.
It turns out that ECal

′
(Z) (−l ′ ∈ S ′) is a smooth complex algebraic variety of

dimension (l ′, Z) and the Abel map is an algebraic regular map. For more properties
and applications see [14, 15].

2.2.3. The modified Abel map. Multiplication by OZ (−l ′) gives an isomorphism of
the affine spaces Picl

′
(Z) → Pic0(Z). Furthermore, we identify (via the exponential

exact sequence) Pic0(Z) with the vector space H1(Z ,OZ ).
It is convenient to replace the Abel map cl

′
with the composition

c̃l
′ : ECal ′(Z)

cl
′

−→ Picl
′
(Z)

OZ (−l ′)−→ Pic0(Z)
�−→ H1(OZ ).

The advantage of this new set of maps is that all the images sit in the same vector
space H1(OZ ).

Consider the natural additive structure sl
′
1,l

′
2(Z) : ECal

′
1(Z) × ECal

′
2(Z) →

ECal
′
1+l ′2(Z) (l ′1, l ′2 ∈ −S ′) provided by the sum of the divisors. One verifies (see

e.g. [14, Lemma 6.1.1]) that sl
′
1,l

′
2(Z) is dominant and quasi-finite. There is a parallel

multiplication Picl
′
1(Z) × Picl

′
2(Z) → Picl

′
1+l ′2(Z), (L1,L2) �→ L1 ⊗ L2, which

satisfies cl
′
1+l ′2 ◦ sl

′
1,l

′
2 = cl

′
1 ⊗ cl

′
2 in Picl

′
1+l ′2 . This, in the modified case, using

OZ (l ′1 + l ′2) = OZ (l ′1) ⊗ OZ (l ′2), reads as c̃l
′
1+l ′2 ◦ sl

′
1,l

′
2 = c̃l

′
1 + c̃l

′
2 in H1(OZ ).

Definition 2.2.4 For any l ′ ∈ −S ′ let AZ (l ′) be the smallest dimensional affine sub-
space of H1(OZ ) which contains Im(̃cl

′
). Let VZ (l ′), be the parallel vector subspace

of H1(OZ ), the translation of AZ (l ′) to the origin.
For any I ⊂ V , I �= ∅, let (XI , oI ) be the multigerm ˜X/∪v∈I Ev at its distinguished

points, obtained by contracting the connected components of ∪v∈I Ev in ˜X . If I = ∅
then by convention (XI , oI ) is a smooth germ.

Theorem 2.2.5 [14, Prop. 5.6.1, Lemma 6.1.6 and Th. 6.1.9] Assume that Z ≥ E.

(a) For any −l ′ = ∑

v avE∗
v ∈ S ′ let the E∗-support of l ′ be I (l ′) := {v : av �= 0}.

Then VZ (l ′) depends only on I (l ′). (This motivates to write VZ (l ′) as VZ (I ) where
I = I (l ′).)

(b) VZ (I1 ∪ I2) = VZ (I1)+VZ (I2) and AZ (l ′1 + l ′2) = AZ (l ′1)+ AZ (l ′2) = {a1 +a2 :
ai ∈ AZ (l ′i ) ⊂ H1(OZ ), i = 1, 2} (and a1 + a2 is the sum in H1(OZ )).

(c) dim VZ (I ) = h1(OZ ) − h1(OZ |V\I ).
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(d) IfLim
gen is a generic bundle of Im(cl

′
) then h1(Z ,Lim

gen) = h1(OZ )−dim(Im(cl
′
)).

(e) For n � 1 one has Im(̃cnl
′
) = AZ (nl ′), and h1(Z ,L) = h1(OZ ) − dim VZ (I ) =

h1(OZ |V\I ) for any L ∈ Im(cnl
′
).

For different geometric reinterpretations of dim VZ (I ) see also [14, §9].

2.3Theorem 4.1.1 of [14] says that cl
′
(Z) is dominant if and only if χ(−l ′) < χ(−l ′+

l) for any 0 < l ≤ Z . In particular, the dominance of cl
′
(Z) is a topological property.

If cl
′
(Z) is dominant then cl

′
(Z ′) is dominant for any 0 < Z ′ ≤ Z .

2.4. Review of Laufer duality [8], [10, p. 1281] Following Laufer, we identify the
dual space H1(˜X ,O

˜X )∗ with the space of global holomorphic 2-forms on ˜X \ E up
to the subspace of those forms which can be extended holomorphically over ˜X .

For this, use first Serre duality H1(˜X ,O
˜X )∗ � H1

c (˜X ,�2
˜X
). Then, in the next exact

sequence

0 → H0
c (˜X , �2

˜X
) → H0(˜X , �2

˜X
) → H0(˜X \ E, �2

˜X
) → H1

c (˜X , �2
˜X
) → H1(˜X , �2

˜X
)

H0
c (˜X ,�2

˜X
) = H2(˜X ,O

˜X )∗ = 0 by dimension argument, while H1(˜X ,�2
˜X
) = 0 by

the Grauert–Riemenschneider vanishing. Hence,

H1(˜X ,O
˜X )∗ � H1

c (˜X ,�2
˜X
) � H0(˜X \ E,�2

˜X
)/H0(˜X ,�2

˜X
). (2.4.1)

2.4.2. Above H0(˜X \ E,�2
˜X
) can be replaced by H0(˜X ,�2

˜X
(Z)) for a large cycle Z

(e.g. for Z ≥ 
ZK �). Indeed, for any cycle Z > 0 from the exacts sequence of sheaves
0 → �2

˜X
→ �2

˜X
(Z) → OZ (Z + K

˜X ) → 0 and from the vanishing h1(�2
˜X
) = 0 and

Serre duality one has

H0(�2
˜X
(Z))/H0(�2

˜X
) = H0(OZ (Z + K

˜X )) � H1(OZ )∗. (2.4.3)

Since H1(OZ ) � H1(O
˜X ) for Z ≥ 
ZK �, the natural inclusion

H0(�2
˜X
(Z))/H0(�2

˜X
) ↪→ H0(˜X \ E,�2

˜X
)/H0(�2

˜X
) (2.4.4)

is an isomorphism.
This pairing reduces to a perfect pairing at the level of an arbitrary Z > 0,

cf. [14, 7.4]. Indeed, consider the above perfect pairing 〈·, ·〉 : H1(˜X ,O
˜X ) ⊗

H0(˜X \ E,�2
˜X
)/H0(�2

˜X
) → C given via integration of class representatives.

In H1(˜X ,O
˜X ) let A be the image of H1(˜X ,O

˜X (−Z)), hence H1(˜X ,O
˜X )/A =

H1(OZ ). On the other hand, in H0(˜X \ E,�2
˜X
)/H0(�2

˜X
) consider the subspace

B := H0(�2
˜X
(Z))/H0(�2

˜X
) of dimension h1(OZ ) (cf. (2.4.3)). Since 〈A, B〉 = 0, the

pairing factorizes to a perfect pairing H1(OZ ) ⊗ H0(�2
˜X
(Z))/H0(�2

˜X
) → C. It can

be described by the very same integral form of the corresponding class representatives.

2.4.5. The linear subspace arrangement {VZ (I )}I ⊂ H1(OZ ) and differential
forms. The arrangement {VZ (I )}I transforms into a linear subspace arrange-
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ment of H0(�2
˜X
(Z))/H0(�2

˜X
) via the (Laufer) non-degenerate pairing H1(OZ ) ⊗

H0(�2
˜X
(Z))/H0(�2

˜X
) → C as follows. Let �Z (I ) be the subspace H0(�2

˜X
(Z |V\I ))

/H0(�2
˜X
) in H0(�2

˜X
(Z))/H0(�2

˜X
), that is, the subspace generated by those forms

which have no poles along generic points of any Ev , v ∈ I . .

Proposition 2.4.6 [14, 8.3] Via Laufer duality VZ (I ) = �Z (I )⊥ = {x :
〈x,�Z (I )〉 = 0} for Z ≥ E.

2.4.7. Furthermore, for any l ′ ∈ −S ′ \ {0} consider a divisor D ∈ ECal
′
(Z), which is a

union of (l ′, E) disjoint divisors {Di }i , each of themOZ -reduction of reduced divisors
{˜Di }i of ˜X intersecting E transversally. Set ˜D = ∪i ˜Di and L := c̃l

′
(D) ∈ H1(OZ ).

Write also Z = ∑

v∈V rvEv .
We introduce a subsheaf �2

˜X
(Z)regRes˜D of �2

˜X
(Z) consisting of those forms ω

which have the property that the residue Res
˜Di

(ω) has no poles along ˜Di for all
i . This means that the restrictions of �2

˜X
(Z)regRes˜D and �2

˜X
(Z) on the complement

of the support of ˜D coincide, however along ˜D one has the following local picture.
Introduce near p = E∩ ˜Di = Evi ∩ ˜Di local coordinates (u, v) such that {u = 0} = E
and ˜Di has local equation v. Then a local section of �2

˜X
(Z) in this system has the

form ω = ∑

k≥−rvi , j≥0 ak, j u
kv j du ∧ dv. Then, by definition, the residue Res

˜Di
(ω)

is (ω/dv)|v=0 = ∑

k ak,0u
kdu, hence the pole-vanishing reads as ak,0 = 0 for all

k < 0. Note that �2
˜X
(Z − ˜D) and the sheaf of regular forms �2

˜X
are subsheaves of

�2
˜X
(Z)regRes˜D .

Set �Z (D) := H0(˜X ,�2
˜X
(Z)regRes˜D )/H0(˜X ,�2

˜X
). This can be regarded as a sub-

space of H1(OZ )∗ = H0(˜X ,�2
˜X
(Z))/H0(˜X ,�2

˜X
).

Theorem 2.4.8 [14, Th. 10.1.1] In the above situation one has the following facts.

(a) The sheaves �2
˜X
(Z)regRes˜D/�2

˜X
and OZ (K

˜X + Z − D) are isomorphic.

(b) H1(Z ,L)∗ � �Z (D).
(c) The image (TDc̃)(TDECal

′
(Z)) of the tangent map at D of c̃ : ECal

′
(Z) →

H1(OZ ) is the intersection of kernels of linear maps TLω : TLH1(OZ ) → C,
where ω ∈ H0(˜X ,�2

˜X
(Z)regRes˜D ).

If I is the E∗-support of l ′ (that is, ˜D intersects E exactly along ∪v∈I Ev), then
�Z (I ) ⊂ �Z (D) ⊂ H1(OZ )∗. Dually, via Proposition 2.4.6 and Theorem 2.4.8(c)
(and up to a linear translation of Im(TDc̃))

(TDc̃)(TDECa
l ′(Z)) = �Z (D)⊥ ⊂ �Z (I )⊥ = VZ (I ) ⊂ H1(OZ ). (2.4.9)

Let us fix a point p ∈ E and a local coordinate system (u, v) around p such that
E = {u = 0}, cf. 2. Fix also some ω ∈ H0(˜X ,�2

˜X
(Z)) which has pole of order

o > 0 at the exceptional divisor in E containing p. We say that (the divisor of) ω

has no support point at p if it can be represented locally as (ϕ(u, v)/uo)du ∧ dv with
ϕ holomorphic and ϕ(0, 0) �= 0. The other points are the support points denoted by
supp(ω).
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Lemma 2.4.10 Fix ω ∈ H0(˜X ,�2
˜X
(Z)) such that there exists a point p ∈ Ev , a local

divisor ˜D1 in ˜X with the following properties:

(a) ˜D1 is part of certain ˜D = ˜D1 + ˜D2, such that ˜D1 ∩ E = ˜D1 ∩ Ev = p /∈
˜D2 ∪ supp(ω), and

(b) ˜D is a lift of D ∈ ECal
′
(Z), and the class of ω in H0(˜X ,�2

˜X
(Z))/H0(˜X ,�2

˜X
)

restricted on ImTDc̃l
′
(Z) is zero.

Then ω has no pole along Ev .

