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Abstract
For every one-relator monoid M = 〈A | u = v〉 with u, v ∈ A∗ we construct a
contractible M-CW complex and use it to build a projective resolution of the trivial
module which is finitely generated in all dimensions. This proves that all one-relator
monoids are of type FP∞, answering positively a problem posed by Kobayashi in
2000. We also apply our results to classify the one-relator monoids of cohomological
dimension at most 2, and to describe the relation module, in the sense of Ivanov, of a
torsion-free one-relator monoid presentation as an explicitly given principal left ideal
of the monoid ring. In addition, we prove the topological analogues of these results by
showing that all one-relator monoids satisfy the topological finiteness property F∞,
and classifying the one-relator monoids with geometric dimension at most 2. These
results give a natural monoid analogue of Lyndon’s Identity Theorem for one-relator
groups.
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1 Introduction

Algorithmic problems concerning groups and monoids are a classical topic in algebra
and theoretical computer science dating back to pioneering work of Dehn, Thue and
Tietze in the early 1900s; see [7, 38, 42] for references. The most fundamental algo-
rithmic question concerning an algebraic structure is the word problem, which asks
whether two expressions over generators represent the same element.Markov [43] and
Post [48] proved independently that the word problem for finitely presented monoids
is undecidable in general. This result was later extended to cancellative monoids by
Turing [56] and then later to groups by Novikov [46] and Boone [8].

Since the word problem for finitely presented groups and monoids is in general
undecidable, an important theme has been to identify and study classes for which the
word problem is decidable. A classical result of this kind was proved by Magnus [40]
in the 1930s who showed that all one-relator groups have decidable word problem.
Magnus’s work inspired the study of the word problem for other one-relator alge-
braic structures. For example, Shirshov [57] proved that one-relator Lie algebras have
decidable word problem. Not all one-relator structures are so well behaved; see e.g.
the recent result [23].

In contrast to one-relator groups, far less is currently known about the class of one-
relator monoids, that is, monoids defined by presentations of the form 〈A | u = v〉
where u and v are words from the free monoid A∗. Indeed, it is still not known
whether theword problem is decidable for one-relatormonoids. This is one of themost
fundamental longstandingopenproblems in combinatorial algebra.While this problem
is open in general, it has been solved in a number of special cases in work of Adjan,
Adjan and Oganesyan, and Lallement; see [1, 2, 36]. The best known undecidability
result for finitely presented monoids with a small number of defining relations is due
to Matiyasevich who proved in [44] that there is a finitely presented monoid with just
three defining relations that has an undecidable word problem.

A problem which is closely related to the word problem for one-relator monoids is
the question ofwhether every one-relatormonoid admits a finite complete presentation
(meaning a presentation which is confluent and terminating; see [29, Chapter 12]). A
positive answer to this questionwould solve theword problem for one-relatormonoids,
since monoids defined by finite complete presentations have decidable word problem.
Another famous open problem in theoretical computer science related to this asks if it
is decidable whether a one-relator string rewriting system is terminating; see e.g. [16,
45, 52].

The Anick–Groves–Squier theorem [4, 10] shows that if a monoid admits a finite
complete presentation, then that monoid must satisfy the homological finiteness prop-
erty FP∞. Given this, and the discussion above, it is natural to ask whether all
one-relator monoids are of type FP∞. This problem was investigated by Kobayashi in
[32, 33] where he proved that all one-relator monoids have finite derivation type in the
sense of Squier [54], and hence are of type FP3. He then goes on to ask [33, Problem 1]
whether all one-relator monoids are of type FP∞. Further motivation for this question
comes fromLyndon’s Identity theorem for groups [37] which gives natural resolutions
for one-relator groups which, among other things, imply that all one-relator groups
are of type FP∞.
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The first main result of this paper is the following theorem which gives a positive
answer to Kobayashi’s problem [33, Problem 1].

Theorem A Every one-relator monoid 〈A | u = v〉 is of type FP∞.

This theorem applies to arbitrary one-relator monoids 〈A | u = v〉 without any
restrictions on the words u and v. It should be stressed that there are very few results
in the literature that have been proved for arbitrary one-relator monoids.

We note that, motivated in large part by the connectionwith string rewriting systems
and the word problem, there is a extensive body of literature devoted to the study of
homological and homotopical finiteness properties of monoids; see e.g. [3, 13, 24, 50,
53, 54]. Monoids of type FPn are also used to define the higher dimensional BNSR
invariants of groups; see [5, 6].

As mentioned above, the analogue of Theorem A for one-relator groups is known
to hold as a consequence of results in a highly influential paper [37] published by
Lyndon in 1950. As Lyndon states in his paper, his result, which is now known as
Lyndon’s Identity Theorem, may be viewed as a complementary result to Magnus’s
word problem solution: that of determining all identities among the relations. More
precisely, Lyndon’s result identifies the relation module of a one-relator group as an
explicitly given cyclic module.When interpreted topologically, Lyndon’s results show
how to construct certain natural classifying spaces for one-relator groups which are
small, in a sense which can be made precise. Specifically these spaces have finitely
many cells in each dimension, which implies that all one-relator groups are of type
FP∞. Furthermore, Lyndon’s results can be used to prove that the presentation 2-
complex of a torsion-free one-relator group is aspherical, and thus is a classifying
space for the group; see [12, 19]. This implies that torsion-free one-relator groups
have geometric and cohomological dimension at most two (in fact, exactly two unless
they are free).

In this paper we will prove a Lyndon’s Identity Theorem for arbitrary one-relator
monoids. We will then apply this to prove TheoremA. In addition to this, we shall also
apply our results to classify one-relator monoids of cohomological dimension at most
2, and to compute explicitly the relation module, in the sense of Ivanov [31], of all
torsion-free one-relator monoids. Our proof uses a range of techniques and ideas from
algebraic topology, and from combinatorial and homological algebra. In particular,
one key ingredient will be some of the results and ideas from our earlier recent papers
[21, 22] which give a new topological approach to the study of homological finiteness
properties of monoids.

One fundamental new insight made in this paper is that we uncover a tree-like
structure in the Cayley graph of one-relator monoids, modulo certain subgraphs which
have the geometry either of special one-relator monoids, or of strictly aspherical one-
relator monoids. Here a special monoid presentation is one where all of the defining
relations are of the form w = 1, and a monoid presentation is strictly aspherical if all
of its diagram groups, in the sense of Guba and Sapir [26], are trivial. These are then
both base cases of our induction, in the first instance resolved by general results on
finitely presented special monoids from our earlier article [22].

Our topological approach allows us to exploit this geometric information about the
structure of the Cayley graph to construct actions of one-relator monoids on suitable
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contractible CW complexes. In addition to this, other new tools and innovations intro-
duced in this paper (of independent interest) include: the development of a generalised
compression theory (an induction technique for one-relator monoids) that provides a
common framework for both Adjan–Oganesyan compression [1] and Lallement com-
pression [35], and a new interpretation of this in terms of local divisor theory, in the
sense of Diekert [18].

In more detail, for every one-relator monoid M we shall construct a contractible
M-CW complex, that is, a CW complex with cellular action of M , so the augmented
cellular chain complex gives rise to a resolution of the trivial module. In many cases
our construction gives an equivariant classifying space for the monoid with finitely
many orbits of cells in each dimension. Here, an equivariant classifying space for a
monoid is the monoid-theoretic analogue of the universal cover of a classifying space
of a group. In other cases the space we construct is not an equivariant classifying
space for the monoid. In these cases additional work is needed, and we shall then need
to combine our topological results with ideas from the theory of relation modules of
moniods in the sense of Ivanov [31], arguments with monoid pictures in the sense of
[26], and a general method fromwork of Brown [9] and Strebel [55], in order construct
a resolution of the trivial module by finitely generated projective modules.

The resolutions that we obtain for one-relator monoids in this paper are in general
infinite, even in the case of torsion-free one-relator monoids. This is necessary since,
rather surprisingly, we shall show here that there are torsion-free one-relator monoids
with infinite cohomological dimension. Here a monoid has torsion if it has a non-
idempotent element x such that x is equal to a proper power of itself. Equivalently, a
one-relator monoid is torsion-free if and only if all of its subgroups are torsion-free.
Thus in general for a torsion-free one-relator monoid M there need not be a finite
dimensional, contractible free M-CW complex. This is in stark contrast to the case
of torsion-free one-relator groups which (as discussed above) all have cohomological
dimension at most two. The fact that there are torsion-free one-relator monoids with
infinite cohomological dimension is one of things that makes proving Theorem A far
more complicated than the corresponding result for groups.

In addition to proving Theorem A, we will use the results and constructions
described above to prove the following result, which classifies one-relator monoids
with cohomological dimension at most 2.

Theorem B Let M be a monoid defined by a one-relator presentation 〈A | u = v〉.
Suppose without loss of generality that |v| ≤ |u|. Let z ∈ A∗ be the longest word
which is a prefix and a suffix of both u and of v. Then

(i) cd(M) = ∞ if M has a maximal subgroup with torsion; and
(ii) cd(M) ≤ 2 if and only if M is torsion-free and either z is the empty word or z = v.

Furthermore, if cd(M) ≤ 2 then M has an equivariant classifying space obtained by
attaching 2-cells to the Cayley graph of M.

It is well known that a one-relator group has torsion if and only if the word in the
defining relator is itself a proper power. The analog of this for one-relator monoids
is a follows. The one-relator monoid defined by 〈A | u = v〉. (where |v| ≤ |u|) has
torsion if and only if u ∈ vA∗ ∩ A∗v and upon writing u = vw ∈ A∗ the word w is
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a proper power. This will be proved in Lemma 5.2 below. This means that whether or
not the one-relator monoid 〈A | u = v〉 is torsion-free is something which can easily
be read off from the defining relation u = v.

In Theorem B we use cd(M) to denote the left cohomological dimension of the
monoid M . The obvious dual result for right cohomological dimension also holds.
Note that in general the left and right cohmological dimensions of a monoid need not
be the same; see [24].

In proving Theorem B one thing that makes the situation necessarily more com-
plicated than that of one-relator groups is that the equivariant classifying space we
construct for one-relator monoids of cohomological dimension at most two is not in
general the Cayley complex of the monoid. In fact, we shall see that in general for
torsion-free one-relator monoids of cohomological dimension at most two the Cayley
complex is not an equivariant classifying space.

Not all torsion-free one-relator monoids satisfy the conditions in part (ii) of Theo-
rem B. Indeed we shall see in Sect. 9 that there are torsion-free one-relator monoids
with infinite cohomological dimension. Indeed, many of them have infinite dimension.
We shall prove (see Proposition 9.5) that, with the same notation as in Theorem B,
we have the following: If z is non-empty and z 	= v, and no other non-empty word
is a prefix and suffix of both u and of v, then cd(M) = ∞. This is evidence support-
ing our (as yet unproved) suspicion that every torsion-free one-relator monoid with
cd(M) > 2 has cd(M) = ∞. This will be discussed further in Sect. 9.

In terms of relation modules, Lyndon’s identity theorem for groups identifies the
relation module of a one-relator group as an explicitly given cyclic module. Ivanov
[31] defined and studied relation modules for semigroups. Here we shall compute the
relation module, in the sense of Ivanov, for all torsion-free one-relator monoids; see
Theorem 6.7. Specifically our theorem shows that the relation module is isomorphic
to an explicitly given principal left ideal in the monoid ring. This improves on the
result [31,Corollary 5.4].

The paper is organised as follows. After giving some preliminary definitions and
results in Sect. 2, we then give an outline of the proofs of our main results in Sect. 3.
In Sect. 4 we prove results on compression and local divisors, and give a key result
Theorem4.17 interpreting compression from a topological point of view. The proofs of
our main results for subspecial monoids are given in Sect. 5. We compute the relation
module of torsion-free one-relator monoids in Sect. 6.We prove a key technical lemma
for certain strictly aspherical one-relator monoids using monoid pictures in Sect. 7,
and then apply this together with other results in Sect. 8 to resolve the relation module
and complete the proof of Theorem A. Finally in Sect. 9 we complete the proof of
Theorem B, and we describe a large class of torsion-free one-relator monoids with
infinite cohomological dimension.

2 Preliminaries

We assume the reader has familiarity with standard notions from group theory (see,
e.g., [38]), algebraic topology (see, e.g., [27]), category theory (see, e.g., [39]) and
topological and homological methods in group theory (see, e.g., [11, 20]). To make



59 Page 6 of 53 R. D. Gray, B. Steinberg

the article more self-contained, the majority of the necessary concepts from monoid
theory will be defined at the points where they are needed. For more background on
semigroup theory we refer the reader to [30].

M-CW complexes

We now give some background from [21] which will be needed later. Let M be a
monoid and let E(M) be the set of idempotents of M , i.e., the elements e ∈ M
with e2 = e. A left M-space is a topological space X with a continuous left action
M × X → X where M has the discrete topology. Throughout the article we shall
only work with left M-spaces and so we usually omit the word left and simply talk
about M-spaces. A free left M-set on A is one isomorphic to M × A with action
m(m′, a) = (mm′, a). We call A a basis for the free M-set. Notice that a left M-set
X is free on a basis A ⊆ X if and only if each x ∈ X can be uniquely expressed in
the form x = ma with m ∈ M and a ∈ A. A projective left M-set P is one which is
isomorphic to a left M-set of the form

∐
a∈A Mea with ea ∈ E(M) for all a ∈ A. As

for M-spaces, we shall usually omit the word left when talking about M-sets, and so
by M-set we shall always mean left M-set unless explicitly stated otherwise. If X is a
left M-set, then M\X is the quotient of X by the least equivalence relation identifying
x and mx for all m ∈ M and x ∈ X . So M\X denotes the set of equivalence classes
of this equivalence relation. One defines X/M for a right M-set analogously.

A projective M-cell of dimension n is an M-space of the form Me × Bn where e ∈
E(M) and Bn is the closed unit ball inR

n onwhich M is defined to act trivially; we call
it a free M-cell when e = 1. A projective M-CW complex is defined inductively where
projective M-cells Me × Bn are attached via M-equivariant maps from Me × Sn−1

to the (n − 1)-skeleton. Here Sn−1 denotes the (n − 1)-sphere, which is the boundary
of the n-ball Bn . Formally, a projective relative M-CW complex is a pair (X , A)

of M-spaces such that X = lim−→ Xn with in : Xn → Xn+1 inclusions, X−1 = A,
X0 = P0 ∪ A with P0 a projective M-set and where Xn is obtained as a pushout of
M-spaces

Pn × Sn−1 Xn−1

Pn × Bn Xn

(2.1)

with Pn a projective M-set and Bn having a trivial M-action for n ≥ 1. The set Xn

is the n-skeleton of X and if Xn = X and Pn 	= ∅, then X is said to have dimension
n. If A = ∅, we call X a projective M-CW complex. Note that a projective M-CW
complex is a CW complex and the M-action takes n-cells to n-cells. We say that X
is a free M-CW complex if each Pn is a free M-set, i.e., X is built up from attaching
free M-cells.

More generally we shall say that X is an M-CW complex if X is built up via
a sequence of pushouts as above, but where we drop the requirement that Pn be
a projective M-set and instead allow it to be an arbitrary M-set. In this case, it is
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convenient to term an M-cell to be an M-space of the form Mm × Bn for some
m ∈ M (with trivial action on Bn). It is no longer true at this level of generality that
every M-CW complex is built up from attaching M-cells, but all the ones that occur
in this paper are of this form.

Proposition 2.1 Let X be an M-CW complex (not necessarily projective) built via
attaching maps as in (2.1). Then the nth-cellular chain group Cn(X) is isomorphic as
a ZM-module to ZPn where the action of M on Pn is extended linearly to ZPn.

Proof As an abelian group, we can view Cn(X) = ⊕
x∈Pn

Hn(Bn/Sn−1) where the
summand for x ∈ Pn corresponds to the cell {x}× Bn . Fix an orientation of Bn and let
ηx be the corresponding generator of Hn(Bn/Sn−1) in the summand corresponding
to x ∈ Pn . Since the action of M on Pn × Bn is given by m(x, y) = (mx, y), the
action of m takes the copy of Bn/Sn−1 corresponding to the cell {x} × Bn to the
copy of Bn/Sn−1 corresponding to the cell {mx} × Bn via the identity map in the
Bn-coordinate. Hence the action of M is orientation preserving and so mηx = ηmx .
Thus Cn(X) ∼= ZPn as a ZM-module. ��

If A is a right M-set and X is a left M-space, then A ⊗M X is (A × X)/∼,
equipped with the quotient topology, where ∼ is the least equivalence relation such
that (am, x) ∼ (a, mx) for all a ∈ A, m ∈ M and x ∈ X . The class of (a, x) is
denoted a ⊗ x . If A is a free right M-set with basis B, then A ⊗M X ∼= ∐

b∈B b ⊗ X
and x �→ b ⊗ x is a homeomorphism from X to b ⊗ X . See [22,Remark 2.3] for
details.

An M-homotopy between M-equivariant continuous maps f , g : X → Y , between
M-spaces X andY , is an M-equivariantmapping H : X×I → Y with H(x, 0) = f (x)

and H(x, 1) = g(x) for x ∈ X where I is viewed as having the trivial M-action. We
write f �M g if there is an M-homotopy between f and g. We say that the M-spaces
X and Y are M-homotopy equivalent, written X �M Y , if there are M-equivariant
continuousmappings f : X → Y and g : Y → X such that g f �M 1X and f g �M 1Y .
In this situation the mappings f and g are called M-homotopy equivalences.

