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Abstract
In this paperwewill present a homologicalmodel for Coloured Jones Polynomials. For
each colour N ∈ N, we will describe the invariant JN (L, q) as a graded intersection
pairing of certain homology classes in a covering of a configuration space on the
punctured disc. This construction is based on the Lawrence representation and a result
due to Kohno that relates quantum representations and homological representations
of the braid groups.
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1 Introduction

The theory of quantum invariants of knots started with the discovery of the Jones
polynomial and continued with Reshetikhin and Turaev’s construction that having as
input any ribbon category leads to link invariants. This method is purely algebraic
and combinatorial. The coloured Jones polynomials {JN (L, q) ∈ Z[q±1]}N∈N are a
family of quantum link invariants, constructed in this manner from the representation
theory of Uq(sl(2)). The first invariant of this sequence, corresponding to N = 2, is
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the original Jones polynomial. The geometric and topological meaning of quantum
invariants is an important problem in quantum topology.

Main result

We give a topological model for the family of coloured Jones polynomials JN (L, q),
showing that they are graded intersection pairings between homology classes in cov-
erings of configuration spaces on the punctured disc. The colour N of the invariant
will be seen in the number of particles in the configuration space. This work, together
with the further development from [1, 2] provides a new framework for understanding
these invariants directly from graded intersections of submanifolds in configuration
spaces.

Jones polynomial

The Jones polynomial is a quantum invariant but it can also be characterised by skein
relations. However, its relation with the topology of the knot complement is a mys-
terious question. On the topological side, Lawrence [18] constructed a sequence of
representations of braid groups on the homology of certain coverings of configura-
tion spaces. Later on, Bigelow [4] and Lawrence [19] gave a homological model for
the original Jones polynomial, describing it as a graded intersection pairing between
homology classes in a covering of a configuration space on the punctured disc. They
used the skein nature of the invariant for the proof.

Coloured Jones polynomials

At the moment there are conjectures that coloured Jones polynomials contain topo-
logical information of knot complements [11, 21]. In 2012, Kohno [8, 14] proved that
quantum representations on highest weight spaces of the Verma module forUq(sl(2))
are isomorphic to the homological Lawrence representations. This identification used
the work due to Schechtman and Varchenko which describes solutions of the KZ equa-
tions by means of hypergeometric integrals [22, 23]. Also, Ito [9] gave a homological
formula for the loop expansion of the coloured Jones polynomials, as an infinite sum
of traces of specialised Lawrence representations. In [9], it was mentioned that the
highest weight spaces corresponding to finite dimensional Uq(sl(2))-representations
do not yet have a homological counterpart and this is one of the reasons why there
were no known topological models for coloured Jones polynomials. We present a
topological model for all coloured Jones polynomials. Unlike the original case, they
cannot be described directly by skein relations. Our strategy is to use their definition
as quantum invariants, to study the Reshetikhin-Turaev functor and to construct step
by step homological counterparts.
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Description of the topological tools

Let n,m ∈ N and considerCn,m to be the unordered configuration space ofm points in
the n-punctured disc.We define C̃n,m to be aZ⊕Z covering of this configuration space.
Then, the Borel–Moore homology of this covering Hlf

m(C̃n,m, Z) is a Z[x±1, d±1]-
module (using the deck transformations) and carries an action of the braid group Bn .

I. Lawrence representation

We define certain subspaces in these homology groups. Let the indexing set En,m =
{e = (e1, . . . , en−1) ∈ N

n−1|e1 + · · · + en−1 = m}. For each such partition e, one
associates an m-dimensional disc Fe in the base space Cn,m and then lifts it to a
submanifold F̃e in C̃n,m . We consider the subspace generated by the classes given by
these submanifolds, as in Definition 3.2.2:

Hn,m := 〈[F̃e] | e ∈ En,m〉Z[x±1,d±1] ⊆ H lf
m(C̃n,m, Z). (1)

II. The dual Lawrence representation

We consider a dual space, defined from the homology of the covering relative to its
boundary, which is generated by classes of submanifolds which are also prescribed
by partitions (Definition 4.1.2):

H∂
n,m := 〈[D̃ f ] | f ∈ En,m〉Z[x±1,d±1] ⊆ Hm(C̃n,m, ∂;Z). (2)

III. Topological pairing

These homology groups are related by a non-degenerate intersection pairing (which
is a certain type of Poincaré–Lefschetz duality):

〈 , 〉 : Hn,m ⊗H∂
n,m → Z[x±1, d±1]. (3)

The specific model

Let N ∈ N be the colour of the invariant.We look at oriented links as closures of braids
with n ∈ N strands. For the topological model, we use the Lawrence representation
and its dual, with the following parameters:

(n→ 2n; m → n(N − 1)) .
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We change the coefficients using certain specialisations presented in Sect. 7.1:

Z[x±1, d±1]
Z[q±1]

Q(q)

Q(s, q)

i

ψN−1
αN−1

γ

δN−1

Theorem 1.0.1 (Topological model with specialised homology classes)
Let n ∈ N. Then, for any colour N ∈ N, there exist two homology classes

F̃ N
n ∈ H2n,n(N−1)|αN−1 and G̃ N

n ∈ H∂
2n,n(N−1)|αN−1

such that for any oriented link L for which there exists a braid βn ∈ Bn with L = β̂n

(braid closure), the N thcoloured Jones polynomial of L has the formula:

JN (L, q) = 1

[N ]q q
−(N−1)w(βn)〈(βn ∪ In)F̃

N
n , G̃ N

n 〉|αN−1 .

Here, In is the trivial braid with n strands and w(βn) is the writhe of the braid.

The classes F̃ N
n and G̃ N

n are intrinsic and they do not depend on the link. The link
plays a role in the action of the associated braid on the homological representation.

1 2 n − 1 n 2n − 1 2n

e1 e2n−1

f1 f2n−1

Fe D f

F̃e D̃ fF̃ N
n G̃ N

n
JN (L, q)

L= β̂n

C2n,n(N−1)

C̃2n,n(N−1)

〈(βn ∪ In)F N
n ,G N

n 〉|δN−1

Colour that goes to infinity

We are interested in the parts of this model that depend on the colour. In Theorem
1.0.1, the colour N appears in two places:

• The number of points in the configuration spaces: Confn(N−1)(D2n).
• The specialisation of the coefficients αN−1.
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We show that the homology classes which lead to the coloured invariants, can be lifted
to the homology groups before specialising with respect to the colour:

{
F̃ N

n ∈ H2n,n(N−1)|αN−1 ��� F N
n ∈ H2n,n(N−1)|γ

˜G N
n ∈ H2n,n(N−1)|αN−1 ��� G N

n ∈ H2n,n(N−1)|γ

(here γ is just a morphism which enlarges the ring Z[x±1, d±1] to the field Q(q, s)).

Theorem 1.0.2 (Topological model with globalised homology classes)
For n, N ∈ N there exist homology classes

F N
n ∈ H2n,n(N−1)|γ and G N

n ∈ H ∂
2n,n(N−1)|γ

such that if an oriented link L = β̂n with βn ∈ Bn, we have the formula:

JN (L, q) = 1

[N ]q q
−(N−1)w(βn)〈(βn ∪ In)F

N
n ,G N

n 〉|δN−1 . (4)

Further development-new framework, towards categorifications

This is the first topological model for coloured Jones polynomials, as intersection
pairings between homology classes, which appeared in 2017. The tools that we use
are highest weight space representations and their identifications with homological
representations due to Kohno’s Theorem. This research direction has since developed
further- in 2020Martel [20] provided an expicit version ofKohno’sTheorem, and using
that, the author showed a unified topologicalmodel for the coloured Jones and coloured
Alexander polynomials as intersections of explicit Lagrangians in configuration spaces
[1, 2]. The precise form of these Lagrangians makes the latter model a proper starting
point for investigating categorification questions. Also, in [3] we present a topological
model for the Witten-Reshetikhin-Turaev invariants for 3-manifolds, as state sums of
Lagrangian intersections in a fixed configuration space in the punctured disc.

Structure of the paper

The paper has six main parts. In Sect. 2, we present the quantum group that we use and
the definition of the coloured Jones polynomials. Sect. 3 contains the definition of the
Lawrence representation. Then, in Sect. 4 we define the dual Lawrence representation
and present a graded intersection form that relates the two representations. In Sect. 5,
we present identifications between quantum and homological representations of the
braid group and discuss in detail the specialisation at natural parameters. Section 6 is
devoted to the construction of the topological model for JN (L, q)where the homology
classes are defined in the specialised homology. In Sect. 7 we show that we can lift
the homology classes from this topological model to the non-specialised homology
groups.
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2 Representation theory of Uq(sl(2))

2.1 Uq(sl(2)) and its representations

Let q, s be parameters and consider the ring

Ls := Z[q±1, s±1].

We will use the following notations: 1, n = {1, . . . , n}

{x} := qx − q−x ; [x]q := qx − q−x

q − q−1
; [n]q ! = [1]q [2]q · · · [n]q;

[
n

j

]
q

= [n]q !
[n − j]q ![ j]q ! .

Definition 2.1.1 Let the quantum enveloping algebra Uq(sl(2)) be the algebra over
Ls generated by the elements {E, F (n), K±1| n ∈ N

∗} with the following relations:

⎧⎪⎨
⎪⎩
KK−1 = K−1K = 1; K E = q2EK ; K F (n) = q−2n F (n)K ;
F (n)F (m) = [n+m

n

]
q F

(n+m)

[E, F (n+1)] = F (n)(q−nK − qnK−1).

The generators F (n) correspond to the “divided powers” of the generator F , from the
version of the quantum group Uq(sl(2)) with generators {E, F, K±1}.
Then, one has that Uq(sl(2)) is a Hopf algebra with the following comultiplication,
counit and antipode:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�(E) = E ⊗ K + 1⊗ E S(E) = −EK−1

�(F (n)) =∑n
j=0 q− j(n− j)K j−n F ( j) ⊗ F (n− j) S(F (n)) = (−1)nqn(n−1)KnF (n)

�(K ) = K ⊗ K S(K ) = K−1

�(K−1) = K−1 ⊗ K−1 S(K−1) = K .

Now we describe the representation theory of Uq(sl(2)). In the following part the
abstract variable s will be thought of as being the weight of the Verma module.

Definition 2.1.2 (The Verma module) Let V̂ be theLs-module generated by an infinite
family of vectors {v0, v1, . . .}. The following relations define anUq(sl(2)) actionon V̂ :

⎧⎪⎪⎨
⎪⎪⎩
Kvi = sq−2ivi ,
Evi = vi−1,
F (n)vi =

[n+i
i

]
q

∏n−1
k=0

(
sq−k−i − s−1qk+i

)
vi+n .

(5)
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2.2 Specialisations

In order to arrive at the definition of the coloured Jones polynomials we consider
certain specialisations of this quantum group and its Verma modules.

Definition 2.2.1 We consider two types of specialisations of coefficients, as below.
Let h, λ ∈ C and q = eh . In the following, we have eλh = qλ:

ηq,λ : Z
[
q±1, s±1

]
→ C

ηq,λ(q) = eh ηq,λ(s) = eλh .

Let q be a parameter and specialise the highest weight to a natural number λ = N−1 ∈
N:

ηλ : Z
[
q±1, s±1

]
→ Z

[
q±1

]
ηλ(s) = qλ.

Using these specialisations, we consider the associated specialised quantum groups
and their representations, as below.

Ring Quantum group Representations Specialisations

Ls = Z[q±1, s±1] Uq (sl(2)) V̂ (1) q, s param

C Uq,λ =
Uq (sl(2))⊗ηq,λ C

V̂q,λ = V̂ ⊗ηq,λ C (2) (q = eh , λ) ∈ C
2

ηq,λ

L = Z[q±1] U = Uλ =
Uq (sl(2))⊗ηλ

Z[q±1]

V̂λ = V̂ ⊗ηλ Z[q±1]
VN ⊆ V̂λ

(q param,
λ = N − 1 ∈ N) ηλ

Following this procedure Uq,λ and Uλ become Hopf algebras and V̂q,λ a Uq,λ-
representation and V̂λ a Uλ-representation.

Lemma 2.2.2 If λ = N − 1 ∈ N, then {v0, . . . , vN−1} span an N-dimensional Uλ-
submodule inside V̂N−1. Denote this module by

VN := 〈v0, . . . , vN−1〉 ⊆ V̂N−1.
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Proof This can be seen easily by looking at the actions of the generators on the basis.
The only part that needs to be checked is that F (n)vi = 0 if n ≥ N − i and this
comes from the coefficient that appears in the F (n)-action, which will vanish when
we specialise λ = N − 1.

�


2.3 The Reshetikhin–Turaev functor

In this section we present the construction due to Reshetikhin and Turaev (which starts
with a ribbon category and gives link invariants) for the case given by representations
of U .