Proof Assume that ω has a pole of order o > 0 along Ev . Fix some local coordinated
(u, v) at p := ˜D1 ∩ Ev such that ω locally is du ∧ dv/uo and ˜D1 is {g(u, v) = 0}. A
deformation gt (u, v) of g produces a tangent vector in TDECal

′
(Z) and the action of

ω on it is given by (for details see [14, 7.2])

d

dt

∣

∣

∣

t=0

∫

|u|=ε, |v|=ε

log
gt (u, v)

g(u, v)
· du ∧ dv

uo
. (2.4.11)

Hence if we realize a deformation gt for which the expression from (2.4.11) is non-
zero, we get a contradiction. Note that g necessarily has the form cvk +∑

n>k cnv
n +

uh(u, v) = cvk+h′ for some k ≥ 1, cn ∈ C and c ∈ C
∗. Then set gt = c(v−tuo−1)k+

h′. Then the t-coefficient of the integrant is kdu∧dv
uv

· (1 − h′
cvk

+ ( h′
cvk

)2 − · · · ), hence
(2.4.11) is non-zero. ��
Definition 2.4.12 Additionally to the linear subspace arrangement {�Z (I )}I ⊂
H0(�2

˜X
(Z))/H0(�2

˜X
) � H1(OZ )∗ we consider a more subtle object, a filtration

indexed by l ∈ L , 0 ≤ l ≤ Z as well, called the multivariable divisorial fil-
tration of forms. Indeed, for any such l we define Gl := H0(�2

˜X
(l))/H0(�2

˜X
) ⊂

H0(�2
˜X
(Z))/H0(�2

˜X
), equivalent to H1(Ol)

∗ ↪→ H1(OZ )∗, dual to the natural epi-

morphisms H1(OZ ) � H1(Ol). In particular, Gl � H1(Ol)
∗. The subspace Gl is

generated by forms with pole ≤ l. In particular, G0 = 0, GZ is the total vector space,
Gl1 ⊂ Gl2 whenever l1 ≤ l2, and Gl1 ∩ Gl2 = Gmin{l1,l2}.

Note that if l = ∑

v /∈I rvEv and all rv � 0 then Gmin(l,Z) = �Z (I ).

3 The first algorithm for the computation of dim Im(cl
′
(Z))

3.1. We fix Z ≥ E and l ′ ∈ −S ′ as above.
Definition 3.1.1 For any l ′ ∈ −S ′ with E∗-support I (∅ ⊂ I ⊂ V)we set the following
notations: eZ (l ′) = eZ (I ) := dim VZ (l ′) = dim VZ (I ) and dZ (l ′) := dim Im(cl

′
(Z)).

From definitions and Theorem 2.2.5 and Proposition 2.4.6 (see also 2.4.9) we obtain

(i) dZ (l ′) ≤ eZ (l ′)
(i i) eZ (I ) = h1(OZ ) − h1(OZ |V\I ) = h1(OZ ) − dim�Z (I ).

(3.1.2)

Usually dZ (l ′) �= eZ (l ′). The next lemma provides a criterion for the validity of the
equality dZ (l ′) = eZ (l ′).
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Lemma 3.1.3 Let l ′ ∈ −S′ with E∗-support I and Z ≥ E. Assume that L is a regular
value of c̃l

′
in Im(̃cl

′
) such that for any ω ∈ H0(˜X ,�2

˜X
(Z)) there exists a section

s ∈ H0(L)reg such that div(s) ∩ supp(ω) = ∅. (This is guaranteed e.g. if the bundle
L has no base points.) Then TL(Imc̃l

′
) = AZ (l ′), hence dZ (l ′) = eZ (l ′).

Proof Since L is a regular value, L is a smooth point of Im(̃cl
′
) and TLIm(̃cl

′
) =

Im(TDc̃l
′
) for any D ∈ (̃cl

′
)−1(L) (cf. [14, 3.3.2]).We have to prove that TLIm(̃cl

′
) =

AZ (l ′) (as affine subspaces); we prove the dual identity in the space of forms, namely,
(TLIm(̃cl

′
)⊥ = �Z (I ) (up to a linear translation, see (2.4.9)).

Assume the contrary, that is, (TLIm(̃cl
′
))⊥ �= �Z (I ). Since�Z (I ) ⊂ (TLIm(̃cl

′
))⊥

(the duality integral on �Z (I ) × TLIm(̃cl
′
) is zero, cf. [14, 7.2] or (2.4.9)) we get,

that there is a form ω ∈ (TLIm(̃cl
′
))⊥ \ �Z (I ).

Next choose D ∈ (̃cl
′
)−1(L) such that its lift ˜D satisfies ˜D ∩ supp(ω) = ∅. But

ω ∈ (TLIm(̃cl
′
))⊥ = (Im(TDc̃l

′
))⊥ and ω /∈ �Z (I ) contradict Lemma 2.4.10. ��

In this section we provide an algorithm, valid for any analytic structure, which
determines dZ (l ′) in terms of a finite collection of invariants of type eZ (l ′), associated
with a finite sequence of resolutions obtained via certain extra blowing ups from ˜X .

3.2. Preparation for the algorithm Fix some resolution ˜X of (X , o) and −l ′ =
∑

v∈V avE∗
v ∈ S ′\{0} (hence eachav ∈ Z≥0). In thenext constructionwewill consider

a finite sequence of blowing ups starting from ˜X . In order to find a bound for the number
of blowing ups recall that for any representative ω in H0(˜X \ E,�2

˜X
)/H0(˜X ,�2

˜X
)

the order of pole of ω along some Ev is less than or equal to the Ev-multiplicity mv

of max{0, 
ZK �} (see e.g. [14, 7.1.3] or 2 here). Then, for every v ∈ V with av > 0
we fix av generic points on Ev , say pv,kv , 1 ≤ kv ≤ av . Starting from each pv,kv

we consider a sequence of blowing ups of length mv: first we blow up pv,kv and we
create the exceptional curve Fv,kv,1, then we blow up a generic point of Fv,kv,1 and
we create Fv,kv,2, and we do this all together mv times. We proceed in this way with
all points pv,kv , hence we get

∑

v av chains of modifications. If avmv = 0 we do no
modification along Ev . A set of integers s = {sv,kv }v∈V, 1≤kv≤av

with 0 ≤ sv,k ≤ mv

provides an intermediate step of the tower: in the (v, kv) tower we do exactly sv,kv

blowing ups; sv,kv = 0 means that we do not blow up pv,kv at all. (In the sequel,
in order to avoid aggregation of indices, we simplify kv into k.) Let us denote this
modification by πs : ˜Xs → ˜X . In ˜Xs we find the exceptional curves

(
⋃

v∈V
Ev

) ∪
⋃

v,k

⋃

1≤t≤sv,k

Fv,k,t .

We index the set of vertices as

Vs := V ∪
⋃

v,k

⋃

1≤t≤sv,k

{wv,k,t }.

At each level s we set the next objects: Zs := π∗
s (Z), Is := ∪v,k{wv,k,sv,k }, −l ′s :=

∑

v,k F
∗
v,k,sv,k

(in L ′
s, where Fv,k,0 = Ev), ds := dim Imcl

′
s(Zs)
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and es := eZz(Is) (both considered in ˜Xs).
By similar argument as in (3.1.2) one has again ds ≤ es for any s.
From definitions, for s = 0 one has I0 = |l ′|, e0 = eZ (l ′) and d0 = dZ (l ′).
There is a natural partial ordering on the set of s-tuples. Some of the above invariants

are constant with respect to s, some of them are only monotonous. E.g., by Leray
spectral sequence one has h1(OZs) = h1(OZ ) for all s. One the other hand,

if s1 ≤ s2 then es1 = h1(OZs1
) − dim�Zs1

(Is1) ≥ h1(OZs2
) − dim�Zs2

(Is2) = es2
(3.2.1)

because �Zs1
(Is1) ⊂ �Zs2

(Is2). In fact, for any ω, the pole-order along Fv,k,sv,k+1
of its pullback is one less than the pole-order of ω along Fv,k,sv,k . Hence, for s = m
(that is, when sv,k = mv for all v and k, hence all the possible pole-orders along Im
automatically vanish) one has �Zm(Im) = H0(˜Xm,�2

˜Xm
(Zm))/H0(�2

˜Xm
). Hence

em = 0. In particular, necessarily dm = 0 too.
More generally, for any s and (v, k) let sv,k denote the tuple which is obtained from

s by increasing sv,k by one. By the above discussion if no form has pole along Fv,k,s
then �Zs(Is) = �Zsv,k (Isv,k ), hence es = esv,k . Furthermore, by Laufer duality (or,
integral presentation of the Abel map as in [14, §7]), under such condition ds = dsv,k

as well.
Therefore, we can redefine es and ds for tuples s = {sv,k}v,k even for arbitrary

sv,k ≥ 0: es = emin{s,m} and ds = dmin{s,m} (and these values agree with the ones
which might be obtained by the first original construction applied for larger chains of
blow ups).

The next theorem relates the invariants {ds}s and {es}s.
Theorem 3.2.2 (First algorithm) With the above notations the following facts hold.

(1) ds − dsv,k ∈ {0, 1}.
(2) If for some fixed s the numbers {dsv,k }v,k are not the same, then ds = maxv,k{ dsv,k }.

In the case when all the numbers {dsv,k }v,k are the same, then if this common value
dsv,k equals es, then ds = es = dsv,k ; otherwise ds = dsv,k + 1.

The proof of Theorem 3.2.2 together with the proof of Theorem 4.1.2 (the ‘Second
algorithm’) from the next section will be given in a more general context in section 8.

3.2.3 Theorem 3.2.2 is suitable to run a decreasing induction over the entries of s
in order to determine {ds}s from {es}s. In fact we can obtain even a closed-form
expression.

Corollary 3.2.4 With the notations of Theorem 3.2.2 one has ds = mins≤̃s≤m{|̃s− s|+
ẽs} for any 0 ≤ s ≤ m. (Here |s| = ∑

v,k sv,kv .) In particular,

dZ (l ′) = d0 = min
0≤s≤m

{|s| + es}.

(By the end of 3.2 one also has mins≤̃s≤m{|̃s − s| + ẽs} = mins≤̃s{|̃s − s| + ẽs} and
min0≤s≤m{|s| + es} = min0≤s{|s| + es}.)
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Proof By Theorem 3.2.2(1) for any s̃ ≥ s one has ds − d̃s ≤ |̃s − s|, and by (3.1.2)
d̃s ≤ ẽs. These two imply ds ≤ |̃s − s| + ẽs, hence ds ≤ mins≤̃s≤m{|̃s − s| + ẽs}.
Next we show that ds in fact equals |̃s − s| + ẽs for some s̃. The wished s̃ is the
last term of the sequence {si }ti=0 constructed as follows. Set s0 := s. Then, assume
that si is already constructed, and that there exists (v, k) such that dsi = d(si )v,k + 1.
Then set si+1 := (si )v,k (for one of the choices of such possible (v, k)). This inductive
construction will stop after finitely many steps (since each ds ≥ 0). But if dst = d(st )v,k

for all (v, k), then by 3.2.2(2) dst = est . Hence est = dst = ds − |st − s|. ��

4 The second algorithm for the computation of dim Im(cl
′
(Z))

4.1. Preparation The algorithm from the previous section determines the dimensions
of the Abel maps dZ (l ′) in terms of a finite collection of invariants of type eZ (l ′)
associated with a finite sequence of resolutions obtained via certain extra blowing ups
from ˜X . Though, in principle, eZ (l ′) is much simpler than dZ (l ′) (it is the ‘stabilizer’
of dZ (l ′)), the algorithm is still slightly cumbersome, it is more theoretical, it is not
easy to apply in concrete examples: one needs to know all the integers {es}s, that is, cf.
Proposition 2.2.5, all the integers {h1(OZs|Vs\Is }s associated with the tower of blowing
ups. (However, it is a necessary intermediate step in the proof of the new algorithm).

The new algorithm is considerably simpler, e.g. it can be formulated in terms of
the resolution ˜X (see also the comments below). It provides dZ (l ′) in terms of the
filtration {Gl}l of 2-forms.

As a starting point, consider the construction from 3. For any s define the cycle
ls ∈ L of ˜X by

ls := min
{

∑

v∈V
min

1≤kv≤av

{sv,kv }Ev, Z
}

∈ L.