A (left) equivariant classifying space X for a monoid M is a projective M-CW
complex which is contractible. This notion generalises from group theory the idea of
the universal cover of a classifying space of a group. Indeed, if Y is an Eilenberg–Mac
Lane complex of type K (G, 1) then the universal cover X ofY is a freeG-CWcomplex
which is contractible. Thus X is an equivariant classifying space for the group. It is
proved in [21,Sect. 6] that everymonoid admits an equivariant classifying space, and it
is unique up to M-homotopy equivalence. One of our main interests in this paper will
be in certain natural topological finiteness properties for monoids defined in terms of
the existence of equivariant classifying spaces satisfying certain conditions. A finitely
generated monoid M is of type left-Fn if there is a left equivariant classifying space
X for M with M-finite n-skeleton. This means that for all k ≤ n the set of k-cells
is a finitely generated projective M-set. We say that M is of type left-F∞ if there
is a left equivariant classifying space X for M , which has M-finite n-skeleton for all
n ≥ 0. The left geometric dimension of amonoid M , denoted gd(l)(M) is theminimum
dimension of a left equivariant classifying space for M , where gd(l)(M) = ∞ if there
is no finite dimensional equivariant classifying space. Both of these notions have
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corresponding homological counterparts, namely FPn and cohomological dimension,
which have been well studied in the literature over the past few decades; see, e.g., [13,
24, 47]. A monoid M is said to be of type left-FPn (for a positive integer n) if there
is a projective resolution P• of the trivial left ZM-module Z such that Pi is finitely
generated for i ≤ n.We say that M is of type left-FP∞ if there is a projective resolution
P• of Z over ZM with Pi finitely generated for all i . For any monoid M , if M is of
type left-Fn for some 0 ≤ n ≤ ∞, then it is of type left-FPn . This is because the
augmented cellular chain complex of an equivariant classifying space for M provides
a projective resolution of the trivial leftZM-moduleZ. For finitely presented monoids
the conditions left-Fn and left-FPn are equivalent; see [21]. The left cohomological
dimension of a monoid M , denoted cd(l)(M), is the smallest non-negative integer n
such that there exists a projective resolution P• = (Pi )i≥0 of Z over ZM of length
≤ n, i.e., satisfying Pi = 0 for i > n. If no such n exists, then we set cd(l)(M) = ∞.
The left geometric dimension is clearly an upper bound on the left cohomological
dimension of a monoid. All of these finiteness properties have obvious dual notions of
right-FPn and right cohomological dimension cd(r)(M) working with right M-spaces
and rightmodules. The properties left-Fn and right-Fn do not coincide. The same is true
for left- and right-FPn , and for the left and right cohomological dimensions; see [13,
24]. However, since the class of one-relator monoids is left-right dual all our results
for left homological properties have analogues for right homological properties.

Recall that an isomorphism f : X → Y of CW complexes is a cellular mapping
which is a homeomorphism with the property that it sends (open) cells to (open) cells.
We then write X ∼= Y if they are isomorphic CW complexes.

The Squier complex of a presentation

The free monoid over the alphabet A, which we denote by A∗, consists of all words
over A, including the empty word which we denote by ε or alternatively by 1, with
respect to the operation of concatenation of words. We use A+ to denote the free
semigroup over the alphabet A. A monoid presentation is a pair 〈A | R〉 where A is
an alphabet and R ⊆ A∗ × A∗ is a set of defining relations which we usually write
in the form ui = vi (i ∈ I ). The monoid defined by the presentation 〈A | R〉 is the
quotient A∗/σ of the free monoid A∗ by the congruence σ generated by the set of
defining relations R; see [30,Sect. 1.6]. If M is the monoid defined by the presentation
〈A | R〉 we write [w]M to denote the image in M of w ∈ A∗. When it is clear from
context in which monoid we are working, we simply write [w] rather than [w]M . So,
with this notation, given two words w1, w2 ∈ A∗ we write w1 = w2 to mean that w1
and w2 are equal as words from A∗, while [w1]M = [w2]M means that w1 and w2
both represent the same element of the monoid M = 〈A | R〉. We say that z ∈ A∗ is
a factor of the word w ∈ A∗ if w = αzβ for some words α, β ∈ A∗.

The Squier complex of a monoid presentation P = 〈A|R〉, where each relation
r ∈ R is written as r+1 = r−1, is the 2-complex �(P) defined as follows. It will be
convenient to describe the 1-skeleton using the convention of Serre [51], where the
edge set is given with a fixed-point-free involution and geometric edges correspond
to pairs {e, e−1} of inverse edges. So �(P) has vertex set V = A∗ and edge set
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E = {(w1, r , ε, w2) | w1, w2 ∈ A∗, r ∈ R, and ε ∈ {+1,−1}}.

The incidence functions ι, τ : E → V are defined by ιE = w1rεw2 and τE =
w1r−εw2 for E = (w1, r , ε, w2). We call these the initial and terminal vertices,
respectively, of the edge E. The mapping ( )−1 : E → E associates with each edge
E = (w1, r , ε, w2) its inverse edge E

−1 = (w1, r ,−ε,w2).
Observe that two words are connected by an edge in the Squier complex exactly

if one can be transformed into the other by a single application of a relation from
the presentation. It follows that two words represent the same element of the monoid
defined by the presentation if and only if they belong to the same connected component
of the Squier complex.

A path in �(P) is a sequence of edges P = E1 ◦ . . . ◦ En where τEi ≡ ιEi+1 for
i = 1, . . . , n − 1. Here P is a path from ιE1 to τEn and we extend the mappings ι

and τ to the set of paths by defining ιP ≡ ιE1 and τP ≡ τEn . The inverse of a path
P = E1 ◦ E2 ◦ . . . ◦ En is defined by P

−1 = E
−1
n ◦ E

−1
n−1 ◦ . . . ◦ E

−1
1 . A path P is

called closed if ιP ≡ τP. For two paths P and Q with τP ≡ ιQ the composition P ◦Q

is defined in the obvious way by concatenating the paths. For the remainder of this
section let us abbreviate �(P) to �. We denote the set of all paths in � by P(�),
where for each vertex w ∈ V we include a path 1w with no edges, called the empty
path at w.

There is a natural two-sided action of the free monoid A∗ on the sets of vertices
and edges of � defined by left and right multiplication on vertices and by

x · E · y = (xw1, r , ε, w2y)

for an edge E = (w1, r , ε, w2) and x, y ∈ A∗. This extends to paths, where for a path
P = E1 ◦ E2 ◦ . . . ◦ En , we define

x · P · y = (x · E1 · y) ◦ (x · E2 · y) ◦ . . . ◦ (x · En · y).

For every r ∈ R and ε = ±1 define A
ε
r = (1, r , ε, 1). Such edges are called

elementary. The elementary edges are in obvious correspondence with the relations
of the presentation, and every edge of � can be written uniquely in the form α · A · β
where α, β ∈ A∗ and A is elementary. Thus the elementary edges form a basis for the
two-sided action on edges.

It is often useful to represent the edge E = (α, r , ε, β) geometrically by an object
called a monoid picture as follows:

α

α

rε

r−ε

β

β

The rectangle in the center of the picture is called a transistor, and corresponds to
the relation r from the presentation, while the line segments in the diagram are called
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wires, with each wire labelled by a unique letter from A. The monoid picture for E
−1

is obtained by taking the vertical mirror image of the picture of E. By stacking such
pictures vertically, and joining corresponding wires, we obtain pictures for paths in
the graph �. We refer the reader to [25, 26, 54] for a more formal and comprehensive
treatment of monoid pictures. In order to obtain that homotopy of paths corresponds
to isotopy of monoid pictures (up to cancelling mirror image pairs of transistors), it is
necessary to adjoin 2-cells to �.

IfE1 andE2 are edges of�, then (E1 ·ιE2)◦(τE1 ·E2) and (ιE1 ·E2)◦(E1 ·τE2) are
paths from ιE1 · ιE2 to τE1 · τE2 and so we may attach a 2-cell DE1,E2 with boundary
path

(E1 · ιE2) ◦ (τE1 · E2) · ((ιE1 · E2) ◦ (E1 · τE2))
−1 .

The 2-complex obtained by attaching all such 2-cells for every pair of edges in � is
called the Squier complex of the presentation P . Note that the Squier complex is an
A∗ × (A∗)op-CW complex where the action of a pair x, y ∈ A∗ on cells is given by
x DE1,E2 y = DxE1,E2 y .

If P and Q are paths such that ιP ≡ ιQ and τP ≡ τQ then we say that P and Q are
parallel, and write P ‖ Q. We use ‖ ⊆ P(�) × P(�) to denote the set of all pairs of
parallel paths in �.

From the way we attached 2-cells to obtain �, homotopy of paths in � (where
two paths in P(�) are homotopic if they are homotopic in the Squier complex) is the
smallest equivalence relation on parallel paths such that:

(H1) If E1 and E2 are edges of �, then

(E1 · ιE2) ◦ (τE1 · E2) ∼ (ιE1 · E2) ◦ (E1 · τE2).

(H2) For any P, Q ∈ P(�) and x, y ∈ A∗

P ∼ Q implies x · P · y ∼ x · Q · y.

(H3) For any P, Q, R, S ∈ P(�) with τR ≡ ιP ≡ ιQ and ιS ≡ τP ≡ τQ

P ∼ Q implies R ◦ P ◦ S ∼ R ◦ Q ◦ S.

(H4) If P ∈ P(�) then P ◦P
−1 ∼ 1ιP, where 1ιP denotes the empty path at the vertex

ιP.

Condition (H1) captures the idea that when applying non-overlapping relations to
a word it does not matter in which order we apply them. In terms of monoid pictures
(H1) corresponds to taking two non-overlapping transistors in two adjacent edges in
a path, and then pulling the lower transistor up, whilst pushing the higher transistor
down. For this reason, this operation is often called pull-up push-down (see below for
more on this). One can show that two monoids pictures with the same upper and lower
boundary labels correspond to homotopic paths in � if and only if they are isotopic
(up to cancellation of mirror image pairs of transistors) [26].
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Let P, Q ∈ P(�) with P ‖ Q. We say that Q can be obtained from P by deleting a
cancelling pair of edges if there are paths P1, P2 and an edge E such that

P = P1 ◦ E ◦ E
−1 ◦ P2

and

Q = P1 ◦ P2.

In this situation we also say that P is obtained from Q by inserting a cancelling pair
of edges.

We say that Q can be obtained from P by an application of pull-up push-down if
there are paths R and S, and edges E1 and E2 such that

P = R ◦ (E1 · ιE2) ◦ (τE1 · E2) ◦ S

and

Q = R ◦ (ιE1 · E2) ◦ (E1 · τE2) ◦ S.

In this situation we also say that P can be obtained fromQ by an application of pull-up
push-down, and thatQ can be obtained fromP by an application of pull-up push-down.
Following Kobayashi [32], we will use ∼0 to denote homotopy in �.

The following straightforward lemma follows easily from the definitions above.

Lemma 2.2 Let P and Q be paths in P(�). Then P ∼0 Q if and only if there is a
sequence of paths

P = P0, P1, . . . , Pk = Q

such that, for all i ∈ {1, 2, . . . , k − 1}, the path Pi+1 can be obtained from Pi by one
of (i) deletion of a cancelling pair of edges (ii) insertion of a cancelling pair of edges,
or (iii) an application of pull-up push-down.

Following Kobayashi’s terminology [32], the presentationP is strictly aspherical
if each connected component of � is simply connected. In other words, P is strictly
aspherical if ∼0 and ‖ coincide as equivalence relations on paths. So, P is strictly
aspherical if and only if every closed path is null-homotopic, meaning that for every
closed path P in � we have P ∼0 1ιP. Equivalently, P is strictly aspherical if all the
diagram groups associated to it, in the sense of Guba and Sapir [26], are trivial. We
note that what we call strictly aspherical presentations here are also referred to simply
as aspherical presentations in some places in the literature.

3 Statement of results and proof outline

The main objects of study in the paper are monoids defined by presentations of the
form 〈A | u = v〉where A is a finite alphabet and u, v ∈ A∗. We call a monoid defined
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by a presentation 〈A | u = v〉 with a single defining relation a one-relator monoid.
These are also called one-relation monoids in the literature. Following [35] we call
one-relator monoids of the form 〈A | u = 1〉 special one-relator monoids.

As explained in the introduction, our aim is to construct suitable M-CW complexes
for one-relator monoids which can then be used to prove Theorem A. Sometimes
these complexes will be equivariant classifying spaces that lead directly to a proof
the monoid is of type right- and left-F∞. In other cases we shall have to combine our
topological results with algebraic methods, arguments with monoid pictures, and a
general method from [9] and [55] in order to prove that the monoid is of type FP∞.
Recall from the preliminaries section that the properties F∞ andFP∞ are are equivalent
for finitely presented monoids [21].

Specifically we will prove the following result.

Theorem 3.1 (Theorem A) Every one-relator monoid 〈A | u = v〉 is of type left- and
right-F∞ and of type left- and right-FP∞.

We can say quite a bit more in the case of the, so-called, subspecial one-relator
monoids since, as we shall see, these are the monoids for which the M-CW complexes
we construct will be equivariant classifying spaces.

Definition 3.2 (Subspecial relation) Let u, v ∈ A∗ with |v| ≤ |u|. The relation u = v

is called subspecial if u ∈ vA∗ ∩ A∗v.
The terminology ‘subspecial’ is originally due to Kobayashi [33]. Note that in

particular the relation u = 1 is subspecial. Subspecial one-relator monoids were first
considered by Lallement [35] where, among other things, he showed that the word
problem is decidable for this class. He also showed that any one-relator presentation
of a monoid containing a non-trivial element of finite order is subspecial.

Let M be the one-relator monoid defined by the presentation

〈A | u = v〉.

Without loss of generality we may assume that |v| ≤ |u|. The above presentation
of M is compressible if there is a non-empty word r ∈ A+ such that u, v ∈ r A∗ ∩
A∗r . Otherwise, the presentation is incompressible. Compression first appeared in
the paper of Lallement [35] for subspecial presentations and then, more generally,
in the work of Adjan and Oganesyan [2]. If u, v ∈ r A∗ ∩ A∗r then there is an
associated compressed one-relator monoid Mr , with shorter defining relation, whose
word problem is equivalent to that of M . Compression is transitive (each compression
of a compression of M is a compression of M in its own right) and confluent, and
hence there is a unique incompressible monoid M ′ to which M compresses.Moreover,
the monoid M ′ is special if and only if M is subspecial. More details on compression
can be found in Sect. 4.

We shall prove the following result from which Theorem B will follow. This result
actually says a bit more than Theorem B, since (2)(ii) identifies a broad family of
torsion-free one-relator monoids with infinite cohomological dimension.

Theorem 3.3 (Theorem B) Let M be a monoid defined by a one-relator presentation
〈A | u = v〉 with |v| ≤ |u|.
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(1) Suppose the presentation is subspecial, i.e., u ∈ vA∗ ∩ A∗v.

(i) If upon writing u = vw ∈ A∗ the word w is a proper power, then

cd(l)(M) = cd(r)(M) = gd(l)(M) = gd(r)(M) = ∞.

(ii) In all other cases

cd(l)(M) ≤ gd(l)(M) ≤ 2,

and

cd(r)(M) ≤ gd(r)(M) ≤ 2.

(2) Suppose the presentation is not subspecial.

(i) If the presentation is incompressible, then

cd(l)(M) ≤ gd(l)(M) ≤ 2,

and

cd(r)(M) ≤ gd(r)(M) ≤ 2.

(ii) If the presentation is compressible by a unique word r ∈ A+, then

cd(l)(M) = cd(r)(M) = gd(l)(M) = gd(r)(M) = ∞.

(iii) In all other cases, the left and right cohomological and geometric dimensions
are at least 3.

In the rest of this section we will give an outline of our strategy for constructing
M-CW complexes for one-relator monoids which will be used to prove Theorem 3.1
and Theorem 3.3. The proof of our results divides into consideration of two cases: the
subspecial case and the non-subspecial case.

When u = v is a subspecial relation, that is u ∈ vA∗ ∩ A∗v, then clearly the
relation u = v is incompressible if and only if v = 1, that is, if and only if the
presentation 〈A | u = v〉 is special. For special one-relator monoids 〈A | u = 1〉 the
two main results of this paper, Theorems 3.1 and 3.3, are both consequences of more
general results for finitely presented special monoids proved in our earlier paper; see
[22,Sect. 3].

In the non-subspecial incompressible case we shall see that a natural (at most) 2-
dimensional M-CW complex, called the Cayley complex, is an equivariant classifying
space for the monoid. The Cayley complex, for a monoid given by a presentation, is
defined in the followingway. Let S be amonoid given by a presentationwith generators
A and defining relations ui = vi with i ∈ I . The right Cayley (di)graph �(S, A) of
S with respect to A is the graph with vertex set S and with edges in bijection with
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S × A where the directed edge corresponding to (s, a) starts at s and ends at sa.
Throughout this paper we shall always work with right Cayley graphs of finitely
generated monoids, and so by the Cayley graph of a finitely generated monoid, we
will always mean the right Cayley graph. The Cayley complex X = �(S, A)(2) of
S, with respect to the presentation 〈A | ui = vi (i ∈ I )〉, is the 2-dimensional, free
S-CW complex with 1-skeleton �(S, A), and with a free S-cell S × B2 attached for
each defining relation in the following way. For each relation ui = vi , with i ∈ I , let
pi , qi be paths from 1 to mi labelled by ui and vi respectively where mi is the image
of ui (and vi ) in M . We glue in S × B2 so that {s}× B2 is attached via the translate of
the loop pi q

−1
i by s (see [21,Proposition 2.3] for more details). The Cayley complex

X is a simply connected, free S-CW complex of dimension at most 2 and it is S-finite
if the presentation is finite. In particular, if the Cayley complex is contractible then
it is an equivariant classifying space for the monoid. Note that the Cayley complex
depends on the choice of presentation for S. A key fact for our proof below is that the
Cayley complex of a strictly aspherical presentation turns out to be contractible; see
Lemmas 6.4 and 6.5 below.

Given two words x, y ∈ A∗ we define

OVL(x, y) = {w ∈ A+ : x = x1w, y = wy1 for some x1, y1 ∈ A∗}.

Lemma 3.4 [32,Corollary 5.6] Let 〈A | u = v〉 be a non-subspecial presentation with
|u| ≥ |v| ≥ 1. Let λ be the longest common prefix of u and v, and let ρ be their longest
common suffix. If OVL(ρ, λ) = ∅, then 〈A | u = v〉 is strictly aspherical.

Proposition 3.5 Let M = 〈A | u = v〉 be a one-relator monoid with |u| ≥ |v|. Then
one of the following must hold:

(a) 〈A | u = v〉 is compressible; or
(b) 〈A | u = v〉 is special, i.e., v = 1; or else
(c) 〈A | u = v〉 is strictly aspherical.

Proof Suppose 〈A | u = v〉 is not special and is not strictly aspherical. A subspecial,
but not special, presentation is obviously compressible. If the presentation is not sub-
special and not strictly aspherical, then by Lemma 3.4 it follows that OVL(ρ, λ) 	= ∅,
with λ and ρ as in Lemma 3.4. This implies that there is a word α ∈ A+ such that

u ∈ αA∗ ∩ A∗α and v ∈ αA∗ ∩ A∗α

and so the presentation is compressible. ��
It follows that every one-relator monoid can be compressed either to a special one-

relator monoid or to a strictly aspherical one-relator monoid. The first case happens if
and only if the original monoid is subspecial (see [33,Lemma 5.4]).

In this way, Proposition 3.5 allows us to divide the proofs of our main results into
considering the non-subspecial and subspecial cases separately.