Notation 2.3.1 For any representations V and W, we define the twist:

τ : V ⊗W → W ⊗ V

τ(x ⊗ y) = y ⊗ x .
(6)

For the next part we denote by Uq(sl(2))⊗̂Uq(sl(2)) a completion of the module
Uq(sl(2))⊗Uq(sl(2)), where we allow infinite formal sums of tensor products.

Proposition 2.3.2 (Braid group action [8, 10]) There exists an R-matrix R ∈
Uq(sl(2))⊗̂Uq(sl(2)), which is given by the formula:

R =
∞∑
n=0

q
n(n−1)

2 En ⊗ F (n).

Then, for any representation V of the quantum group (finite dimensional or the Verma
module) one has the following well-defined action of the braid group:

ϕV
n : Bn → AutUq (sl(2))

(
V⊗n

)
σ±1i → I d⊗(i−1)

V̂
⊗ (R±1 ◦ τ)⊗ I d⊗(n−i−1)

V̂
.

(7)

Here, we use the notation R = C ◦ R where C(vi ⊗ v j ) = s−(i+ j)q2i jv j ⊗ vi .

For the next part, we are interested in finite dimensional representations of the quantum
group U .

Proposition 2.3.3 [12] (1) The braid group action on the subcategory of U -
representations Rep(U ) (finite dimensional or the Verma module) comes from the
specialisation of the R-matrix, which we denote by:

RV ,V = R|ηλ⊗ηλ ◦ τ ∈ AutUq (sl(2))(V ⊗ V ),∀ V ∈ Rep(U ).

(2) The category of finite dimensional U -representations has the dualities:

←−
coevVN :L→ VN ⊗ V ∗N is given by 1 �→

∑
v j ⊗ v∗j ,
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←−
ev VN : V ∗N ⊗ VN → L is given by f ⊗ w �→ f (w),

−→
coevVN :L→ V ∗N ⊗ VN is given by 1 �→

∑
v∗j ⊗ K−1v j , (8)

−→
ev VN : VN ⊗ V ∗N → L is given by v ⊗ f �→ f (Kv),

for all VN ∈ Rep(U ) finite dimensional, where {v j } is a basis of VN and {v∗j } the
dual basis of V ∗N .

The action of R on the standard basis of V̂ ⊗ V̂ is given in [8] (Sect. 4.1):

R(vi ⊗ v j ) = s−(i+ j)
i∑

n=0
Fi, j,n(q)

n−1∏
k=0

(
sq−k− j − s−1qk+ j ) v j+n ⊗ vi−n (9)

where Fi, j,n(q) ∈ Z[q±1] has the expression:

Fi, j,n(q) = q2(i−n)( j+n)q
n(n−1)

2

[
n + j

j

]
q
. (10)

Definition 2.3.4 The category of oriented tangles T is defined as follows:

Ob(T ) = {(ε1, . . . , εm)| m ∈ N, εi ∈ {±1}}.
HomT ((ε1, . . . , εm); (δ1, . . . , δn)) = {oriented tangles T from

(ε1, . . . , εm) to (δ1, . . . , δn)}/isotopy.
(11)

The tangles T have to preserve the signs εi which are on their boundaries. Also, the
orientation of T should follow the convention (−) ↓, (+) ↑ .

Theorem 2.3.5 (Reshetikhin–Turaev)For any finite dimensionalU -representation V ,
there exists a unique monoidal functor FV : T → Rep(U ) that respects a set of local
relations, out of which we recall:

1. FV ((V ,+)) = V ; FV ((V ,−)) = V ∗

2. FV ( ) = RV ,V ; FV ( ) = ←−coevV ; FV ( ) =−→ev V .

2.4 The coloured Jones polynomial JN(L, q)

Nowwe present how the Reshetikhin-Turaev construction leads to quantum invariants
for knots and links.
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Notation 2.4.1 We denote the evaluation
−→
ev
⊗n
VN
: V⊗nN ⊗ (V ∗N )⊗n → Z[q±1] and

coevaluation
←−
coev

⊗n
VN
: Z[q±1] → V⊗nN ⊗ (V ∗N )⊗n as below:

⎧⎨
⎩
−→
ev
⊗n
VN
:= −→

ev V⊗nN←−
coev

⊗n
VN
:= ←−

coevV⊗nN
.

(12)

Notation 2.4.2 Let In be the trivial braid with n strands, all oriented upwards. Also,
we consider Īn to be the trivial braid with n strands, all oriented downwards.

Proposition 2.4.3 (Coloured Jones polynomial from a braid presentation [9]) Let us
fix N ∈ N. Consider L to be an oriented link and β ∈ Bn such that L = β̂ (braid
closure). We denote by w : Bn → Z the map given by the abelianisation. Then, the
Reshetikhin-Turaev construction leads to the following formula:

JN (L, q) = 1

[N ]q q
−(N−1)w(β)

(−→
ev
⊗n
VN
◦ FVN (βn ∪ Īn) ◦ ←−

coev
⊗n
VN

)
(1). (13)

As we have seen so far, the construction of JN (L, q) is purely algebraic and com-
binatorial. We are interested in a geometrical interpretation for this invariant. For this
purpose, we study the Reshetikhin-Turaev functor on certain intermediate levels of
the link diagram. More precisely, we start with L as a closure of a braid β ∈ Bn and
split the diagram into three main parts as follows:

1. the evaluation
2. braid level βn ∪ Īn

3. the coevaluation

We investigate the functor FVN on each of these main levels. The starting point
in our description is the fact that at the level of the braid, there is a homological
counterpart for the quantum representation, called Lawrence representation [14, 19].
This relation is established using the notion of highest weight spaces.

2.5 Highest weight spaces

Now we discuss properties of certain vector subspaces included in tensor powers of a
fixed representation of the quantum group.

Definition 2.5.1 For two natural numbers n,m ∈ N and a fixed parameter N ∈ N,
consider the following indexing sets:

En,m := {e = (e1, . . . , en−1) ∈ N
n−1|e1 + · · · + en−1 = m}

EN
n,m := {e = (e1, . . . , en−1) ∈ En,m |e1, . . . , en−1 ≤ N − 1}

E≥Nn,m := {e = (e1, . . . , en−1) ∈ En,m |∃ i, ei ≥ N }.

Also, for an element e = (e1, . . . , en) ∈ N
n , let us denote ve := v̂e1 ⊗ · · · ⊗ v̂en .
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The elements of the set En,m are partitions of the natural number m into n− 1 natural
numbers. Its cardinality is well-known and we denote it as:

dn,m := card (En,m) =
(
n + m − 2

m

)
. (14)

We define highest weight spaces as follows.

Definition 2.5.2 (Highest weight spaces) Let us fix n,m ∈ N.
(1) The case of two parameters (q, s)
The nth-weight space of the generic Verma module V̂ corresponding to the weight

m is defined by:

V̂n,m :=
{
v ∈ V̂⊗n|Kv = snq−2mv

}
.

The highest weight space of the generic Verma module V̂⊗n corresponding to the
weight m:

Ŵn,m := V̂n,m ∩ Ker E .

(2) Specialisation with two complex numbers Let h, λ ∈ C and q = eh .
The weight space of V̂⊗nq,λ corresponding to the weight m is:

V̂ q,λ
n,m :=

{
v ∈ V̂⊗nq,λ |Kv = qnλ−2mv

}
.

The highest weight space of the Verma module V̂⊗nq,λ corresponding to the weight m:

Ŵ q,λ
n,m := Ŵn,m |ηq,λ .

(3) The case where q is a parameter and λa natural number (λ = N − 1 ∈ N)
(a) Inside the Verma module V̂⊗nN−1

The weight space of V̂⊗nN−1 of weight m:

V̂ N−1
n,m := {

v ∈ V̂⊗nN−1|Kv = qnλ−2mv
}
.

The highest weight space for Verma module V̂⊗nN−1 corresponding to the weight m:

Ŵ N−1
n,m := Ŵn,m |ηN−1 .

(b) Inside the finite dimensional module V⊗nN
The weight space for the finite dimensional representation V⊗nN of weight m:

V N
n,m :=

{
v ∈ V⊗nN |Kv = qn(N−1)−2mv

}
.
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The highest weight space of the finite dimensional representation V⊗nN corresponding
to the weight m:

WN
n,m := Ŵn,m |ηN−1 ∩ V⊗nN .

We remark that since VN ⊆ V̂N−1, we have ve ∈ V⊗nN if and only if e ∈ EN
n,m . This

will happen also for the following (highest) weight spaces:

V N
n,m ⊆ V̂ N−1

n,m and WN
n,m ⊆ Ŵ N−1

n,m .

Remark 2.5.3 One can easily see that the weight spaces of Verma modules have the
bases: {

V̂n,m = 〈ve|e ∈ En+1,m〉Ls ⊆ V̂⊗n .
V̂ N−1
n,m = 〈ve|e ∈ En+1,m〉Z[q±1] ⊆ V̂⊗nN−1.

(15)

Using these bases, we conclude that we have a basis for the weight space of the finite
dimensional module VN :

V N
n,m = 〈ve|e ∈ EN

n+1,m〉Z[q±1] ⊆ V⊗nN .

Moreover, if we denote V≥Nn,m := 〈ve|e ∈ E≥Nn+1,m〉Ls ⊆ V̂⊗nN−1 then we have the

following splitting as vector spaces V̂ N−1
n,m = V N

n,m ⊕ V≥Nn,m . Also, from (14) we have:

dim
(
V̂n,m

)
= dim

(
V̂ N−1
n,m

)
= dn+1,m =

(
n + m − 2

m

)
. (16)

2.6 Bases for heighest weight spaces

As we have seen, there is a straightforward definition of bases in weight spaces.
However, for highest weight spaces this becomes a subtle question. In [10], bases in
the highest weight spaces of the Verma module were presented, as well as connec-
tions between highest weight spaces and weight spaces, which correspond to different
parameters n and m. Moreover, Jackson and Kerler proved that for the parameter
m = 2, the braid group action on the highest weight space Ŵn,m corresponds to
the homological Lawrence-Bigelow-Krammer representation [5, 16–18]. They con-
jectured that this identification is true for any natural number m and Kohno [8, 14]
proved this conjecture. Now, we present following [8] bases for the highest weight
spaces.

Definition 2.6.1 (Basis for Ŵn,m) For e ∈ En+1,m , we denote by:

vse := s
∑n

i=1 iei ve1 ⊗ · · · ⊗ ven .
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Notice that BV̂n,m
:= {vse |e ∈ En+1,m} forms a basis for V̂n,m .

In this part the highest weight spaces Ŵn,m will be identified with a certain subspace
of the weight spaces V̂n,m . Let ι : En,m → En+1,m be the inclusion:

ι((e1, . . . , en−1)) = (0, e1, . . . , en−1).

Denote by V̂ ′n,m := Ls v̂0 ⊕ V̂n−1,m ⊆ V̂n,m . Then, the set BV̂ ′n,m
:= {v̂sι(e)|e ∈ En,m}

gives a basis for the space V̂ ′n,m .

Proposition 2.6.2 [8] Consider the function φ : V̂ ′n,m → Ŵn,m given by:

φ(w) :=
m∑

k=0
(−1)ks−k(n−1)q2mk−k(k+1)vk ⊗ Ek(w). (17)

Then φ is an isomorphism of Ls -modules. Moreover, the set

BŴn,m
= {φ

(
vsι(e)

)
|e ∈ En,m}

gives a basis for the generic highest weight space Ŵn,m. Using the remarks from (14)
and (15), it follows that: dim(Ŵn,m) = dn,m =

(n+m−2
m

)
.

2.7 Quantum representations of the braid groups

In the following part, we will see that the braid group action on tensor powers of
the (generic) Verma module and the finite dimensional module passes to the level of
highest weight spaces.

Remark 2.7.1 Since ϕ V̂
n gives an action on V̂⊗n over the quantum group (Proposition

2.3.2), it commutes with the actions of the generators K and E . Hence, it induces a
well-defined action on the generic highest weight spaces Ŵn,m .

Proposition 2.7.2 (1) This action in the basis BŴn,m
leads to a representation called

the generic quantum representation on highest weight spaces of the Verma module:

ϕŴ
n,m : Bn → Aut

(
Ŵn,m

)
.

Similarly, using specialisations we get induced braid group actions as follows.

(2) A well-defined action induced by ϕ
V̂q,λ
n :

ϕŴ q,λ

n,m : Bn → Aut
(
Ŵ q,λ

n,m
)
.
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(3) (a) A well-defined action induced by ϕ
V̂N−1
n , called the quantum representation on

highest weight spaces of the Verma module:

ϕŴ N−1
n,m : Bn → Aut

(
Ŵ N−1

n,m

)
.

(3) (b) An action induced by ϕ
VN
n , called the quantum representation on highest weight

spaces of the finite dimensional module:

ϕWN

n,m : Bn → Aut
(
WN

n,m

)
.

