Skip to main content
Log in

On the geometric P=W conjecture

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We formulate the geometric P=W conjecture for singular character varieties. We establish it for compact Riemann surfaces of genus one, and obtain partial results in arbitrary genus. To this end, we employ non-Archimedean, birational and degeneration techniques to study the topology of the dual boundary complex of character varieties. We also clarify the relation between the geometric and the cohomological P=W conjectures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Note that in Theorem A we do not need to assume the existence of an snc logCY compactification of \(M_{\mathrm {B}}(C,G)\) as in loc. cit.

  2. A sphere of dimension m is intended to be endowed with its standard PL-structure, i.e. with a triangulation equivalent to the boundary of an \((m+1)\)-standard simplex.

  3. The notation \(\mathcal {DMR}\) stands for “Dual complex of a Minimal divisorial log terminal partial Resolution".

  4. See [28, Sect. 2.1] for the definition of regular cell complex or regular \(\Delta \)-complex.

  5. Observe that all the valuations in [7] are normalised by the choice of a uniformiser while we do not assume any normalisation. However, the proof of [7, Proposition 5.6] works in our context too, provided that one replaces \({\mathcal {D}}(\Delta ^{\mathrm {dlt}})\) with its cone.

  6. Given two sets S and T, denote \(S^T\) the space of maps \(T \rightarrow S\).

  7. Technically, ev is not defined along \(\partial N_{\mathrm {B}}\). If \(N_{\mathrm {B}} = \bigcup _i N_i\), and \(N_i = \beta ^{-1}_i[0,\delta _i)\), then restrict ev to the boundary of \(\bigcup _i \beta ^{-1}_i[0,\delta _i/2)\), which is isotopic to \(\partial N_{\mathrm {B}}\). We omit this subtlety in the following.

  8. The coordinates \((\text {Re}(\mathbf{p }), \text {Im}(\mathbf{p }))\) in [25, Sect. 7.4] are real coordinates of \({\mathbb {C}}^g\simeq {\mathbb {R}}^{2g}\), while the coordinates \((\alpha _j, \beta _j)\) in loc. cit. are our coordinates \((z_{2j-1}, z_{2j})\), with \(j=1, \ldots , g\).

  9. All the compactifications in [27] are snc. Therefore, we apply [27, Theorem 2.11] to a log resolution of a dlt compactification \(({\overline{M}}_{\mathrm {B}}, \partial M_{\mathrm {B}})\) which is an isomorphism over the snc locus of the pair, in particular over a neighbourhood of the zero dimensional lc centres of \(({\overline{M}}_{\mathrm {B}}, \partial M_{\mathrm {B}})\). We descend the result to \(M_{\mathrm {B}}\) using for instance [57, Proposition 4.3].

References

  1. Auroux, D.: Mirror symmetry and \(T\)-duality in the complement of an anticanonical divisor. J. Gökova Geom. Topol. GGT 1, 51–91 (2007)

    MathSciNet  MATH  Google Scholar 

  2. Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1983)

    Article  Google Scholar 

  3. Bellamy, G., Schedler, T.: Symplectic resolutions of character varieties (2019). arXiv: 1909.12545

  4. Berkovich, V.G.: The automorphism group of the Drinfeld half-plane. C. R. Acad. Sci. Paris Sér. I Math. 321(9), 1127–1132 (1995)

    MathSciNet  MATH  Google Scholar 

  5. Birkar, C., Cascini, P., Hacon, C.D., McKernan, J.: Existence of minimal models for varieties of log general type. J. Am. Math. Soc. 23(2), 405–468 (2010)

    Article  MathSciNet  Google Scholar 

  6. Boucksom, S., de Fernex, T., Favre, C., Urbinati, S.: Valuation spaces and multiplier ideals on singular varieties. In: Recent Advances in Algebraic Geometry, vol. 417, pp. 29–51. Cambridge Univ. Press, Cambridge (2015)

    Chapter  Google Scholar 

  7. Boucksom, S., Jonsson, M.: Tropical and non-Archimedean limits of degenerating families of volume forms. J. École Polytech. Math. 4, 87–139 (2017)

    Article  MathSciNet  Google Scholar 

  8. Boucksom, S., Jonsson, M.: A Non-archimedean Approach to K-Stability (2018). arXiv: 1805.11160

  9. Brown, M., Mazzon, E.: The essential skeleton of a product of degenerations. Compos. Math. 155(7), 1259–1300 (2019)

    Article  MathSciNet  Google Scholar 

  10. Conrad, B.: From Normal Crossing to Strict Normal Crossing Divisors. Math 249B: Alterations. Stanford

  11. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties, vol. 124. American Mathematical Society, Providence, RI (2011)