A Lyndon’s identity theorem... Page 15 of 53 59

In both the subspecial and non-subspecial cases our general approach is the same.
Let M = 〈A | u = v〉 be a one-relator monoid, and let M ′ be the incompressible
monoid obtained from M using compression. Note that in general M ′ will be an
infinitely generated one-relator monoid. Moreover, the one-relator monoid M ′ will be
special if M is subspecial, and otherwise M ′ will be strictly aspherical by Lemma 3.4.
In Theorem 4.17 we shall prove a key result which shows how the structure of the
right Cayley graphs of M and M ′ are related to each other. Specifically, that result
shows that the Cayley graph � of M is homotopy equivalent to an infinite star graph
with disjoint copies of the Cayley graph �′ of M ′ attached at each leaf of the star. We
use this result to build M-CW complexes from equivariant classifying spaces of the
compressed monoid M ′.

While the general approach is the same, the specific constructions that we give are
different in the subspecial and non-subspecial cases, as are the properties enjoyed by
the resulting M-CW complexes. Let us now explain in more detail how the proofs
will proceed in each of these two cases. This description will also explain why the
result that torsion-free subspecial one-relator monoids have cohomological dimension
at most two (see Theorem B) does not generalise to torsion-free one-relator monoids
in general.

The subspecial case

This case is dealt with in Sect. 5. The idea in this case is to reduce the problem to the
maximal subgroups of the monoid. Recall that, for any idempotent e in a monoid N ,
the set eNe is a subsemigroup of N , and eNe is a monoid with identity element e.
The group of units of eNe is a subgroup (i.e., a subsemigroup which is a group) of
N which is called the maximal subgroup of N containing e. The maximal subgroup
containing e is the largest subgroup of N with identity element e.

We shall see that if M is a subspecial, but not special, monoid then it contains
non-trivial idempotents, and all of its maximal subgroups (except the group of units,
which is trivial) are isomorphic to a single group G. Moreover, this group G is a one-
relator group. In the subspecial case we give a method for constructing an equivariant
classifying space for the monoid from an equivariant classifying space for this group.
Our construction preserves dimension, and the property Fn , and thiswill allowus to use
it to prove our main theorems in the subspecial case, by inputting to our construction
the classifying spaces forG given byLyndon’s IdentityTheorem for one-relator groups
[37].

In more detail, the key steps for constructing the equivariant classifying space in the
subspecial case are as follows. Let M be the monoid 〈A | u = v〉 where |u| ≥ |v| and
u ∈ vA∗ ∩ A∗v. Let M ′ be the one-relator monoid to which M compresses. In general
M ′ will be an infinitely generated one-relator monoid, and so M ′ is a free product of a
finitely generated special monoid S and a free monoid of infinite rank (see Sect. 4 for
details). Let G be the group of units of the monoid S. Then G is a finitely generated
one-relator group. Then the following conditions are equivalent:

• upon writing u = vw the word w is a proper power;
• the group G is a one-relator group with torsion;
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• all maximal subgroups of M are one-relator groups with torsion (in fact, all of
these groups are isomorphic to G).

To construct an equivariant classifying space for M , with the properties satisfying
the main theorems, we begin with an equivariant classifying space for G given by
Lyndon’s results, from this we construct an equivariant classifying space for the one-
relator specialmonoid S using themethod given in our paper [22]. This is then extended
to give an equivariant classifying space for the compressed monoid M ′. We then use
this space together with Theorem 4.17, described above, which relates the structure
of the Cayley graph of M to that of M ′, to build an equivariant classifying space for
M . The constructions we give preserve M-finiteness, and they do not increase the
dimension of the space. This will then suffice to prove our main results Theorem 3.1
and Theorem 3.3 in the subspecial case.

The non-subspecial case

In this case the compressed monoid M ′ is strictly aspherical (or, more precisely, the
finitely generated one-relator free factor is). It follows (see Lemma 6.4) that the Cayley
complex Y of M ′ with respect to the compressed presentation is contractible. We use
this fact together with Theorem 4.17 to construct a contractible M-CW complex K
defined in the following way. Let z ∈ A∗ be the longest word which is a prefix and
a suffix of both u and v, and write u = zu′ and v = zv′. Then K is the 2-complex
with 1-skeleton the Cayley graph � of M , and a 2-cell adjoined at every vertex in
M[z]M with boundary path labelled by u′(v′)−1. (See Sect. 4 for full details.) Recall
that [z]M denotes the image in M of the word z ∈ A∗. So [z]M is an element of the
monoid M and M[z]M = {x[z]M : x ∈ M} is the principal left ideal of M generated
by the element [z]M . Equivalently M[z]M = {[wz]M : w ∈ A∗} so this principal
left ideal consists of all elements of M that can be represented by words that have
z as a suffix. Now the M-CW complex K is contractible by Theorem 4.17, since Y
is contractible. However, K will not in general be a projective M-CW complex and
hence will not be an M-equivariant classifying space in this case. Despite this, since
K is contractible its augmented cellular chain complex gives an exact sequence of
ZM-modules. In Theorem 6.7 this exact sequence is used to reduce the problem of
proving Theorem A in the non-subspecial case to the problem of showing that the
left ZM-module ZM[z]M is of type FP∞. In this case we shall see that ZM[z]M is
in fact isomorphic to the relation module of M in the sense of Ivanov [31]. Using
algebraic methods, arguments with monoid pictures, and a general result from [9]
and [55], which gives a useful general criterion for a module to be of type FP∞, we
shall prove in Theorem 8.7 that the left ZM-module ZM[z]M is of type FP∞. This is
then combined with Theorem 6.7 to deduce that M is of type left- and right-FP∞; see
Theorem 8.8.

As noted above, the M-CW 2-complex K which is used to prove that M is of
type FP∞ is contractible and has dimension at most 2, but is not projective and hence
not an M-equivariant classifying space. More generally, we shall see in Sect. 9 that
not only does K fail to be an equivariant classifying space for M , but in fact it will
not be possible to construct any two-dimensional equivariant classifying space for a
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non-subspecial compressible one-relator monoid. And in some cases, it will not even
be possible to construct a finite dimensional one. For example we will see in Sect. 9
that the monoid 〈a, b, c | aba = aca〉 is a torsion-free non-subspecial one-relator
monoid of infinite cohomological dimension. This example is in fact a special case
of a much more general result about the cohomological dimension of compressible
non-subspecial one-relator monoids which we prove in Sect. 9; see Proposition 9.5. A
result of independent interest that we prove in the process of studying cohomological
dimension is that the monoid ring ZM of a non-subspecial one-relator monoid has no
idempotents except 0 and 1; see Theorem 9.2. This strongly generalises Lallement’s
result [35] that a non-subspecial one-relator monoid has no idempotents other than 1.

This completes the outline of the proof of our main results.

4 Compression and local divisors

Compression

We simultaneously generalise here some results from Lallement [35] and from Adjan
and Oganesyan [2]. Note that we frequently use the dual formulation of Lallement’s
results since we are working with left actions. Recall that a submonoid N of A∗ is
left unitary if z, zw ∈ N implies w ∈ N . Let N be a left unitary submonoid of A∗. A
word z ∈ N is said to be irreducible if it belongs to the set (N \ {ε}) \ (N \ {ε})2. Let
P be the set of irreducible elements of N . Then P is a prefix code (i.e., no element of
P is a prefix of another element of P); see [30,Proposition 7.2.2]. Indeed, if y ∈ P
and y = zw with z ∈ P and w 	= ε, thenw ∈ N and so y is not irreducible. Thus N is
a free monoid, freely generated by the prefix code P . Indeed, if w ∈ N is non-empty,
then its unique factorization as a product of elements of P can be found as follows.
Since P is a prefix code, there is a unique prefix u of w belonging to P . If w = uv,
then v ∈ N by the left unitary property and has a unique factorization as a product of
elements of P by induction on word length.

Let r ∈ A+. We say that r seals the word w ∈ A∗ if w ∈ r A∗ ∩ A∗r . For example,
aba seals ababa. In particular, the initial and final occurrences of r may overlap. If
both r , s ∈ A+ seal w and |r | ≤ |s|, then r seals s. Indeed, w = rw′ = sw′′ and
w = v′r = v′′s shows that s ∈ r A∗ ∩ A∗r . Conversely, if s seals w and r seals s, then
r seals w as s = r x = yr and w = sw′ = w′′s implies r xw′ = w = w′′yr . Thus
sealing is transitive.

Throughout this section M will denote the one-relator monoid defined by the pre-
sentation 〈A | u = v〉. The presentation 〈A | u = v〉 is said to be compressible if there
is a non-empty word r ∈ A+ sealing u and v. In this case we say that r compresses
u = v. Otherwise, we say that the presentation is incompressible.

If both r , s ∈ A+ compress u = v and |r | ≤ |s|, then r seals s, as observed above.
Note that if a presentation is compressible there is a unique longest word and a unique
shortest word compressing u = v. A word r ∈ A+ is self-overlap-free (SOF) if no
proper non-empty prefix of r is also a suffix, that is, r is not sealed by any non-empty
word except itself. It follows immediately that if x is the shortest word compressing a
relation u = v, then x is SOF and it is the only SOF word compressing the relation.
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Let r ∈ A+ and put

T (r) = {w ∈ A∗ | rw ∈ A∗r}.

Observe that T (r) is a submonoid of A∗. Indeed, rε = r ∈ A∗r , so ε ∈ T (r), and
if z, w ∈ T (r), then r zw = z′rw = z′w′r for some z′, w′ ∈ A∗. So zw ∈ T (r). Also
T (r) is left unitary. If z, zw ∈ T (r), then r z = z′r and so r zw = z′rw ∈ A∗r . It
follows that rw ∈ A∗r by length considerations. So w ∈ T (r) and this completes the
proof the T (r) is left unitary.

Since T (r) is freely generated by the prefix code 
r of its irreducible elements, we
shall often identify T (r) with 
∗

r . Throughout this section we shall endeavor to use
lower case Latin letters for elements of A and lower case Greek letters for elements
of 
r . In general, the prefix code 
r is infinite. The code 
r is easiest to describe
when r is SOF. In this case, T (r) = A∗r ∪ {ε} because if rw = w′r with w non-
empty, then the suffix r of rw cannot overlap the prefix r and so w ∈ A∗r . Therefore,

r = (A∗ \ A∗r A∗)r as all occurrences of r in an element of A∗r are disjoint and
so an element of (T (r) \ {ε})2 is a word of the form wr where w contains a factor
r . The description of the prefix code 
r is more complicated when r is not SOF, see
[35,Sect. 3] for details.We shall not require a detailed description of the set
r here. In
our proofs wewill only need to refer to the existence of the set
r and some of its basic
properties, e.g., the fact that it is a prefix code which freely generates T (r). Notice
that membership in T (r) is decidable and given a word w ∈ T (r), one can effectively
find its factorization into elements of 
r by finding the first non-empty prefix of w

in T (r), which will necessarily belong to 
r , and then repeating the process on the
remainder of the word.

If r compresses u = v, then we can write u = ru′ = u2r and v = rv′ = v2r and
so u′, v′ ∈ T (r). Thus u′ = α1 · · · αk and v′ = β1 · · · β� with αi , β j ∈ 
r for all i, j .
We can thus form the infinitely generated one-relator monoid

L = 〈
r | α1 · · · αk = β1 · · · β�〉. (4.1)

Note that the αi and β j appearing in u′ and v′ need not be distinct. Also, note that if
r = u or r = v, then one of the sides of the defining relation of L can be the empty
word (and that is the only way that this can happen). If we identify T (r) with 
∗

r , we
can, abusing notation, write the presentation L = 〈
r | u′ = v′〉. Notice that the word
length of u′ and v′ over 
r is bounded above by the corresponding word length over
A and hence k < |u| and � < |v| as r is non-empty.

Let

�r =
⎛

⎝
⋃

1≤i≤k

{αi }
⎞

⎠ ∪
⎛

⎝
⋃

1≤ j≤l

{β j }
⎞

⎠

noting that�r is a finite subset of
r , and put�r = 
r \�r . Then L has a free product
decomposition L = �∗

r ∗ S where S is the finitely presented one-relator monoid
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S = 〈�r | α1 · · ·αk = β1 · · · β�〉. (4.2)

We call S the compression of M with respect to r . Notice that S has a shorter defining
relation than M since k < |u| and � < |v|.
Lemma 4.1 Suppose that r seals s, and that s seals u. Write s = rs′ and u = ru′.
Then s′, u′ ∈ T (r) and s′ seals u′ in 
∗

r .

Proof Since r seals s and u, we have that rs′ = s ∈ A∗r and ru′ = u ∈ A∗r , whence
s′, u′ ∈ T (r). Also we have that ru′ = u = su′′ = rs′u′′ and u = u0s = u0rs′ for
some u′′, u0 ∈ A∗ as s seals u. Thus we have that u′ = s′u′′ and hence, since u′, s′ ∈
T (r), we have that u′′ ∈ T (r) because T (r) is left unitary. Also from u0rs′ = u = ru′
we have that r is a prefix of u0r , so write u0r = rw. Then rws′ = u0rs′ = ru′ and
so ws′ = u′. Since rw = u0r , clearly w ∈ T (r). Since ru′ = rs′u′′ it follows that
u′ = s′u′′ with u′′ ∈ T (r). Also, u′ = ws′ with w ∈ T (r). Combining these yields
u′ ∈ s′
∗

r ∩ 
∗
r s′, as required. ��

The following proposition expresses a transitivity property of compression that, in
particular, implies that every iterated compression of M is a compression of M .

Proposition 4.2 Let M = 〈A | u = v〉 be compressed by r with compression M ′ =
〈A′ | u′ = v′〉. Then there is a prefix preserving bijection ϕ from the set of words s from
A+ compressing u = v with |s| > |r | and the set of words from (A′)+ compressing the
presentation of M ′. If s is such a word and M ′′ = 〈A′′ | u′′ = v′′〉 is the compression
of M with respect to s, then the compression S of M ′ with respect to ϕ(s) is given
by 〈B | x = y〉 where there is a bijection � : A′′ → B such that �(u′′) = x and
�(v′′) = y. In other words, up to relabelling the alphabet, the compressions of M
with respect to s and of M ′ with respect to ϕ(s) are the same.

Proof Throughout this proof we identify 
∗
r with T (r). Then u = ru′ and v = rv′.

Let s ∈ A∗ be a word compressing u = v with |s| > |r |. We have already observed
that r seals s and so s = rs′ = s′′r for some s′, s′′ ∈ A∗. Lemma 4.1 implies that
u′, v′, s′ ∈ T (r) and that s′ seals both u′ and v′ over 
r and so s′ compresses u′ = v′.
For every word s ∈ A∗ compressing u = v with |s| > |r | define ϕ(s) = s′ where
s = rs′. Then ϕ defines a map from the set of all such words s to the set of words from
(A′)+ compressing u′ = v′. Our aim is to prove that ϕ is a prefix preserving bijection.

Clearly ϕ is injective on the set of all such words s. Moreover, cancelling r is clearly
prefix preserving from r A∗ → A∗ and so ϕ is prefix preserving. We show that ϕ is
surjective onto the set of words compressing u′ = v′.

Suppose that s′ ∈ 
∗
r with u′, v′ ∈ s′
∗

r ∩ 
∗
r s′. We show that s = rs′ seals u. A

similar argument will show that it seals v and hence s compresses r with ϕ(s) = s′.
Write u′ = u1s′ = s′u2 in 
∗

r and note that we can view these as factorizations over
A∗, as well. Since ru′ = u, we have that if s = rs′, then u = ru′ = rs′u2 ∈ s A∗ and
also u = ru′ = ru1s′. But u1 ∈ T (r) and so ru1s′ ∈ A∗rs′ = A∗s. This shows that
s = rs′ seals u. This completes the proof that ϕ is surjective.

Fix now a word s compressing u = v with |s| > |r | and let s′ = ϕ(s). First note
that since s is sealed by r , and by definition of ϕ, we can write s = rs′ = s′′r with
s′′ ∈ A∗. Let us put
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T ′(s′) = {w ∈ 
∗
r | s′w′ ∈ 
∗

r s′}.

We show that under the identification of T (r) with 
∗
r , we have that T ′(s′) = T (s).

If w ∈ T ′(s′), then s′w ∈ 
∗
r s′ and hence sw = rs′w ∈ r
∗

r s′ ⊆ A∗rs′ = A∗s, as

∗

r = T (r). Therefore, w ∈ T (s). Conversely, let w ∈ T (s). So sw = w′s. Thus s
seals sw = rs′w and so, by Lemma 4.1, we have that s′ seals s′w over 
∗

r , whence
w ∈ 
∗

r and s′w ∈ 
∗
r s′. Thus w ∈ T ′(s′).

It now follows that the free basis 
s of T (s), as a free submonoid of A∗, can be
identified with the free basis of T ′(s′) over 
∗

r . Note that ru′ = u = su′′ = rs′u′′
and rv′ = v = sv′′ = rs′v′′ with u′′, v′′ ∈ T (s) = T ′(s′). Thus M compresses to
〈�s | u′′ = v′′〉 under s. Also note that u′ = s′u′′ and v′ = s′v′′ with s′, u′′, v′′ ∈ 
∗

r
and hence s′, u′′, v′′ ∈ �∗

r . Then under our identification of T (s) with T ′(s′) (and
hence 
s with 
s′ ⊆ 
∗

r ), we have that u′ = v′ rewrites under compression by
ϕ(s) = s′ ∈ �∗

r to u′′ = v′′.
Hence the compressions of M with respect to s, and of M ′ with respect to ϕ(s), are

the same. This completes the proof of the proposition. ��

The following corollary will be essential.

Corollary 4.3 Let M = 〈A | u = v〉 be a compressible one-relator monoid. Suppose
that r compresses M and let M ′ = 〈A′ | u′ = v′〉 be the compression of M ′ with respect
to r . Then M ′ is incompressible if and only if r is the unique maximal length word z
compressing u = v. Moreover, any iterated compression of M that is incompressible
is, up to relabelling, the compression of M by z.

We call the compression of u = v with respect to the maximum length word com-
pressing u = v the Lallement compression of u = v, as it was first considered by
Lallement [35] in the case of a subspecial presentation. We call the compression of
u = vwith respect to the unique SOFword compressing it theAdjan–Oganesyan com-
pression of u = v, as this compression was first considered by Adjan and Oganesyan
in [2]. Corollary 4.3 implies that the Lallement compression of the Adjan–Oganesyan
compression of u = v is the Lallement compression of u = v.

Notice that a compressible one-relator presentation is subspecial if and only if its
Lallement compression is special. Thus Corollary 4.3 has the following consequence.

Corollary 4.4 Let M = 〈A | u = v〉 be a compressible one-relator monoid presen-
tation and let N be any compression of M. Then M is subspecial if and only if N is
subspecial.