As a summary, we have highest weights spaces, which carry braid group actions
and live inside the nth tensor power of specialisations of the Verma module V̂ :

Braid group action Highest weight space Representation Specialisation

ϕŴ
n,m Ŵn,m V̂⊗n (1) q, s param

ϕŴq,λ

n,m Ŵq,λ
n,m V̂⊗nq,λ (2) q = eh , λ ∈ Cηq,λ

ϕŴ N−1
n,m Ŵ N−1

n,m V̂⊗nN−1 (3) (a) q; λ = N − 1 ∈ N ηλ

ϕWN
n,m WN

n,m V⊗nN (3) (b) q; λ = N − 1 ∈ N ηλ

3 Lawrence representation

3.1 Local system

In this section we present certain braid group representations, called homological
Lawrence representations, introduced by Lawrence [19]. Let n ∈ N. Let D2 ⊆ C be
the unit disc including its boundary and {p1, . . . , pn} be n points in its interior, on the
real axis. Let Dn := D2 \ {p1, . . . , pn} and fix m ∈ N a natural number. Let Cn,m be
the unordered configuration space of m points in the n-punctured disc:

Cn,m =
(
D×mn \ {x = (x1, . . . , xm)| ∃ i, j such that xi = x j }

)
/Symm .

Here, Symm is the symmetric group of order m. Let us fix d1, . . . , dm ∈ ∂Dn .
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p1 pi pnσi

d1 d2 dm

∧
p1 pi pn

d1 d2 dm

δ

Definition 3.1.1 (Local system on Cn,m) Let us denote the abelianisation map by

ab : π1(Cn,m)→ H1(Cn,m).

Then, it is known that for any m ≥ 2 one has that:

H1(Cn,m) � Z
n ⊕ Z

〈ab(�i )〉 〈ab(�)〉, i ∈ 1, n.

The generators ofZ
n are classes of loopswhose first component goes around one of the

punctures pi and the others are constant: �i (t) := {(σi (t), d2, . . . , dm)}, t ∈ [0, 1].
The last component is generated by the class of a loop � which swaps two points
between them: �(t) := {(δ(t), d3, . . . , dm)}, t ∈ [0, 1]. Let the augmentation map
be:

aug : Zn ⊕ Z→ Z⊕ Z

〈x〉 〈d〉
aug ((x1, . . . , xn), y) = (x1 + · · · + xn, y) .

Consider the local system defined by the composition of the previous maps:

φ : π1(Cn,m)→ Z⊕ Z

φ = aug ◦ ab. (18)

Definition 3.1.2 (Covering space) Let C̃n,m be the covering of Cn,m corresponding
to Ker(φ) and its associated projection map π : C̃n,m → Cn,m .

The deck transformations of the covering are Deck(C̃n,m) = Z⊕ Z and this induces
a Z[Z⊕Z] � Z[x±1, d±1]-action on the homology groups of the covering. It follows
that the homology groups H lf

m(C̃n,m, Z) and Hm(C̃n,m, Z; ∂) areZ[x±1, d±1]-modules
(here H lf is the Borel–Moore homology, the homology of locally finite chains).

3.2 Basis of multiforks

In order to define the Lawrence representation, we consider certain subspaces in these
homologies of the covering C̃n,m .

Definition 3.2.1 (Multiforks [7, 8])
(1) SubmanifoldsLet e = (e1, . . . , en−1) ∈ En,m as in theDefinition 2.5.1.Wewill

construct an associatedm-dimensional submanifold in C̃n,m , which gives a homology
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Fig. 1 Multiforks and barcodes

class in the Borel Moore homology of the covering. For each i ∈ {1, . . . , n − 1},
consider ei disjoint horizontal segments inDn , between pi and pi+1 (which meet just
at their boundary), as in the Fig. 1. Denote those segments by I e1 , . . . , I ee1 , . . . , I

e
m .

Also, for each k ∈ {1, . . . ,m}, choose a vertical path γ e
k between the segment I ek and

dk . The product of these segments gives a map as below:

I e1 × · · · × I em : (0, 1)m → D×mn \ {x = (x1, . . . , xm)|xi = x j }.

Composing this map with the quotient map to the unordered configuration space we
obtain an m-dimensional disc:

Fe : (0, 1)m → Cn,m .

(2) Base PointsThe paths γ e
1 , . . . , γ e

m , which start on the segments I e1 , . . . , I em and end
at the base points d1, .., dm , will prescribe a lift of the submanifold Fe to the covering.
Let d ∈ Cn,m be the point defined by the m-tuple (d1, . . . , dm). Then, let us fix a lift
of this point d̃ ∈ π−1(d). The set of the paths {γ e

k , 1 ≤ k ≤ m} defines a path in
the configuration space: γ e := (γ e

1 , . . . , γ e
m) : [0, 1] → Cn,m . Consider γ̃ e to be the

unique lift of the path γ e such that:

{
γ̃ e : [0, 1] → C̃n,m

γ̃ e(0) = d̃.
(19)

(3) Multiforks Let F̃e be the unique lift of the submanifold Fe to the covering, which
passes through the point γ̃ e(1):

F̃e : (0, 1)m → C̃n,m . (20)

Then F̃e gives awell-defined homology class [F̃e] ∈ H lf
m(C̃n,m, Z) called themultifork

corresponding to the element e ∈ En,m .

The Lawrence representation is the subspace of this Borel–Moore homology of the
covering, spanned by the multiforks.
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Definition 3.2.2 Denote by BHn,m := {[F̃e]|e ∈ En,m} the set of all multiforks and
consider the subspace generated by it:

Hn,m := 〈[F̃e] | e ∈ En,m〉Z[x±1,d±1] ⊆ H lf
m(C̃n,m, Z). (21)

Proposition 3.2.3 ([8], Prop 3.1)Hn,m is a free module over Z[x±1, d±1] andBHn,m

gives a basis for it, called the multifork basis.

As we have seen, the cardinality of En,m is known (relation (14)), so we have:

rank(Hn,m) = dn,m =
(
n + m − 2

m

)
.

3.3 Braid group action

In this part we present a braid group action on the homology of the covering of the
configuration space. Following [13] (chap. I.6) it is known that:

Bn = MCG(Dn) = Homeo+(Dn, ∂)/isotopy.

Using the definition of the local system one can conclude that there is a well-defined
action of the braid group on the homology of the covering, as follows:

Bn � H lf
m(C̃n,m, Z)

(
as a Z[x±1, d±1]-module

)
.

Definition 3.3.1 (Lawrence representation [8]-Prop 3.1) The subspace in the homol-
ogy groupHn,m ⊆ H lf

m(C̃n,m, Z) is invariant under the action of Bn . The braid group
action on the homology Hn,m written in the multifork basis BHn,m , leads to a repre-
sentation which is called the Lawrence representation:

ln,m : Bn → GL
(
dn,m, Z[x±1, d±1]

) (
= End

(
Hn,m, Z[x±1, d±1]

))
. (22)

4 Blanchfield pairing

In this section, we will present a non-degenerate duality between the Lawrence rep-
resentationHn,m and a “dual” space, which we will denote byH∂

n,m . This dual space
lives in the homology of the covering relative to its boundary. Using this form, we
will be able to express any element in the dual ofHn,m , as a certain geometric pairing
with an element from the dual space. This property will play an important role in the
homological model from Sect. 6.
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4.1 Dual space

We start by defining a certain subset in the homology of the covering relative to its
boundary Hm(C̃n,m, ∂;Z), by specifying a generating set.

Definition 4.1.1 (Barcodes [7]) For each e = (e1, . . . , en−1) ∈ En,m we will
define an m-dimensional submanifold in C̃n,m and consider its homology class in
Hm(C̃n,m, ∂;Z).

(1) Submanifolds For each i ∈ {1, . . . , n − 1}, consider ei disjoint vertical seg-
ments in Dn , between pi and pi+1 as in the Fig. 1. Denote those segments by
J e1 , . . . , J ee1 , . . . , J

e
m . Also, for each k ∈ {1, . . . ,m}, we choose a vertical path δek

between the segment J ek and the base point dk . The product of these segments leads
to a map to the configuration space as follows:

De :
(D̄m = [0, 1]m, ∂D̄m)→ (Cn,m, ∂Cn,m).

(2) Base Points As in the case of multiforks, the collection of paths from these
vertical segments to the base points d1, . . . , dm gives a path in the configuration space:
δe : [0, 1] → Cn,m . Define δ̃e to be the unique lift of the path δe such that:

{
δ̃e : [0, 1] → C̃n,m

δ̃e(0) = d̃.
(23)

(3) Barcodes Consider D̃e to be the unique lift of De to the covering which passes
through δ̃e(1):

D̃e : D̄m → C̃n,m

Then D̃e defines a class in the homology relative to the boundary [D̃e] ∈
Hm(C̃n,m, Z; ∂) called the barcode corresponding to the element e ∈ En,m .

Definition 4.1.2 (The “dual” representation) Let us denote the set given by all bar-
codes by BH∂

n,m
:= {[D̃e]|e ∈ En,m} and consider the submodule in the homology

generated by this:

H∂
n,m := 〈[D̃e] | e ∈ En,m〉Z[x±1,d±1] ⊆ Hm(C̃n,m, ∂;Z). (24)

We call H∂
n,m the “dual” representation of Hn,m .

4.2 Graded intersection pairing

In this part, we will describe how the Borel–Moore homology and the homology rela-
tive to the boundary of C̃n,m are related by an intersection form, a Poincaré-Lefschetz
type duality, which relates homologies of the covering with respect to differents parts
of its boundary. This will lead to a pairing betweenHn,m andH∂

n,m . We follow [6, 7]
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for the computations of the pairing in the case where the homology classes are given
by geometric submanifolds.

Definition 4.2.1 (Graded intersection [4]) Let us consider F ∈ H lf
m(C̃n,m, Z) and

G ∈ Hm(C̃n,m, ∂;Z). Suppose that there exist M, N ⊆ Cn,m transverse submanifolds
of dimension m which intersect in a finite number of points such that there exist lifts
in the covering M̃, Ñ with F = [M̃] and G = [Ñ ]. The graded intersection between
the submanifolds in the covering is defined by the formula:

� M̃, Ñ �:=
∑

(u,v)∈Z⊕Z

(
(xudv M̃) ∩ Ñ

)
· xudv ∈ Z[x±1, d±1] (25)

where (· ∩ ·) means the geometric intersection number between submanifolds.

In the next part we will see that even if a priori the graded intersection between M̃ and
Ñ is defined in the covering space C̃n,m , it can be computed in the base space using
M and N and the local system.

Proposition 4.2.2 For x ∈ M ∩ N there exists a unique ϕx ∈ Deck(C̃n,m) with:

(ϕx M̃ ∩ Ñ ) ∩ π−1(x) �= ∅.

Now we present the formula for computing the pairing following [4]. Let us fix a
basepoint d ∈ Cn,m and d̃ ∈ π−1(d). Let x ∈ M ∩ N and ϕx ∈ Deck(C̃n,m) as in
proposition 4.2.2. Denote by x̃ = (ϕx M̃ ∩ Ñ ) ∩ π−1(x). We will describe ϕx using
just the local system φ and the point x . We notice that we have the same sign of the
intersection in the covering and in the base space: (ϕx M̃ ∩ Ñ )x̃ = (M ∩ N )x , which
we denote by cx .

Suppose that we have two paths γM , δN : [0, 1] → Cn,m such that their unique lifts
which start at d̃, denoted by γ̃M , δ̃N : [0, 1] → C̃n,m , have the properties:{

γM (0) = d; γM (1) ∈ M; γ̃M (1) ∈ M̃

δN (0) = d; δN (1) ∈ N ; δ̃N (1) ∈ Ñ .

Let us consider two paths γ̂M , δ̂N : [0, 1] → Cn,m such that:

{
Im(γ̂M ) ⊆ M; γ̂M (0) = γM (1); γ̂M (1) = x

Im(δ̂N ) ⊆ N ; δ̂N (0) = δN (1); δ̂N (1) = x .

We denote the loop: lx := δN δ̂N γ̂−1M γ−1M . Following [4], one has that ϕx = φ(lx ).

Corollary 4.2.3 The pairing can be computed using the intersection points in the base
space Cn,m and the local system as follows:

� M̃, Ñ � =
∑

x∈M∩N
cx · φ(lx ) ∈ Z[x±1, d±1]. (26)
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Lemma 4.2.4 [7] The pairing �,� can be extended for classes F ∈ Hlf
m(C̃n,m, Z)

and G ∈ Hm(C̃n,m, ∂;Z) that are represented as linear combinations of classes of
lifts of submanifolds as above. Then, the pairing� F,G � does not depend on the
choice of representatives for the homology classes.

4.3 Pairing betweenHn,m andH@
n,m

Definition 4.3.1 Let us denote the pairing 〈 , 〉 : Hn,m ⊗H∂
n,m → Z[x±1, d±1]:

〈[F̃e], [D̃ f ]〉 = � F̃e, D̃ f � . (27)

This is a sesquilinear form (with respect to the transformations x ↔ x−1, d ↔ d−1).