Set Gs := Gls and gs := dim Gs as well. Note that (via pullback) there is an inclusion
Gs ⊂ �Zs(Is). Indeed, if the pole order of certain ω along Ev is ≤ sv,kv then its
pullback along Fv,kv,sv,kv

has no pole. Hence gs ≤ dim�Zs(Is) = h1(OZ ) − es too
(cf. (3.1.2)). In particular,

ds ≤ es ≤ h1(OZ ) − gs. (4.1.1)

However, in principle it can happen that for a certain ω with even higher pole than ls
its pullback is in �Zs(Is). E.g., if ω in some local coordinates (u, v) of an open set
U is vdu ∧ dv/uo (and U ∩ E = {u = 0}) then its pullback via blowing up (once)
at u = v = 0 has pole order o − 2. This phenomenon can happen even if we blow
up a generic point: imagine a family of forms ωt with ‘moving divisor’, parametrized
by t given by (v − t)du ∧ dv/uo. Then, even if we blow up E at a generic point
u = v − t0 = 0, in the family {ωt }t there is a form ωt0 whose pole along Ev is o
while its pullback has pole o − 2. Hence the equality of subspaces Gs ⊂ �Zs(Is), or
the equality es = h1(OZ ) − gs is subtle and it is hard to test.
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Note also that the invariant h1(OZ ) − gs conceptually (and technically) is much
simpler than es. E.g., it depends only on v �→ minkv≤av {sv,kv }, and it can be described
via a cycle of ˜X (namely ls) instead of the geometry of the tower ˜Xs. Nevertheless, via
the next theorem, it still contains sufficient information to determine ds, in particular
dZ (l ′). In order to emphasize the parallelism between the two algorithms we formulate
them in a completely symmetric way (in particular, the first parts are completely
identical).

Theorem 4.1.2 (Second algorithm)With the above notations the following facts hold.

(1) ds − dsv,k ∈ {0, 1}.
(2) If for some fixed s the numbers {dsv,k }v,k are not the same, then ds = maxv,k{ dsv,k }.

In the case when all the numbers {dsv,k }v,k are the same, then if this common value
dsv,k equals h1(OZ )−gs, then ds = h1(OZ )−gs = dsv,k ; otherwise ds = dsv,k +1.

For the proof see Sect. 8.

Corollary 4.1.3 With the notations of 4 and of Theorem 4.1.2, for l ′ ∈ −S′ and Z ≥ E
one has

dZ (l ′) = min
s

{ |s| + h1(OZ ) − gs }. (4.1.4)

The proof runs similarly as the proof of Corollary 3.2.4.
The formula (4.1.4) can be rewritten in a different flavour.

Corollary 4.1.5 For l ′ ∈ −S′ and Z ≥ E one has

dZ (l ′) = min
0≤Z1≤Z

{ (l ′, Z1) + h1(OZ ) − h1(OZ1) }. (4.1.6)

Proof From 2.4.12 gs = dim Gs = h1(Ols) and also |s| ≥ ∑

v av(ls)v = (l ′, ls), and
0 ≤ ls ≤ Z , hence mins{ |s| + h1(OZ ) − gs } ≥ min0≤Z1≤Z { (l ′, Z1) + h1(OZ ) −
h1(OZ1) }. The opposite inequality is also true since any such Z1 can be represented
as a certain ls with |s| = (l ′, ls). ��
Example 4.1.7 (1) (cl

′
(Z) constant) For any 0 ≤ Z1 ≤ Z one has (l ′, Z1) ≥ 0 and

h1(OZ ) ≥ h1(OZ1), hence dZ (l ′) = 0 happens exactly when there exists Z1 with
(l ′, Z1) + h1(OZ ) − h1(OZ1) = 0, or, (l ′, Z1) = 0 and h1(OZ ) = h1(OZ1). This
means that Z1 ≤ Z |V\I , where I is the E∗-support of l ′, a fact which (together with
h1(OZ ) = h1(OZ1)) implies h1(OZ ) = h1(OZ |V\I ) too. Hence, dZ (l ′) = 0 if and
only if h1(OZ ) = h1(OZ |V\I ). This is exactly the statement of [14, 6.3(v)].

(2) cl
′
(Z) is dominant if and only if dZ (l ′) = h1(OZ ), hence, via (4.1.6), if and

only if h1(OZ1) ≤ (l ′, Z1) for any 0 ≤ Z1 ≤ Z . This can be seen in a different
way as follows. First, if cl

′
(Z) is dominant, then, for any 0 < Z1 ≤ Z , cl

′
(Z1)

is dominant too, hence (l ′, Z1) = dim(ECal
′
(Z1)) ≥ dim(H1(OZ1)). Conversely,

if (l ′, Z1) ≥ h1(OZ1) and Z1 > 0 then (l ′, Z1) − h1(OZ1) > −h0(OZ1), that is,
χ(−l ′) < χ(−l ′ + Z1), hence cl

′
(Z) is dominant by [14, Thm. 4.1.1], cf. 2 here.

Note that the characterization 2 for dominant property is topological.
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(3) By (4.1.6) Im(cl
′
(Z)) is a hypersurface if and only if min0≤Z1≤Z {(l ′, Z1) −

h1(OZ1)} = −1. Since h0(OZ1) ≥ 1, this implies thatχ(−l ′) = min0≤l≤Z χ(−l ′+l).
The converse statement is not true: take e.g. a Gorenstein elliptic singularity with

length of elliptic sequence m + 1. (For elliptic singularities consult [16–18]. For more
on the Abel map of elliptic singularities see [16].) Set Z � 0 and −l ′ = Zmin ,
the fundamental (minimal) cycle. Then Im(cl

′
(Z)) = 1 and h1(Z) = pg = m + 1.

However, χ(Zmin) = min0≤l≤Z χ(Zmin + l) = 0. Therefore, if m = 1 then Im(cl
′
)

is a hypersurface, but for m ≥ 2 it is not. It is instructive to consider with the same
topological data (elliptic numerically Gorenstein singularity with m ≥ 1, Z � 0,
−l ′ = Zmin) the generic analytic structure. Then pg = 1 (cf. [10, 15]) but Im(cl

′
(Z))

is a point (this follows from part (1) too). Hence Im(cl
′
(Z)) is a hypersurface for any

m ≥ 1. In particular, the property that Im(cl
′
(Z)) is a hypersurface is not a topological

property.

Example 4.1.8 (Superisolated singularities) Assume that (X , o) is a hypersurface
superisolated singularity associated with an irreducible projective curve whose link is
a rational homology sphere. More precisely, (X , o) = {F(x1, x2, x3) = 0}, where the
homogeneous terms Fi of F are as follows: {Fd = 0} defines an irreducible rational
cuspidal curve in CP

2 and {Fd+1 = 0} ∩ Sing{Fd = 0} is empty in CP
2. (For details

see [11, 12, 14].) Consider the minimal good resolution and let E0 be the irreducible
exceptional curve corresponding to C (the exceptional curve of the first blow up of
the maximal ideal). Assume that l ′ = −kE∗

0 for some k ≥ 1 and Z ≥ ZK . For any
m = (m1,m2,m3) ∈ Z

3≥0 write |m| = ∑

i mi . Then by the discussion from [14,
11.2] one has the following facts: pg = d(d − 1)(d − 2)/6 = #{m : |m| ≤ d − 3},
this is exactly the cardinality of the set of forms of type xmω, whereω is the Gorenstein
form. The pole order of ω along E0 is d − 2, and the vanishing order of xm along E0
is |m|. The classes of the forms {xmω}m constitute a basis in H0(�2

˜X
(Z))/H0(�2

˜X
).

Hence, for 0 ≤ s ≤ d − 2 one has gs = dim GsE0 = #{m : d − 2− s ≤ |m| ≤ d − 3}
and h1(OZ ) − gs = (d−s

3

)

. In particular,

dZ (−kE∗
0 ) = min

0≤s≤d−2
{ks + (d−s

3

)}.

In [14, 11.2] dZ (−kE∗
0 )was computed in a different way as

∑d−3
j=0 min{k, ( j+2

2

)}. The
identification of the two numerical answers is left to the reader. (Use

∑t
j=0

( j+2
2

) =
(t+3

3

)

.)

Example 4.1.9 For weighted homogeneous germs (and l ′ = −kE∗
0 , where E0 is the

central vertex of the star shaped graph) dZ (l ′) was computed by a similar method in
[14, §12].

Remark 4.1.10 (1) In Theorems 3.2.2 and 4.1.2 (and Corollaries 3.2.4 and 4.1.3 as
well) the functions s �→ es and s �→ h1(OZ ) − gs serve as ‘test-functions’: “if this
common value dsv,k equals the test value, then ds = dsv,k , otherwise ds = dsv,k + 1”.
Via this fact in mind, the second algorithm is rather surprising: the test function for
each fixed v depends only on s �→ min0≤kv≤av sv,kv = (ls)v , hence does not depend
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on the number of integers {sv,kv }0≤kv≤av , or, on av . However, the final output, namely
ds (and the right hand side of (4.1.4) and the algorithm itself) do depend on l ′. We
encourage the reader to work out the algorithm for an example when av ≥ 2 (say, for
−l ′ = 2E∗

v ).
(2) Notice that the formulasmins(|s|+h1(Z)−gs) andmins(|s|+es) can be defined

without any restriction on the numbers gs and es, however in our case these numbers
are restricted. For example we have mins≥s1(|s|− |s1|+ h1(Z)− gs)−mins≥sv,k

1
(|s ≥

sv,k
1 | + h1(Z) − gs) ∈ {0, 1} for all v, k, s1. Or, gs ≤ |s| for all s if and only if

χ(−l ′) < χ(−l ′ + l) for all Z ≥ l > 0 (cf. Example 4.1.7(2)).
(3) (Bounds for codim Im cl

′
(Z)) In some expression the codimension of

Im(cl
′
(Z)) appears more naturally. E.g., we have the following two general state-

ments from [14, Prop. 5.6.1] (under the conditions of Corollary 4.1.5):
(a) h1(Z ,L) ≥ codim Im(cl

′
(Z)) for anyL ∈ Im(cl

′
(Z)). Equality holdswhenever

L is generic in Im(cl
′
(Z)).

(b) codim Im cl
′
(Z) ≥ χ(−l ′) − min0≤l≤Z χ(−l ′ + l), and this inequality is strict

whenever cl
′
(Z) is not dominant. (This can be compared with the discussion from

Example 4.1.7(3).)
Note that Corollary 4.1.5 reads as:

codim Im(cl
′
(Z)) = max

0≤Z1≤Z
{ h1(OZ1) − (l ′, Z1) }. (4.1.11)

4.1.12. Before we state the next theorem let us emphasise the obvious fact that for
any 0 ≤ Z1 ≤ Z the natural restriction (linear projection) r : H1(OZ ) → H1(OZ1)

is surjective, hence for any irreducible constructible subset C1 ⊂ H1(OZ1) one has
dim r−1(C1) − dimC1 = h1(OZ ) − h1(OZ1).

However, though the restriction of r to Im(cl
′
(Z)) → Im(cl

′
(Z1)) is dominant, in

general dim Im(cl
′
(Z)) can be smaller than dim r−1(Im(cl

′
(Z1))).

4.1.13. It is instructive to see that certain extremal geometric phenomenons (indexed
by effective cycles) are realized by the very same set of cycles.

Lemma 4.1.14 The following three sets of cycles coincide (for fixed Z ≥ E and
l ′ ∈ −S ′ as above):

(I) the set of cycles Z1 with 0 ≤ Z1 ≤ Z realizing the minimality in (4.1.6), that is:
dZ (l ′) = (l ′, Z1) + h1(OZ ) − h1(OZ1).

(II) the set of cycles Z1 with 0 ≤ Z1 ≤ Z such that (i) the map ECal
′
(Z) →

H1(OZ1) is birational onto its image, and (ii) the generic fibres of the restriction of
r , r im : Im(cl

′
(Z)) → Im(cl

′
(Z1)), have dimension h1(OZ ) − h1(OZ1). (That is, the

fibers of r im have maximal possible dimension.)
(III) the set of cycles Z1 with 0 ≤ Z1 ≤ Z such that for the generic element

Lim
gen ∈ Im(cl

′
(Z)) and arbitrary section s ∈ H0(Z1,Lim

gen)reg with divisor D (i)
in the (analogue of the Mittag–Lefler sequence associated with the exact sequence
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0 → OZ1

×s−→ Lim
gen → OD → 0, cf. [14, 3.2]),

0 → H0(OZ1)
×s−→ H0(Z1,Lim

gen) → C
(Z1,l ′) δ−→ H1(OZ1) → h1(Z1,Lim

gen) → 0

δ is injective, and (ii) h1(Z ,Lim
gen) = h1(Z1,Lim

gen).

Proof For (I)⇒(II) use the following. First recall that dim ECal
′
(Z ′) = (l ′, Z ′) for

any effective cycle Z ′. Next, from (4.1.6), there exists an effective cycle Z1 ≤ Z ,
such that dim Im(cl

′
(Z)) = (l ′, Z1) + h1(OZ ) − h1(OZ1). But dim(Im(cl

′
(Z1))) ≤

dim ECal
′
(Z1) = (l ′, Z1) (cf. 2) and dim(Im(cl

′
(Z))) − dim(Im(cl

′
(Z1))) ≤

h1(OZ ) − h1(OZ1). Hence, necessarily we have equalities in both these inequalities.
(I)⇐(II) is similar.