Let us consider an example. Let M = 〈a, b | ababa = ababbaba〉. The relation
ababa = ababbaba can be compressed by y = a and z = aba. If we compress with
respect to y = a we obtain M ′ = 〈β, γ | β2 = βγβ〉 where β = ba and γ = bba. If
we compress with respect to z = aba, then we obtain M ′′ = 〈c, d | c = d〉where c =
ba and d = bbaba. Here it is easy to verify that we have �z = {c, d} = {ba, bbaba}.
Notice that M ′ can be compressed with respect to β and the resulting presentation is
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〈ρ, τ | ρ = τ 〉 where ρ = β and τ = γβ, which is the same as the presentation of
M ′′ up to relabelling.

Throughout the rest of this section we shall suppose that the word r ∈ A+ com-
presses the defining relation u = v in the presentation 〈A | u = v〉 of the monoid
M . As usual, we write [w]M to denote the image in M of w ∈ A∗. Furthermore, with
L and S defined as above in equations (4.1) and (4.2), we use [w]L for the image
of w ∈ 
∗

r in L , and [w]S for the image of w ∈ �∗
r in S. Because it plays a very

important role, we put x = [r ]M . All of this notation will remain in force throughout
the rest of this section.

Let us nowgeneralise some lemmas fromLallement [35] reducing theword problem
of M to its compression S.

For any word w ∈ A∗r A∗, by the first occurrence of r in w we mean the leftmost
occurrence of the word r in w, reading the word from left to right. Dually we talk
about the last occurrence of the word r in w, which is the rightmost occurrence of r
in w.

If s ∈ A∗, then we can uniquely factor s = yw where y is the longest prefix of s
with y ∈ A∗r ∪ {ε} (i.e., either s has no occurrence of r , in which case y = ε, or y
ends in the last occurrence of r in s). We call this the right canonical factorization of
s.

The following generalises the dual of [35,Lemma 3.1].

Lemma 4.5 Let s, s′ ∈ A∗ with right canonical factorizations s = yw and s′ = y′w′,
respectively. Then [s]M = [s′]M if and only if w = w′ and [y]M = [y′]M .

Proof Trivially, if w = w′ and [y]M = [y′]M , then [s]M = [s′]M . For the converse,
assume that [s]M = [s′]M . If s = s′, then clearly w = w′ and y = y′, whence
[y]M = [y′]M . Thus we may assume that s 	= s′. In particular, it must be possibly to
apply the defining relation to both s and s′. Since u, v ∈ A∗r , it follows that r occurs
as a factor of both s and s′ and so y 	= ε and y′ 	= ε. It clearly suffices to prove
the result when s′ may be obtained from s by just a single application of the defining
relation u = v in the presentation defining M . Thus, by symmetry, it will suffice to
show that if s = x1ux2 has right canonical factorization s = yw with y ∈ A∗r and if
s′ = x1vx2, then s′ has right canonical factorization of the form y′w with y′ ∈ A∗r
and [y′]M = [y]M . Write y = y0r , u = u0r and v = v0r . Then s = x1u0r x2 = y0rw

where the r displayed on the right hand side is the last r in s. It follows that u0 is a
factor of y0 and rw is a suffix of r x2, and so s′ = x1vx2 = x1v0r x2 = y′

0rw, for some
y′
0 ∈ A∗, and so the displayed r in the right hand side is the last occurrence of r in

s′ as rw contains no other occurrence of r as yw is a right canonical factorization of
s. Thus, putting y′ = y′

0r , we have that s′ has right canonical factorization y′w and
[y′]M = [y]M as u = u0r was a factor of y0r = y and y′ is obtained by replacing u
in y by v. ��
Remark 4.6 It follows from Lemma 4.5 that if w ∈ A∗r , then every word equivalent
to w in M belongs to A∗r .

Lemma4.5 reduces theword problem for M to consideration ofwords in A∗r , which
leads to the second lemma that we shall need, generalizing the dual of [35,Lemma 3.2].
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Suppose that s ∈ A∗r . Then s has a unique factorization s = yrw with the displayed r
the first occurrence of r in s (it has at least one since it ends in r ). Note that w ∈ T (r),
since s, yr ∈ A∗r ⊆ T (r) and T (r) is left unitary. Thus w ∈ 
∗

r and so [w]L makes
sense. We call s = yrw the left canonical factorization of s.

Lemma 4.7 Let s, s′ ∈ A∗r with respective left canonical factorizations s = yrw and
s′ = y′rw′. Then [s]M = [s′]M if and only if y = y′ and [w]L = [w′]L .

Proof By Remark 4.6 every word equivalent in M to s or s′ belongs to A∗r . It then
clearly suffices to show that s′ can be obtained from s via one application of the
defining relation u = v if and only if y = y′ and w′ can be obtained from w by one
application of the defining relation for L . Assume first that s is obtained from s′ via one
application of the defining relation u = v in the presentation of M . Up to symmetry
we may assume that yrw = x1ux2 and y′rw′ = x1vx2. Since u, v ∈ r A∗ and the left
canonical factorization displays the first occurrence of r , we must have that y = y′
and that rw = x ′

1ux2 and rw′ = x ′
1vx2 where x1 = yx ′

1. Recall that w,w′ ∈ T (r)

and u = ru′, v = rv′. From rw = x ′
1ru′x2 and rw′ = x ′

1rv′x2, we deduce that r
is a prefix of x ′

1r . Therefore, writing x ′
1r = r x ′, substituting into the previous two

equations, and deleting the r -prefixes,we see thatwe canfind x ′ ∈ A∗ withw = x ′u′x2
andw′ = x ′v′x2 and r x ′ = x ′

1r , whence x ′ ∈ T (r). Sincew, x ′, u′ ∈ T (r), we deduce
that x2 ∈ T (r) as T (r) is left unitary. Thus we have factorizations w = x ′u′x2 and
w′ = x ′v′x2 with x ′, x2 ∈ 
∗

r and so [w]L = [w′]L via one application of the defining
relation u′ = v′ in the presentation of L .

Conversely, suppose that y = y′ and w′ can be obtained from w by one application
of the defining relation u′ = v′ in the presentation of L . Without loss of generality,
we may assume that w = x ′u′x2 and w′ = x ′v′x2 with x ′, x2 ∈ 
∗

r . Write r x ′ = x ′′r .
Then s = yrw = yr x ′u′x2 = yx ′′ru′x2 = yx ′′ux2 and s′ = y′rw′ = yr x ′v′x2 =
yx ′′rv′x2 = yx ′′vx2 and so s′ can be derived from s via one application of the defining
relation u = v in the presentation of M . This completes the proof. ��

Notice that these two lemmas reduce the word problem from M to S (as L is a free
product of S with a free monoid on a recursive set). In [35] Lallement proved the above
two lemmas in the particular case that r = v, where u = v is a subspecial relation.
In this situation S is a speical one-relator monoid. Since Adjan [1] had previously
proved that word problem is decidable for special one-relator monoids, this allowed
Lallement to conclude that subspecial one-relator monoids also have decidable word
problem.

Let P
r be the collection of proper prefixes of elements of 
r . Because 
r is a
prefix code, no element of 
r belongs to P
r . Let us provide an alternate description
of P
r .

Lemma 4.8 Let w ∈ A∗. Then w ∈ P
r if and only if no non-empty prefix of w belongs
to T (r).

Proof Suppose first that w ∈ P
r has a non-empty prefix w′ with w′ ∈ T (r). Then
w′ ∈ 
+

r and so w′ has a prefix w′′ belonging to 
r . But then w′′ ∈ P
r ∩ 
r = ∅, a
contradiction. Thus no non-empty prefix of w belongs to T (r).
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Conversely, suppose that no non-empty prefix of w belongs to T (r). Consider wr .
Trivially, wr ∈ A∗r ⊆ T (r) and so wr ∈ 
∗

r . Write wr = αz with α ∈ 
r and
z ∈ 
∗

r . Then since no non-empty prefix of w is in T (r), we must have that w is a
proper prefix of α. Thus w ∈ P
r . ��

The following two lemmas will be used below when we analyse compression from
a topological perspective.

Lemma 4.9 Suppose that z ∈ A∗ with z = trw. Then this factorization is right
canonical if and only if w ∈ P
r .

Proof Suppose first that the factorization is right canonical. Then the displayed occur-
rence of r is the last one in z and so no non-empty prefix of w belongs to T (r).
Therefore, w ∈ P
r by Lemma 4.8. Conversely, if w ∈ P
r and if z = trw = t ′rw′
with tr a proper prefix of t ′r , then writing t ′r = trw0, we see that r is a suffix of rw0
and so w0 ∈ T (r). But w0 is a non-empty prefix of w. This contradicts Lemma 4.8
and so we conclude that the factorization z = trw is right canonical. ��

We shall also need the following lemma.

Lemma 4.10 Let t, t ′ ∈ A∗ and w,w′ ∈ P
r . Then [trw]M = [t ′rw′]M if and only if
w = w′ and [tr ]M = [t ′r ]M .

Proof By Lemma 4.9, we have that trw and t ′rw′ are right canonical factorizations
and hence if [trw]M = [t ′vw′]M , then w = w′ and [tr ]M = [t ′r ]M by Lemma 4.5. ��

The compressedmonoid as a local divisor

If n ∈ M , then there is a well-defined mapping ◦: Mn × nM → MnM given by
m ◦ m′ = anb for m = an and m′ = nb. This mapping restricts to an associative
multiplication on the local divisor Mn = nM ∩ Mn with identity element n (if
an = na′ and nb = b′n then na′b = anb = ab′n). So, by the local divisor Mn we
mean the monoid (nM ∩ Mn, ◦) where is the multiplication ◦ is defined as above.
Local divisors were introduced by Diekert and studied further in [14, 17, 18]. It is
easily checked that by restricting ◦ we obtain a left action Mn × nM → nM of Mn

on nM extending the regular action, and dually a right action Mn × Mn → Mn of
Mn on Mn. We aim to identify Mx with L . Recall here that x = [r ]M where r is a
word compressing the defining relation u = v of the monoid M . This will provide an
algebraic interpretation of compression that was lacking in previous work of others
on this topic.

Proposition 4.11 Define ϕ : T (r) → Mx by ϕ(w) = [rw]M . Then ϕ is a surjective
homomorphism factoring through L as an isomorphism � : L → Mx .

Proof First note that if w ∈ T (r), then rw ∈ r A∗ ∩ A∗r and so [rw]M ∈ Mx . Let
w1, w2 ∈ T (r). Then rw1 = w′

1r for some w′
1 ∈ A∗. We compute ϕ(w1)ϕ(w2) =

[rw1]M ◦ [rw2]M = [w′
1r ]M ◦ [rw2]M = [w′

1rw2]M = [rw1w2]M = ϕ(w1w2). Also
ϕ(ε) = [r ]M = x . Thus ϕ is a homomorphism.
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Let m ∈ Mx = x M ∩ Mx . Then there exist y, w ∈ A∗ with m = [r y]M = [wr ]M .
Then r y ∈ A∗r by Remark 4.6. Thus y ∈ T (r) and m = [r y]M = ϕ(y). Therefore, ϕ
is onto.

Note that ϕ(u′) = [ru′]M = [u]M = [v]M = [rv′]M = ϕ(v′) and so ϕ factors
through L . Suppose that ϕ(s) = ϕ(s′) with s, s′ ∈ T (r). Then [rs]M = [rs′]M . Now
rs, rs′ ∈ A∗r and obviously their left canonical factorizations are rs, rs′, respectively.
Thus [s]L = [s′]L by Lemma 4.7. This establishes that � is an isomorphism. ��

Since Mx acts on the left of x M and the right of Mx , it follows that L does as well,
where we retain the above notation. We now describe that action.

Proposition 4.12 If y ∈ 
∗
r and m ∈ M, then �([y]L) ◦ xm = [r y]M m = x[y]M m

and mx ◦ �([y]L) = mx[y]M .

Proof We have that r y = y′r for some y′ ∈ A∗. Thus �([y]L) ◦ xm = [r y]M ◦ xm =
[y′r ]M ◦xm = [y′r ]M m = [r y]M m. On the other hand,mx◦�([y]L ) = mx◦[r y]M =
mx[y]M . This completes the proof. ��

Now we show that Mx is a free right Mx -set and x M is a free left Mx -set. Let B
consist of all y ∈ A∗ such that yr contains no occurrence of r except as a suffix. Note
that in particular if r is a SOF word then B = A∗ \ A∗r A∗.

Proposition 4.13 The set Mx is a free right Mx -set with basis B the set of elements
[yr ]M with y ∈ B. Moreover, if y, y′ ∈ B, then [yr ]M = [y′r ]M if and only if y = y′.

Proof The final statement follows from Lemma 4.7 because yrε and y′rε are left
canonical factorizations of yr and y′r . For the other part, first note that if y, y′ ∈ B
and w,w′ ∈ T (r) with [yr ]M ◦ �([w]L) = [y′r ]M ◦ �([w′]L), then [yrw]M =
[y′rw′]M by Proposition 4.12. Since w,w′ ∈ T (r), we have yrw, y′rw′ ∈ A∗r and,
by definition ofB, clearly yrw and y′rw′ are left canonical factorizations. Thus y = y′
and [w]L = [w′]L by Proposition 4.7. Therefore, B = {[yr ]M | y ∈ B} is a basis for
a free sub-Mx -set of Mx .

Let m ∈ Mx ; say m = [zr ]M . Let the left canonical factorization of zr be yrw.
Then y ∈ B andw ∈ T (r). Thenwehave, byProposition 4.12, that [yr ]M ◦�([w]L) =
[yrw]M = [zr ]M = m. This completes the proof that B is a basis for Mx . ��

Of course the dual of Proposition 4.13 holds: the left action of Mx on x M is free.
We next want to check that Mx is a free right S-set, where S ≤ L acts via �|S and

the action of Mx . For this, the following elementary observation will be useful.

Lemma 4.14 Let N be a monoid and T ≤ N a submonoid such that N is a free right
T -set with basis B, under the right multiplicative action of T on N. Let X be a free
right N-set with basis B ′. Then X is a free right T -set with basis B ′B.

Proof If y ∈ X , then y = b′n with b′ ∈ B ′ and n ∈ N . But n = bt with b ∈ B
and t ∈ T . Thus y = b′bt . If b′

1b1t1 = b′
2b2t2 with b′

i ∈ B ′, bi ∈ B and ti ∈ T , for
i = 1, 2, then b′

1 = b′
2 and b1t1 = b2t2 by freeness of the N -action. But then b1 = b2

and t1 = t2 by freeness of the T -action. This completes the proof. ��
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Corollary 4.15 The compressed one-relator monoid S acts freely on the right of Mx
via (m, [q]S) �→ m[q]M , for q ∈ �∗

r , with basis C the elements of the form [trw]M

with t ∈ B and w ∈ 
∗
r with w = ε or the last 
r -letter of w belonging to �r .

Moreover, [t1rw1]M = [t2rw2]M for t1, t2 ∈ B and w1, w2 ∈ 
∗
r �r ∪ {ε} if and only

if t1 = t2 and [w1]L = [w2]L .

Proof By Proposition 4.13 and Proposition 4.12, we have that L acts freely on the
right of Mx via (m, [q]L) �→ m[q]M with basis elements of the form [tr ]M with
t ∈ B (and these are distinct). But L = �∗

r ∗ S and hence is a free right S-set on 1
and those elements of L ending in a �∗

r -syllable in their free product normal form.
The freeness of the action now follows from Lemma 4.14. The final statement follows
from Lemma 4.7. ��

Of course, S acts freely on the left of x M by the dual of Corollary 4.15.

Compression from a topological point of view

We now interpret compression from a topological viewpoint. We retain the previous
notation of this section. Let � be the Cayley graph of M with respect to A. Notice that
if m ∈ Mx , say m = nx , then m[u′]M = n[ru′]M = n[rv′]M = m[v′]M . Let pm,u′
and pm,v′ be the paths starting atm ∈ Mx labelled by u′ and v′, respectively; they both
end at the same vertex by the previous discussion. Let K be the result of attaching
2-cells cm to �, for each m ∈ Mx , with boundary path pm,u′ p−1

m,v′ . Notice that M
acts on the left of K by cellular maps, extending the action on �, with ncm = cnm

for n ∈ M and m ∈ Mx and that K is, in fact, obtained from � by adjoining a not
necessarily projective M-cell Mx × B2. In particular, the M-CW complex K need
not be free, nor projective. By Proposition 2.1, the group of 2-chains C2(K ) of K is
isomorphic to ZMx as a left ZM-module.

Let �′ be the graph with vertex set {∗} ∪ (B × L) with B as in Proposition 4.13.
The edges of �′ are as follows. There is an edge from ∗ to (b, 1) labelled by b, for
each b ∈ B. Also, for each α ∈ 
r and (b, n) ∈ B × L , there is an edge labelled by α

from (b, n) to (b, n[α]L). So �′ consists of a distinguished vertex ∗, which we have
connected by edges to |B| disjoint copies of the Cayley graph of L with respect to 
r .

Remark 4.16 Alternatively, the vertices of �′ can be identified with {∗} ∪ Mx via the
mapping (b, [w]L) �→ b[w]M by Proposition 4.13. From this point of view, there is
an edge from ∗ to b labelled by each element of B and an edge from m to m[α]M

labelled by α for each m ∈ Mx and α ∈ 
r .

Let q(b,n),u′ be the unique path in �′ starting at (b, n) labelled by u′ ∈ 
∗
r and

q(b,n),v′ be the unique path in �′ starting at (b, n) labelled by v′ over the alphabet

r . These paths are coterminal since L satisfies the relation u′ = v′, so we may
attach a 2-cell c(b,n) with boundary path q(b,n),u′q−1

(b,n),v′ for each (b, n) ∈ B × L . We
denote the resulting 2-complex by K ′. Thus K ′ consists of a distinguished vertex ∗
attached by edges to |B| disjoint copies of the Cayley complex of L with respect to its
presentation 〈
r | u′ = v′〉. We aim to show that there is a forest F ⊆ � such that if



59 Page 26 of 53 R. D. Gray, B. Steinberg

we contract each component of F to a point to form �/F and K/F , then �/F ∼= �′
and K/F ∼= K ′.

Theorem 4.17 Let � be the Cayley graph of the one-relator monoid M = 〈A | u = v〉.
Let r ∈ A+ compress u = v and L = 〈
r | u′ = v′〉 where u = ru′ and v = rv′. Let
�′ consist of |B| copies of the Cayley graph of L together with a new vertex attached by
an edge to each identity vertex and K ′ consist of |B| copies of the Cayley complex of L
together with a new vertex attached by an edge to each identity vertex, where B is as in
Proposition 4.13. Then there is a forest F ⊆ � such that �/F ∼= �′ and K/F ∼= K ′.
Denote the composition of the projection � → �/F with the isomorphism �/F → �′
by ψ (and similarly for the extension K → K ′). Then ψ enjoys the following properties
(where we retain the above notation).