Proposition 4.3.2 (Computing the local signs in the base configuration space [4])
The submanifolds Fe and D f in Cn,m are constructed from products of arcs in the
punctured disc. For an intersection point x = (x1, . . . , xm) ∈ Fe ∩ D f let αx :=
ε1 · · · · · εm where εi is the sign of the intersection between the red arc and green arc
that contain the point xi at this point, in the punctured disc. Then we can compute the
pairing using these signs. Let g : Z[x±1, d±1] → Z[x±1, d ′±1] be given by g(x) = x
and g(d) = d ′. We consider the intersection:

〈[F̃e], [D̃ f ]〉d ′ :=
∑

x∈Fe∩D f

αx · (g ◦ φ)(lx ) ∈ Z

[
x±1, d ′±1

]
. (28)

Let S : Z[x±1, d ′±1] → Z[x±1, d±1] be given by S(x) = x and S(d ′) = −d. Then:

〈[F̃e], [D̃ f ]〉 = S
(
〈[F̃e], [D̃ f ]〉d ′

)
. (29)

Lemma 4.3.3 For any e, f ∈ En,m, the pairing has the following form:

〈[F̃e], [D̃ f ]〉 = pe · δe, f
where pe ∈ Z[d±1] (⊆ Z[x±1, d±1]) is a non-zero polynomial.

Proof Since we are working in the configuration space, we remark that:

Fe ∩ D f = ∅ if e �= f .

Let us fix a partition e ∈ En,m . Following formula (28), the intersection pairing can be
computed using the intersections “supported” between punctures i and i + 1 between
Fei := F(0,0,...,ei ,...,0) and Dei := D(0,0,...,ei ,...,0) in the following manner:

〈[F̃e], [D̃e]〉d ′ =
n−1∏
i=1
〈[F̃ei ], [D̃ei ]〉d ′ (30)
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Now we compute the pairing 〈F̃ei , D̃ei 〉. Each intersection point x ∈ Fei ∩ Dei is
characterised by an ei -tuple which pairs a horizontal line from the multifork with a
vertical line from the barcode. In other words x = xσ =

(
x(1,σ (1)), . . . , x(ei ,σ (ei ))

)
where σ ∈ Symei is a permutation. It follows:

〈[F̃ei ], [D̃ei ]〉d ′ =
∑

σ∈Symei

αxσ · (g ◦ φ)(lxσ ). (31)

Since all red segments which give the multifork are oriented in the sameway and all
parts of the barcode have the same orientation we get that αxσ = 1. Now we construct
the loop lxσ . For any k ∈ {1, . . . ,m} we consider:

γ̂ e
k ⊆ Ik such that γ̂ e

k (0) = γ e
k (1); γ̂ e

k (1) = x(k,σ (k))

δ̂ek ⊆ Jk such that δ̂ek(0) = δek(1); δ̂ek(1) = x(k,σ (k))

Let ai := e1 + · · · + ei−1 and the paths in the configuration space of ei points:

�ei :=
(
γ e
ai+1, · · · , γ e

ai+ei
)
; �̂ei :=

(
γ̂ e
ai+1, . . . , γ̂

e
ai+ei

)
�ei :=

(
δeai+1, . . . , δ

e
ai+ei

)
; �̂ei :=

(
δ̂eai+1, . . . , δ̂

e
ai+ei

)
.

From formula (26) we have: lxσ = �ei �̂ei �̂
−1
ei �−1ei ⊆ Cn,ei . We follow the loop lxσ

using Fig. 1 and notice that none of its components go around any of the punctures.
So, the variable x will not appear in (g ◦ φ)(lxσ ). Also, for σ = Id we have lxId as the
union of trivial loops, so: (g ◦ φ)(lxId) = 1. Putting the previous remarks together in
the formula (31), we conclude that 〈F̃ei , D̃ei 〉d ′ ∈ N[d ′±1] and it has a nontrivial free
term. Combining this with the Eq. (30), we obtain that:

〈[F̃e], [D̃e]〉d ′ ∈ N
[
d ′±1

]
with a non trivial free part. Then, since S is injective we obtain that:

pe = S(〈[F̃e], [D̃e]〉d ′) ∈ Z
[
d±1

]
is also non-zero which concludes the proof. �


Lemma 4.3.4 The family of barcodes {[D̃e]|e ∈ En,m} is linearly independent and it
gives a basis for H∂

n,m.

Proof This follows directly from the computation of the pairing between [F̃e] and [D̃e]
and the fact that pe ∈ Z[x±1, d±1] are non-zero divisors. �


Notation 4.3.5 The set BH∂
n,m

will be called the barcodes basis for H∂
n,m.
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By an analogous argument, we re-obtain also a proof for the fact that the multiforks
{[F̃e]|e ∈ En,m} are linearly independent in H lf

m(C̃n,m, Z) ([8] Sect. 3.1). We conclude
that the matrix of the graded intersection pairing 〈 , 〉 in the bases of multiforksBHn,m

and barcodes BH∂
n,m

is a diagonal matrix:

M〈 , 〉 = Diag
(
pe1, . . . , pedn,m

)
(32)

where p1, . . . , pedn,m
∈ Z[x±1, d±1] are all non-zero divisors.

Corollary 4.3.6 The pairing 〈 , 〉 : Hn,m ⊗H∂
n,m → Z[x±1, d±1] is non-degenerate.

4.4 Specialisations

Our aim is to describe the coloured Jones polynomials in a homological way. For this
purpose, our starting point is the deep connection proved by Kohno, that relates quan-
tum representations of the braid groups and certain specializations of the Lawrence
representations. In this part wewill focus on those specializations of the Lawrence rep-
resentation which are used in Kohno’s Theorem. Our aim is to obtain non-degenerate
intersection forms between these specialisations.

Definition 4.4.1 (Specialisation of coefficients) Let λ = N − 1 ∈ N be a parameter.
Consider the specialization of the coefficients:

ψλ : Z
[
x±1, d±1

]→ Z
[
q±1

]
ψλ(x) = q2λ, ψλ(d) = −q−2. (33)

Definition 4.4.2 Let us define the specialised Lawrence representation:

Hn,m |ψλ = Hn,m ⊗ψλ Z[q±1] = 〈[F̃e]|e ∈ En,m]〉Z[q±1]
H∂

n,m |ψλ = H∂
n,m ⊗ψλ Z

[
q±1

] = 〈[D̃e]|e ∈ En,m]〉Z[q±1].
(34)

These multiforks and barcodes define bases ofHn,m |ψλ andHn,m |ψλ over Z[q±1].
Definition 4.4.3 Let us consider the specialised Blanchfield pairing, obtained from the
generic pairing 〈 , 〉 by specialising its coefficients using ψλ:

〈 , 〉|ψλ : Hn,m |ψλ ⊗H∂
n,m |ψλ → Z

[
q±1

]
〈[F̃e], [D̃ f ]〉|ψλ = ψλ(pe) · δe, f .

(35)

We notice that {pe|e ∈ En,m} ∩Ker(ψλ) = ∅. At this point we see that the choice
of barcodes on the dual side ofHn,m has an important role. The geometric intersection
pairing between multiforks and these barcodes, has a corresponding matrix M〈 , 〉
which is diagonal with non-zero polynomials p ∈ Z[d±1] on the diagonal. This
fact ensures that these polynomials become non-zero elements in Z[q±1] through the
specialization ψλ.
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Corollary 4.4.4 The form 〈 , 〉|ψλ is sesquilinear and non-degenerate over Z[q±1].

4.5 Dualizing the algebraic evaluation

This part is motivated by the fact that we are interested in describing the third level of
a braid closure (the union of “caps”), viewed through the Reshetikhin-Turaev functor,
in a geometrical way using the geometric intersection pairing. We will see the details
in the following Sect. 6, but for this part the aim is to be able to understand an element
of the dual of Hn,m |ψλ , as a geometric intersection 〈·,G 〉 for some G ∈ Hn,m |ψλ .

Remark 4.5.1 The non-degenerate pairing 〈 , 〉|ψλ : Hn,m |ψλ ⊗H∂
n,m |ψλ → Z[q±1]

has the following matrix:

M〈 , 〉 = Diag
(
ψλ(pe1), . . . , ψλ(pedn,m

)
)

. (36)

Here ψλ(p1), . . . , ψλ(pedn,m
) ∈ Z[q±2] are polynomials with non-zero free terms. In

particular, the diagonal coefficients are not necessarily invertible elements in Z[q±1].
Following this remark, we notice that a priori not any element of F ∈ (Hn,m |ψλ)

∗
can be described as a geometric intersection pairing 〈·,GF 〉 for some GF ∈ H∂

n,m |ψλ .
This issue comes from the fact that we are working over a ring and not over a field. In
order to overcome this problem, we will change the ring of coefficients from Z[q±1]
to the field of fractions Q(q). Let us consider the embedding i : Z[q±1] ↪→ Q(q) and
use Q(q) as field of coefficients.

Definition 4.5.2 (NewSpecialisation) Let us consider the specialization of coefficients
αλ : Z[x±1, d±1] → Q(q) defined by: αλ = i ◦ ψλ. Also, we define the specialised
Lawrence representations:

Hn,m |αλ := Hn,m ⊗αλ Q(q) = 〈[F̃e]|e ∈ En,m]〉Q(q)

H∂
n,m |αλ = H∂

n,m ⊗αλ Q(q) = 〈[D̃e]|e ∈ En,m]〉Q(q).
(37)

These multiforks and barcodes define bases forHn,m |αλ and H∂
n,m |αλ over Q(q).

We notice that the previous specialisations are related in the following manner:

Hn,m |αλ := Hn,m |ψλ ⊗i Q(q); H∂
n,m |αλ := H∂

n,m |ψλ ⊗i Q(q).

Notation 4.5.3 Let us denote the corresponding change of the coefficients at the homo-

logical level by: pλ : Hn,m |ψλ

( · ⊗i1)−−−−→ Hn,m |αλ .

Definition 4.5.4 Consider the Blanchfield pairing constructed from the pairing 〈 , 〉
using the specialisation αλ:

〈 , 〉|αλ : Hn,m |αλ ⊗H∂
n,m |αλ → Q(q)

〈[F̃e], [D̃ f ]〉|αλ = αλ(pe) · δe, f .
(38)
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We notice that for any partition e ∈ En,m , the evaluation αλ(pe) ∈ Q(q) is a non-zero
element, so it is invertible. This shows that 〈 , 〉|αλ is a non-degenerate sesquilinear
form. Moreover, working over a field, we conclude that any element in the dual of the
first homology group, can be described as a pairing with a fixed element from the dual
homology. More precisely, we obtain the following description.

Corollary 4.5.5 For any G ∈ (Hn,m |αλ)
∗, there exists a corresponding homology class

G̃ ∈ H∂
n,m |αλ such that:

G = 〈·, G̃ 〉|αλ . (39)

Definition 4.5.6 (Construction of geometric duals) Let us start with an element

G0 ∈ (Hn,m |ψλ)
∗ = Hom(Hn,m |ψλ, Z[q±1]).

We construct the following element:

G := G0 ⊗ I dQ(q) ∈ (Hn,m |αλ)
∗. (40)

Then, taking the pairing with the dual element G̃ ofG given by relation (39), we obtain
G0 in a topological way, as below:

G0 ⊗ I dQ(q) = 〈·, G̃ 〉|αλ . (41)

5 Identifications between quantum representations and homological
representations

So far, we have presented two important constructions that lead to representations of
the braid group: the quantum representation and the Lawrence representation. We will
discuss relations between these representations using a result due to Kohno. The iden-
tifications over two parameters were presented in [8] based on a continuity procedure.
The results from this section follow from this identification, however, we explain in
more detail the continuity argument. For h, λ ∈ C and q = eh , consider the following
specialisations of coefficients:

{
ηq,λ : Z[q±1, s±1] → C

ηq,λ(q) = q; ηq,λ(s) = qλ

{
ψq,λ : Z[x±1, d±1] → C

ψq,λ(x) = q2λ; ψq,λ(d) = −q−2. (42)

We recall that the quantum representation Ŵ is defined over Z[q±1, s±1] and the
Lawrence representation Hn,m is defined over Z[x±1, d±1]. Kohno relates these
two representations, by connecting each of them with a monodromy representation
of the braid group which arises using the theory of KZ-connections (Knizhnik-
Zamolodchikov). We will shortly describe these relations, following [8].
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5.1 KZ-Monodromy representation

Consider theLie algebra sl2(C) and consider an orthonormal basis {Iμ}μ for its Cartan-
Killing form. Denote

� =
∑
μ

Iμ ⊗ Iμ ∈ sl(2)⊗ sl(2).

Definition 5.1.1 For λ ∈ C
∗ consider Mλ to be the Verma module of sl(2) defined as:

Mλ = 〈v0, v1, . . .〉C with the following actions:

⎧⎪⎨
⎪⎩
Hvi = (λ− 2i)vi
Evi = vi−1
Fvi = (i + 1)(λ− i)vi+1.