For (II)(i)⇔(III)(i) use the fact that δ is the tangent application TDImcl
′
(Z1) at D,

cf. [14, 3.2], and for (II)(ii)⇔(III)(ii) use Remark 4.1.10(3)(a). ��
4.2. Structure theorem for the Abel map The geometric interpretation from
Lemma 4.1.14(II) has the following consequence.

Theorem 4.2.1 (Structure theorem) Fix a resolution ˜X, a cycle Z ≥ E and a Chern
class l ′ ∈ −S ′ as above.

(a) There exists an effective cycle Z1 ≤ Z, such that: (i) the map ECal
′
(Z1) →

H1(Z1) is birational onto its image, and (ii) the generic fibres of the restriction of r ,
r im : Im(cl

′
(Z)) → Im(cl

′
(Z1)), have dimension h1(OZ ) − h1(OZ1). (Cf. Lemma

4.1.14(II).)
(b) In particular, for any such Z1, the space Im(cl

′
(Z)) is birationally equiva-

lent with an affine fibration with affine fibers of dimension h1(OZ ) − h1(OZ1) over
ECal

′
(Z1).

(c) The set of effective cycles Z1 with property as in (a) has a unique minimal
and a unique maximal element denoted by Cmin(Z , l ′) and Cmax (Z , l ′). Furthermore,
Cmin(Z , l ′) coincides with the cohomology cycle of the pair (Z ,Lim

gen) (the unique

minimal element of the set {0 ≤ Z1 ≤ Z : h1(Z ,Lim
gen) = h1(Z1,Lim

gen)) for the

generic Lim
gen ∈ Im(cl

′
(Z)).

Proof (a) Use Lemma 4.1.14.
(c)Assume that two cycles Z1 and Z2 satisfy (a). We claim that Z ′ := max{Z1, Z2}

satisfies too.
First, for any cycle Z ′′ with Z1 ≤ Z ′′ ≤ Z , if Z1 satisfies (a)(ii)
then Z ′′ satisfies too. This applies for Z ′ too. To prove (a)(i) for Z ′, let us denote

by ECal
′
(Z ′′)0 ⊂ ECal

′
(Z ′′) the set of divisors whose support is disjoint from the

singular points of E . If l ′ = ∑

v avE∗
v then ECal

′
(Z)0 = ∏

v ECa
avE∗

v (Z)0. Using
this fact one shows that the product ECal

′
(Z ′) → ECal

′
(Z1) × ECal

′
(Z2) of the two

restrictions ECal
′
(Z ′) → ECal

′
(Z j ) ( j = 1, 2) is birational onto its image (BioIm).

This composed with the product of the maps ECal
′
(Z1) → H1(Z1) and ECal

′
(Z2) →

H1(Z2) (both BioIm) guarantees that ECal
′
(Z ′) → H1(Z1) × H1(Z2) is BioIm too.

This map writes as the composition ECal
′
(Z ′) → H1(Z ′) → H1(Z1) × H1(Z2),
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hence the first term ECal
′
(Z ′) → H1(Z ′) should be BioIm. Hence the claim and the

existence of Cmax (Z , l ′) follows.
In order to prove the existence of Cmin(Z , l ′), first we claim that the set of cycles

Zii , which satisfy (a)(ii) has a unique minimal element Zii
min . This fact via Remark

4.1.10(3)(a) is equivalent with the existence of the (unique) cohomological cycle for
the pair (Z ,Lim

gen). This was proved in [14, 5.5], see also [25, 4.8]. Next, we claim

that the map ECal
′
(Zii

min) → H1(Zii
min) is BioIm as well. From the existence of

the cycle Cmax (·, l ′) (already proved above), applied for Zii
min , there exists a cycle

Cmax (Zii
min, l

′) ≤ Zii
min , which satisfies (a). In particular, (a)(ii) is valid for the pair

Cmax (Zii
min, l

′) ≤ Zii
min . By the definition of Z

ii
min the condition (a)(ii) is valid for the

pair Zii
min ≤ Z too. Hence, (a)(ii) is valid for the pair Cmax (Zii

min, l
′) ≤ Z as well.

Therefore, by the definition of Zii
min necessarily Cmax (Zii

min, l
′) = Zii

min , hence Zii
min

satisfies (a). ��

5 Example: The case of generic analytic structure

5.1. Let us fix the topological type of a good resolution of a normal surface singularity,
and we assume that the analytic type on ˜X is generic (in the sense of [15], see [9] as
well). Recall that in such a situation, if Z ′ = ∑

nvEv is a non-zero effective cycle,
whose support |Z ′| = ∪nv �=0Ev is connected, then by [15, Corollary 6.1.7] one has

h1(OZ ′) = 1 − min
|Z ′|≤l≤Z ′, l∈L

{χ(l)}.

Corollary 5.1.1 Assume that ˜X has a generic analytic type, Z ≥ E an integral cycle
and l ′ ∈ −S′. For any 0 ≤ Z1 ≤ Z write E|Z1| for

∑

Ev⊂|Z1| Ev . Then

dZ (l ′) = 1 − min
E≤l≤Z

{χ(l)} + min
0≤Z1≤Z

{

(l ′, Z1) + min
E|Z1|≤l≤Z1

{χ(l)} − χ(E|Z1|)
}

.

(5.1.2)

In particular, dZ (l ′) = dim(Imcl
′
(Z)) is topological.

Let us concentrate again on the codimension h1(OZ )−dZ (l ′) of Im(cl
′
(Z)) ⊂ Picl

′
(Z)

instead of the dimension. Then, (5.1.2) reads as

codim Im(cl
′
(Z)) = max

0≤Z1≤Z

{ − (l ′, Z1) − min
E|Z1|≤l≤Z1

{χ(l)} + χ(E|Z1|)
}

.

(5.1.3)

This is a rather complicated combinatorial expression in terms of the intersection
lattice L . The next lemma aims to simplify it.

Proposition 5.1.4 Consider the assumptions of Corollary 5.1.1. Let Z1 be minimal
such that themaximum in (5.1.3) is realized for it. ThenminE|Z1|≤l≤Z1 {χ(l)} = χ(Z1).
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In particular,

codim Im(cl
′
(Z)) = max

0≤Z1≤Z

{ − (l ′, Z1) − χ(Z1) + χ(E|Z1|)
}

. (5.1.5)

The maximum at the right hand side is realized e.g. for the cohomology cycle of
Lim
gen ∈ Im(cl

′
(Z)) ⊂ Picl

′
(Z). Furthermore,

h1(Z ,L) ≥ max
0≤Z1≤Z

{ − (l ′, Z1) − χ(Z1) + χ(E|Z1|)
}

(5.1.6)

for any L ∈ Im(cl
′
(Z)) and equality holds for generic Lim

gen ∈ Im(cl
′
(Z)).

Proof Assume that theminimumminE|Z1|≤l≤Z1 {χ(l)} = χ(Z1) is realized by some l1.
Then (l ′, Z1) ≥ (l ′, l1) (since l ′ ∈ −S ′), minE|Z1|≤l≤Z1{χ(l)} = minE|l1|≤l≤l1{χ(l)}
and χ(E|Z1|) = χ(E|l1|) hence −(l ′, Z1) − minE|Z1|≤l≤Z1 {χ(l)} + χ(E|Z1|) ≤
−(l ′, l1) − minE|l1|≤l≤l1 {χ(l)} + χ(E|l1|). Since the maximality in (5.1.3) is real-
ized by Z1, which is minimal with this property, necessarily Z1 = l1. Next,

max
0≤Z1≤Z

{ − (l ′, Z1) − min
E|Z1|≤l≤Z1

{χ(l)} + χ(E|Z1|)} ≥

max
0≤Z1≤Z

{ − (l ′, Z1) − χ(Z1) + χ(E|Z1|)}.

But the maximum at the left hand side is realized by a term from the right.
For the last statement use again Remark 4.1.10(3)(a). ��

5.2. The identity (5.1.5), valid for a generic analytic structure of ˜X , extends to an
optimal inequality valid for any analytic structure.

Theorem 5.2.1 Consider an arbitrary normal surface singularity (X , o), its resolu-
tion ˜X, Z ≥ E and l ′ ∈ −S ′. Then codim Im(cl

′
(Z)) = h1(Z ,Lim

gen) (cf. Remark
4.1.10(3)(a)) satisfies

codim Im(cl
′
(Z)) ≥ max

0≤Z1≤Z

{ − (l ′, Z1) − χ(Z1) + χ(E|Z1|)
}

. (5.2.2)

In particular, for any L ∈ Im(cl
′
(Z)) one also has (everything computed in ˜X)

h1(Z ,L) ≥ h1(Z ,Lim
gen)

= codim Im(cl
′
(Z)) ≥ max

0≤Z1≤Z

{ − (l ′, Z1) − χ(Z1) + χ(E|Z1|)
}

. (5.2.3)

Note that the right hand side of (5.2.2) is a sharp topological lower bound for
codim Im(cl

′
(Z)). The inequality (5.2.2) can also be interpreted as the semi-continuity

statement

codim Im(cl
′
(Z))(arbitrary analytic structure)

≥ codim Im(cl
′
(Z))(generic analytic structure).
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Proof Consider the identity (4.1.11) applied for an arbitrary ˜X and for the generic ˜X ,
denoted by ˜Xgen . Then, by semi-continuity of h1(OZ1) with respect to the analytic
structure as parameter space (see e.g. [15, 3.6]), for any fixed effective cycle Z1 >

0, h1(OZ1) computed in ˜X is greater than or equal to h1(OZ1) computed in ˜Xgen .
Therefore, by (4.1.11) one has codim Im(cl

′
(Z))(in ˜X) ≥ codim Im(cl

′
(Z))(in ˜Xgen).

Then for ˜Xgen apply (5.1.5). ��
Remark 5.2.4 Certain upper bounds for {h1(Z ,L)}L∈Picl′ (Z)

, valid for any analytic
structure, were established in [14, Prop. 5.7.1] (see alo Remark 5.3.3). However, an
optimal upper bound is not known (see [22] for a particular case). Large h1-values are
realized by special strata, their existence is extremely hard to detect.

5.3. The cohomology of Lim
gen(l) Assume that Z ≥ E , l ′ ∈ −S ′ and let Lim

gen be a

generic element of Im(cl
′
(Z)). If the analytic structure of (X , o) is generic, then by

Proposition 5.1.4 h1(Z ,Lim
gen) = tZ (l ′), where tZ (l ′) is the topological expression

from the right hand side of (5.1.5).
Our goal is to give a topological lower bound for h1(Z ,L), where L := Lim

gen(l) =
Lim
gen ⊗ O(l) ∈ Picl

′+l(Z) whenever l ∈ L>0. In this way we will control the generic

element of the ‘new’ strata O(l) ⊗ (Im(cl
′
(Z))) of Picl

′+l(Z), unreachable directly
by the previous result. Our hidden goal is to construct in this way line bundles with
‘high’ h1.

For simplicity we will assume that all the coefficients of Z are sufficiently large
(even comparedwith l, hence the coefficients of Z−l are large aswell). Themonomor-
phismof sheavesLim

gen|Z−l ↪→ Lim
gen(l)gives h

0(Z−l,Lim
gen) ≤ h0(Z ,Lim

gen(l)), hence

h1(Z − l,Lim
gen) + χ(Z − l,Lim

gen) ≤ h1(Z ,Lim
gen(l)) + χ(Z ,Lim

gen(l)).

By a computation regarding χ this transforms into

h1(Z ,Lim
gen(l)) ≥ h1(Z − l,Lim

gen) + χ(−l ′ − l) − χ(−l ′).

If ˜X is generic and Z , Z − l � 0 then h1(Z − l,Lim
gen) = tZ−l(l ′) = tZ (l ′), hence

h1(Z ,Lim
gen(l)) ≥ tZ (l ′) − χ(−l ′) + χ(−l ′ − l). (5.3.1)

E.g., with the choice l = −l ′ ∈ S ′ ∩ L>0 we get that Lim
gen(−l ′) ∈ Pic0(Z) and

h1(Z ,Lim
gen(−l ′)) ≥ tZ (l ′) − χ(−l ′). (5.3.2)

Remark 5.3.3 By [14, Prop. 5.7.1] for Z � 0, L ∈ Pic(Z) with c1(L) ∈ −S ′ one
has h1(Z ,L) ≤ pg whenever either H0(Z ,L) = 0 or L ∈ Im(cl

′
(Z)). For other

line bundles a weaker bound is established (see [loc. cit.]), which does not guarantee
h1(L) ≤ pg . However, it is not so easy to find singularities and bundles with h1(L) >
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pg in order to show that such cases indeed might appear. In the next 5.3.4 we provide
such an examples (with a recipe to find many others as well) based partly on (5.3.2).