(1) ψ(M \ Mx M) = {∗} where x = [r ]M .
(2) If w ∈ A∗r A∗ has right canonical factorization w = yz with y ∈ A∗r and y has

left canonical factorization y = w1rw2, then ψ([w]M ) = ([w1r ]M , [w2]L).
(3) An edge of � is sent to the same point as its initial vertex unless either (i) it is an

edge from an element of M\Mx M to an element b ∈ B, in which case it is mapped

to the edge ∗ → (b, 1) labelled by b, or (ii) it is an edge m[w]M
a−→ m[wa]M

with m ∈ Mx and wa ∈ 
r , in which case it is mapped to the edge labelled by
α = wa ∈ 
r from ψ(m[w]M ) = ψ(m) to ψ(m[wa]M ).

(4) A 2-cell cm of K with m ∈ Mx is sent to cψ(m).
(5) ψ is injective on the subset of vertices belonging to Mx and bijective on the set

of 2-cells.

In particular, the M-CW complex K is homotopy equivalent to K ′.

Proof As before, denote by P
r the collection of proper prefixes of elements of 
r .
This is a prefix closed subset of A∗ and hence induces a subtree T
r of the Cayley
graph of A∗ with respect to generating set A. If m ∈ Mx , then there is a graph
morphism ρm : T
r → � sending a vertex t to m[t]M and an edge t

a−→ ta to the

edge m[t]M
a−→ m[ta]M .

Claim For each m ∈ Mx , the graph morphism ρm : T
r → � is injective. Further-
more, if we put Tm = ρm(T
r ), then Tm ∩ Tm′ = ∅ unless m = m′.

Proof of Claim It is enough to show that ρm is injective on vertices since T
r is a tree.
Write m = [tr ]M with t ∈ A∗ and let w,w′ ∈ P
r . Suppose that m[w]M = m[w′]M .
Then [trw]M = [trw′]M and so w = w′ by Lemma 4.10. Thus ρm is injective.
Next suppose that Tm ∩ Tm′ 	= ∅ with m, m′ ∈ X . Then we can find t, t ′ ∈ A∗
and w,w′ ∈ P
r with [tr ]M = m, [t ′r ]M = m′ and m[w]M = m′[w′]M . Then
[trw]M = [t ′rw′]M and so m = [tr ]M = [t ′r ]M = m′ by Lemma 4.10. This
establishes the claim. ��

There is another subtree of � that we shall need, disjoint from the previous ones.
Let Q = A∗ \ A∗r A∗. Then Q is prefix closed and hence induces a subtree TQ for
the Cayley graph of A∗. Elements of Q are obviously in singleton classes for the
congruence associated to M , since both the words u and v in the defining relation
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u = v in the presentation for M contain r as a subword. These congruence classes
make up precisely the elements of M \ Mx M . Thus there is a natural embedding
TQ → � sending t to [t]M and t

a−→ ta to [t]M
a−→ [ta]M . We denote the image tree

by T ′ ⊆ �. Notice that T ′ is disjoint from
∐

m∈Mx Tm by construction as the vertices of
Tm are contained in Mx M and T ′ is disjoint from Mx M . Thus F = T ′ �∐

m∈Mx Tm

is a forest in � (and hence a subcomplex of K ) and so we can contract each of the
component trees to a point (we prefer to think of the trees as being contracted to their
roots) without changing the homotopy type of � (respectively K ).

The first thing to observe is that contracting these trees identifies no two vertices
from Mx (since the various trees of F are disjoint and m ∈ Tm for m ∈ Mx). All
vertices in M \ Mx M are identified with the vertex 1, let us call this class ∗. We claim
that all other vertices of � get identified with a unique element of Mx . Indeed, if
m ∈ Mx M , we can write m = [trw]M and without loss of generality we can assume
that the factorization exhibits the last occurrence of r . Then w ∈ P
r by Lemma 4.9.
Therefore, m belongs to the tree T[tr ]M and hence gets identified with [tr ]M in the
quotient. Thus �/F has vertices (the classes of elements of) Mx , all of which are
distinct, together with an additional vertex ∗ to which T ′ was contracted. Note that
Mx can be identifiedwith B×L by Proposition 4.13 by sending [w]M to ([yr ]M , [z]L)

where w ∈ A∗r has left canonical factorization w = yrz and this identification is one
of right L-sets (see the last paragraph of the proof of Proposition 4.13). This allows
us to define ψ on vertices and establishes (1) and (2).

Let us next seewhat happens to the edges of�.We claim that each edge of� belongs
to some Tm or T ′ except edges of the form m[w]M

a−→ m[wa]M with m ∈ Mx and
wa ∈ 
r , which we label in the quotient by α = wa ∈ 
r , or edges of the form
[t]M

a−→ [ta]M where t /∈ A∗r A∗ and ta ∈ A∗r , which we label in the quotient by
[ta]M ∈ B. So the edges of �/F will be labelled over the infinite alphabet 
r ∪ B.

Indeed, first note that these edges do not belong to any of the trees and so survive
contracting the trees. For instance, for an edge of the form m[w]M

a−→ m[wa]M with
m ∈ Mx and wa ∈ 
r , the geodesic in Tm from m to m[w]M is labelled by w ∈ P
r

and there is no edge in T
r from w labelled by a. Note that in the quotient �/F , this
edge goes from (the class of) m to (the class of) m[wa]M and is labelled by wa ∈ 
r .
Similarly, if we have an edge of the form [t]M

a−→ [ta]M where t /∈ A∗r A∗ and
ta ∈ A∗r , then the geodesic in T ′ from 1 to [t]M is labelled by t and there is no edge
in TQ from t with label a. Moreover, ta ∈ Br since t does not have r as a factor and so
[ta]M ∈ B. In �/F this edge goes from ∗ to (the class of) [ta]M ∈ B and is labelled
by [ta]M . Under ψ it maps to ([ta]M , 1).

The remaining edges of� are either of the form [t]M
a−→ [ta]M with t, ta /∈ A∗r A∗,

and hence are contracted to 1, i.e., the class ∗, or of the form m
a−→ m[a]M with

m ∈ Mx M . Writing m = [trw]M with the displayed r the last occurrence, we have
that w ∈ P
r by Lemma 4.9. If wa ∈ P
r , then the edge m

a−→ m[a]M belongs to
T[tr ]M and is contracted to [tr ]M . Otherwise,wa must have a non-empty prefix in T (r)

by Lemma 4.8. But no proper non-empty prefix of wa belongs to T (r) since w ∈ P
r

(again by Lemma 4.8). Thus we conclude that wa ∈ T (r) and is irreducible in T (r),
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that is, wa ∈ 
r . Therefore, our edge is of the form [tr ]M [w]M
a−→ [tr ]M [wa]M

with [tr ]M ∈ Mx and wa ∈ 
r , as desired.
We have thus far established items (1)–(3).
Let u′ = α1 · · · αk and v′ = β1 · · · β� with the αi , β j ∈ 
r and note that each

proper prefix of αi , β j belongs to P
r . If m ∈ Mx , then each edge of pm,u′ is con-
tracted except for the last edge of the subpath labelled by αi from m[α1 · · ·αi−1]M to
m[α1 · · ·αi ]M , and this edge is labelled by αi in the quotient and goes from (the class
of) m[α1 · · ·αi−1]M to (the class of) m[α1 · · · αi ]M . Thus the path pm,u′ is mapped
under ψ to a reparameterization of qψ(m),u′ . Similarly, pm,v′ is mapped under ψ to
a reparameterization of qψ(m),v′ . Thus the 2-cell cm maps to the cell cψ(m) on the
level of sets, but due to the contraction of edges, the attaching map for cψ(m) in K ′
is a reparameterization of the attaching map for the image of cm in K/F . Since ψ is
injective on Mx , we have the ψ is injective on the set of 2-cells. On the other hand,
c(b,[w]L ) = ψ(cb[w]M ) for b ∈ B and w ∈ 
∗

r and so ψ is also surjective on the set of
2-cells. This completes the proof. ��

Note that in the above theorem K is homotopy equivalent to K ′, which is homotopy
equivalent to a wedge of copies of the Cayley complex of L .

Theorem 4.17 forms the topological underpinnings of our approach, but to proceed
further we need to distinguish the subspecial and the non-subspecial cases.

5 The case of subspecial monoids

Let M = 〈A | u = v〉 be a finite one-relator presentation such that the relation u = v is
subspecial with |v| < |u|. This means we can write u = u′′v = vu′ with u′′, u′ ∈ A+.
Since the case of special monoids, when v is empty, was handled in [22,Sect. 3], we
shall tacitly assume that v is non-empty throughout the rest of this section. Also, this
notation shall be fixed for the section.

Preliminaries on subspecial monoids

As already explained in Sect. 4 above, the word problem for subspecial one-relator
monoids was solved by Lallement [35] via a reduction to the case of special one-
relator monoids, which was solved by Adjan [1]. Note that v is the maximum length
word compressing u = v and so the corresponding compression is the Lallement
compression of M . Put 
 = 
v , � = �v and � = �v , where we retain the notation
of Sect. 4. If u′ = α1 · · ·αk with αi ∈ 
, then we have that

L = 〈
 | α1 · · ·αk = 1〉,
� = {α1, . . . , αk}, � = 
 \ � and the Lallement compression of M is

S = 〈� | α1 · · ·αk = 1〉
which is a special one-relator monoid. To decongest notation throughout this section
wewrite [w], rather than [w]M , to denote the image in M ofw ∈ A∗. However, wewill
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continue to use the notation [w]S and [w]L for the images in S and L of words over
the alphabets � and 
, respectively. Following our previous notation (where r = v),
we put x = [v].

We recall that an element m ∈ M is said to be (von Neumann) regular if there
exists an element n ∈ M such that mnm = m. We shall need later that x is a regular
element of M .

Proposition 5.1 The element x ∈ M is regular. Thus Mx is a projective left M-set.

Proof We have [v] = [u] = [vu′] and so [v] = [v][u′]n for all n ≥ 0. Choose k > |v|.
Since u′ ∈ T (v), we have that (u′)k ∈ T (v) and so v(u′)k ∈ A∗v. But since k > |v|,
this means the suffix v of v(u′)k is a proper suffix of (u′)k . So v(u′)k = vyv with
y ∈ A+. Thus x = [v] = [v][u′]k = [vyv] = x[y]x and so x is regular. The final
statement follows because Mx = M[y]x and [y]x is an idempotent. ��

Note that it follows, cf. [14], that Mx ∼= [y]x M[y]x (with y as in the proof above)
and hence the group of units of S (which equals the group of units of L) is a maximal
subgroup of M . In fact, it is a one-relator group and has torsion if and only if u′ is a
proper power, as the following lemma shows.

Lemma 5.2 Let M = 〈A | u = v〉 be a subspecial, but not special, one-relator monoid
with u = u′′v = vu′ where u′′, u′ ∈ A+ and let S be the associated finitely generated
special one-relator monoid obtained by compressing M with respect to v. Let G be
the group of units of S. Then, for every non-identity idempotent of M, the maximal
subgroup of M containing that idempotent is isomorphic to G. Moreover, the following
are equivalent:

(1) the word u′ is a proper power in A+;
(2) the group of units G of S = 〈� | α1 · · · αk = 1〉 is a one-relator group with

torsion;
(3) all maximal subgroups of M are one-relator groups with torsion (except the group

of units, which is trivial).

Proof Since u, v are non-empty, the group of units of M is clearly trivial. We begin by
proving that all other maximal subgroups of M are isomorphic to G. To prove this we
use an argument which is similar to [35,Corollary 3.11]. Once proved, the equivalence
of (2) and (3) will then immediately follow. In this proof we will make use of Green’s
relations L , R, and D on a semigroup S. These are natural equivalence relations
defined on a semigroup defined in terms of the ideal structure. See [30,Chapter 2] for
definitions of these relations.

By Proposition 5.1, we have that x is regular and so xyx = x for some y ∈ M .
Then e = xy is an idempotent with ex = x and eDx . It follows from [14] that the
local divisor Mx is isomorphic to the local divisor Me, which in turn is just eMe with
its usual product as a subsemigroup of M . Thus eMe ∼= �∗ ∗ S by Proposition 4.11
and so the group of units of eMe is the group G of units of S.

Suppose that f ∈ M \ {1} is an idempotent. We show that f De0 with e0 an
idempotent of eMe. Since eMe ∼= �∗ ∗ S where S is a finitely presented special
monoid, it follows from [41,Theorem 4.6] that every idempotent in eMe is D-related
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in the monoid eMe to the idempotent e, and hence every maximal subgroup of eMe
is isomorphic to its group of units. From this it will then follow that in the monoid
M we have f De0De. Since the maximal subgroups at D-equivalent idempotents are
isomorphic, this will complete the proof that the maximal subgroup of M containing
f is isomorphic to G. Let p ∈ A+ with f = [p]. If p does not contain v as a subword,
then neither does p2 and hence [p] 	= [p2] since no relations can be applied to either
of the words p or p2. Thus p = p1vp2 and so f = m1em2 for some m1, m2 ∈ M
using that ex = x . Let e0 = em2 f m1e ∈ eMe. Then e20 = em2 f m1em2 f m1e =
em2 f 3m1e = em2 f m1e = e0. Also note that e0Rem2 f L f . Indeed, e0 ∈ em2 f M
trivially. But also e0em2 f = em2 f m1em2 f = em2 f 3 = em2 f and so e0Rem2 f .
Trivially, em2 f ∈ M f . But f = f 2 = m1em2 f and so f L em2 f . Thus e0D f , as
required.

To finish the proof we shall show the equivalence of (1) and (2). We have M =
〈A | u = v〉 with u = u′′v = vu′ where u′′, u′ ∈ A+. Suppose that u′ is a proper
power, say u′ = zn for some word z ∈ A+ and some n > 1. As observed above we
have zn = u′ ∈ T (v) = 
∗. We claim that in fact z ∈ T (v). To prove this observe
that for all k ∈ N we have

v(u′)k = u′′v(u′)k−1 = . . . = (u′′)kv.

Choosing k > |v| this implies that v = u2(u′)m for some m ≥ 0 and some suffix u2
of u′. Since u′ = zn , this in turn implies that v = z′zt for some t ≥ 0 and some suffix
z′ of z. It now follows, writing z = z′′z′, that

vz = z′zt z = z′zzt = z′z′′z′zt = z′z′′v,

which proves that z ∈ T (v). Now z ∈ T (v) = 
∗ so we can write z = γ1 . . . γq with
γi ∈ 
∗. Hence

u′ = zn = (γ1 . . . γq)n

with n > 1. In this case this implies that

S = 〈� | (γ1 . . . γq)n = 1〉

is a special one-relator monoid with torsion. It then follows that the group of units
G of S is a one-relator group with torsion (see, e.g., the argument in [22,Sect. 3]).
This proves that if u′ is a proper power, then M has maximal subgroups with torsion.
The converse is also clearly true: if the group of units of S has torsion then the word
u′ = α1 . . . αk must be a proper power in �+ and hence in A+; see [22,Sect. 3]. This
completes the proof of the lemma. ��

Note that the above argument shows that all non-trivial idempotents in a subspecial
one-relator monoid are D-equivalent.

If V is a left ZM-module, then xV is naturally a left ZMx -module, and hence a
ZS-module, via m ◦ w = r xy = rw where m = r x ∈ Mx and w = xy. Moreover,
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we have xZM ∼= Zx M . As x M is a free left S-set by the dual of Proposition 4.13,
it follows that if F is a free ZM-module, then x F is a free ZS-module and if P is a
projective ZM-module, then x P is a projective ZS-module.

Proposition 5.3 Let V be a ZM-module. Then xV is naturally isomorphic to
HomZM (ZMx, V ) as a left ZS-module. Hence the functor V �→ xV is exact.

Proof Map ψ ∈ HomZM (ZMx, V ) to ψ(x). Note that since x is regular, x = xyx
with y ∈ M . So ψ(x) = xyψ(x) ∈ xV . If s ∈ S, write s = r x . Then (sψ)(x) =
ψ(x ◦ s) = ψ(s) = ψ(r x) = rψ(x) = s ◦ ψ(x). Thus we have defined a ZS-module
homomorphism HomZM (ZMx, V ) → xV . To see that it is injective, if ψ(x) = 0,
then ψ(ZMx) = ZMψ(x) = 0 and so ψ = 0.

Suppose that w = xz ∈ xV . Define ψ : ZMx → V by ψ(m) = myw (where
xyx = x). Then ψ(x) = xyw = xyxz = xz = w and ψ is clearly a ZM-module
homomorphism. The final statement follows because ZMx is projective by Proposi-
tion 5.1 and we have just shown that the functors HomZM (ZMx,−) and x(−) are
isomorphic. ��

Constructing an equivariant classifying space

In this subsection we start with an equivariant classifying space Y for the special one-
relator monoid S. By one of the main results of our previous paper (see [22,Sect. 3]),
we can assume that Y is of S-finite type and that dim Y ≤ 2 unless u′ is a proper power
(by Lemma 5.2).

Since, as S is defined by a special presentation, every projective S-set is free by the
results of [22,Sect. 3], Y is a free S-CW complex. Fix a vertex y0 ∈ Y that is part of
the basis for the 0-skeleton Y 0. Put

Ỹ = Mx ⊗S Y .

Here Y is a left S-space, Mx is an M-S-biset, and Ỹ is a left M-set with action
m(a ⊗ b) = ma ⊗ b. Also Ỹ is a topological space with the quotient topology, and
furthermore is a projective M-CW complex of M-finite type by [21,Corollary 3.2]
and Proposition 5.1, and dim Ỹ = dim Y . Moreover since Mx is a free right S-set, by
Corollary 4.15, we have as a topological space that

Ỹ =
∐

[tvw]∈C

[tvw] ⊗ Y ∼=
∐

Mx/S

Y

where C is as in Corollary 4.15 with r = v. So, C is the set of elements of the form
[tvw]M with t ∈ B and w ∈ 
∗ with w = ε or the last 
-letter of w belonging to �.
Recall that the Mx/S denotes the weak orbits of Mx as as right S-set, as defined in
Sect. 2 above. Observe that x ∈ C . Note that M(x ⊗ y0) ∼= (Mx ⊗S S) ∼= Mx via
an isomorphism γ : M(x ⊗ y0) → Mx sending mx ⊗ y0 to mx . However, Ỹ is not
connected; it is homotopy equivalent to |C | points.