(43)

For n ∈ N and i, j ∈ {1, . . . , n} we define the endomorphism �i, j ∈ End(M⊗nλ ) to
be the action of � on the i th and j th components. The monodromy representation
is constructed from the complement of a hyperplane arrangement. We consider the

spaces Xn := C
n \

(⋃
1≤i, j≤n Ker(zi = z j )

)
and Yn := Xn/Symn . For h ∈ C

∗, the
KZ-connectionωh is a 1-form defined over Yn with values in End(M

⊗n
λ ) defined using

the endomorphisms �i, j . This gives a flat connection with values in the trivial bundle
Yn × M⊗nλ . The monodromy of this connection leads to a representation:

νh : Bn → Aut
(
M⊗nλ

)
. (44)

Definition 5.1.2 For m ∈ N, the space of null vectors in M⊗nλ of weight m is:

N [nλ− 2m] := {v ∈ M⊗nλ |Ev = 0; Hv = (nλ− 2m)v}.

Definition 5.1.3 (Monodromy representation) For m ∈ N, the monodromy of the KZ-
connection induces a braid group action on the spaces of null vectors:

νh : Bn → Aut(N [nλ− 2m]).

Proposition 5.1.4 Following [8], for e ∈ En,m, consider the vector:

we :=
m∑
i=0

(−1)i 1

λ(λ− 1) · · · · · (λ− i)
Fiv0 ⊗ Ei (Fe1v0 ⊗ · · · ⊗ Fen−1v0

)
.

Then, for any λ ∈ C
∗ \N, the setBN [nλ−2m] := {we|e ∈ En,m} describes a basis for

the space of null vectors N [nλ− 2m].
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Theorem 5.1.5 (Kohno’s Theorem [8, 14, 15]) There exists an open dense set U ⊆
C
∗ × C

∗ such that for any (h, λ) ∈ U there is the following identification between
representations of the braid group:

(
Ŵ q,λ

n,m,B
Ŵ q,λ

n,m

)
��q,λ

(Hn,m |ψq,λ ,BHn,m |ψq,λ

)
(45)

More precisely, the quantum representation ϕŴ q,λ

n,m and Lawrence representation
ln,m |ψq,λ are the same in the above bases (see Proposition 2.7.1, Definition 3.2.2).

5.2 Identifications with q and � complex numbers

We are interested in quantum representations with natural parameter λ = N − 1 ∈ N.
This case does not belong to the situation with “generic parameters”. In the next part
we study the relation between these braid group representations specialised with any
parameters.

Remark 5.2.1 Let R be a ring andM a free R-modulewith a fixed basisB of cardinality
d. Consider a group action G � M and a representation of G using the basis B:
ρ : G → GL(d, R). Suppose that S is another ring and we have a specialisation of
the coefficients, given by a ring morphism: ψ : R→ S.

Let us denote Mψ := M ⊗R S andBMψ := B⊗R 1 ∈ Mψ . The specialisation ψ

leads to an induced group action G � Mψ . Then, the following properties hold:
(1)BMψ is a basis for Mψ .
(2) Let ρψ : G → GL(d, S) be the representation of G on Mψ coming from

the induced action, in the basis BMψ . In this way, the two actions, before and after
specialisation give the same action: ρψ(g) = ρ(g)|ψ,∀g ∈ G. Here if f : M → M ,
we denote by f |ψ : Mψ → Mψ the specialisation f |ψ = f ⊗R IdS .

Theorem 5.2.2 Let (h, λ) ∈ C
∗×C be any fixed complex parameters. Then the follow-

ing braid group representations are isomorphic, using the following corresponding
bases: (

Ŵ q,λ
n,m,B

Ŵ q,λ
n,m

)
��q,λ

(
Hn,m |ψq,λ ,BHn,m |ψq,λ

)

Proof In the proof of the previous Theorem 5.1.5, this correspondence is stated for
any parameters in a dense open subset in C

∗ × C. The relation between quantum
representations and the Lawrence representations is established by relating both of
them with the monodromy of the KZ-connection. More precisely, two isomorphisms
of braid group representations are constructed:

{
f N H
q,λ : Hn,m |ψq,λ → N [nλ− 2m]
f N H
q,λ ([F̃e]) = we;{
f W N
q,λ : N [nλ− 2m] → Ŵ q,λ

n,m

f WN
q,λ (we) = φ(vsι(e))|ηq,λ

,∀(h, λ) ∈ U .

(46)
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These isomorphisms are constructed using correspondences between the bases below:

Ŵ q,λ
n,m � N [nλ− 2m] � Hn,m |ψq,λ

B
Ŵq,λ

n,m
BN [nλ−2m] BHn,m |ψq,λ

From this, Kohno proved that for all (h, λ) ∈ U there is the relation:

ϕŴq,λ

n,m (β) = ln,m |ψq,λ (β),∀β ∈ Bn . (47)

Let us denote by �q,λ : Hn,m |ψq,λ → Ŵ q,λ
n,m the function given by:

�q,λ([F̃e]) = φ(vsι(e))|ηq,λ ,∀e ∈ En,m . (48)

This function is defined for all (h, λ) ∈ C
∗ × C. We notice that the functions

f W N
q,λ , f N H

q,λ are continuous with respect to the parameters (h, λ) ∈ U and then �q,λ

is also continuous with respect to the two complex parameters.
Now we investigate the case of non-generic parameters. We recall that BŴn,m

is a

basis for Ŵn,m . Following the definition of a specialisation, we obtain that B
Ŵq,λ

n,m
:=

BŴn,m
|ηq,λ is a well-defined basis for Ŵ q,λ

n,m , for any (h, λ) ∈ C
∗ × C.

Since the specialisation ηq,λ is well-defined for any complex parameters (h, λ) ∈
C
∗ × C, all the coefficients from ϕŴ

n,m |ηq,λ are well-defined complex numbers. In

particular, the action ϕŴq,λ

n,m in the basisBŴn,m
|ηq,λ has all coefficients well-defined.

We conclude that for any braid β ∈ Bn , the specialisation of the matrix obtained

from the initial action ϕŴ
n,m on Ŵn,m in the basisBŴn,m

is the matrix of the specialised

action ϕŴq,λ

n,m in the specialised basis B
Ŵq,λ

n,m
:

ϕŴ
n,m(β)|ηq,λ = ϕŴq,λ

n,m (β),∀(h, λ) ∈ (C∗ × C). (49)

On the homological side, the specialisation BHn,m |ψq,λ
is a well-defined basis for

Hn,m |ψq,λ for any parameters (h, λ) ∈ C
∗ × C.

This shows that for every β ∈ Bn , the specialisations of thematrices from the action
onHn,m in the multifork basis, are actually the same as the matrices of the specialised
Lawrence action, in the specialised multifork basisBHn,m |ψq,λ :

ln,m(β)|ψq,λ = ln,m |ψq,λ (β),∀(q, λ) ∈ (C∗ × C). (50)

We obtain that for any parameters (q, λ) ∈ C
∗×C, the following identification holds:

ϕŴq,λ

n,m (β) = ln,m |ψq,λ (β),∀β ∈ Bn .

�
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5.3 Identifications with q indeterminate

Following Theorem 5.2.2, quantum representations and Lawrence representations are
isomorphic after appropriate identifications of coefficients, ifwefix (q, λ) any complex
numbers. In this part, we will state a similar result for the case where we keep q an
indeterminate and λ = N − 1 ∈ N. We recall the specialisations of the coefficients:

{
ηλ : Z[q±1, s±1] → Z[q±1]
ηλ(s) = qλ

{
ψλ : Z[x±1, d±1] → Z[q±1]
ψλ(x) = q2λ; ψλ(d) = −q−2.

For q ∈ C, let fq : Z[q±1] → C be the evaluation given by fq(q) = q. Then:

{
ηq,λ = fq ◦ ηλ

ψq,λ = fq ◦ ψλ.

We recall the notations:

Ŵ λ
n,m = Ŵn,m ⊗ηλ Z[q±1]; Hn,m |ψλ = Hn,m ⊗ψλ Z[q±1].

Theorem 5.3.1 The braid group representations with respect to the specialisation with
one complex number are isomorphic over Z[q±1]:

(
Ŵ λ

n,m,BŴλ
n,m

)
��λ

(Hn,m |ψλ,BHn,m |ψλ

)
. (51)

Proof Let �λ : Hn,m |ψλ → Ŵn,m |ηλ be given by �λ([F̃e]) = φ
(
vsι(e)

)
|ηλ,∀e ∈

En,m . We have thatBŴn,m
|ηλ is a basis for Ŵ

λ
n,m andBHn,m |ψλ is a basis forHn,m |ψλ .

Also, we have the following relations between specialisations:

Ŵ q,λ
n,m = Ŵ λ

n,m ⊗ fq C; Hn,m |ψq,λ = Hn,m |ψλ ⊗ fq C.

For β ∈ Bn , we notice that for any q ∈ C we have the relations:

ϕŴq,λ

n,m (β) = fq
(
ϕŴ
n,m(β)|ηλ

)
; ln,m(β)|ψq,λ = fq

(
ln,m(β)|ψλ

)
.

Using Theorem 5.2.2 we obtain that ϕŴ
n,m(β)|ηλ = ln,m(β)|ψλ,∀β ∈ Bn . These matri-

ces correspond to well-defined actions in the previous bases, so we have:

ϕŴ
n,m(β)|ηλ = ϕŴ N−1

n,m (β); ln,m(β)|ψλ = ln,m |ψλ(β).

We conclude that the braid group actions from the statement are isomorphic.
�
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6 Homological model for the coloured Jones polynomial

In this section, we present a topological model for the coloured Jones polynomials.
We will start with an oriented link and consider a braid that leads to the link by braid
closure. In the first part, we study the Reshetikhin-Turaev functor on a link diagram
that leads to the invariant, by separating it on three main levels. Secondly, for each
of these levels we construct step by step a homological counterpart in the Lawrence
representation and its dual. Finally, we show that the evaluation of the Reshetikhin–
Turaev functor on the whole knot corresponds to the geometric intersection pairing
between the homological counterparts.

Let N ∈ N be the colour. Let the parameter λ = N − 1 and the specialisations
ηN−1, ψN−1 be defined as in formula (42). In the next part, we will use the braid group
actions corresponding to the quantum representations:

{
Ŵ N−1

n,m ←→ ϕŴ N−1
n,m

WN
n,m ←→ ϕWN

n,m .

We recall the change of coefficients αλ from definition 4.5.2:

{
αλ : Z[x±1, d±1] → Q(q)

αλ(x) = q2λ; αλ(d) = −q−2.

Using these notations, we will prove the following model.

Theorem 6.0.2 (Topological model for coloured Jones polynomials with specialised
homology classes) Let n ∈ N. Then, there exist two homology classes

F̃ N
n ∈ H2n,n(N−1)|αN−1 and G̃ N

n ∈ H ∂
2n,n(N−1)|αN−1

such that for any oriented link L with L = β̂n for βn ∈ Bn, the N th coloured Jones
polynomial has the formula:

JN (L, q) = 1

[N ]q q
−(N−1)w(βn)〈(βn ∪ In) F̃

N
n , G̃ N

n 〉|αN−1 . (52)

Proof Consider the planar diagram for the link L which is associated to the closure of
the braid βn . It has the following three main levels:

1. the evaluation
2. braid level βn ∪ Īn

3. the coevaluation

We use the formula for the coloured Jones polynomial from proposition 2.4.3:

JN (L, q) = 1

[N ]q q
−(N−1)w(βn)

(−→
ev
⊗n
VN
◦ FVN (βn ∪ Īn) ◦ ←−

coev
⊗n
VN

)
(1). (53)
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6.1 (Step I)-Coevaluation corresponding to the cups

Looking at the bottom part of the diagram, we notice that the properties of the quantum

group actions on its representations imply that the first morphism
←−
coev

⊗n
VN

naturally

arrives in particular subspace in V⊗nN ⊗
(
V ∗N

)⊗n . This subspace would correspond to a
certain highestweight space if itwas inside the tensor power of the same representation.

Lemma 6.1.1 One has the following:

Im
( ←−
coev

⊗n
VN

)
⊆ Ker(E) ∩ Ker(K − I d)

(
⊆ V⊗nN ⊗ (

V ∗N
)⊗n)

. (54)

Proof From the fact that
←−
coev

⊗n
VN
: Z[q±1] → V⊗nN ⊗ (

V ∗N
)⊗n is a morphism of U -

modules (Definition 2.4.1) it follows that it commutes with the E and K -actions. Since
Z[q±1] is the trivial representation, this shows that:

⎧⎨
⎩
Im

( ←−
coev

⊗n
VN

)
⊆ Ker

(
E �

(
V⊗nN ⊗ (

V ∗N
)⊗n))

Im
( ←−
coev

⊗n
VN

)
⊆ Ker

(
(K − I d) �

(
V⊗nN ⊗ (

V ∗N
)⊗n))

.
(55)

�


From this remark, one gets that for any vector v ∈ Im
( ←−
coev

⊗n
VN

)
:

Kv = v = q0v. (56)

Having in mind the notion of weight spaces, we write q0 = q2n(N−1)−2(N−1)n and
conclude that:

Kv = v = q2n(N−1)−2(N−1)nv,∀v ∈ Im
( ←−
coev

⊗n
VN

)
. (57)

Notation 6.1.2 Let us consider the vector:

wN
n :=

←−
coev

⊗n
VN

(1) ∈ V⊗nN ⊗ (
V ∗N

)⊗n
.