Example 5.3.4 Assume that we can construct a nonrational resolution graph (that is
a graph, which does not satisfy Artin’s criterion of rationality) which satisfies the
following (combinatorial) properties, valid for certain Z � 0 and l ′ ∈ −S ′ ∩ L:

(a) tZ (l ′) ≥ χ(−l ′) − min
l≥0

χ(−l ′ + l) + 2, and

(b) − l ′ ≤ maxM, where M := {l ∈ L>0 : χ(l) = min χ}.
(5.3.5)

Now, if we consider the generic analytic structure supported on this topological type,

then minl≥0 χ(−l ′ + l)
(b)= min χ = 1 − pg (for the second identity use [15, Cor.

5.2.1]), hence tZ (l ′) − χ(−l ′)
(a)≥ −1+ pg + 2 = pg + 1. This combined with (5.3.2)

gives h1(Z ,Lim
gen(−l ′)) > pg .

Next we show that (5.3.5) can be realized. Consider two copies 
1 and 
2 of the
following graph

� � � � �

� �

−3 −1 −13 −1 −3

−2 −2

The wished graph 
 consists of 
1, 
2 and a new vertex v, which has two adjacent
edges connecting v to the (−13)-vertices of 
1 and 
2. Let the decoration of v be
−bv where bv � 0. One verifies that the minimal cycle is Zmin = (bv −2)E∗

v , whose
Ev-multiplicity is 1. We set −l ′ := Zmin . Since maxM ∈ San ⊂ S ′ ∩ L (cf. [15,
5.7]) we get that −l ′ = Zmin ≤ maxM. One verifies that χ(Zmin) = −3 (e.g. by
Laufer’s criterion), and also that min χ = −5 (realized e.g. for 2Zmin−Ev). Therefore
χ(−l ′)−minl≥0 χ(−l ′ + l)+2 = −3+5+2 = 4. On the other hand, the expression
(under max) in (5.1.5) for Z1 = Zmin(
1) + Zmin(
2) supported on 
 \ v is 4, hence
tZ (l ′) ≥ 4.

6 Geometrical aspects behind the lower bound Theorem 5.2.1

6.1. Let us discuss with more details the geometry behind the inequality (5.2.2). Along
the discussion we will provide a second independent proof of it and we also provide
several examples, which show its sharpness/weakness in several situations. Similar
construction (with similar philosophy) will appear in forthcoming manuscripts on the
subject as well. The construction of the present section shows also in a conceptual
way how one can produce different sharp lower bounds for sheaf cohomologies (for
another case see e.g. Sect. 7).

We provide the new proof in several steps. First, we define a topological lower
bound for codim Im(cl

′
(Z)), which (a priori) will have a more elaborated form then

the right hand side tZ (l ′) of (5.2.2). Then via several steps we will simplify it and we
show that in fact it is exactly tZ (l ′).
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Definition 6.1.1 For any Z > 0 with |Z | connected we define D(Z , l ′) as 0 if cl
′
(Z)

is dominant and 1 otherwise. (For a criterion see 2.) Furthermore, set

T (Z , l ′) := χ(−l ′) − min
0≤l≤Z ,l∈L χ(−l ′ + l) + D(Z , l ′). (6.1.2)

By [14, Theorem 5.3.1] for any singularity (X , o), any resolution ˜X , any Z > 0 and
l ′ ∈ L ′, and for Lgen generic in Picl

′
(Z) one has

h1(Z ,Lgen) = χ(−l ′) − min
0≤l≤Z ,l∈L χ(−l ′ + l). (6.1.3)

By [14, Prop. 5.6.1], see also 4.1.10(3), for any Z ≥ E and for any l ′ ∈ −S ′,
if Lim

gen is a generic element of Im(cl
′
(Z)), then h1(Z ,Lim

gen) = codim Im(cl
′
(Z))

satisfies (the semicontinuity)

h1(Z ,Lim
gen) ≥ χ(−l ′) − min

0≤l≤Z ,l∈L χ(−l ′ + l) + D(Z , l ′)

= h1(Z ,Lgen) + D(Z , l ′) = T (Z , l ′). (6.1.4)

Remark 6.1.5 Assume that Z > 0 is a nonzero cycle with connected support |Z |,
but with Z � E . Then the statements from (6.1.4) remain valid for such Z once we
replace l ′ by its restriction R(l ′), where R : L ′ → L ′(|Z |) is the natural cohomological
operator dual to the natural homological inclusion L(|Z |) ↪→ L . (For this apply the
statement for the singularity supported on |Z |.) On the other hand, for l ∈ L(|Z |)
one has χ(−R(l ′)) − χ(−R(l ′) + l) = −χ(l) − (R(l ′), l)L(|Z |) = −χ(l) − (l ′, l) =
χ(−l ′) − χ(−l ′ + l). Hence, in fact, (6.1.4) remains valid in its original form for any
such Z > 0 with |Z | connected.
Example 6.1.6 The difference h1(Z ,Lim

gen) − h1(Z ,Lgen) can be arbitrary large.
Indeed, let us start with a singularity with an arbitrary analytic structure, we fix a
resolution ˜X with dual graph 
, and we distinguish a vertex, say v0, associated with
the irreducible divisor E0. Let k (k > 0) be the number of connected components
of 
 \ v0, and we assume that each of them is non-rational. Furthermore, we choose
Z � 0, hence h1(OZ ) = pg . Let ˜X |V\v0 be a small neighbourhood of ∪v �=v0Ev , let
{˜Xi }ki=1 be its connected components, and set pg,i = h1(O

˜Xi
) for the geometric genus

of the singularities obtained from ˜Xi by collapsing its exceptional curves. Write also

 \ v0 = ∪i
i . We also assume that −l ′ = nE∗

0 with n � 0.
Since n is large, Im(̃cl

′
(Z)) = AZ (l ′), hence dZ (l ′) = eZ (l ′) = pg − ∑

i pg,i ,
cf. [14, Th. 6.1.9] or Theorem 2.2.5 here. Hence, cf. (6.1.4), codim(Imc̃l

′
(Z)) =

h1(OZ ) − dZ (l ′) = h1(Z ,Lim
gen) = ∑

i pg,i (in particular, c̃
l ′ is not dominant).

Next we compute h1(Z ,Lgen) = χ(nE∗
0 )−minl≥0 χ(nE∗

0 +l). Write l as l0E0+˜l,
where˜l is supported on ∪v �=v0Ev . Then χ(nE∗

0 ) − χ(nE∗
0 + l) = −χ(l) − nl0. If

l0 = 0 then −χ(l) = −χ(˜l), and its maximal value is M := ∑

i (−min χ(
i )). On
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the other hand, if l0 > 0 then for n > −M −min χ one has −χ(l)− l0n < M . Hence
h1(Z ,Lgen) = χ(nE∗

0 ) − minl≥0 χ(nE∗
0 + l) = ∑

i (−min χ(
i )).
Now, pg,i ≥ 1−min χ(
i ) (cf. [26] or [15]), hence h1(Z ,Lim

gen)−h1(Z ,Lgen) ≥ k.

6.1.7 We wish to estimate h1(Z ,Lim
gen). Note that the estimate given by (6.1.4), that

is, h1(Z ,Lim
gen) ≥ T (Z , l ′), sometimes is week, see the previous example. However,

surprisingly, if we replace Z by a smaller cycle Z ′ ≤ Z , then we might get a better
bound. More precisely, first note that if Lim

gen is a generic element of Im(cl
′
(Z)), and

0 < Z ′ ≤ Z , then its restriction r(Lim
gen) (via r : Picl ′(Z) → PicR(l ′)(Z ′)) is a generic

element of Im(cl
′
(Z ′)). If Z ′ has more connected components, Z ′ = ∑

i Z
′
i (where

each |Z ′
i | is connected and |Z ′

i | ∩ |Z ′
j | = ∅ for i �= j), then for each Z ′

i we can apply
(6.1.4). Therefore, we get

h1(Z ,Lim
gen) ≥ h1(Z ′, r(Lim

gen)) =
∑

i

h1(Z ′
i , r(Lim

gen)) ≥
∑

i

T (Z ′
i , l

′). (6.1.8)

Define

t(Z , l ′) := max
0<Z ′≤Z

∑

i

T (Z ′
i , l

′) = max
0<Z ′≤Z

(
∑

i

(χ(−l ′) − min
0≤li≤Z ′

i

χ(−l ′ + li ) + D(Z ′
i , l

′))
)

.

(6.1.9)

(Here there is no need to restrict l ′, cf. Remark 6.1.5.) Hence (6.1.8) reads as

h1(Z ,Lim
gen) ≥ t(Z , l ′). (6.1.10)

In this estimate the point is the following: though
∑

i (χ(−l ′) − min0≤li≤Z ′
i
χ(−l ′ +

li ) = χ(−l ′) − min0≤l≤Z ′ χ(−l ′ + l) is definitely not larger than χ(−l ′) −
min0≤l≤Z χ(−l ′ + l), the number of components of Z ′ might be large, and the sum
of the ‘non-dominant’ contribution terms

∑

i D(Z ′
i , l

′) might increase the right hand
side of (6.1.10)—compared with T (Z , l ′)—drastically.

Example 6.1.11 (Continuation of Example 6.1.6) The last computation of Exam-
ple 6.1.6 shows that the maximum of χ(nE∗

0 ) − minl≥0 χ(nE∗
0 + l) is obtained

for l0 = 0 and T (Z , l ′) = 1 + ∑

i (−min χ(
i )). Hence, taking Z ′ = ∑

i Z
′
i ,

each Z ′
i supported on 
i and large, we get that the restriction of l ′ is zero and

∑

i T (Z ′
i , l

′) = ∑

i (1 − min χ(
i )) = T (Z , l ′) + k − 1.
Summarized (also from Example 6.1.6), for any analytic type one has

∑

i pg,i =
h1(Z ,Lim

gen) ≥ t(Z , l ′) ≥ ∑

i T (Z ′
i , l

′) = ∑

i (1 − min χ(
i )). However, if ˜X is
generic then pg,i = 1 − min χ(
i ) (cf. [15]), hence, all the inequalities transform
into equalities. Hence, for generic analytic structure h1(Z ,Lim

gen) = t(Z , l ′), that is,
(6.1.10) provides the optimal sharp topological lower bound.

Note also that both t(Z , l ′) and
∑

i (1 − min χ(
i )) are topological, hence if they
agree for ˜X generic, then they are in fact equal. Since pg,i −1+min χ(
i ) for arbitrary
analytic type can be considerably large, for arbitrary analytic types the inequality
(6.1.10) can be rather week.
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6.2 Our goal is to simplify the expression (6.1.9) of t(Z , l ′).
First we analyse the set of cycles Z ′ for which the maximum in the right hand side

of (6.1.9) can be realized. E.g., if cl
′
(Z) is dominant (equivalently, t(Z , l ′) = 0, cf. 2)

then any 0 ≤ Z ′ ≤ Z realizes the maximum 0 (with all li = 0). (Indeed, use the fact
that D(Z2, l ′) ≥ D(Z1, l ′) for Z2 ≥ Z1 and |Zi | connected.)

In the next Lemmas 6.2.1 and 6.2.4 we will assume that cl
′
(Z) is not dominant.

Lemma 6.2.1 (a) Assume that Z ′ is a minimal cycle (or a cycle with minimal number
of connected components) among those cycles which realize the maximum in the right
hand side of (6.1.9). Then D(Z ′

i , l
′) = 1 for all i .

(b) If D(Z ′
i , l

′) = 1 then the minimal valuemin0≤li≤Z ′
i
χ(−l ′ + li ) can be realized

by li > 0.