Let � be the Cayley graph of M with respect to A. It is a free connected M-
CW complex of M-finite type. Note that M(x ⊗ y0) ∼= Mx is a projective M-CW
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subcomplex of the 0-skeleton of Ỹ , and Mx embeds into the 0-skeleton of � in the
obvious way. It follows that using γ we can form the pushout X = Ỹ

∐
M(x⊗y0) � and

this will be a connected projective M-CW complex by [21,Lemma 2.1] and clearly is
of M-finite type. It will be convenient to identify Y with the copy x ⊗ Y in X . It is
important to note that two vertices of � in Mx belong to the same component of Ỹ
(under the identification γ ) if and only if they belong to the same class in Mx/S, or
equivalently are S-translates of the same basis element from C .

Unfortunately, the complex X is not contractible. The problem is that if α ∈ �,
then there is a path labelled by α from mx to mx[α] in �, and also a path in mx ⊗ Y
from mx ⊗ y0 to mx ⊗[α]S y0 = mx[α]⊗ y0, and the endpoints of these two paths are
identified in X . To rectify this problem, we need to adjoin some 2-cells. Fix, for each
α ∈ �, a shortest length path pα in the 1-skeleton Y 1 of Y from y0 to [α]S y0 and let
qα be the path from x to x[α] labelled by α in �. Note that the vertices visited by the
proper prefixes of mqα , with m ∈ Mx , are distinct and do not belong to Mx (except
the initial vertex m) by Lemma 4.10. Recall that we are identifying Y with x ⊗ Y and
so we can think of pα as a path from x ⊗ y0 to x ⊗[α]S y0 = x[α]⊗ y0. Thus qα p−1

α is
a loop at x ⊗ y0 in X . We now attach a projective M-cell Mx × B2 → X (projective by
Proposition 5.1) so that the 2-cell {mx} × B2 has boundary path m

(
qα p−1

α

)
to obtain

a projective M-CW complex Z of M-finite type and dim Z ≤ max{2, dim Y }. Also
notice that the attaching map of no higher dimensional cell maps into the open 2-cells
corresponding to the 2-cells we added in this final stage, nor into the paths mqα except
perhaps at the endpoints. This will allow us later to collapse these 2-cells into Ỹ .

Theorem 5.4 Let M = 〈A | u = v〉 with u ∈ vA∗ ∩ A∗v and u 	= v. Write u = vu′
and assume that v 	= 1. The M-finite projective M-CW complex Z constructed above
is an equivariant classifying space for M. It has dimension at most 2 unless u′ is a
proper power.

Proof To prove the contractibility of Z , let F ⊆ � be the forest from Theorem 4.17
with r = v. Then F is a subcomplex of Z and we can form Z/F by contracting each
of the trees of F , which is homotopy equivalent to Z as F is a forest. In this proof
it will be convenient to identify the vertices of �′ (from Theorem 4.17) with Mx ,
as described in Remark 4.16. Notice that contracting F does not affect Ỹ (since the
vertices of Mx are in distinct equivalence classes). So by Theorem 4.17, Z/F can be
identified with the complex obtained from Ỹ by adding a new vertex ∗ with an edge
from ∗ to b⊗ y0 for each b ∈ B (with B as in Proposition 4.13) and adjoining, for each
m ∈ Mx and α ∈ 
, an edge from m ⊗ y0 to m[α] ⊗ y0 = m ⊗ [α]L y0 and adjoining
2-cells corresponding to the images under the contraction of F of the 2-cells we had
adjoined to form Z from X .

Let us now see what happens to those 2-cells we added in constructing Z , with
boundary paths m

(
qα p−1

α

)
with m ∈ Mx and α ∈ �, when we contract F . By

Theorem 4.17(3) the only edge of mqα that survives is its final edge, which is labelled
by α and goes in the quotient from m ⊗ y0 to m[α] ⊗ y0 = m ⊗ [α]L y0. (Recall that
qα is the path labelled by α from m to m[α] in � and each proper prefix of α belongs
to P
.) Nothing happens to mp−1

α . Since no higher dimensional cell maps into the
corresponding open 2-cell under its characteristic map, nor into the edge labelled by
α obtained from mqα under contraction except perhaps at its endpoints, and the edge
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labelled by α is only on the boundary of this one 2-cell (and is not used in mp−1
α ),

it is a free face of the image of the original 2-cell in Z/F and so we can perform an
elementary collapse of the 2-cell along this face. Thus we can remove each of these
2-cells from Z/F and at the same time each edge labelled by an element of � without
changing the homotopy type of Z/F . Thus we get a new CW complex Z ′, homotopy
equivalent to Z and which consists of Ỹ , a vertex ∗, an edge from ∗ to [tv] ⊗ y0 for
each t ∈ B (with B as in Proposition 4.13), which we view as labelled by t , and, for
each α ∈ � and m ∈ Mx , an edge labelled by α from m ⊗ y0 to m[α] ⊗ y0. For the
rest of the proof it will be convenient to identify B with Bv as per Proposition 4.13,
with r = v. Since Y is contractible, we can now contract each connected component
of Ỹ = ∐

c∈C c ⊗Y ∼= ∐
Mx/S Y in Z ′ to get a new CW complex Z ′′ that is homotopy

equivalent to Z and which, in fact, is a graph since we have contracted all higher
dimensional cells. We shall see that Z ′′ is a tree, and hence is contractible. It will then
follow that Z is contractible.

For each c ∈ C , we view the component c ⊗ Y as being contracted to c ⊗ y0.
We then have that the vertices of Z ′′ can be identified with the set consisting of ∗
and the elements of C . For each t ∈ B, there is an edge from ∗ to [tv] ∈ C labelled
by t (and note that [tv] uniquely determines t by Corollary 4.15). The remaining
edges are labelled by elements of �. Suppose in Z ′ we have an edge from m ⊗ y0 to
m[α] ⊗ y0 labelled by α ∈ �. We can write m uniquely as cs with c ∈ C and s ∈ S.
Then the corresponding edge in Z ′′ goes from c to cs[α] ∈ C and is still considered
labelled by α. Note that c, α and s are uniquely determined by cs[α], by Lemma 4.7,
Corollary 4.15 and the definition of C since L = �∗ ∗ S. Conversely, if c ∈ C , s ∈ S
and α ∈ �, then cs ⊗ y0 has an edge labelled by α to cs[α] ⊗ y0 in Z ′ and so there
is an edge labelled α from c to cs[α] in Z ′′. In other words, Z ′′ is isomorphic to the
following tree. Consider the alphabet � ∪ (S \ {1}) ∪ Bv. Consider the set of words
over this alphabet U = {ε} ∪ Bv�∗((S \ {1})�+)∗. Then Z ′′ is isomorphic to the
Hasse diagram of U under the prefix order, which is a tree.

This completes the proof that Z is contractible. ��
We thus have the following theorem which, together with Lemma 5.2, proves The-

orems 3.1 and 3.3 in the subspecial case.

Theorem 5.5 Let M be a subspecial one-relator monoid. Then M is of type left- and
right-F∞, and thus also of type left- and right-FP∞. Moreover,

cd(l)(M) ≤ gd(l)(M) ≤ 2,

and

cd(r)(M) ≤ gd(r)(M) ≤ 2,

unless M has a maximal subgroup with torsion, in which case

cd(l)(M) = cd(r)(M) = gd(l)(M) = gd(r)(M) = ∞.
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Proof Without loss of generality we may assume that M is subspecial but not special
as the special case was handled in [22,Sect. 3]. We retain the above notation. By
Lemma 5.2, M has a maximal subgroup with torsion if and only if u′ is a proper
power, which occurs precisely when the group of units G of S has torsion.

The claims made in the statement of the theorem now all follow from Theorem 5.4
except the claim that if M has a maximal subgroup which is a one-relator group with
torsion, then it has infinite left cohomological dimension. To prove this claim, suppose
that G has torsion and that

Pn → Pn−1 → · · · → P0 → Z

is a finite projective resolution of Z over ZM . Then by Proposition 5.3, the dual of
Corollary 4.15, and the observation that xZ = Z as a ZS-module, we obtain a finite
projective resolution

x Pn → x Pn−1 → · · · → x P0 → Z

overZS. This contradicts the result of [22,Sect. 3] that S has infinite left cohomological
dimension. Thus M has infinite left cohomological dimension. The argument for the
right cohomological dimension is dual. ��
Remark 5.6 While it is not needed for the main results of this paper, it is worth noting
that the construction and results given in this section (and Sect. 4) may be generalised
in a natural way to non-one-relator monoids which are subspecial, in the following
sense. Let M = 〈A | ui = v (i ∈ I )〉, with I finite, and where ui ∈ vA∗ ∩ A∗v for all
i ∈ I . Define T (v) and 
 as above. For each i ∈ I we can then decompose ui = vwi

with wi = αi,1 . . . αi,ki where αi, j ∈ 
 for 1 ≤ j ≤ ki . Set

L = 〈
 | αi,1 · · · αi,ki = 1 (i ∈ I )〉
and

S = 〈� | αi,1 · · · αi,ki = 1 (i ∈ I )〉
where � ⊆ 
 is the finite subset of elements appearing in the relations in the presen-
tation of L . Let G be the Schützenberger group of the H -class of v in M . It may be
shown that the group of units of the special monoid S is isomorphic to G. Then by
combining the arguments given in this section with the results proved in [22,Sect. 3]
it may be shown that:

(1) If G is of type FPn with 1 ≤ n ≤ ∞, then M is of type left- and right-FPn ; and
(2) We have

cd(G) ≤ cd(l)(M) ≤ max{2, cd(G)}
and

cd(G) ≤ cd(r)(M) ≤ max{2, cd(G)}.
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The analogous statements also hold for the topological finiteness property Fn and the
geometric dimension.

6 The relationmodule

In this section we apply the results of Sect. 4 to compute the relation module, in the
sense of Ivanov [31], of a torsion-free one-relator monoid. This will be a key stepping
stone towards proving that one-relator monoids are of type left- and right-FP∞ in
the non-subspecial case. It will also lead to another proof that if M is subspecial,
but not special, and torsion-free, then M is of type right- and left-F∞ and FP∞, and
cd(l)(M) ≤ gd(l)(M) ≤ 2, by showing that the 2-complex K in Theorem 4.17, with
r = v, is an equivariant classifying space for M . We begin by giving a topological
interpretation of the relation module in terms of the homology of the Cayley graph of
the monoid. This is completely analogous to a well-known result concerning group
relation modules.

The following lemma is well known and will be useful several times. The proof is
straightforward and is omitted.

Lemma 6.1 Let f : X → Y be a mapping of sets. Let ϕ : ZX → ZY be the Z-linear
extension of f . Then ker ϕ is spanned as an abelian group by the elements x − x ′ with
x, x ′ ∈ X and f (x) = f (x ′).

If M is a monoid, then the augmentation ideal ofZM is the two-sided idealω(ZM)

generated as an abelian group by all differences m − n with m, n ∈ M , i.e., it is the
kernel of the natural homomorphism ZM → Z mapping each element of m to 1 by
Lemma 6.1. It is well known that ω(ZM) can be generated as a left ZM-module by
the elements of the form a − 1 where a ranges over a generating set of M , cf. [49].

Let 〈A | R〉 be a presentation of a monoid M . Let I be the kernel of the natural
homomorphism γ : ZA∗ → ZM . Note that I is generated as an abelian group by all
differences u − v with u, v ∈ A∗ representing the same element of M by Lemma 6.1.
Ivanov [31] defined the (left) relation moduleR of the presentation to be the quotient
I/Iω(ZA∗). Since I ⊆ ω(ZA∗), we have I 2 ⊆ Iω(ZA∗) and so R is a left ZM-
module in a natural way. The right relation module is defined dually. He showed
this notion generalises the notion of the relation module of a group presentation and
initiated the study of the relation module. We shall prove here that if the Cayley
complex of a presentation is contractible, then the relation module is freely generated
by a set in bijection with the relations. We shall also identify the relation module of a
torsion-free one-relator monoid.

Let � be the Cayley graph of M with respect to A. Our first goal is to identify the
relation module with H1(�) with respect to the natural module structure coming from
the left action of M on �; the corresponding result for groups is well known (it can
be found on [11,Page 43]). For monoids, the result has appeared in other guises in
various sources, e.g. [49]. Since � is a 1-complex, we can identify H1(�) with the
group Z1(�) of 1-cycles.
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Proposition 6.2 Let 〈A | R〉 be a presentation of a monoid M. Let � be the Cayley
graph of M with respect to A and let R be the relation module. Then R ∼= H1(�) as
ZM-modules.

Proof Note that C1(�) can be identified with a free ZM-module with basis {ea | a ∈
A} by sending the edge m

a−→ [ma]M to mea and that C0(�) ∼= ZM . The boundary
map ∂1, under these identifications, takes the basis element ea to [a]M − 1, and hence
∂1 has image the augmentation ideal ω(ZM). The kernel of this homomorphism isR
according to [49,Theorem 3.3] and so H1(�) = ker ∂1 ∼= R. ��
Corollary 6.3 Let 〈A | R〉 be a presentation of M such that the corresponding Cayley
complex is contractible. Then the relation module R of the presentation is a free
ZM-module on |R|-generators.

Proof Let K = �(M, A)(2) be the Cayley complex of M . By Proposition 6.2, we can
identifyR as a ZM-module with H1(K 1), which is just the group of 1-cycles Z1(K ).
Since K is a contractible 2-complex, we have that Z1(K ) = B1(K ) ∼= C2(K ). But
C2(K ) is a free ZM-module with basis the cells with boundary path pu p−1

v with
u = v ∈ R where pw is the path starting at 1 labelled by w. ��

We shall need that the Cayley complex of a strictly aspherical presentation is con-
tractible.

Lemma 6.4 Let N be the monoid defined by the presentation 〈A | R〉. If 〈A | R〉 is
strictly aspherical, then the Cayley complex �(N , A)(2) is contractible, and thus is a
left equivariant classifying space for N.

Proof Let X = �(N , A)(2). It follows from the proof of [21,Theorem 6.14] that X is
an N -finite simply connected free N -CW complex of dimension at most 2. Since the
presentation 〈A | R〉 is strictly aspherical it follows that the cellular chain complex
of X gives the free resolution displayed in Equation (7.2) in [32,Theorem 7.2]. This
resolution was originally discovered in the papers [15, 34, 49]. This shows that X is
acyclic. Since X is acyclic and simply connected it follows from the Whitehead and
Hurewicz theorems that X is contractible, and hence X is a left equivariant classifying
space for the monoid N . ��

Next we discuss the topology of the Cayley complex of a free product.

Lemma 6.5 Let L = �∗ ∗ S where S = 〈� | R〉 with � ∩ � = ∅. Suppose that the
Cayley complex �(S,�)(2) of S with respect to this presentation is contractible. Put
� = � ∪ �. Then the Cayley complex �(L, �)(2) with respect to the presentation
〈� | R〉 is contractible.

Proof Let X = �(L, �)(2) and put B = {1} ∪ �∗�. Then B is a basis for L as
a free right S-set by the free product normal form. It follows easily from this that
if b ∈ B and we consider the induced subcomplex Kb of X on the vertex set bS,
then we obtain an isomorphic copy of �(S,�)(2) via the map defined on vertices by
s �→ bs with the obvious extension on edges and 2-cells. Moreover, if b 	= b′, then
Kb ∩Kb′ = ∅. By assumption, each Kb is contractible and hence if we contract each of
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these subcomplexes to a point, we obtain a 2-complex X ′ that is homotopy equivalent
to X . Moreover, each 2-cell of X belongs to one of the Kb and so X ′ is a graph. In
fact, it is a tree. If we view Kb as being contracted to the vertex b, then we see that
X ′ has vertex set B. The only edges that survive the contraction of

∐
b∈B Kb are the

edges labelled by elements of �. For each b ∈ B, s ∈ S and x ∈ �, there is an edge
b → bsx (the image of the edge bs

x−→ bsx) and this edge is uniquely determined by
its endpoints. Thus X ′ is the Hasse diagram for the free product normal forms of the
elements represented by B over the alphabet � ∪ S under the prefix ordering, which
is a rooted tree. ��

We recall that if M = 〈A | u = v〉 is an incompressible non-special one-relator
monoid or if M = 〈A | u = 1〉 and u is not a proper power, then the one-relator
presentation is strictly aspherical by the results of Kobayashi [32, 33]. It follows that
in either of these cases the relation module is ZM by Corollary 6.3.

Theorem 6.6 Let M = 〈A | u = v〉 be torsion-free, let z ∈ A∗ be the longest word
which is a prefix and a suffix of both u and v, and write u = zu′ and v = zv′. Let K
be the 2-complex with 1-skeleton the Cayley graph � of M, and a 2-cell adjoined at
every vertex in m ∈ M[z]M with boundary path pm,u′ p−1

m,v′ where pm,w is the path
labelled by w ∈ A∗ beginning at m. Then K is contractible.

Proof Note that the boundary paths of the adjoined cells are indeed closed paths
since m[u′]M = m[v′]M for m ∈ M[z]M . If the presentation is incompressible (i.e.,
z is empty), then M is strictly aspherical by Kobayashi’s results [32,Corollary 5.6]
and [33,Corollary 7.5] and hence K , which is the Cayley complex in this case, is
contractible by Lemma 6.4. So assume that M is compressible. As usual put L =
〈
z | u′ = v′〉 and S = 〈�z | u′ = v′〉 where u = zu′ and v = zv′. The presentation
for S is incompressible by Corollary 4.3 and is either not special or it is special
with defining relation u′ = 1 with u′ not a proper power by Lemma 5.2. Thus the
presentation of S is strictly aspherical by Kobayashi’s results [32, 33] and so the
Cayley complex �(S,�z)

(2) is contractible by Lemma 6.4. Therefore, the Cayley
complex �(L,
z)

(2) of L is contractible by Lemma 6.5. Theorem 4.17 implies that
K (which is the 2-complex from that theorem with r = z) is homotopy equivalent
to a wedge of copies of the Cayley complex �(L,
z)

(2) and so we deduce that K is
contractible ��

Notice that if z is non-empty, then K in the theorem above is not the Cayley complex
of M . Recall that C2(K ) ∼= ZM[z]M as a left ZM-module by Proposition 2.1.

Theorem 6.7 Let M = 〈A | u = v〉 be a one-relator presentation of a torsion-free
one-relator monoid. Let z ∈ A∗ be the longest word with u, v ∈ z A∗ ∩ A∗z. Then the
relation module of the presentation is isomorphic to ZM[z]M . Moreover, there is an
exact sequence

0 −→ ZM[z]M −→ ZM |A| −→ ZM −→ Z −→ 0

of ZM-modules.
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Proof Let K be the 2-complex fromTheorem6.6 and� theCayley graph of M . Then K
is contractible by Theorem 6.6 and so the boundary mapping ∂2 : C2(K ) → C1(K ) is
injective and has image ker ∂1 where ∂1 : C1(K ) → C0(K ) is the boundary mapping.
But ker ∂1 ∼= H1(�) andC2(K ) ∼= ZM[z]M and so we deduce that H1(�) ∼= ZM[z]M

as ZM-modules. This completes the proof of the first statement by Proposition 6.2.
The sequence is exact because it is the augmented cellular chain complex of K ,

which is contractible. ��
Note that when z is empty, i.e., when the presentation is incompressible then the

conclusion of Theorem 6.7 can also be deduced from Corollary 6.3.
We now deduce that K in the above theorem is an equivariant classifying space

when M is subspecial and torsion-free. This provides another proof of Theorem 5.5
in the torsion-free case.