    MATH  Google Scholar 

  12. de Cataldo, M.: Projective compactification of Dolbeault moduli spaces. Int. Math. Res. Not. IMRN 5, 3543–3570 (2021)

    Article  MathSciNet  Google Scholar 

  13. de Cataldo, M., Hausel, T., Migliorini, L.: Topology of Hitchin systems and Hodge theory of character varieties: the case \(A_{1}\). Ann. Math. (2) 175(3), 1329–1407 (2012)

  14. de Cataldo, M., Maulik, D.: The perverse filtration for the Hitchin fibration is locally constant. Pure Appl. Math. Q. 16(5), 1441–1464 (2020)

    Article  MathSciNet  Google Scholar 

  15. de Cataldo, M., Maulik, D., Shen, J.: Hitchin fibrations, abelian surfaces, and the P=W conjecture. To Appear at J. Am. Math. Soc. (2019). arXiv: 1909.11885

  16. de Cataldo, M., Migliorini, L.: The perverse filtration and the Lefschetz hyperplane theorem. Ann. Math. (2) 171(3), 2089–2113 (2010)

    Article  MathSciNet  Google Scholar 

  17. de Fernex, T., Kollár, J., Xu, C.: The dual complex of singularities. In: Higher Dimensional Algebraic Geometry, In Honour of Professor Yujiro Kawamatas 60th Birthday, Vol. 74, pp. 103–130. Adv. Stud. Pure Math., (2017)

  18. Deligne, P., Rapoport, M.: Les Schémas de Modules de Courbes Elliptiques. In: Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972). Lecture Notes in Math, vol. 349, pp. 143–316 (1973)

  19. Donagi, R., Ein, L., Lazarsfeld, R.: Nilpotent cones and sheaves on \(K\)3 surfaces. In: Birational algebraic geometry (Baltimore, MD, 1996). Contemp. Math, vol. 207, pp. 51–61. Amer. Math. Soc., Providence, RI (1997)

  20. Durfee, A.H.: Neighborhoods of algebraic sets. Trans. Am. Math. Soc. 276(2), 517–530 (1983)

    Article  MathSciNet  Google Scholar 

  21. Elzein, F., Némethi, A.: On the weight filtration of the homology of algebraic varieties: the generalized Leray cycles. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(4), 869–903 (2002)

    MathSciNet  MATH  Google Scholar 

  22. Evans, J.D., Mauri, M.: Constructing local models for Lagrangian torus fibrations. Ann. Henri Lebesgue 4, 537–570 (2021)

    Article  MathSciNet  Google Scholar 

  23. Felisetti, C., Mauri, M.: P\(=\)W Conjectures for Character Varieties with Symplectic Resolution (2020). arXiv: 2006.08752

  24. Fujino, O.: Fundamental theorems for the log minimal model program. Publ. Res. Inst. Math. Sci. 47(3), 727–789 (2011)

    Article  MathSciNet  Google Scholar 

  25. Goldman, W.M., Xia, E.Z.: Rank one Higgs bundles and representations of fundamental groups of Riemann surfaces. Mem. Amer. Math. Soc. 193(904), viii+69 (2008)

  26. Goresky, M., MacPherson, R.: Intersection homology. II. Invent. Math. 72(1), 77–129 (1983)

    Article  MathSciNet  Google Scholar 

  27. Harder, A.: Torus Fibers and the Weight Filtration (2019). arXiv: 1908.05110

  28. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  29. Hausel, T.: Compactification of moduli of Higgs bundles. J. Reine Angew. Math. 503, 169–192 (1998)

    Article  MathSciNet  Google Scholar 

  30. Hitchin, N.: Stable bundles and integrable systems. Duke Math. J. 54(1), 91–114 (1987)

    Article  MathSciNet  Google Scholar 

  31. Hitchin, N.: The moduli space of special Lagrangian submanifolds. In: vol. 25. 3-4. Dedicated to Ennio De Giorgi. (1997), pp. 503–515 (1998)

  32. de Jong, A.: Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math. 83, 51–93 (1996)

    Article  MathSciNet  Google Scholar 

  33. Jonsson, M., Mustaţă, M.: Valuations and asymptotic invariants for sequences of ideals. Ann. Inst. Fourier (Grenoble). 62(6), 2145–2209 (2012)

  34. Katzarkov, L., Noll, A., Pandit, P., Simpson, C.: Harmonic maps to buildings and singular perturbation theory. Commun. Math. Phys. 336(2), 853–903 (2015)

    Article  MathSciNet  Google Scholar 

  35. Kollár, J.: Singularities of pairs. In: Algebraic Geometry—Santa Cruz 1995. Proc. Sympos. Pure Math, Vol. 62, pp. 221–287. Amer. Math. Soc., Providence, RI (1997)