More precisely, it has the form:

wN
n =

N−1∑
i1,...,in=0

vin ⊗ · · · ⊗ vi1 ⊗ v∗i1 ⊗ · · · ⊗ v∗in . (58)
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6.2 (Step II)-Arriving in a highest weight space

As we have seen in Sect. 5, quantum representations of the braid group encode homo-
logical information. This means that for the braid part of the diagram, we could create
a bridge towards a homological action if all the strands had the same orientation.
Therefore, we are interested in arriving at a formula for JN (L, q) which contains in
the middle the action of B2n on V⊗2nN . For the moment, corresponding to the braid
group action, we have the Reshetikhin-Turaev functor as follows:

FVN (βn ∪ Īn) ∈ Aut
(
V⊗nN ⊗ (V ∗N )⊗n

)
.

The second idea is to insert additional isomorphisms at the first and the third level,
which transform (V ∗N )⊗n into V⊗nN and act non-trivially just on the last n components
of the tensor product, corresponding to the last n strands of the diagram. Then, in the
middle, we will have the Reshetikhin-Turaev functor evaluated on the braid, which is
exactly the quantum representation:

ϕ
VN
2n (βn ∪ In) ∈ Aut

(
V⊗2nN

)
.

We will make this precise in the next part. Following the first step, we notice that the
bottom part of the diagram – corresponding to the cups – leads towards an analogue
of the highest weight space of weight n(N − 1). Now we show that we can arrive in
the corresponding highest weight space inside V⊗2nN .

Lemma 6.2.1 For n ∈ N there exists an isomorphism of vector spaces such that:

αn,N :
(
V ∗N

)⊗n → V⊗nN(
I d⊗nVN

⊗ αn,N

)
(wN

n ) ∈ WN
2n,n(N−1).

(59)

Proof We search for a function αn,N of the form:

αn,N = f1 ⊗ · · · ⊗ fn,

where fi : V ∗N → VN are isomorphisms of Z[q±1]- modules, for all i ∈ {1, . . . , n}.
We prove the statement by induction on the number of strands. For n ∈ N, let us
consider the following statement:

P(n) There exists a sequence of isomorphisms of L-modules { fk |k ∈ 1, n} such
that: {

fk : V ∗N → VN

(I dVN )⊗n ⊗ ( f1 ⊗ · · · ⊗ fn) (wN
n ) ∈ WN

2n,n(N−1).
(60)

We recall the Definition 2.5.2 of highest weight spaces inside finite dimensional mod-
ules, more precisely the fact that these subspaces come as specialisations from highest
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weight spaces over two variables:

WN
2n,n(N−1) := Ŵ2n,n(N−1)|ηN−1 ∩ V⊗2nN .

On the other hand, having in mind the type of isomorphisms that occur in the case
of the usual version of the quantum group Uq(sl(2)) – between the N -dimensional
representation and its dual – it would be natural to search for a sequence of coefficients
{cik ∈ L} such that the functions from P(n) have the form:

fk(v
∗
i ) = cik vN−i−1. (61)

This combined with the definition of highest weight spaces from above suggests an
extra requirement, namely the existence of a sequence of lifts of the coefficients over
two variables {c̃ik ∈ Ls}:{

ηN−1(c̃ik) = cik
∃ ṽN

n ∈ Ŵ2n,n(N−1) such that ηN−1(ṽN
n ) = (

I d⊗n ⊗ αn,N
)
(wN

n ).
(62)

Having in mind this requirement and the definition of wN
n from Eq. (58), we restate

the induction hypothesis that we prove.
P(n): There exists a sequence of coefficients in two variables:

{c̃ik ∈ Ls |k ∈ 1, n, i ∈ 0, N − 1}

such that if one considers the following vector in V̂⊗2n :

ṽN
n :=

N−1∑
i1,...,in=0

c̃i11 · · · · · c̃inn vin ⊗ · · · ⊗ vi1 ⊗ vN−i1−1 ⊗ · · · ⊗ vN−in−1 (63)

then it belongs to the n(N − 1)th highest weight space: ṽN
n ∈ Ŵ2n,n(N−1).

In other words, one requires the following conditions:

{
K ṽN

n = s2nq−2n(N−1)ṽN
n

E ṽN
n = 0.

(64)

We start with the requirement concerning the K -action. Since the vector ṽN
n has the

property that all its monomials have a constant sum of indices, then for any choice of
coefficients the following relation holds:

K ṽN
n = ṽN

n . (65)

In order to see this, we recall the comultiplication of the quantum group:

�2n−1(K ) = K ⊗ · · · ⊗ K .
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Then for any indices i1, . . . , in ∈ {1, . . . , N − 1}, we have:
K (vin ⊗ · · · ⊗ vi1 ⊗ vN−i1−1 ⊗ · · · ⊗ vN−in−1)
= s2nq−2(i1+···+in+(N−1−i1)+···+(N−1−in))vin
⊗ · · · ⊗ vi1 ⊗ vN−i1−1 ⊗ · · · ⊗ vN−in−1
= s2nq−2n(N−1)vin ⊗ · · · ⊗ vi1 ⊗ vN−i1−1 ⊗ · · · ⊗ vN−in−1.

This shows that ∀i1, . . . , in ∈ {1, . . . , n}:

vin ⊗ · · · ⊗ vi1 ⊗ vN−i1−1 ⊗ · · · ⊗ vN−in−1 ∈ V̂2n,n(N−1). (66)

Therefore the first requirement from Eq. (64) is fulfilled: ṽN
n ∈ V̂2n,n(N−1). So, the

only condition that we require for P(n) concerns the E-action. This action is done
using the comultiplication, given by:

�2n−1(E) =
2n∑
j=1

1⊗ j−1 ⊗ E ⊗ K⊗(2n− j).

The requirement concerning the coefficients in two variables from Eq. (64) becomes:

2n∑
j=1

1⊗( j−1) ⊗ E ⊗ K⊗(2n− j)
�

⎛
⎝ N−1∑

i1,...,in=0
c̃i11 · · · · · c̃inn vin ⊗ · · · ⊗ vi1 ⊗ vN−i1−1 ⊗ · · · ⊗ vN−in−1

⎞
⎠ = 0 (67)

We will show by induction that this condition can be fulfilled.
(I) Base case n=1
We search for a sequence of coefficients {c̃i1 ∈ Ls |i ∈ 0, N − 1} such that:

(E ⊗ K + 1⊗ E) �

(
N−1∑
i=0

c̃i1 · vi ⊗ vN−i−1

)
= 0. (68)

This is equivalent to:

N−2∑
i=0

sq−2(N−i−1)c̃i1 · vi−1 ⊗ vN−i−1 +
N−2∑
i=0

c̃i1 · vi ⊗ vN−i−2 = 0. (69)

By changing the variable i to i + 1 in the first sum, the equation becomes:

N−2∑
i=0

(
sq−2(N−i−2)c̃i+11 + c̃i1

)
· vi ⊗ vN−i−2 = 0. (70)
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We consider the sequence of coefficients that satisfies the condition below, which
implies Eq. (70):

{
c̃i+11 = −s−1q2(N−i−2)c̃i1
c̃01 = 1.

(71)

This concludes the base case.

(II) The inductive step: P(n)⇒ P(n + 1)
Let us suppose that P(n) is true and aim to prove P(n + 1), by searching for a

sequence of coefficients {c̃in+1n+1 ∈ Ls |in+1 ∈ 0, N − 1} such that:

2n+2∑
j=1

1⊗( j−1) ⊗ E ⊗ K⊗(2n+2− j)
� (72)

⎛
⎝ N−1∑

i1,...,in+1=0
c̃i11 · · · · · c̃in+1n+1 vin+1 ⊗ · · · ⊗ vi1 ⊗ vN−i1−1 ⊗ · · · ⊗ vN−in+1−1

⎞
⎠ = 0

Notation 6.2.2 Let us consider the following notation:

ui1,...,in := vin ⊗ · · · ⊗ vi1 ⊗ vN−i1−1 ⊗ · · · ⊗ vN−in−1
c̃i1,...,in := c̃i11 · · · · · c̃inn .

Then, P(n) is equivalent to:

�2n−1(E)

⎛
⎝ N−1∑

i1,..,in=0
c̃i1,...,in ui1,...,in

⎞
⎠ = 0. (73)

We will study the condition for P(n + 1) from Eq. (72), by splitting the coevaluation
of E into two parts: one part which is associated to the first and the last strand, and
another part which corresponds to all the other strands in the middle. This means that
there is the first part, which has one term with E on the first component and another
term with E on the last component and a second part, which contains all the other
terms with E in the middle.

⎛
⎝(

E ⊗ K⊗(2n+1) + 1⊗(2n+1) ⊗ E
)
+ 1⊗

⎛
⎝ 2n∑

j=1
1 j−1 ⊗ E ⊗ K (2n− j)

⎞
⎠⊗ K

⎞
⎠ �

⎛
⎝ N−1∑

i1,...,in+1=0
c̃i1,...,in+1

(
vin+1 ⊗ · · · ⊗ vi1 ⊗ vN−1−i1 ⊗ · · · ⊗ vN−1−in+1

)⎞⎠ = 0.
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Separating the two parts of the sum, we get:

(
E ⊗ K⊗(2n+1) + 1⊗(2n+1) ⊗ E

)
�⎛

⎝ N−1∑
in+1=0

c̃in+1n+1
N−1∑

i1,...,in=0
c̃i1,...,in

(
vin+1 ⊗ ui1,...,in ⊗ vN−1−in+1

)⎞⎠+
+ 1⊗

(
�2n−1(E)

)
⊗ K �

×
⎛
⎝ N−1∑

in+1=0
c̃in+1n+1vin+1 ⊗

⎛
⎝ N−1∑

i1,...,in=0
c̃i1,...,in ui1,...,in

⎞
⎠⊗ vN−1−in+1

⎞
⎠ = 0. (74)

Using the inductionhypothesis reformulated as inEq. (73),we conclude that the second
sum from this formula vanishes. In other words, the conditions for the sequence {c̃in+1n+1}
are given by:

(
E ⊗ K⊗(2n+1) + 1⊗(2n+1) ⊗ E

)
�⎛

⎝ N−1∑
in+1=0

c̃in+1n+1
N−1∑

i1,...,in=0
c̃i1,...,in

(
vin+1 ⊗ ui1,...,in ⊗ vN−1−in+1

)⎞⎠ = 0.
(75)

This is equivalent to the following requirements:

N−1∑
in+1=0

c̃in+1n+1s
2n+1q−2(n+1)(N−1)+2in+1

· vin+1−1 ⊗
⎛
⎝ N−1∑

i1,...,in=0
c̃i1,...,in ui1,...,in

⎞
⎠⊗ vN−1−in+1

+
N−1∑

in+1=0
c̃in+1n+1vin+1 ⊗

⎛
⎝ N−1∑

i1,...,in=0
c̃i1,...,in ui1,...,in

⎞
⎠⊗ vN−2−in+1 = 0.

(76)

By changing the parameter in+1 − 1 to in+1 and denoting it by i in the first sum and
then gluing together the previous two terms, we obtain the condition:

N−2∑
i=0

(
c̃i+1n+1s

2n+1q−2(n+1)(N−1)+2(i+1) + c̃in+1
)

· vi ⊗
⎛
⎝ N−1∑

i1,...,in=0
c̃i1,...,in ui1,...,in

⎞
⎠⊗ vN−2−i = 0.

(77)
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Then, let us consider the coefficients given by the following conditions, which imply
Eq. (77):

{
c̃i+1n+1 = −s−(2n+1)q2(n+1)(N−1)−2(i+1)c̃in+1
c̃0n+1 = 1.

(78)

This concludes the induction step P(n + 1). Then, the set of coefficients {cki ∈ L} is
given by the evaluation of the previous sequence using the specialisation ηN−1:

{
ci+1n+1 = −q(N−1)−2(i+1)c̃in+1
c0n+1 = 1.

(79)

We notice that these sequences of coefficients do not actually depend on the strand to
which they correspond, namely n+ 1. This shows that all the functions are the same:

f = f1 = . . . = fn : (VN )∗ → VN

f (v∗i ) = (−1)i qi(N−i)vN−1−i .
(80)

However, their lifts towards the generic highest weight space are different and depend
on the strand. We obtain the normalising function αn,N as in Eq. (59), given by:

αn,N = f ⊗n . (81)

�

We conclude that using this normalising function αn,N , we arrive in the following

highest weight space:

(
I d⊗nVN

⊗ αn,N

)
(wN

n ) ∈ WN
2n,n(N−1).