Corollary 6.8 Let M = 〈A | u = v〉 be a subspecial one-relator monoid such that u′
is not a proper power where u = vu′. Let x = [v]M . Then the 2-complex K obtained
by adjoining at each vertex of Mx a 2-cell with boundary path labelled by u′ is an
equivariant classifying space for M.

Proof The 2-complex K is contractible by Theorem 6.6. It just suffices to verify that
it is a projective M-CW complex. Since � is a free M-CW complex, we need only
observe that the 2-cells are obtained by attaching the M-cell Mx × B2, which is
projective by Proposition 5.1. ��

Note that the 2-complex constructed in the above corollary is not the Cayley com-
plex of the one-relator presentation defining the monoid M unless the presentation is
special. Indeed, in general for a torsion-free subspecial one-relator monoid M the Cay-
ley complex of M is not an equivariant classifying space for the monoid. For example,
the one-relator subspecial presentation 〈a | a2 = a〉 presents the two-element monoid
M = {0, 1} under multiplication. This monoid has a zero element and hence, by the
results of [21,Sect. 6], has no finite dimensional, contractible free M-CW complex. In
particular, the Cayley complex is not contractible, as is easy to verify directly.

It follows from Theorem 6.7 that to build a free resolution of Z for a compressible,
but not subspecial, one-relator presentation, it suffices to build a free resolution of
ZM[z]M , which we shall proceed to do algebraically. To make this precise, recall that
if R is a ring and

E1 : · · · −→ C1 −→ C0
f−→ A −→ 0,

E2 : 0 −→ A
g−→ B0 −→ B1 −→ · · ·

are exact sequences of R-modules (finite or infinite in length), then the Yoneda splice
E1E2 of these exact sequences is the exact sequence

· · · −→ C1 −→ C0
g f−−→ B0 −→ B1 −→ · · · .

Although the Yoneda splice is typically used to define the bilinear mapping
Extm(A, B) × Extn(B, C) → Extm+n(A, C), we shall use it here to build resolu-
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tions. Given a free or projective resolution of ZM[z]M , we can splice it onto the exact
sequence of Theorem 6.7 to obtain a free or projective resolution of Z.

The Yoneda splice can also be applied to an exact sequence of modules

0 −→ A −→ Fn −→ Fn−1 −→ · · · −→ F0 −→ A −→ 0

via infinite iteration to yield a periodic resolution

· · · −→ Fn −→ · · · −→ F0 −→ Fn −→ · · · −→ F0 −→ A −→ 0,

cf. [11,Sect. I.6].

7 An injectivity lemma

The following lemma is crucial in order to prove our main results; its proof is a
surprisingly intricate use of monoid pictures.

Lemma 7.1 Let N = 〈A | u = v〉 be an incompressible one-relator monoid with
u = u′a and v = v′a with a ∈ A. Then the mapping ψ : ZN → ZN given by
ψ(α) = α([u′] − [v′]) for α ∈ ZN is injective.

The rest of this section will be devoted to proving this lemma.
Throughout the rest of this section N will denote the monoid defined by an incom-

pressible one-relator presentation 〈A | u = v〉where u = u′a and v = v′a with a ∈ A.
We use [w] to denote the image of the word w ∈ A∗ in the monoid N . Note that since
u = v is incompressible, u′ 	= v′. Let us denote the presentation 〈A | u = v〉 by P
and use �(P) to denote the Squier complex of this presentation. Recall that given two
paths P and Q in �(P) we shall write P ∼0 Q to mean that P and Q are homotopic in
the Squier complex. The presentation P is strictly aspherical by [32,Corollary 5.6]),
a fact that we shall use throughout the proof of Lemma 7.1. Recall that this means that
for every closed path P in �(P) we have P ∼0 1ιP.

The following is a reformulation of Lemma 7.1.

Proposition 7.2 Let N = 〈A | u = v〉 be an incompressible one-relator monoid with
u = u′a and v = v′a with a ∈ A. For every finite non-empty subset F = {m1, . . . , mk}
of N if z1, z2, . . . , zk ∈ Z \ {0} is a list of (not necessarily distinct) integers, then in
ZN we have

z1m1[u′] + z2m2[u′] + . . . + zkmk[u′] 	= z1m1[v′] + z2m2[v′] + . . . + zkmk[v′].

The rest of the discussion in this section will be devoted to proving this proposition,
from which we can then deduce Lemma 7.1.

Choose and fix wordswi such that mi = [wi ] for 1 ≤ i ≤ k. By assumption, for all
i and j , if i 	= j , then this implies that [wi ] 	= [w j ]. Seeking a contradiction suppose
that we do have

z1[w1u′] + . . . + zk[wku′] = z1[w1v
′] + . . . + zk[wkv

′] (7.1)
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in ZN .
As already observed in Sect. 2, every edge E in �(P) can be written uniquely

in the form α · A · β with α, β ∈ A∗ where A is an elementary edge. This means
that A is equal to (1, (u = v), ε, 1) for some ε ∈ {+1,−1}. We use this unique
decomposition to define a map λ from the set of edges of the Squier complex to A∗
where for E = α · A · β, with A elementary, we define λ(E) = α. So λ maps each
edge to the word to the left of the transistor in the picture of the edge. For any edge
E define L(E) = [λ(E)]. So L defines a mapping from the set of edges of �(P) into
the monoid N .

Let us call an edge E in �(P) a rightmost edge if it is not of the form F · x for
some edge F and some letter x ∈ A. So a rightmost edge E (since the defining relation
is u = v with u and v both non-empty) has the property that its transistor has a wire
connected to the rightmost letter of ιE and to the rightmost letter of τE. It is immediate
from the definition thatE is a rightmost edge if and only if its inverseE

−1 is a rightmost
edge.

In addition, for each m ∈ N , we define a function fm from the set of paths in �(P)

to Z where fm(P) is defined to be the number of rightmost edges F in P such that
L(F) = m. Note that fm(P) ≥ 0 for every path P in �(P) and every element m ∈ N .

Lemma 7.3 For every m ∈ N and every pair of paths P and Q in �(P), if P ∼0 Q,
then fm(P) ≡ fm(Q) (mod 2).

Proof ByLemma2.2 it suffices to prove the result for the case thatP can be transformed
into Q either by the deletion of a single cancelling pair of edges, or by a single
application of pull-up push-down.

First suppose that P can be transformed into Q by deletion of a cancelling pair of
edgesE◦E

−1. Then since [λ(E)] = [λ(E−1)] in N it is immediate that fm(P) ≡ fm(Q)

modulo 2.
Now suppose that P can be transformed into Q by a single application of pull-up

push-down. So up to symmetry we have

P = R ◦ (E1 · ιE2) ◦ (τE1 · E2) ◦ S

and

Q = R ◦ (ιE1 · E2) ◦ (E1 · τE2) ◦ S.

Observe that λ(E1 · ιE2) = λ(E1 · τE2) = λ(E1) by definition. Also by definition
we have λ(τE1 · E2) = (τE1)(λ(E2)) and λ(ιE1 · E2) = (ιE1)(λ(E2)) and hence it
follows that

[λ(τE1 · E2)] = [λ(ιE1 · E2)]

in the monoid N .
Furthermore, it is clear that τE1 · E2 is a rightmost edge if and only if ιE1 · E2

is a rightmost edge (if and only if E2 is a rightmost edge), and neither of the edges
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E1 · ιE2 nor E1 · τE2 is a rightmost edge, since u and v are both non-empty words by
assumption which implies that both ιE2 and τE2 are non-empty words.

It follows from these observations that fm(P) ≡ fm(Q) (mod 2), which completes
the proof of this case, and of the lemma. ��
Lemma 7.4 For every word w ∈ A∗ we have [wu′] 	= [wv′].
Proof Suppose, seeking a contradiction, that we have [wu′] = [wv′]. Right multiply-
ing by a gives [wu′a] = [wv′a]. Since u′a = v′a is the defining relation u = v this
gives a pair of parallel paths from wu′a to wv′a in �(P): one given by a single edge
corresponding to applying the relation u′a = v′a, and the other is given by taking a
path in �(P) from wu′ to wv′ and right multiplying by a. More precisely, choose
and fix a path P from wv′ to wu′. Define C = (P · a) ◦ (w · (1, (u = v),+1, 1))
which is a closed path in �(P) based at (ιP · a) = wv′a. Observe that C has exactly
one rightmost edge, namely the edge E = w · (1, (u = v),+1, 1). Clearly this edge
satisfies L(E) = m where m = [w] ∈ N . It follows that fm(C) = 1. On the other
hand, fm(1ιC) = 0 since the empty path has no edges. It then follows from Lemma 7.3
that C �0 1ιC . But this contradicts strict asphericity of the presentation 〈A | u = v〉.

��
Lemma 7.5 Assume that (7.1) holds.

(i) For every i ∈ {1, . . . , k} there exists a j ∈ {1, . . . , k} with j 	= i such that either
[wi u′] = [w j u′] or [wi u′] = [w jv

′].
(ii) For every i ∈ {1, . . . , k} there exists a j ∈ {1, . . . , k} with j 	= i such that either

[wiv
′] = [w jv

′] or [wiv
′] = [w j u′].

Proof First note that we have already proved (see Lemma 7.4 above) that for all
i ∈ {1, . . . , k} we have [wi u′] 	= [wiv

′]. Now let i ∈ {1, . . . , k}. If (i) does not hold
this would mean that in equation (7.1) the expression zi [wi u′] is the only term of the
form zm with with z ∈ Z \ {0} and m = [wi u′], which would mean (7.1) cannot hold,
a contradiction. The proof for (ii) is similar. ��

Define ϕ : {u′, v′} → {u′, v′} by ϕ(u′) = v′ and ϕ(v′) = u′. Applying Lemma 7.5
repeatedly starting at [w1u′] gives an infinite sequence of equalities

[w1u′] = [wi1βi1 ] wherei1 	= 1 and βi1 ∈ {u′, v′}
[wi1ϕ(βi1)] = [wi2βi2 ] wherei2 	= i1 and βi2 ∈ {u′, v′}
[wi2ϕ(βi2)] = [wi3βi3 ] wherei3 	= i2 and βi3 ∈ {u′, v′}

...

Since {w1, . . . , wk} is a finite set it follows that some repetition of indices must
occur. That is, there must exist some p, q ∈ N with p < q such that i p = iq . It
follows, by considering a first repetition, that there is a subsequence of equalities:
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[w j1ϕ(β j1)] = [w j2β j2 ]
[w j2ϕ(β j2)] = [w j3β j3 ]

... (∗)
[w jn−1ϕ(β jn−1)] = [w jn β jn ]

[w jn ϕ(β jn )] = [w j1ϕ
e(β j1)]

with β jt ∈ {u′, v′} for all 1 ≤ t ≤ n, where all jl are distinct elements of {1, . . . , k}
for 1 ≤ l ≤ n, e ∈ {0, 1} and n ≥ 2. Here ϕ0(β j1) = β j1 while ϕ1(β j1) = ϕ(β j1).

Right multiplying all of these equations by a, and using the relation u′a = v′a,
gives the following cycle of equalities in the monoid N .

[w j1ϕ(β j1)a] = [w j2β j2a]
= [w j2ϕ(β j2)a] = [w j3β j3a]
...

= [w jn−1ϕ(β jn−1)a] = [w jn β jn a]
= [w jn ϕ(β jn )a] = [w j1ϕ

e(β j1)a]

with β jt ∈ {u′, v′} for all 1 ≤ t ≤ n, where all jl are distinct elements of {1, . . . , k}
for 1 ≤ l ≤ n, e ∈ {0, 1} and n ≥ 2.

In the Squier complex this corresponds to a closed path C from [w j1ϕ(β j1)a] to
itself. To describe this closed path, it will be helpful to introduce some notation. For
each l ∈ {1, . . . , n} choose and fix a path Pl in the Squier complex with initial vertex
w jl ϕ(β jl ) tow j1+1β jl+1 , for 1 ≤ l ≤ n−1 and a pathPn fromw jn ϕ(β jn ) tow j1ϕ

e(β j1).
Such paths exist because of the first list of equalities above in (∗). The resulting closed
path C in the Squier complex arising from the above cycle of equalities is:

C = (P1 · a) ◦ (w j2 · E2) ◦ (P2 · a) ◦ (w j3 · E3) ◦ . . . ◦ (Pn · a) ◦ (w j1 · E1) (†)

if e = 0 and

C = (P1 · a) ◦ (w j2 · E2) ◦ (P2 · a) ◦ (w j3 · E3) ◦ . . . ◦ (Pn · a) (‡)

if e = 1, where El = (1, (u = v), εl , 1), for all l, with εl = 1 if β jl = u′ and εl = −1
if β jl = v′. See Fig. 1 for an illustration of this closed path in the case e = 0. Note
that by assumption all the elements [w jr ] are distinct elements of N for 1 ≤ r ≤ n.
Clearly the closed path C has exactly n rightmost edges if e = 0, namely the edges
w jr ·Er for 1 ≤ r ≤ n; when e = 1, there are n −1 rightmost edges, namely the edges
w jr · Er for 1 ≤ r ≤ n − 1. Since n ≥ 2, there is always at least one rightmost edge.

Lemma 7.6 The closed path C is not null-homotopic, that is, C �0 1ιC .
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Fig. 1 The closed path C in the Squier complex

Proof Choose some rightmost edge E in C and let m = L(E) ∈ N . By the definition
of C (as the [w jr ] are distinct) we have fm(C) = 1, that is, E is the unique rightmost
edge in C with image m under the function L . On the other hand, the empty path 1ιC
satisfies fm(1ιC) = 0 since it has no edges. Now it follows from Lemma 7.3 that
C �0 1ιC , which completes the proof of the lemma. ��

But Lemma 7.6 is a contradiction since, by assumption, the presentation 〈A | u =
v〉 is strictly aspherical. This completes the proof of Proposition 7.2 and hence of
Lemma 7.1.
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8 Resolving the relationmodule and completing the proof in the
non-subspecial case

In this section we will bring together several of the results from previous sections to
complete the proof that all one-relator monoids are of type left- and right-F∞ and
FP∞.

Recall that a module V over a ring R is of type FPn if it has a projective resolution

· · · −→ Pj −→ Pj−1 −→ · · · −→ P0 −→ V −→ 0

with Pj finitely generated for 0 ≤ j ≤ n ≤ ∞. It is well known that replacing
the word “projective” by “free” in the definition of FPn gives the same notion; see
[11,PropositionVIII.4.5]. A useful fact, cf. [9] or [55,Proposition 2.2], is the following.

Lemma 8.1 Suppose that R is a ring and

Cn −→ Cn−1 −→ · · · −→ C0 −→ V

is a partial resolution of an R-module V . If Ci is of type FPn−i , for 0 ≤ i ≤ n, then
V is of type FPn.

Fix now a non-subspecial compressible presentation M = 〈A | u = v〉. Let y be
the shortest word compressing u = v (noting that y is necessarily SOF) and z be the
longest word compressing u = v. Assume that u = zu′ = u′′y and v = zv′ = v′′y.
Put 
 = 
z and � = �z . Write z = z′y. Put u′ = α1 · · ·αk and v′ = β1 · · · β�

with αi , β j ∈ �. Since the presentation is not subspecial, we have that k, � ≥ 1. Let
S = 〈� | u′ = v′〉 be the Lallement compression of M .

Proposition 8.2 We have 
 ⊆ A∗y.

Proof Let α ∈ 
 and note that α is not the empty word. Then z′yα = zα = α′z =
α′z′y with α′ ∈ A∗. Since |α′| = |α| > 0 and y is SOF, the occurrence of y as a suffix
of z′yα does not overlap the displayed occurrence of y and so α ∈ A∗y, as required.
��

As a consequence of Proposition 8.2 we can write αk = αk y and β� = β�y. It
follows that u′′ = zα1 · · · αk−1αk and v′′ = zβ1 · · ·β�−1β�.

Proposition 8.3 Let ϕ : ZM → ZM[y]M be the epimorphism given by ϕ(b) = b[y]M .
Then ker ϕ = ZM([u′′]M − [v′′]M ).

Proof ClearlyZM([u′′]M −[v′′]M ) ⊆ ker ϕ since [u′′y]M −[v′′y]M = [u]M −[v]M =
0. Since ϕ is the Z-linear extension of the mapping of sets M → M[y]M given by
m �→ m[y]M , it follows that ker ϕ is spanned by all differences [w]M − [w′]M with
[wy]M = [w′y]M by Lemma 6.1. If we perform compression with respect to y, then
the right canonical form of wy is wyε and so if [wy]M = [s]M , then s = s′y for some
s′ ∈ A∗ by Lemma 4.5. Therefore, [wy]M = [w′y]M implies that there is a sequence
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w1, · · · , wn ∈ A∗ with w1 = w, wn = w′ and wi y transformable to wi+1y with one
application of the defining relation u = v. Then we have that

[w]M − [w′]M = ([w1]M − [w2]M ) + ([w2]M − [w3]M )

+ · · · + ([wn−1]M − [wn]M )

and so ker ϕ is spanned by those differences [s]M −[s′]M so that sy can be transformed
into s′y by one application of the relation. Without loss of generality we may assume
that sy = guh and s′y = gvh. Since u, v ∈ A∗y and y is SOF, either y is a suffix
of h, and [s]M = [s′]M , or h = ε and so s = gu′′ and s′ = gv′′. In the first case,
[s]M − [s′]M = 0 ∈ ZM([u′′]M − [v′′]M ) and in the second case

[s]M − [s′]M = [g]M ([u′′]M − [v′′]M ) ∈ ZM([u′′]M − [v′′]M ),

as required. ��
Our next goal will be to show that ZM([u′′]M −[v′′]M ) ∼= ZM[z]M . First we need

to relate the algebra of a local divisor to that of the monoid.