Proof (a)Otherwise, cl
′
(Z ′

i ) is dominant, andby2χ(−l ′)−min0≤li≤Z ′
i
χ(−l ′+li ) = 0

(realized for li = 0). Hence T (Z ′
i , l

′) = 0, that is, the right hand side of (6.1.9) is
realized by Z ′ − Z ′

i too, contradicting the minimality of Z ′. (b) If the wished minimum

is realized by li = 0, and only by li = 0, then by 2 cl
′
(Z ′

i ) is dominant, contradicting
D(Z ′

i , l
′) = 1. ��

Example 6.2.2 Though in Example 6.1.6 we have shown that h1(Z ,Lim
gen) = t(Z , l ′)

can be much larger than T (Z , l ′) (that is, the maximizing Z ′ usually should be nec-
essarily strict smaller than Z ), in some cases Z ′ = Z still works. Indeed, we claim
that

if the E∗ –support I of l ′ is included in the set of end vertices of 
 ,

then t(Z , l ′) = T (Z , l ′).

Let Z ′ be a cycle for minimal number n of connected components {Z ′
i }ni=1 for which

the right hand side of (6.1.9) is realized.We claim that n = 1. Indeed, by Lemma 6.2.1,
each D(Z ′

i , l
′) = 1. Let li be a cycle which realizes χ(−l ′) − min0≤l≤Z ′

i
χ(−l ′ + l).

By Lemma 6.2.1 we can assume li �= 0.
If n > 1 then let Z1 and Z2 be two adjacent component, which means, that there

is a vertex u ∈ |Z ′
1| and v ∈ |Z ′

2| and a (minimal) path u1 = u, u2, . . . , ut = v,
such that u2, . . . , ut−1 /∈ |Z ′| and uk and uk+1 are neighbours in the resolution graph.
Moreover, define a new cycle by Z ′

1,new = Z ′
1 + Z ′

2 + ∑

2≤k≤t−1 Euk and Z ′
new =

Z ′
1,new + ∑

3≤i≤n Z
′
i . Similarly, let us have a minimal path between |l1| and |l2|:

vertices w1, . . . , wl , such that w1 ∈ |l1| and wl ∈ |l2|, w2, . . . , wl−1 /∈ |l1| ∪ |l2|
and wk, wk+1 are neighbours in the resolution graph. Then define l1,new = l1 + l2 +
∑

2≤k≤l−1 Ewk . The point is that the vertices w2, . . . , wl−1 are not end vertices, in
particular (l ′,

∑

2≤k≤l−1 Ewk ) = 0.
Note also that D(Z ′

1,new, l ′) = 1. Then a computation gives that

χ(−l ′) − χ(−l ′ + l1,new) + D(Z ′
1,new, l ′) ≥ T (Z1, l

′) + T (Z2, l
′), (6.2.3)

or, T (Z1,new, l ′) ≥ T (Z1, l ′) + T (Z2, l ′), contradicting the minimality of Z ′. Hence
necessarily n = 1.
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On the other hand, if Z ′ is connected, then T (Z ′, l ′) ≤ T (Z , l ′), hence the maximal
value in the right hand side of (6.1.10) is realized for Z as well (and maybe by several
other smaller cycles too; here we minimalized #|Z ′| by increasing Z ′).

The present example together with Examples 6.1.6 and 6.1.11 show that the struc-
ture of possible cycles Z ′ for which the maximality in (6.1.9) realizes can be rather
subtle.

Lemma 6.2.4 Assume that Z ′ is a minimal cycle among those cycle which realizes the
maximum in the right hand side of (6.1.9). Then the following facts hold:

(a) min0≤li≤Z ′
i
χ(−l ′ + li ) is realized by li = Z ′

i .

(b) min0≤li≤Z ′
i
χ(l) is realized by li = Z ′

i .

(c) t(Z ′, l ′) = t(Z , l ′) = ∑

i

( − (Z ′
i , l

′) − χ(Z ′
i ) + 1

)

.

Proof (a) For each Z ′
i let li be minimal non-zero cycle (cf. Lemma 6.2.1) such that

Mi := χ(−l ′)−min0≤l≤Z ′
i
χ(−l ′+l) is realized by li . Let li = ∪kli,k be its decompo-

sition into cycles with |li,k | connected and disjoint. Since Mi = −χ(li ) − (l ′, li ) ≥ 0,
there exists k such that χ(−l ′) − χ(−l ′ + li,k) = −χ(li,k) − (l ′, li,k) ≥ 0, hence by
the criterion from 2 the Abel map cl

′
(li,k) must be non-dominant. Thus (using also

D(Z ′
i , l

′) = 1 from Lemma 6.2.1(a))

∑

k

T (li,k, l
′) ≥ χ(−l ′) − χ(−l ′ + li ) + 1 = T (Z ′

i , l
′). (6.2.5)

In particular, by the minimality of Z ′
i , Z

′
i = li .

(b) By part (a) χ(Z ′
i ) + (Z ′

i , l
′) ≤ χ(li ) + (li , l ′) for any 0 ≤ li ≤ Z ′

i . But, since
l ′ ∈ −S ′, (Z ′

i , l
′) ≥ (li , l ′), hence χ(Z ′

i ) ≤ χ(li ) for any 0 ≤ li ≤ Z ′
i . Part (c) follows

from (6.1.9) and (a). ��
Recall that in 5 we defined tZ (l ′) := max0≤Z ′≤Z

{ − (l ′, Z ′) − χ(Z ′) + χ(E|Z ′|)
}

.

Corollary 6.2.6 t(Z , l ′) = tZ (l ′).

Proof If cl
′
(Z) is dominant then both sides are zero. Otherwise, by Lemma 6.2.4(c)

(with its notations) t(Z , l ′) = ∑

i

( − (Z ′
i , l

′) − χ(Z ′
i ) + 1

) ≤ tZ (l ′). On the other
hand, let us fix some Z ′ = ∪i Z ′

i for which the maximum in tZ (l ′) is realized. Then
we can assume that each cl

′
(Z ′

i ) is not dominant. Then −(Z ′
i , l

′) − χ(Z ′
i ) + 1 =

χ(−l ′) − χ(−l ′ + Z ′
i ) + 1 ≤ χ(−l ′) − min0≤li≤Z ′

i
χ(−l ′ + li ) + D(Z ′

i , l
′). Hence

tZ (l ′) ≤ t(Z , l ′) too. ��
Remark 6.2.7 The second proof of Theorem 5.2.1 follows from (6.1.10) and Coro-
lary 6.2.6.

7 TheL0-projected Abel map

In this section we introduce a new object, a modification of the Picard group Pic(Z),
which will play a key role in the cohomology computation of the shifted line bundles
of type {L0 ⊗ L}L∈Im(cl′ (Z))

.
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7.1. The L0-projected Picard group Let (X , o) be a normal surface singularity.
For simplicity we assume (as always in this manuscript) that the link is a rational
homology sphere. Let ˜X be one of its good resolutions and Z ≥ E an effective cycle.
Fix also L0 ∈ Pic(Z) such that H0(Z ,L0)reg �= ∅ (cf. 2). Choose s0 ∈ H0(Z ,L0)reg

arbitrarily, andwrite div(s0) = D0 ∈ ECal
′
0(Z), where l ′0 = c1(L0) ∈ −S ′. Motivated

by the exponential exact sequence of sheaves 0 → ZZ
i→ OZ → O∗

Z → 0, we

define L∗
0 as the cokernel of the composed map ZZ

i→ OZ
s0−→ L0, where the second

morphism is the multiplication by (restrictions of) s0. Then we have the following
commutative diagram of sheaves:

0 0
↓ ↓

0 −→ ZZ
i−→ OZ −→ O∗

Z −→ 0
↓ = ↓ s0 ↓ s∗0

0 −→ ZZ −→ L0 −→ L∗
0 −→ 0

↓ ↓
OD0 = OD0

↓ ↓
0 0

where s∗
0 is induced by s0. At cohomological level we get the (identical/renamed)

diagrams

H0(OD0) = H0(OD0) H0(OD0) = H0(OD0)

↓ δ0 ↓ δ ↓ δ0 ↓ δ

0 → H1(OZ ) → H1(O∗
Z )

c1→ L ′ → 0 0 → Pic0(Z) → Pic(Z)
c1→ L ′ → 0

↓ s0 ↓ s ↓ = ↓ s0 ↓ s ↓ =
0 → H1(L0) → H1(L∗

0)
c1→ L ′ → 0 0 → Pic0L0

(Z) → PicL0(Z)
c1→ L ′ → 0

↓ ↓ ↓ ↓
0 0 0 0

where we use the notation PicL0(Z) := H1(Z ,L∗
0)—and call it the L0–projected

Picard group—and (its linearization) Pic0L0
(Z) := H1(Z ,L0). Note that the classical

first Chern class map c1 factorizes to a well-defined map c1 : PicL0(Z) → L ′. Set also
Picl

′
L0

(Z) := c−1
1 (l ′) for any l ′ ∈ L ′; it is an affine space isomorphic to Picl

′
(Z)/Im(δ)

associated with the vector space Pic0L0
(Z) = H1(Z ,L0) = H1(OZ )/Im(δ0).

The corresponding vector spaces appear in the following exact sequences as
well. Let us take another line bundle L ∈ Picl

′
(Z) without fixed components,

s ∈ H0(Z ,L)reg and D := div(s). Then one can take the exact sequences

0 → OZ
s→ L → OD → 0 and 0 → L0

s→ L0 ⊗ L → OD → 0. They
induce (at cohomology, or ‘tangent’ vector space level) the following commutative



The dimension of the image of the Abel map associated... Page 29 of 38 58

diagram

H0(OD0) = H0(OD0)

↓ δ0 ↓
H0(OD)

δ0L→ H1(OZ )
s→ H1(L) → 0

⏐

⏐

�
=

⏐

⏐

�
s0L0

⏐

⏐

�

H0(OD)
δ̄0L→ H1(L0)

s→ H1(L0 ⊗ L) → 0
↓ ↓
0 0

This is related with the Abel map cl
′
(Z) : ECal ′(Z) → Picl

′
(Z) as follows. Recall

from [14, 3.2.2] that the tangent linear map TD cl
′
(Z) : TD ECal

′
(Z) → TL Picl

′
(Z)

can be identified with δ0L : H0(OD) → H1(OZ ). Therefore, if L = Lim
gen is a generic

element of Im(cl
′
(Z)) then codim Im(cl

′
(Z)) = dim H1(OZ )/Im(δ0L) = h1(Z ,L).

Similarly, consider the composition

cl
′
L0

(Z) : ECal ′(Z)
cl

′
(Z)−→ Picl

′
(Z)

s0L0−→ Picl
′
L0

(Z).

We call it the L0-projection of the Abel map cl
′
(Z). Using the previous paragraph

we obtain that the tangent linear map TD cl
′
L0

(Z) : TD ECal
′
(Z) → TL Picl

′
L0

(Z)

can be identified with δ̄0L = s0L0
◦ δ0L : H0(OD) → H1(L0). Therefore, if L is a

generic element of Im(cl
′
L0

(Z)) (or, it is the image by sL0 of a generic element Lim
gen

of Im(cl
′
(Z))) then

codim Im(cl
′
L0

(Z)) = dim H1(L0)/Im(δ̄0L) = h1(Z ,L0 ⊗ L). (7.1.1)

This fact fully motivates the next point of view: if one wishes to study h1(Z ,L0 ⊗L)

withL0 fixed andL ∈ Picl
′
(Z) then—as a tool—the rightAbelmap is theL0-projected

cl
′
L0

(Z).

7.2 The cohomology h1(Z ,L0 ⊗ L). Using the exact sequence H0(OD) →
H1(OZ )

s→ H1(Z ,L) → 0 and h0(OD) = (l ′, Z) we obtain the inequality
h1(Z ,L) ≥ h1(OZ ) − (l ′, Z). Usually it is not sharp, since δ0L might not be injective.
However, as in the prototype construction from Sect. 6 (and even in its preceding
sections), if we consider any Z1 ≤ Z then we also have h1(Z ,L) ≥ h1(Z1,L) ≥
h1(OZ1)−(l ′, Z1), hence h1(Z ,L) ≥ maxZ1≤Z {h1(OZ1)−(l ′, Z1)}, and, remarkably,
this for the generic Lim

gen ∈ Im(cl
′
(Z)) is an equality (cf. (4.1.11)).

Similarly, using the exact sequence H0(OD) → H1(Z ,L0)
s→ H1(Z ,L0⊗L) →

0 we obtain h1(Z ,L0 ⊗ L) ≥ h1(L0) − (l ′, Z). Again, this usually is not sharp.
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However, by the same procedure,

h1(Z ,L0 ⊗ L) ≥ max
0≤Z1≤Z

{h1(Z1,L0) − (l ′, Z1)}. (7.2.1)

In the next section (cf. Corollary 8.3.4) we will prove that this is again an equality for
the generic L = Lim

gen ∈ Im(cl
′
L0

(Z)). (The above inequality (7.2.1) can be compared
with (5.3.1) as well.)