6.3 (Step III)-The invariant seen through highest weight spaces

So far, we have seen that if we compose the extra normalising function with the
coevaluation, we arrive in a highest weight space. Pursuing this idea, we introduce
αn,N and its inverse to the first and third level of the associated diagram. The interesting
part is that this procedure does not modify the invariant that we get. More precisely,
we have the following:

Lemma 6.3.1 The coloured Jones polynomial has the following description:

JN (L, q) = 1

[N ]q q
−(N−1)w(βn)

−→
ev
⊗n
VN
◦

(
I d⊗nVN

⊗ α−1n,N

)
◦ FVN (βn ∪ In) ◦

(
I d⊗nVN

⊗ αn,N

)
◦ ←−
coev

⊗n
VN

(1).

(82)
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Proof This is the formula from Eq. (53), with the two extra terms that contain the
normalisation function. The key point is the fact that this function acts nontrivially
just on the last n components, where we act with In at the braid level, whereas the
normalising function is the identity on the first n components, where we have a non-
trivial action at the braid level, coming from βn . So, the two functions αn,N and its
inverse cancel out with each other.

(
I d⊗nVN

⊗ α−1n,N

)
◦ FVN (βn ∪ In)

(
I d⊗nVN

⊗ αn,N

)
=

(
I d⊗nVN

⊗ α−1n,N

)
◦

(
FVN (βn)⊗ I d⊗nVN

)
◦

(
I d⊗nVN

⊗ αn,N

)
=

(
FVN (βn) ∪ I d⊗nV ∗N

)
= FVN (βn ∪ Īn).

(83)

Then, replacing this relation in Eq. (53), we conclude the lemma. �


Then, we conclude that we can obtain the invariant by composing the morphisms
corresponding to the following diagram:

1. the evaluation

2. normalising function I d⊗nVN
⊗ α−1n,N

3. braid level βn ∪ In

4. normalising function I d⊗nVN
⊗ αn,N

5. the coevaluation

In the following part, we aim to show that we can see the whole coloured Jones
polynomial through the highest weight space from Step II. We introduce the following
notation.

Notation 6.3.2 (Normalising the evaluation and coevaluation)
Consider the following morphisms:

⎧⎨
⎩
−→
Ev
⊗n
VN
: V⊗2nN → Z[q±1]

←−
Coev

⊗n
VN
: Z[q±1] → V⊗2nN

(84)

given by:

⎧⎨
⎩
−→
Ev
⊗n
VN
:=−→ev ⊗nVN

◦
(
I d⊗nVN

⊗ α−1n,N

)
←−
Coev

⊗n
VN
:= (

I d⊗n ⊗ αn,N
) ◦ ←−coev

⊗n
VN

.

(85)
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Fig. 2 Construction of the homology classes

The formula for JN (L, q) presented in Lemma 6.3.1 together with the definition of the
quantum representation given in proposition 2.7.2 lead to the following description:

JN (L, q) = 1

[N ]q q
−(N−1)w(β)·

·
(−→
Ev
⊗n
VN
◦ ϕ

VN
2n (βn ∪ In) ◦

←−
Coev

⊗n
VN

)
(1) ∈ Z[q±1].

(86)

Putting together notation (58), the properties of the normalising function αn,N given
in (59) and notation (85), we obtain that:

←−
Coev

⊗n
VN

(1) ∈ WN
2n,n(N−1). (87)
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On the other hand, we know that the action:

B2n � V⊗2nN

preserves the highest weight spaces, in particular preserves WN
2n,n(N−1). Using this

invariance together with formula (86), we notice that actually we can obtain JN (L, q)

using just highestweight spaces, by composing themorphisms from the second column
(2) from Fig. 2. We conclude the following formula for the coloured Jones invariant:

JN (L, q) = 1

[N ]q q
−(N−1)w(βn)

·
(−→
Ev
⊗n
VN
◦ ϕWN

2n,n(N−1)(βn ∪ In) ◦
←−
Coev

⊗n
VN

)
(1).

(88)

6.4 (Step IV)-Change of the highest weight space

We have seen that JN (L, q) is encoded by the action through highest weight spaces
corresponding to the finite dimensional module VN . On the other hand, these highest
weight spacesWN

2n,m inside V⊗2nN do not yet have a known geometric counterpart. This
is one of the reasons why there were no known topological interpretations for these
invariants. On the other hand, Kohno’s Theorem provides a geometric correspondent
of the bigger highest weight spaces Ŵ N−1

2n,n(N−1), which live inside the tensor power of
the Verma module V̂N−1. Having this in mind, we look at the inclusion:

ι : WN
2n,n(N−1) ↪→ Ŵ N−1

2n,n(N−1).

In the next part, we show that the quantum representation behaves well with respect
to ι.

Lemma 6.4.1 The Bn-action on the highest weight spaces from the Verma module
leaves invariant the highest weight spaces of the finite dimensional module and we
have:

ϕŴ N−1
n,m |WN

n,m
= ϕWN

n,m , ∀n,m ∈ N. (89)

Proof The action of the R-matrix on V̂ ⊗ V̂ is given in relation (9). We are interested
in the specialisation of this action by the function ηN−1, which corresponds to the
identifications: λ = N − 1; s = qλ. It follows that the action on V̂N−1 ⊗ V̂N−1 has
the following form:

R(vi ⊗ v j ) = q−(N−1)(i+ j)
i∑

n=0
Fi, j,n(q)

·
n−1∏
k=0

(q(N−1)−k− j − q−((N−1)−k− j)) v j+n ⊗ vi−n .

(90)
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We prove that this action preserves VN ⊗VN inside V̂N−1⊗ V̂N−1 (see Lemma 2.2.2).
We show this by checking the action on the following basis of VN ⊗ VN :

{vi ⊗ v j |0 ≤ i, j ≤ N − 1}.

Let 0 ≤ i, j ≤ N − 1. We notice that in formula (90) all the indices of the second
components decrease and so the vectors vi−n will remain in VN . For the first compo-
nents, let us suppose that we pass over VN inside V̂N−1, in other words we have a term
corresponding to the index

j + n ≥ N .

Weprove that in this situation the coefficient vanishes.Wenotice that for k = N−1− j ,
the following term vanishes:

q(N−1)−k− j − q−((N−1)−k− j) = 0. (91)

Moreover, for j + n ≥ N , it follows that N − 1 − j ≤ n − 1, so the term from
relation (91) will appear in the product which is part of the coefficient of the vector
v j+n ⊗ vi−n . We conclude that this coefficient vanishes.

Secondly,we show that the action of the braid group preserves the inclusionWN
n,m ⊆

Ŵ N−1
n,m . For this, we prove that each generator σi of the braid group preserves WN

n,m .
Let w ∈ WN

n,m and since WN
n,m ⊆ V N

n,m there exist αe ∈ Z[q±1] such that:

w =
∑

e∈EN
n,m

αeve1 ⊗ vei ⊗ vei+1 ⊗ · · · ⊗ ven .

We recall the action: σiw = (I d⊗(i−1)⊗R⊗ I d⊗(n−i−1))w. So σiw will modify just
the components i and i +1 of w. Using that the braid action preserves the inclusion of
weight spaces, as we proved above, the indices of all vectors that appear in this action
remain strictly smaller than N . This shows that:

σiw ∈ V⊗nN . (92)

Since the action of Bn is an action of U -modules, this commutes with the action of
the generators E and K , so it preserves the weights and the kernel of E . Using this
remark and relation (92), we conclude that:

σiw ∈ Ŵ N−1
n,m ∩ V⊗nN = WN

n,m .

�

Up to this moment, we focused on the phenomenon that occurs at the bottom part of
the diagram, with the cups and the braid. Now, we study the upper part given by the
caps, which correspond to the algebraic evaluation.
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First, we will use the finite dimensional submodule VN inside the Verma module
V̂N−1, which has a well-defined evaluation from Eq. (8) and define an evaluation type
map on V̂N−1, supported on this submodule.

Definition 6.4.2 (Normalised evaluation on the Verma module)

Consider
−→
Ev
⊗n
V̂N−1 : V̂⊗nN−1→ Z[q±1] given by the expression:

−→
Ev
⊗n
V̂N−1 (vi1 ⊗ · · · ⊗ vin ) =

{ −→
Ev
⊗n
VN

(vi1 ⊗ · · · ⊗ vin ), if i1, . . . , in ≤ N − 1

0, otherwise

(93)

and extended it by linearity.

6.5 (StepV)-The invariant through highest weight spaces in the Vermamodule

In the following part, our strategy is to use the highest weight spaces from the Verma
module and show that we can see the coloured Jones polynomial through these sub-
spaces.

We startwith the normalised coevaluationwhich arrives in the highestweight spaces
WN

2n,n(N−1) from VN and then follow the inclusion into Ŵ N−1
2n,n(N−1). Now, we continue

with the braid group action on these bigger highest weight spaces and finally close

with the evaluation
−→
Ev
⊗n
V̂N−1 . We conclude that the coloured Jones polynomial can

be obtained through the highest weight spaces of weight n(N − 1) from the Verma
module, following column (3) from Fig. 2:

JN (L, q) = 1

[N ]q q
−(N−1)w(βn)

(−→
Ev
⊗n
V̂N−1 ◦ ϕ̂Ŵ N−1

2n,n(N−1)(βn ∪ In) ◦ ι ◦ ←−
Coev

⊗n
VN

)
(1).

(94)

6.6 (StepVI)-Construction of the first homology class

Now, we start the construction of the homology classes. The advantage of the bigger
highest weight spaces Ŵ N−1

2n,n(N−1) consists in the fact that they have homological corre-
spondents, given by the Lawrence representationH2n,n(N−1), due to Kohno’s relation.
In this part, we encode the cups of the diagram using the Lawrence representation.
More precisely, we consider the element corresponding to the image of 1 through the
normalised coevaluation, seen inside the highest weight space Ŵ N−1

2n,n(N−1). After that,
we reverse it using Khono’s function to obtain a topological class in the Lawrence
representation, as follows.

Definition 6.6.1 (The first homology classF0, over Z[q±1])
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Let us define the vector v ∈ Ŵ N−1
2n,n(N−1) given by:

v = ι ◦ ←−Coev
⊗n
VN

(1) ∈ Ŵ N−1
2n,n(N−1). (95)

Then, using the isomorphism between quantum and homological representations from
Theorem 5.3.1, we consider the homology class in the Lawrence representation given
by the following relation:

F0 := �−1N−1(v) ∈ H2n,n(N−1)|ψN−1 . (96)

Proposition 6.6.2 (Braid group action) The correspondence between the vector v and
the homology classF0 is preserved under the braid group action, so we have:

ϕŴ N−1
2n,n(N−1)(βn ∪ I)(v) = �N−1

(
l2n,n(N−1)|ψN−1 (βn ∪ I) (F0)

)
. (97)

Proof This comes from the identification between braid group actions from Theorem
5.3.1 and definition of the homology classF0 given in Eq. (96). �


Up to this point, we found the first homology class F0 which encodes homolog-

ically the algebraic coevaluation
←−
Coev

⊗n
VN

. Moreover, the braid part of the diagram
corresponds to the homological braid group action applied to this class.

6.7 (StepVII)-Construction of the second homology class

Now we are interested in finding the second homology class G̃ N
n , which will be a geo-

metric counterpart for the part of the diagram given by the caps. The main ingredient
that we use is the non-degenerate intersection form between the Lawrence represen-
tation and its dual. More precisely, our aim is to encode homologically the evaluation

−→
Ev
⊗n
VN
: WN

2n,n(N−1) → Z[q±1].

Even if we are interested in this function, in practice we will use the extended evalu-
ation

−→
Ev
⊗n
V̂N−1 : Ŵ N−1

2n,n(N−1) → Z[q±1],

which encodes the evaluation on the highest weight spaces of the finite dimensional
module, but it is defined on the bigger highest weight space. This is an element of the
dual space:

−→
Ev
⊗n
V̂N−1∈

(
Ŵ N−1

2n,n(N−1)
)∗

.

Following the identification between quantum and homological braid group represen-
tations, it corresponds to an element from the dual space:
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(H2n,n(N−1)|ψN−1
)∗

.

Our aim is to encode this map by a geometric element from the dual Lawrence repre-
sentation H∂

2n,n(N−1)|ψN−1 , using the intersection pairing. We refer to the discussion
from Sect. 4.5 concerning different specialisations of the Blanchfield pairing.

At this point we notice a subtlety about the coefficients that wework with. So far, on
the homological side, we needed the specialisation ψN−1 : Z[x±1, d±1] → Z[q±1].
Corresponding to these coefficients, one has the non-degenerate intersection form:

〈 , 〉|ψN−1 : H2n,n(N−1)|ψN−1 ⊗H∂
2n,n(N−1)|ψN−1 → Z[q±1].