  36. Kollár, J.: New Examples of Terminal and Log Canonical Singularities (2011). arXiv: 1107.2864

  37. Kollár, J.: Singularities of the minimal model program. Cambridge Tracts in Mathematics, vol. 200, pp. x+370. Cambridge University Press, Cambridge (2013)

  38. Kollár, J., Kovács, S.J.: Log canonical singularities are Du Bois. J. Am. Math. Soc. 23(3), 791–813 (2010)

    Article  MathSciNet  Google Scholar 

  39. Kollár, J., Mori, S.: Birational Geometry of Algebraic Varieties. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  40. Kollár, J., Xu, C.: The dual complex of Calabi-Yau pairs. Invent. Math. 205(3), 527–557 (2016)

    Article  MathSciNet  Google Scholar 

  41. Komyo, A.: On compactifications of character varieties of \(n\)-punctured projective line. Ann. Inst. Fourier (Grenoble) 65(4), 1493–1523 (2015)

    Article  MathSciNet  Google Scholar 

  42. Kontsevich, M., Soibelman, Y.: Affine Structures and non-archimedean analytic spaces. In: Etingof, P., Retakh, V., Singer, I.M. (eds.) The Unity of Mathematics: In Honor of the Ninetieth Birthday of I.M. Gelfand, pp. 321–385. Birkhäuser Boston, Boston, MA (2006)

    Google Scholar 

  43. Li, Y.: Metric SYZ Conjecture and Non-archimedean Geometry (2020). arXiv: 2007.01384

  44. Liu, Q.: Algebraic Geometry and Arithmetic Curves, vol. 6. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  45. Lurie, J.: Piecewise Linear Topology (Lecture 2). Topics in Geometric Topology (18.937). MIT (2009)

  46. Lurie, J.: Whitehead Triangulations (Lecture 3). Topics in Geometric Topology (18.937). MIT (2009)

  47. Mauri, M.: The dual complex of log Calabi-Yau pairs on Mori fibre spaces. Adv. Math. 364, 107009 (2020)

    Article  MathSciNet  Google Scholar 

  48. Mauri, M.: Intersection cohomology of rank 2 character varieties of surface groups. J. Inst. Math. Jussieu 1–40 (2021)

  49. Mauri, M.: The geometry of dual complexes. PhD thesis. London School of Geometry and Number Theory (2019)

  50. Mauri, M.: The dual complex of singularities after de Fernex, Kollár and Xu. Arc Schemes Singul. Chap. 14, 231–255 (2020)

  51. Mellit, A.: Cell Decompositions of Character Varieties (2019). arXiv: 1905.10685

  52. Migliorini, L.: Recent results and conjectures on the non abelian Hodge theory of curves. Boll. dell’Unione Mat. Ital. 10(3), 467–485 (2017)

    Article  MathSciNet  Google Scholar 

  53. Milnor, J.: Topology from the Differentiable Viewpoint. Princeton University Press, Princeton, NJ (1997)

    MATH  Google Scholar 

  54. Mumford, D.: The topology of normal singularities of an algebraic surface and a criterion for simplicity. Inst. Hautes Études Sci. Publ. Math. 9, 5–22 (1961)

    Article  MathSciNet  Google Scholar 

  55. Mustaţă, M., Nicaise, J.: Weight functions on non-Archimedean analytic spaces and the Kontsevich- Soibelman skeleton. Algebra Geom. 2(3), 365–404 (2015)

    Article  MathSciNet  Google Scholar 

  56. Némethi, A., Szabó, S.: The Geometric \(P=W\) Conjecture in the Painlevé Cases via plumbing calculus. Int. Math. Res. Not, IMRN. 2022(5), 3201–3218 (2022)

  57. Payne, S.: Boundary complexes and weight filtrations. Mich. Math. J. 62(2), 293–322 (2013)

    Article  MathSciNet  Google Scholar 

  58. Rourke, C., Sanderson, B.: Introduction to Piecewise-Linear Topology. Springer-Verlag, Berlin-New York (1982)

    MATH  Google Scholar 

  59. Simpson, C.: The Hodge filtration on nonabelian cohomology. In: Algebraic Geometry—Santa Cruz 1995. Proc. Sympos. Pure Math, Vol. 62, pp. 217–281. Am. Math. Soc., Providence, RI (1997)

  60. Simpson, C.: Moduli of representations of the fundamental group of a smooth projective variety. II. Inst. Hautes Études Sci. Publ. Math. 80(1994), 5–79 (1995)

    MathSciNet  MATH  Google Scholar 

  61. Simpson, C.: The dual boundary complex of the SL2 character variety of a punctured sphere. Ann. Fac. Sci. Toulouse Math. (6) 25(2–3), 317–361 (2016)