7.3. Compatibility with Laufer duality and differential forms Consider the perfect
pairing 〈 , 〉 : H1(OZ )⊗H0(�2

˜X
(Z))/H0(�2

˜X
) → C from2, see alo [14]. Oncewe fix

D0 = div(s0) of certain s0 ∈ H0(Z ,L0)reg , we can define�Z (D0) := (Im(δ0L0
))⊥ ⊂

H0(�2
˜X
(Z))/H0(�2

˜X
). It is generated by forms which vanish on the image of the

tangent map TD0 c
l ′0(Z), identified with δ0L0

, cf. 2 and (2.4.9). The pairing 〈 , 〉 induces
a perfect pairing 〈 , 〉L0 : H1(Z ,L0) ⊗ �Z (D0) → C, see also Theorem 2.4.8.

7.3. The G-filtration of �Z (D0) = H1(L0)
∗ Consider the situation and nota-

tions of Definition 2.4.12; in particular, Gl = H0(�2
˜X
(l))/H0(�2

˜X
) for any 0 <

l ≤ Z . In the presence of L0 = OZ (D0) as above, we have the subspace
�Z (D0) = (Imδ0)⊥ ⊂ H0(�2

˜X
(Z))/H0(�2

˜X
), and the induced perfect pairing

〈 , 〉L0 : H1(Z ,L0) ⊗ �Z (D0) → C. Similarly, for any 0 < l ≤ Z , we have the
analogous data �l(D0) = (Im(δ0|l))⊥ ⊂ H0(�2

˜X
(l))/H0(�2

˜X
), and the induced per-

fect pairing 〈 , 〉L0|l : H1(l,L0) ⊗ �l(D0) → C. One has the following inclusions
inside H0(�2

˜X
(Z))/H0(�2

˜X
)

�l(D0) −→ �Z (D0)

↓ ↓
Gl −→ H0(�2

˜X
(Z))/H0(�2

˜X
)

and, in fact, �l(D0) = �Z (D0) ∩ Gl . Hence {�l(D0)}l = {�Z (D0) ∩ Gl}l fil-
ters �Z (D0). Moreover, by 〈 , 〉L0|l , one has dim �Z (D0) ∩ Gl = dim �l(D0) =
h1(l,L0).

8 L0-projected versions of the algorithms

8.1. Preliminary notations Let us keep all the notations of the previous section.
Let us denote the dimension of Im(cl

′
L0

(Z)) by dL0,Z (l ′).
If AZ (l ′) is the smallest affine space which contains Im(cl

′
(Z)) in Picl

′
(Z), then

sL0(AZ (l ′)) is the smallest affine space which contains Im(cl
′
L0

(Z)). We denote it by
AL0,Z (l ′) and its dimension by eL0,Z (l ′). From definitions dL0,Z (l ′) ≤ eL0,Z (l ′).

In this section we provide two algorithms for the computation of dL0,Z (l ′), the
analogues of the algorithms from Theorems 3.2.2 and 4.1.2 .

8.2. The setup Let us fix (X , o), a good resolution ˜X , Z ≥ E and l ′ ∈ −S ′. We also
fix a line bundle L0 as in Sect. 7, whose notations we will adopt. In order to estimate
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dL0,Z (l ′) we proceed as in Sects. 3 and 4 . In particular, we perform the modificatiosn
πs : ˜Xs → ˜X , and we adopt the notations of 3 as well. By the generic choice of the
centers of blow ups we can assume that they differ from the support of D0. Notice that
we have a natural identification between H1(OZ ) and H1(OZs), and also between
H1(O∗

Z ) and H1(O∗
Zs

). Furthermore, we denote the divisor π−1
s (D0) on ˜Xs still by

D0 (basically unmodified), and the line bundleOZs(D0) still by L0. Then we have the
identification of H0(Z ,OD) with H0(Zs,OD), and also H1(Z ,L0) � H1(Zs,L0)

and H1(Z ,L∗
0) � H1(Zs,L∗

0) (hence identifications of the corresponding commuta-
tive diagrams from 7 as well). The subspace �Zs(D0) in H1(OZs)

∗ = H1(OZ )∗ is
also ‘stable’ of dimension h1(Z ,L0).

Write dL0,s and eL0,s the corresponding dimensions associated with ˜Xs defined as
in 8. Then dL0,s ≤ eL0,s. If s = 0 then dL0,0 = dL0,Z (l ′) and eL0,0 = eL0,Z (l ′).

Theorem 8.2.1 (1) dL0,s − dL0,sv,k ∈ {0, 1}. Moreover, dL0,s = dL0,sv,k if and only

if for a generic point L̄ ∈ Im(c
l ′s
L0

(Zs)) the set of divisors in (c
l ′s
L0

(Zs))
−1(L̄) do not

have a base point on Fv,k,sv,k .
(2) If for some fixed s the numbers {dL0,sv,k }v,k are not the same, then dL0,s =

maxv,k{ dL0,sv,k }. In the case when all the numbers {dL0,sv,k }v,k are the same, then
if this common value dL0,sv,k equals eL0,s, then dL0,s = eL0,s = dL0,sv,k ; otherwise
dL0,s = dL0,sv,k + 1.

Proof (1) Assume first that either sv,k ≥ 1 or av = 1. Then divisors from ECal
′
s(Zs)

intersect Fv,k,sv,k by multiplicity one, hence the intersection (supporting) point gives

a map q : ECal
′
s(Zs) → Fv,k,sv,k , which is dominant. Moreover, ECal

′
sv,k (Zsv,k ) is

birational with a generic fiber of q (the fiber over the point which was blown up),
hence the first statement follows. Note also that dL0,s = dL0,sv,k if and only if the

generic fiber of the L0-projected Abel map c
l ′s
L0

is not included in a q-fiber. This
implies the second part of (1).

If sv,k = 0 and av > 1 then write l ′− := l ′s − E∗
v and consider the ‘addition map’

s : ECaE∗
v (Zs)×ECal

′−(Zs) → ECal
′
s(Zs), which is dominant and quasifinite (cf. [14,

Lemma 6.1.1]). Let q : ECaE∗
v (Zs) → Ev be given by the supporting point as before.

Then if q−1(gen) is a generic fiber of q (above the point which was blown up), then

the restriction of s to q−1(gen) × ECal
′−(Zs) with target ECal

′
sv,k (Zsv,k ) is dominant

and quasifinite. Hence the arguments can be repeated.
(2) First notice that if the numbers {dL0,sv,k } are not the same then from (1)we have

dL0,s ≤ minv,k dL0,sv,k + 1 ≤ maxv,k dL0,sv,k ≤ dL0,s, hence dL0,s = maxv,k dL0,sv,k .
Next, assume that the numbers {dL0,sv,k } are the same, say d.
If dL0,s = d then part (1) reads as follows: dL0,s = dL0,sv,k for all v and k if and

only if for a generic L̄ ∈ Im(c
l ′s
L0

(Zs)) the set of divisors in (c
l ′s
L0

(Zs))
−1(L̄) do not

have a base point on any of the curves {Fv,k,sv,k }v,k .

Let us choose a generic element L̄ ∈ Im(c
l ′s
L0

(Zs)), which is in particular a regular

value of c
l ′s
L0

(Zs) and the generic divisors in ECal
′
s(Zs)mapped to L̄ are in fact generic

divisors of ECal
′
s(Zs) itself.
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Next, take an element in �Zs(D0) (for details see 7) represented by a form ω, such

that the class of ω vanishes on TL̄Im(c
l ′s
L0

(Zs)).

Then choose a generic D from ECal
′
s(Zs), which is mapped to L̄ and which has

no common points with the support of ω (we can even assume additionally that it is

transversal and reduced). Thenwe apply the previous statements for L̄ := c
l ′s
L0

(Zs)(D).

In particular, the class of ω vanishes on Im(TDc
l ′s
L0

(Zs)) so ω cannot have pole
along any of the curves {Fv,k,sv,k }v,k , that is, it belongs to �Zs(Is), cf. Theorem 2.4.8
and Lemma 2.4.10. Hence dL0,s = eL0,s, cf. Lemma 3.1.3, and also d = eL0,s too.

On the other hand if d = eL0,s, then from dL0,sv,k ≤ dL0,s ≤ eL0,sweget d = dL0,s.
Hence dL0,s = d if and only if d = eL0,s. Otherwise dL0,s should be d + 1 by (1).

��
8.3. Notations for the second algorithm Consider the setup of 4 and combine it with
the one from 8, where L0 enters in the picture. Accordingly, we have the following
subspaces (inclusions):

�Zs(D0) ∩ Gls → �Zs(D0) ∩ �Zs(Is)
j−→ �Zs(D0) = H1(Z ,L0)

∗
↓ ↓ ↓
Gls → �Zs(Is)

i−→ H0(�2
˜Xs

(Zs))/H0(�2
˜Xs

) = H1(OZ )∗

The codimension of the inclusion i is es and the dimension of Gs is gs providing
the inequality es ≤ h1(OZ ) − gs. Similarly, the codimension of j is eL0,s and the
dimension of �Zs(D0)∩Gls will be denoted by gL0,s providing the inequality eL0,s ≤
h1(Z ,L0) − gL0,s. Hence

dL0,s ≤ eL0,s ≤ h1(Z ,L0) − gL0,s. (8.3.1)

It is conveninent to lift the s-independent subspace �Zs(D0) = �Z (D0) of
H0(�2

˜X
(Z))/H0(�2

˜X
) as �

˜X (D0) := π−1(�Z (D0)) by the projection π :
H0(�2

˜X
(Z)) → H0(�2

˜X
(Z))/H0(�2

˜X
).

Theorem 8.3.2 (1) dL0,s − dL0,sv,k ∈ {0, 1}.
(2) If for some fixed s the numbers {dL0,sv,k }v,k are not the same, then dL0,s =

maxv,k{ dL0,sv,k }. In the case when all the numbers {dL0,sv,k }v,k are the same, then if
this commonvalue dL0,sv,k equals h1(Z ,L0)−gL0,s, then dL0,s = h1(Z ,L0)−gL0,s =
dL0,sv,k ; otherwise dL0,s = dL0,sv,k + 1.

Proof Part (1) was already proved in Theorem 8.2.1. Regarding part (2), if the numbers
{dL0,sv,k } are not the same then we argue again as in the proof of Theorem 8.2.1.

Next, assume that the numbers {dL0,sv,k } are the same, say d. Via (8.3.1) and the
first algorithm Theorem 8.2.1 we need to show that if d = eL0,s then necessarily
d = h1(Z ,L0)−gL0,s aswell. However, if d = eL0,s thenwe have eL0,s = dL0,sv,k for
all (v, k), hence by (8.3.1) we get eL0,s = d = dL0,sv,k ≤ eL0,sv,k . But eL0,s ≥ eL0,sv,k

by the combination of the argument from (3.2.1) and the diagram from 8. Hence,
dL0,sv,k = eL0,s for all k and v implies eL0,sv,k = eL0,s for all v and k.
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In particular, it is enough to verify the (stronger statement):

if eL0,sv,k = eL0,s for all v and k then eL0,s = h1(Z ,L0) − gL0,s as well.

(8.3.3)

Assume that (8.3.3) is not true, that is, eL0,sv,k = eL0,s for all v and k, but
eL0,s < h1(Z ,L0) − gL0,s. The last inequality via the diagram from 8 says that
the inclusion �Zs(D0) ∩ Gls ⊂ �Zs(D0) ∩ �Zs(Is) is strict. This means, that there
is a differential form ω ∈ �

˜X (D0), with class [ω] in H0(�2
˜X
(Z))/H0(�2

˜X
) ⊂

H0(˜X \ E,�2
˜X
)/H0(˜X ,�2

˜X
), such that ω does not have a pole along the excep-

tional divisor Fv,k,sv,k , however [ω] /∈ Gs. In particular, there exists a vertex v ∈ |l ′|,
such that the pole order of ω along Ev is larger than (ls)v . Notice that this also means
(ls)v = min1≤i≤av sv,i < Zv .