However, the non-degenerancy does not ensure that the evaluation can be seen as the
intersection with a dual element. The issue comes from the fact that we are working
over a ring and not a field. Now we change all these coefficients, passing to the field of
fractions, to arrive in the situation where the dualising procedure is more convenient.
We recall the change of coefficients from Definition 4.5.2:

{
αN−1 : Z[x±1, d±1] → Q(q)

αλ = i ◦ ψN−1.
(98)

Using this specialisation, there is the following non-degenerate sesquilinear form:

〈 , 〉|αN−1 : H2n,n(N−1)|αN−1 ⊗H∂
2n,n(N−1)|αN−1 → Q(q). (99)

Definition 6.7.1 (The second homology class G̃ N
n ) Let us define the element:

G0 :=
−→
Ev
⊗n
V̂N−1 ◦ �N−1 ∈ Hom(H2n,n(N−1)|ψN−1 , Z[q±1]). (100)

Then, let us consider the associated dual class given by Definition 4.5.6:

G̃ N
n ∈ H∂

n,m |αN−1 . (101)

Remark 6.7.2 This means that ∀E ∈ H2n,n(N−1)|αN−1 we have:

G0 ⊗ I dQ(q)(E ) = 〈E , G̃ N
n 〉|αN−1 .

Since the construction of the second homology class needed this change of coefficients,
we consider the element which corresponds to the first homology class over this field
as below.

Definition 6.7.3 (The first homology class F̃ N
n ) We consider the homology class cor-

responding toF0 over the field Q(q), using the map pN−1 from notation 4.5.3 :

F̃ N
n := pN−1(F0) = (F0 ⊗i 1) ∈ H2n,n(N−1)|αN−1 . (102)
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6.8 (StepVIII)-Proof of the intersection formula

Nowweprove that the coloured Jones polynomial can be obtained from the intersection
formula from Eq. (52). Putting all the previous steps together, we obtain the following:

JN (L, q) = P rop 94 1

[N ]q q
−(N−1)w(βn)·(−→

Ev
⊗n
V̂N−1 ◦ ϕ̂Ŵ N−1

2n,n(N−1)(βn ∪ In) ◦ ι ◦ ←−
Coev

⊗n
VN

(1)

)

=Eq (96) 1

[N ]q q
−(N−1)w(βn)

·
(−→
Ev
⊗n
V̂N−1 ◦ �N−1 ◦�N−1−1 ◦ ϕ̂Ŵ N−1

2n,n(N−1)(βn ∪ In) ◦�N−1 ◦�−1N−1(v)

)

=De f 96 1

[N ]q q
−(N−1)w(βn)

·
(−→
Ev
⊗n
V̂N−1 ◦ �N−1 ◦�N−1−1 ◦ ϕ̂Ŵ N−1

2n,n(N−1)(βn ∪ In) ◦�N−1 (F0)

)

=Prop 6.6.2 1

[N ]q q
−(N−1)w(βn)

·
(−→
Ev
⊗n
V̂N−1 ◦ �N−1 ◦ l2n,n(N−1)|ψN−1(βn ∪ In) (F0)

)

=Def 6.7.1 1

[N ]q q
−(N−1)w(βn) · G0

(
l2n,n(N−1)|ψN−1(βn ∪ In) (F0)

)
. (103)

We remark that the morphism pN−1 commutes with the braid group actions on the
two specialisations of the Lawrence representations as below:

pN−1
(
l2n,n(N−1)|ψN−1 (β) (F0)

) = l2n,n(N−1)|αN−1 (β)
(
F̃ N

n

)
,∀β ∈ B2n .

(104)

H2n,n(N−1)|ψN−1 H2n,n(N−1)|αN−1

H2n,n(N−1)|ψN−1 H2n,n(N−1)|αN−1

l2n,n(N−1)|ψN−1 l2n,n(N−1)|αN−1

F0

βF0

F̃ N
n

βF̃ N
n

pN−1

pN−1

≡
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Also, using the properties of the geometric duals from relation (39), we have:

G0(·) = (G0 ⊗ I dQ(q)) ◦ pN−1(·)
= G ◦ pN−1(·) = 〈pN−1(·), G̃ N

n 〉|αN−1 ,∀· ∈ H2n,n(N−1)|ψN−1 .
(105)

Following the two previous remarks about the change of coefficients over the field of
fractions and the braid group actions together with Eq. (103) we obtain:

JN (L, q) =Eq (105) 1

[N ]q q
−(N−1)w(βn)

· 〈pN−1
(
l2n,n(N−1)|ψN−1(βn ∪ In) (F0)

)
, G̃ N

n 〉|αN−1

=Eq (104) 1

[N ]q q
−(N−1)w(βn) · 〈l2n,n(N−1)|αN−1(βn ∪ In) (F̃ N

n ), G̃ N
n 〉|αN−1 .

Simplifying the notations in the last equality, we obtain the desired interpretation
which concludes the proof. �


7 Topological model with non-specialised homology classes

For the homological model for JN (L, q), we have constructed homology classes

F̃ N
n ∈ H2n,n(N−1)|αN−1 and G̃ N

n ∈ H∂
2n,n(N−1)|αN−1

which lead to the invariant through the topological intersection pairing. We notice
that the colour N appears in two places. The first part where it appears is the number
of points from the configuration space (since we are using configuration spaces of
n(N−1)particles in afixedpunctureddisc). Secondly, the specialisationαN−1 depends
on the colour N .

In this section we show that F̃ N
n and G̃ N

n come from two homology classes that
live in the unspecialised Lawrence representation (more precisely, they belong to the
homology of the configuration space C̃2n,n(N−1) over a larger ring of coefficients).
The feature of this model is that the colour now appears just in the number of points
from the configuration space, but no longer in the specialisation. We will prove the
statement from Theorem 1.0.2, showing that we can construct two classes

F N
n ∈ H2n,n(N−1)|γ and G N

n ∈ H ∂
2n,n(N−1)|γ

so that the Nth coloured Jones polynomial has the formula:

JN (L, q) = 1

[N ]q q
−(N−1)w(βn)〈(βn ∪ In)F

N
n ,G N

n 〉|δN−1 . (106)

Here γ is a specialisation over the field Q(s, q)which does not depend on N , whereas
δN−1 is a change of coefficients towards Q(q), defined using the colour.
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7.1 Identifications with q, s indeterminates

In Sect. 5 we have studied identifications between quantum and homological rep-
resentations which are specialised with two complex parameters or using a natural
number and an indeterminate. In this section we will show that, if we enlarge the ring
of coefficients, the identification holds also over a ring with two indeterminates.

We recall that the quantum representation Ŵ is defined over Z[q±1, s±1] and the
Lawrence representation Hn,m is defined over Z[x±1, d±1]. We have the following
specialisations:

{
ηλ : Z[q±1, s±1] → Z[q±1]
ηλ(q) = q; ηλ(s) = qλ.

{
ψλ : Z[x±1, d±1] → Z[q±1]
ψλ(x) = q2λ; ψλ(d) = −q−2. (107)

Also, the inclusion i : Z[q±1] → Q(q) and αλ = i ◦ ψλ.

Definition 7.1.1 Consider the specialisation which enlarges the ring of coefficients in
the following manner:

{
ξ : Z[x±1, d±1] → Z[s±1, q±1]
ξ(x) = s2; ξ(d) = −q−2. (108)

As before, we need to work over a field. Let us consider the inclusion map:

j : Z[s±1, q±1] → Q(s, q).

Then, let us define the extension of the initial ring by:

{
γ : Z[x±1, d±1] → Q(s, q)

γ = j ◦ ξ.
(109)

In order to make the connection to the specialisation from Theorem 6.0.2, let us
consider the change of coefficients:

{
δλ : Q(s, q)→ Q(q)

δλ(s) = qλ.
(110)

We have the following commutative diagrams between these specialisations of coef-
ficients (Fig. 3).

Using a similar argument as the one that we discussed in Sect. 5.3, one concludes
that the identification between quantum and homological representations works over
a ring with two indeterminates. This was also briefly discussed in [8].

Theorem 7.1.2 The braid group representations over Z[s±1, q±1] are isomorphic:
(
Ŵn,m,BŴn,m

)
��

(Hn,m |ξ ,BHn,m |ξ
)
. (111)
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Fig. 3 Specialisations of coefficients

7.2 Lifts of the homology classes F̃N
n and G̃ N

n

Having in mind this identification between the braid group actions, a natural question
would be to lift the homology classes constructed in Theorem 6.0.2, which live a
priori in the homology groups specialised by αN−1, towards two elements belonging
to the Lawrence representation specialised over two variables by the specialisation ξ .
However, in our arguments we need to work over a field in order to be able to interpret
the elements from the dual of the homology by the pairing with dual elements. So, we
will use the specialisation γ and prove the following.

Lemma 7.2.1 There exist two homology classes

F N
n ∈ H2n,n(N−1)|γ and G N

n ∈ H ∂
2n,n(N−1)|γ

such that under the specialisation δN−1 one has:

{
F N

n |δN−1 = F̃ N
n

G N
n |δN−1 = G̃ N

n .
(112)

Proof (1) We start with the definition of the class F̃ N
n and aim to lift it over two

variables. Following the discussion from Step 6.2, the normalising function can be
lifted over two variables. From relation (62) there exists ṽN

n ∈ Ŵ2n,n(N−1) such that:

ηN−1(ṽN
n ) = (

I d⊗n ⊗ αn,N
) ◦ ←−coev

⊗n
VN

(1).

Following the definition of the normalised coevaluation we have:

ηN−1(ṽN
n ) = ←−

Coev
⊗n
VN

(1). (113)
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We remark that the function φ from Proposition 2.6.2 is also defined over the ring
with two parameters, so the isomorphisms from Theorem 5.3.1 and Theorem 7.1.2 are
related as below:

�|ηN−1 = �N−1. (114)

Definition 7.2.2 Using the isomorphism from (111), let us consider the class:

F N
0,n := �−1(vN

n ) ∈ H2n,n(N−1)|ξ .

From relations (113), (114) and the construction of the homology class from (96) we
obtain:

F N
0,n|ηN−1 = F0. (115)

Definition 7.2.3 (Lift of the first homology class) Following the construction of the
first homology class over a field from (102) and relation (115), let us consider:

F N
n := F N

0,n|J ∈ H2n,n(N−1)|γ . (116)

We remark that there is the following commutativity of the specialisations:

δN−1 ◦ j = i ◦ ηN−1, (117)

Putting together the definitions of the first class from (102) and the globalised class
from (116) with the properties (115) and (117) we conclude the first relation from the
statement:

F N
n |δN−1 = F̃ N

n .

(2) We remark that the action of the quantum group, in particular the generator K , can
be seen over Z[q±1, s±1] and the evaluation from (8) can be defined over Z[s±1, q±1]
as well. On the other hand, we have seen that the coefficients of αn,N can be lifted
over two variables. We conclude that there exists a normalised evaluation over two
variables:

−→
Ev
⊗n
V̂ : Ŵ2n,n(N−1) → Z[q±11, s±1]

which specialises to the normalised evaluation:

−→
Ev
⊗n
V̂ |ηN−1 =

−→
Ev
⊗n
V̂N−1 . (118)
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Definition 7.2.4 Using this evaluation and Kohno’s function over two variables, let us
consider the elements:

{
G0,n :=

−→
Ev
⊗n
V̂ ◦ � ∈ Hom

(H2n,n(N−1)|ξ , Z[q±1, s±1])
Gn := G0,n ⊗ I dQ(q,s) ∈ Hom

(H2n,n(N−1)|γ , Q(q, s)
)
.

(119)

We notice that the Blanchfield pairing remains non-degenerate when we specialise the
coefficients using the function γ :

〈 , 〉|γ : H2n,n(N−1)|γ ⊗H∂
2n,n(N−1)|γ → Q(q, s). (120)

Definition 7.2.5 (Globalisation of the second homology class) Dualising the glob-
alised evaluation Gn using the non-degenerate pairing 〈 , 〉|γ we get a homology class
G N
n ∈ H ∂

2n,n(N−1)|γ such that:

Gn(·) = 〈·,G N
n 〉|γ . (121)

Following the construction from Definition 6.7.1, the definition of the globalised class
from (121) and the commutativity property of specialisations from (117), we obtain
the second specialisation property:

G N
n |δN−1 = G̃ N

n .

�

Nowwe will finish the proof of the main Theorem 1.0.2. Using that the braid group

action commutes with the specialisation of the coefficients, the intersection pairings
are related with one another as follows:

〈(βn ∪ In)F̃
N
n , G̃ N

n 〉|αN−1 = 〈(βn ∪ In)F
N
n ,G N

n 〉|δN−1 .

Following the homological model from Theorem 6.0.2, the construction of lifts of
the homology classes fromLemma7.2.1 and the previous relation between intersection
pairings we conclude the topological model for JN (L, q) with globalised homology
classes.
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