Proposition 8.4 Let r compress u = v and let N be the compression of M with
respect to r . Set x = [r ]M . Let w1, . . . , wn ∈ �∗

r and c1, . . . , cn ∈ Z. Let a =∑n
i=1 ci [wi ]M ∈ ZM and let a′ = ∑n

i=1 ci [wi ]N ∈ ZN. Note that ZMxa ⊆ ZMx
as �∗

r ⊆ T (r). Suppose that γ : ZN → ZN is given by γ (b′) = b′a′. Let

η : ZMx ⊗ZN ZN → ZMx,

given by

m ⊗ [w]N �−→ m[w]M

for w ∈ �∗
r on basic tensors, be the natural isomorphism. Let δ : ZMx → ZMx be

given by δ(b) = ba. Then δ = η(1ZMx ⊗ γ )η−1. In particular, δ is injective if γ is
injective and ZMxa ∼= ZMx ⊗ZN ZNa′.

Proof Recall that Mx is a free right N -set by Corollary 4.15 via the action

(m, [w]N ) �→ m[w]M

where w ∈ �∗
r . The action of the functor ZMx ⊗ZN (−) on the mapping γ is as

follows

(1ZMx ⊗ γ )(m ⊗ [w]N ) = m ⊗
n∑

i=1

ci [wwi ]N =
n∑

i=1

ci m[wwi ]M ⊗ 1

which maps under the isomorphism η to m[w]M a, whereas η(m ⊗ [w]N ) = m[w]M .
Thus we have δ = η(1ZMx ⊗ γ )η−1. Since ZMx is a free right ZN -module, the
functor ZMx ⊗ZN (−) is exact and so we deduce that δ is injective whenever γ is
injective. Clearly, the image of 1ZMx ⊗ γ is isomorphic to the image ZMxa of δ via
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η. But 1ZMx ⊗ γ has image isomorphic to ZMx ⊗ZN ZNa′ by right exactness of the
tensor product functor. ��

Our next proposition allows us to relate the homological finiteness properties of the
ZM-modules ZM[y]M and ZM[z]M , and is the key technical tool in this section.

Proposition 8.5 Let M = 〈A | u = v〉 be a compressible non-subspecial one-relator
monoid presentation. Let y be the shortest word compressing u = v, let z be the
longest word compressing u = v, and write u = u′′y and v = v′′y. Then there is an
isomorphism

ZM([u′′]M − [v′′]M ) ∼= ZM[z]M

and hence there is an exact sequence

0 −→ ZM[z]M −→ ZM −→ ZM[y]M −→ 0

of left ZM-modules.

Proof We retain the notation introduced earlier in this section. Let ũ = α1 · · ·αk−1αk

and ṽ = β1 · · ·β�−1β�. Then u′′ = zũ and v′′ = zṽ and so ZM([u′′] − [v′′]) =
ZM[z]M ([̃u]M − [̃v]M ). Hence it suffices to show that ψ : ZM[z]M → ZM([u′′] −
[v′′]) given by ψ(b) = b([̃u]M − [̃v]M ) is injective. We prove this using local
divisor and compression techniques and some results from earlier sections. Put
ũ′ = α1 · · · αk−1 ∈ 
∗ = T (z) and ṽ′ = β1 · · · β�−1 ∈ 
∗ = T (z).

The first case we consider is when αk 	= β�. Note that αk = αk y and β� = β�y
implies that αk 	= β� and both these elements belong to the set P
 of proper prefixes
of words from 
.

Suppose that b = ∑
m∈M[z]M

cmm with ψ(b) = 0, where cm ∈ Z and only finitely
many are non-zero. Then we have that

b[̃u′αk]M = b[̃v′β�]M . (8.1)

Since ũ′, ṽ′ ∈ T (z) and b ∈ ZM[z]M we have that the left hand side belongs to
ZM[z]M [αk]M and the right hand side belongs to ZM[z][β�]M . Since αk, β� ∈ P


are distinct, we deduce that ZM[z][αk]M ∩ ZM[z]M [β�]M = 0 by Lemma 4.10.
Thus we deduce from (8.1) that b[̃u′αk]M = 0 and b[̃vβ�]M = 0. We now show that
b[̃u′αk]M = 0 implies b = 0.

Note that M[z]M → M given by b′ �→ b′[αk]M is injective by Lemma 4.10, as
αk ∈ P
, and hence so is its linear extensionZM[z]M → ZM . Thus it suffices to show
that δ : ZM[z]M → ZM[z]M given by δ(b) = b[̃u′]M is injective. Proposition 8.4
shows that it is enough to prove that right multiplication by [̃u′]S is an injective
mapping ZS → ZS where S is the Lallement compression of M . But the one-relator
presentation S = 〈� | u′ = v′〉 has the property that u′ and v′ end in distinct symbols
from � (as αk 	= β�). It is a well-known result of Adjan (cf. [28,Corollary 1.7.8]) that
such one-relator monoids are right cancellative and so right multiplication by [̃u′]S is
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injective on S and hence its linear extension to ZS is also injective. This completes
the proof that b[̃u′αk]M = 0 implies b = 0.

Next we consider the case αk = β�. In this case, we deduce from αk y = αk =
β� = β�y that αk = β�; let us denote this element of P
 by s. So [̃u]M − [̃v]M =
([̃u′]M − [̃v′]M )[s]M . It follows from Lemma 4.10 that right multiplication by [s]M

gives an injective mapping ZM[z]M → ZM and so it suffices to show that right
multiplication by [̃u′]M −[̃v′]M is an injective mappingZM[z]M → ZM[z]M . But by
Proposition 8.4 to prove this, it suffices to show that rightmultiplication by [̃u′]S−[̃v′]S

is an injective mapping ZS → ZS. But this is a consequence of Lemma 7.1 since S is
incompressible with presentation ũ′α = ṽ′α where α is the common element αk = β�

of �. This completes the proof that ψ is injective.
It now follows that ZM[z]M ∼= ZM([u′′]M − [v′′]M ). The exact sequence is then

a consequence of Proposition 8.3. ��
We are nearly ready to prove that M is of type left-FP∞ (and, of course, right-FP∞).

We need one last observation.

Proposition 8.6 Let N be the Adjan–Oganesyan compression of M. Write z = yz′′
where z and y are the longest and shortest words compressing u = v, respectively.
Then z′′ ∈ �∗

y and is the longest word in �+
y that compresses N, and there is an

isomorphism

ZM[y]M ⊗ZN ZN [z′′]N ∼= ZM[z]M

of ZM-modules.

Proof The first claim is a consequence of Proposition 4.2. For the isomorphism, apply
the final statement of Proposition 8.4 with r = y, a = [z′′]M and a′ = [z′′]N noting
that z = yz′′. ��
Theorem 8.7 Let M = 〈A | u = v〉 be a compressible non-subspecial one-relator
monoid. Let z be the longest word compressing u = v. Then the relation module
ZM[z]M is of type F P∞.

Proof We prove the result by induction on the number of words compressing u = v.
If there is just one, then the Adjan–Oganesyan and Lallement compressions coincide
and so y = z in Proposition 8.5. Thus we have an exact sequence

0 −→ ZM[z]M −→ ZM −→ ZM[z]M −→ 0.

Therefore, we can build a periodic resolution of the form

· · · −→ ZM −→ ZM −→ ZM[z]M −→ 0,

where at each stage the kernel and image of the map ZM → ZM are both isomorphic
to ZM[z]M , by splicing the previous exact sequence onto its left end repeatedly.

Next assume that the theorem is true for all compressible non-subspecial presen-
tations that can be compressed by fewer words and let y 	= z be the, respective,
shortest and longest words compressing u = v and write z = yz′′. Let N be the
Adjan–Oganesyan compression of M . Note that N has fewer words compressing it
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than M and that z′′ ∈ �+
y is the longest word compressing the defining relation of N

by Proposition 4.2 and Proposition 8.6. By Corollary 4.4, N is a non-subspecial com-
pressible one-relator monoid. Thus ZN [z′′]N has a free resolution F• → ZM[z′′]N

by finitely generated free ZN -modules by induction. Since ZM[y]M is a free right
ZN -module by Corollary 4.15, and hence flat, tensoring this resolution with ZM[y]M

yields a resolution

ZM[y]M ⊗ZN F• → ZM[z]M (8.2)

by Proposition 8.6. Moreover, each module ZM[y]M ⊗ZN Fn , with Fn a finitely
generated free ZN -module, is isomorphic to a finite direct sum of copies of ZM[y]M ,
since we recall if V is an S-R-bimodule, then V ⊗R Rk ∼= (V ⊗R R)k ∼= V k as an
S-module for any k ≥ 0.

We now prove by induction on n that ZM[z]M is of type FPn . If n = 0, this is
clear since ZM[z]M is a principal left ideal and hence a finitely generated (in fact,
cyclic) module. Now assume inductively that ZM[z]M is of type FPn for some n ≥ 0.
Then the exact sequence in Proposition 8.5 and Lemma 8.1 imply that ZM[y]M is of
type FPn+1 and hence so is any finite direct sum of copies of ZM[y]M . But (8.2) is a
resolution of ZM[z]M by the modules ZM[y]M ⊗ZN Fn , which are finite direct sums
of isomorphic copies of ZM[y]M , and hence another application of Lemma 8.1 yields
that ZM[z]M if of type FPn+1. This proves by induction that ZM[z]M is of type FPn

for all n ≥ 0 and hence by standard general results (see e.g. [11,Proposition VIII.4.5])
it then follows that ZM[z]M is of type FP∞. ��

We now prove Theorem 3.1 for non-subspecial one-relator monoids, thereby com-
pleting its proof.

Theorem 8.8 Let M be a non-subspecial one-relator monoid. Then M is of type left-
and right-FP∞ and of type left- and right-F∞.

Proof Recall that for finitely presented monoids, the properties left-F∞ and left-FP∞
are equivalent [21]. If the presentation is incompressible, then it is strictly aspherical by
[32,Corollary 5.6] and hence of type left-F∞ since it has a contractible Cayley complex
by Lemma 6.4. If the presentation is compressible, this is an immediate consequence
of Theorem 8.7 since we can splice a free resolution of ZM[z]M by finitely generated
free modules onto the exact sequence of Theorem 6.7. ��

9 Torsion-free one-relator monoids of infinite cohomological
dimension

The proof of Theorem 8.8 would suggest that a compressible non-subspecial one-
relator monoid could have infinite cohomological dimension as the free resolution
implicit in the proof is infinite. We prove that this is the case for a large family of
examples thereby completing the proof of Theorem 3.3 and of Theorem B.

Let us say that a one-relator presentation 〈A | u = v〉 is one-step compressible if
its Adjan–Oganesyan and Lallement compressions coincide, that is, there is a unique
word y ∈ A+ compressing u = v. We will show that any one-step compressible



A Lyndon’s identity theorem... Page 49 of 53 59

non-subspecial monoid has infinite cohomological dimension. A typical example is
M = 〈a, b, c | aba = aca〉. In particular this shows that, in contrast to groups,
there are torsion-free one-relator monoids with infinite (left and right) cohomological
dimension.

First we recall the basic fact that a principal left ideal Ra of a ring R is a projective
module if and only if the left annihilator

annL(a) = {r ∈ R | ra = 0}

of a is of the form Re for some idempotent e ∈ R. Indeed, there is a short exact
sequence of R-modules

0 −→ annL(a) −→ R
f−→ Ra −→ 0

where f (r) = ra. Hence if Ra is projective, then the sequence splits and thus annL(a)

is a direct summand in R. But all direct summands in R are of the form Re for
some idempotent e ∈ R because every endomorphism of the regular R-module R is
given via right multiplication by an element of R. Conversely, if annL(a) = Re, then
Ra ∼= R/Re ∼= R(1 − e) and hence is projective as 1 − e is an idempotent.

A ring R has only trivial idempotents if 0 and 1 are the only idempotents in R.
For example, a famous conjecture of Kaplansky asserts that if G is a torsion-free
group, then the group ring ZG has only trivial idempotents. By the observation in the
previous paragraph, if a ring R has only trivial idempotents and 0 	= a ∈ R, then
Ra is projective if and only if right multiplication by a is an injective mapping. We
now aim to prove that if M is a non-subspecial one-relator monoid, then ZM has
only trivial idempotents. We shall first need the following result, which for the most
part encapsulates [35,Theorem 2.3] and [35,Corollary 2.4]. Recall that a monoid M
is R-trivial if Green’s relation R is the equality relation, i.e., m M = m′M implies
m = m′;L -trivial monoids are defined dually.

Proposition 9.1 Let M = 〈A | u = v〉 be a one-relator monoid with 1 ≤ |v| ≤ |u|.
(i) If u /∈ vA∗, then M is R-trivial and [w]M = [ww′]M implies w′ is empty for

w,w′ ∈ A∗.
(ii) If u /∈ A∗v, then M is L -trivial and [w]M = [w′w]M implies w′ is empty for

w,w′ ∈ A∗.

Proof If |v| < |u|, then the result follows from[35,Theorem2.3] and [35,Corollary 2.4].
If |u| = |v|, then there is a well-defined homomorphism � : M → N given
by �([w]M ) = |w|. Let us prove (i), as (ii) is dual. If [w]M = [ww′]M , then
|w| = �([w]M ) = �([ww′]M ) = |w| + |w′| and so w′ is empty. If M is notR-trivial,
then there exist w,w1, w2 ∈ A∗ with [w]M = [ww1w2]M and [w]M 	= [ww1]M . But
w1w2 must be empty bywhat we just proved and so [w]M = [ww1]M , a contradiction.
Thus M isR-trivial. ��

Recall that theR-order on a monoid M is defined by m ≤R n if m M ⊆ nM . This
is a preorder on M and is a partial order precisely when M is R-trivial. We can now
prove the desired result.
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Theorem 9.2 Let M = 〈A | u = v〉 be a non-subspecial one-relator monoid. Then
ZM has only trivial idempotents.

Proof Assume that |v| ≤ |u|. Since the relation is not subspecial, either v is not a
prefix of u or v is not a suffix of u. By symmetry, we may assume that v is not a prefix
of u. Hence M isR-trivial by Proposition 9.1. Let e ∈ ZM be a non-zero idempotent.
Let X be the support of e, i.e., the finite set of elements of M with non-zero coefficient
in e. First we claim that 1 ∈ X . Choose m ∈ X maximal with respect to the partial
order ≤R . Then since e2 = e, there must exist a, b ∈ X with m = ab. By maximality
of m, since M isR-trivial, we must have a = m. Let w,w′ ∈ A∗ with [w]M = m and
[w′]M = b. Then [w]M = [ww′]M and so w′ is empty by Proposition 9.1(i). Thus
b = 1 and so 1 ∈ X .

Let c 	= 0 be the coefficient of 1 in e. Since M is not special, |u| ≥ |v| > 0. Thus
no non-empty word in A∗ represents 1 in M . It then follows that c2 is the coefficient
of 1 in e2 and hence c2 = c as e2 = e. Thus c = 1 since c is a non-zero integer.
We conclude that e = 1 + r with r ∈ ZM having support not containing 1. Then
1− e = −r is an idempotent without 1 in its support and hence r = 0 by the previous
paragraph. Thus e = 1, as required. ��
Corollary 9.3 Let M = 〈A | u = v〉 be a non-subspecial one-relator monoid. Let
r ∈ A+ compress the relation u = v. Then ZM[r ]M is not a projective module.

Proof Assume that |v| ≤ |u|. By Theorem 9.2, the ring ZM has no non-trivial idem-
potents. Hence, by the comments preceding the statement of Proposition 9.1, we have
that ZM[r ]M is projective if and only if right multiplication by [r ]M is injective on
ZM or, equivalently, on M . But we can write u = u1r and v = v1r and hence
[u1]M [r ]M = [u]M = [v]M = [v1]M [r ]M . It remains to show that [u1]M 	= [v1]M ,
as then right multiplication by [r ]M will not be injective. Since the relation is not sub-
special, u 	= v and hence u1 	= v1. But |v1| < |v| ≤ |u| and hence v1 is not equivalent
in M to any other word. Thus [u1]M 	= [v1]M and so ZM[r ]M is not projective. ��

As a consequence, we may now deduce that all compressible non-subspecial one-
relator monoids have cohomological dimension at least 3.

Corollary 9.4 Let M = 〈A | u = v〉 be a compressible non-subspecial one-relator
monoid. Then cd(l)(M) ≥ 3 and cd(r)(M) ≥ 3 and the same inequality applies to the
left and right geometric dimensions.

Proof We just need to handle left cohomological dimension. By Theorem 6.7, we have
an exact sequence

0 −→ ZM[z]M −→ ZM |A| −→ ZM −→ Z −→ 0

with z ∈ A+ the longest word compressing u = v. The module ZM[z]M is not
projective by Corollary 9.3 and hence the left cohomological dimension of M is at
least 3 by [11,Lemma VIII.2.1]. The last claim on geometric dimensions then follows
from the fact that in general the cohomological dimension is a lower bound for the
geometric dimension. ��
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Proposition 9.5 Let M = 〈A | u = v〉 be a one-step compressible, non-subspecial
one-relator monoid. Then gd(l)(M) = cd(l)(M) = ∞ = cd(r)(M) = gd(r)(M).

Proof Since the hypothesis on M is left-right dual, it suffices to prove that cd(l)(M) =
∞. Let y ∈ A+ be the unique word compressing u = v. We have exact sequences

0 −→ ZM[y]M −→ ZM |A| −→ ZM −→ Z −→ 0

0 −→ ZM[y]M −→ ZM −→ ZM[y]M −→ 0

by Theorem 6.7 and Proposition 8.5. By repeatedly splicing the second sequence onto
the first, it follows that for any n ≥ 0, we can find an exact sequence

0 −→ ZM[y]M −→ ZM −→ · · · −→ ZM −→ ZM |A| −→ ZM −→ Z −→ 0

where there are n occurrences of ZM between ZM[y]M and ZM |A|. If cd(l)(M) ≤ n,
then itwould follow from the existence of this exact sequence and [11,LemmaVIII.2.1]
that ZM[y]M is projective, contradicting Corollary 9.3. Thus cd(l)(M) = ∞, as
required. ��

This completes the proof of Theorem 3.3.
For example, M = 〈a, b, c | aba = aca〉 meets the conditions of Proposition 9.5

and hence has infinite left and right cohomological dimensions. This example was first
considered by Ivanov [31],whoobserved that its relationmodule is not freely generated
by the coset of the relation. Since M has infinite left cohomological dimension, it
cannot have a contractible Cayley complex. Let us see that directly. The reader should
draw the cells c1, c2 in the Cayley complex of this presentation based at [ab]M and
at [ac]M and notice that they create a 2-sphere with two thorns sticking out. Thus
this Cayley complex is not contractible, in fact c1 − c2 is a 2-cycle, and, in particular,
the presentation is not strictly aspherical. For this particular example, the fact that the
presentation is not strictly aspherical was originally observed by Ivanov in [31].

It would be interesting to knowwhether all compressible non-subspecial one-relator
monoids have infinite cohomological dimension. We suspect this to be the case.
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