Let 1 ≤ i ≤ av be an integer such that sv,i = (ls)v (abridged in the sequel by t)
and we denote the order of vanishing of ω on an arbitrary exceptional divisor Eu by
bu , where u is an arbitrary vertex along the blowing up procedure. Next we focus on
the string between v and wv,i,sv,i and we denote them by v0 = v, . . . , vt = wv,i,sv,i .
Set r := min{0 ≤ s ≤ t : bvs + t − s ≥ 0}. Since for s = t one has bvt ≥ 0 (since
ω has no pole along Fv,i,sv,i ) r is well-defined. On the other hand we have r ≥ 1.
Indeed, bv0 + t < 0, since pole order of ω along Ev is higher than (ls)v = t . Note that
bvr−1 + t − r + 1 < 0 and bvr + t − r ≥ 0 imply bvr − bvr−1 ≥ 2 (†).

Let ˜X ′ be that resolution obtained from ˜X , as an intermediate step of the tower
between ˜X and ˜Xs, when in the (v, i) sequence of blow upswe do not proceed all sv,i of
them, butwe create only the divisors {Fv,i,k}k≤r−1. LetV ′ be its vertex set and {Eu}u∈V ′
its exceptional divisors. On ˜X ′ consider the line bundle L := �2

˜X ′(−
∑

u∈V ′ bu Eu).
Since Fv,i,vr was created by blowing up a generic point p of Evr−1 = Fv,i,vr−1 , the
existence of ω guarantees the existence of a section s ∈ H0(˜X ′,L), which does not
vanish along Evr−1 and it has multiplicity m := bvr − bvr−1 − 1 at the generic point
p ∈ Evr1 . By (†) m ≥ 1. By construction, ω (or s) belongs also to the subvectorspace
�

˜X (D0) after certain identifications.
Now by the technical Lemma 9.1.1 (valid for general line bundles, and separated

in Sect. 9) for any 0 ≤ k < m and a generic point p ∈ Evr−1 there exists a section
s′ ∈ H0(˜X ′,L), which does not vanish along the exceptional divisor Evr−1 , and the
divisor of s′ has multiplicity k at p. We apply for k = −(bvr−1 + t − r + 1)− 1. (Note
that 0 ≤ k < m.) The section s′ gives a differential form ω′ ∈ �

˜X (D0), such that if
we blow up Evr−1 in the generic point p and we denote the new exceptional divisor
by Evr ,new , then ω′ has wanishing order −(t − r + 1) on Evr ,new . This means, that if
we blow up it in generic points t − r + 1 times, then ω′ has a pole on Evt,new , but has
no pole on Evt+1,new . This means that eL0,sv,i �= eL0,s, which is a contradiction. ��

The analogues of Corollaries 4.1.3 and 4.1.5 (with similar proofs) are:
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Corollary 8.3.4 For any l ′ ∈ −S ′, Z ≥ E and L0 with H0(Z ,L0)reg �= ∅ one has

dL0,Z (l ′) = min
s

{ |s| + h1(Z ,L0) − gL0,s }
= min

0≤Z1≤Z
{ (l ′, Z1) + h1(Z ,L0) − h1(Z1,L0)}.

This combined with (7.1.1) gives for a generic Lim
gen ∈ Im(cl

′
(Z)):

h1(Z ,L0 ⊗ Lim
gen) = max

0≤Z1≤Z
{ h1(Z1,L0) − (l ′, Z1)}.

Example 8.3.5 This is a continuation of Example 4.1.8 (based on [14, §11]), whose
notations and statements we will use. Assume that Z � 0 and l ′ = −kE∗

0 as
in 4.1.8. Additionally we take a generic line bundle L0 with c1(L0) = l ′0 = −k0E∗

0 ,
k0 ≥ 0, (hence ˜D0 consists of k0 generic irreducible cuts of E0). Recall that
H0(�2

˜X
(Z))/H0(�2

˜X
) admits a basis consisting of elements of type xmω, where ω is

the Gorenstein form and 0 ≤ |m| ≤ d − 3. Each ‘block’ {|m| = j} (0 ≤ j ≤ d − 3)
(which can be identified with H0(P2,O( j))) contributes with

( j+2
2

)

monomials.

The k0 generic divisors impose min{k0,
( j+2

2

)} independent conditions (see [14,
11.2] for the explication), hence the block {|m| = j} (0 ≤ j ≤ d − 3) con-
tributes into dim�Z (D0) = h1(L0) with

( j+2
2

) − min{k0,
( j+2

2

)} = max{0, ( j+2
2

) −
k0}. In particular, h1(L0) = ∑d−3

j=0 max{0, ( j+2
2

) − k0} and h1(L0) − gL0,s =
∑d−3−s

j=0 max{0, ( j+2
2

) − k0} (0 ≤ s ≤ d − 2). Therefore,

dL0,Z (−kE∗
0 ) = min

0≤s≤d−2

{

ks +
d−3−s
∑

j=0

max
{

0,
( j+2

2

) − k0
}

}

.

However, if L0 = OZ (D0) is not generic, then the points D0 might fail to impose
independent conditions on the corresponding linear systems, and the determination of
the dimension of �Z (D0) can be harder. See [14, 11.3] for discussion, examples and
connectionwith the Cayley–Bacharach type theorems (cf. [2]). Those discussionswith
combined with the present section produces further examples for dL0,Z (l ′) whenever
D0 is special (and (X , o) is superisolated).
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9 Appendix: A technical lemma

9.1. The next lemma is used in the body of the article, however, it might have also an
independent general interest.

Lemma 9.1.1 Let ˜X be an arbitrary resolution of a normal surface singularity (X , 0).
Let us fix an arbitrary line bundle L ∈ Pic(˜X) with c1(L) = l ′ ∈ −S′, an irreducible
exceptional curve Ev , and an integer m > 0.

Assume that there exists a linear subspace V ⊂ H0(˜X ,L) with the following
property: for a generic point p ∈ Ev there exists a section s ∈ V such that s does not
vanish along Ev and the multiplicity of the divisor of s at p ∈ Ev is m. Then for any
number 0 ≤ k ≤ m and a generic point p ∈ Ev there exists a section s ∈ V such that
s does not vanish along Ev and the multiplicity of the divisor of s at p ∈ Ev is k.

Proof By induction we need to prove the statement only for k = m − 1.
First we fix a very large integer N � m, and consider the restriction r :

H0(˜X ,L) → H0(NEv,L). Then r induces a map from H0(˜X ,L)reg := H0(˜X ,L)\
H0(˜X ,L(−Ev)) to H0(NEv,L)reg := H0(NEv,L) \ H0((N − 1)Ev,L(−Ev)).
Denote its restriction H0(˜X ,L)reg ∩ V → H0(NEv,L)reg ∩ r(V ) by rV . Consider
also the natural map div : H0(NEv,L)reg → ECal

′
(NEv), and the composition map

div ◦ rV = g : H0(˜X ,L)reg ∩ V → ECal
′
(NEv), which sends a section to its divisor

restricted to the cycle NEv .
Next, for any p ∈ E0

v := Ev \ ∪u �=vEu set Dm,p ⊂ ECal
′
(NEv), the set of

divisors with multiplicity m at p. (Since N � m this notion is well-defined). Set also
Dm := ∪pDm,p.

By the assumption, the image of g intersects Dm,p for any generic p. Since Dm is
constructible subvariety of ECal

′
(NEv), g−1(Dm) is a nonempty constructible subset

of H0(˜X ,L)reg ∩ V . Define an analytic curve h0 : (−ε, ε) → g−1(Dm) such that
its image is not a subset of some g−1(Dm,p). Let us denote the zeros of the section
h0(0) along E0

v by {p1, . . . , pr }. Then there exists a small neighborhood U of one
of the points pi and a restriction of h0 to some smaller (−ε′, ε′), such that for any
t ∈ (−ε′, ε′) the restrictionofh0(t) toU has aunique zero, say p(t), and itsmultiplicity
is m. Furthermore, t �→ p(t), (−ε′, ε′) → U ∩ E0

v is not constant, hence taking
further restrictions to some interval we can assume that t �→ p(t) is locally invertible.
Reparametrising h0 by the inverse of this map, we obtain an analytic mapU ∩ E0

v →
g−1(Dm), t �→ h(t) such that the restriction of the section h(t) to some local chart U
has only one zero, namely t , and the multiplicity of the section at t ism. In some local
coordinates (x, y) of U (with U ∩ Ev = {y = 0}) the equation of h(t) has the form
(modulo yN )

h(t) =
∑

j≥0,i≥0

(x − t) j yi c j,i (t), (9.1.2)

where by the multiplicity condition c j,i ≡ 0, if j + i < m and, there is a pair ( j, i),
such that j + i = m and c j,i (t) �≡ 0. Moreover, by the non-vanishing condition
y � |h(t), or, c j,0(t) �≡ 0 for some j .
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We claim that there is a generic choice of t1, . . . , tr (for some large r ) of t-values,
and a convenient choice of the coefficients {αl }rl=1 such that s := ∑r

l=1 αl h(tl) satisfies
the requirements. Indeed, first we consider the Taylor expansion of h(t) in variables
(x, y) at a point (x, y) = (q, 0) with q generic (and modulo yN as usual):

∑

j,i

(x − q + q − t) j yi c j,i (t) =
∑

j,i

j
∑

k=0

(x − q)k yi
(

j

k

)

(q − t) j−kc j,i (t).

The fact that s at (q, 0) has multiplicity ≥ m − 1 transforms into a linear system

r
∑

l=1

αl

(
∑

j≥k

(

j

k

)

(q − tl)
j−kc j,i (tl)

)

= 0

for any (k, i) with k, i ≥ 0 and k + i ≤ m − 2.
This linear system LS(r ,m − 2) with unknowns {αl}rl=1 has matrix M(r ,m − 2)

of size r ×m(m − 1)/2. If r � m(m − 1)/2 then the system has a nontrivial solution.
We need to show that for a generic choice of the solutions {αl}l the section s has
multiplicity m − 1 at q. Assume that this is not the case. Then the generic solution
of the system LS(r ,m − 2) is automatically solution of LS(r ,m − 1) too (the last
one defined similarly). This means that rankM(r ,m − 2) = rankM(r ,m − 1) (†) for
generic {tl}l .

The matrix M(r ,m − 1) has m additional rows corresponding to the indexes (k, i)
with k, i ≥ 0 and k+i = m−1. Let us fix one of them, corresponding to the following
choice.

Now let d be the minimal number, such that there exists j, i such that i ≤ m − 1,
j + i = d and c j,i (t) is not identically 0. Since by assumption (by non-vanishing of
h(t) along Ev) there exists certain j ≥ m with c j,0 �≡ 0, such a d exists. Fix i0 such
that i0 ≤ m − 1, j0 + i0 = d and c j0,i0(t) �≡ 0.

Then, from the additional rows of M(r ,m − 1) we chose the one indexed by
(m − 1 − i0, i0).

Consider the minor of M(r ,m − 1) of size m(m − 1)/2+ 1, whose last row is the
row corresponding to (m − 1 − i0, i0), and the other rows belong to M(r ,m − 2),
while the last column corresponds to the generic tr = t . Then its determinant should
be zero by (†). Expanded it by the last column gives

∑

j≥m−1−i0

(

j

m − 1 − i0

)

(q − t) j−m+1+i0c j,i0(t)

=
∑

k,i≥0;k+i≤m−2

βk,i (q) ·
∑

j≥k

(

j

k

)

(q − t) j−kc j,i (t)

for some holomorphic functions βk,i (q). But such an identity cannot exist. Indeed,
since c j0,i0 �≡ 0, but c j,i0 ≡ 0 for any j < j0, the vanishing order of q − t at the
left hand side is exactly d − m + 1, while on the right hand side—since j ≥ d − i
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(otherwise c j,i ≡ 0) and k ≤ m−2− i implies j − k ≥ d −m+2—we get vanishing
order ≥ d − m + 2.

Finally we need to show that this generic s does not vanish along Ev . This follows
from a similar argument as above, or one can proceed as follows. For any generic q
consider a section s which has multiplicity m − 1 at (q, 0). If it vanishes along Ev

then s + h(q) does not vanish along Ev and it has multiplicity m − 1 at (q, 0). ��

Remark 9.1.3 We claim that under the assumptions of Lemma 9.1.1 the following
property also holds: For any finite set F ⊂ Ev there exists a section s ∈ V such that s
does not vanish along Ev , div(s)∩F = ∅,and at each p ∈ div(s)∩Ev the intersection
of div(s) with Ev is transversal. Indeed, we can use first Lemma 9.1.1 for k = 1 and
then show that a generic combination of ‘moving’ sections of multiplicity one works.
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