    Article  MathSciNet  Google Scholar 

  62. Szabó, S.: Simpson’s Geometric P\(=\)W Conjecture in the Painlevé VI Case via Abelianization (2019). arXiv: 1906.01856

  63. Szabó, S.: Perversity equals weight for Painlevé spaces. Adv. Math. 383, 107667 (2021)

    Article  Google Scholar 

  64. Szabó, S.: Toward the Geometric \(P = W \) Conjecture for the 5-Punctured Sphere in Rank 2 (2021). arXiv: 2103.00932

  65. Thuillier, A.: Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d’homotopie de certains schémas formels. Manuscr. Math. 123(4), 381–451 (2007)

    Article  Google Scholar 

  66. Whang, J.: Global geometry on moduli of local systems for surfaces with boundary. Compos. Math. 156(8), 1517–1559 (2020)

    Article  MathSciNet  Google Scholar 

  67. Whitehead, J.H.C.: On \(C\)1-complexes. Ann. Math. (2) 41, 809–824 (1940)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Omid Amini, Sébastien Boucksom, Morgan Brown, Paolo Cascini, Tommaso de Fernex, Mattias Jonsson, Luca Migliorini, Joaquín Moraga, Johannes Nicaise, Szilárd Szabó and Marco Trozzo for helpful discussions on the contents of the paper. We wish to thank the anonymous referees for their careful reading and useful suggestions. Mauri and Mazzon were supported by the University of Michigan, the Max Planck Institute for Mathematics, and the Engineering and Physical Sciences Research Council [EP/L015234/1]. The EPSRC Centre for Doctoral Training in Geometry and Number Theory (The London School of Geometry and Number Theory), University College London. Stevenson was partially supported by NSF grant DMS-1600011, and he is grateful to Imperial College London for hosting his visit, supported by the ERC Starting Grant MOTZETA (project 306610) of the European Research Council (PI: Johannes Nicaise).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrica Mazzon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Independence of the geometric P=W conjecture of auxiliary choices

In this appendix we check the independence of the geometric P=W conjecture of all the auxiliary choices and claims made in Sect. 4.2.

Lemma A.0.1

The inclusion \(\Psi (N^*_{\mathrm {Dol}})\hookrightarrow N^*_{\mathrm {B}}\) is a homotopy equivalence.

Proof

Choose rug functions \(\beta _{\mathrm {B}}:{\overline{M}}_{\mathrm {B}} \rightarrow {\mathbb {R}}\) and \(\beta _{\mathrm {Dol}}:{\overline{M}}_{\mathrm {Dol}} \rightarrow {\mathbb {R}}\), and real numbers \(\delta _{{\mathrm {B}}}\) and \(\delta _{\mathrm {Dol}}\) such that \(N_{\mathrm {B}} = \beta _{\mathrm {B}}^{-1}[0, \delta _{\mathrm {B}})\) and \(N_{\mathrm {Dol}} = \beta _\mathrm {Dol}^{-1}[0, \delta _\mathrm {Dol})\). Observe that the homotopy types of \(N_{\mathrm {B}}\) and \(N_{\mathrm {Dol}}\) is independent of these choices by the uniqueness of semialgebraic neighbourhoods; see Proposition 4.1.2.

In order to show that \(\Psi (N^*_{\mathrm {Dol}}) \hookrightarrow N^*_{\mathrm {B}}\) is a homotopy equivalence, we argue as in the proof of [20, Proposition 1.6]. Consider the system of neighbourhoods of \(\partial M_{\mathrm {Dol}}\) and \(\partial M_{\mathrm {B}}\) respectively

$$\begin{aligned} N_{\mathrm {Dol}, k}= \beta _{\mathrm {Dol}}^{-1}\bigg [0, \frac{\delta _{\mathrm {Dol}}}{k}\bigg ) \subseteq {\overline{M}}_{\mathrm {Dol}} \qquad N_{B,k} = \beta _{\mathrm {B}}^{-1}\bigg [0, \frac{\delta _{\mathrm {B}}}{k} \bigg ) \subseteq {\overline{M}}_{\mathrm {B}} \quad \mathrm { with }\, k \in {\mathbb {N}}^*. \end{aligned}$$

Choose \(k_1, k_2\in {\mathbb {N}}\) such that \( \Psi (N^*_{\mathrm {Dol}, k_1}) \subseteq N^*_{B, k_2} \subseteq \Psi (N^*_{\mathrm {Dol}}) \subseteq N^*_{B}\). The inclusion \(N^*_{B, k_2} \subseteq N^*_{B}\) is a homotopy equivalence by Proposition 4.1.2. The same holds for \(\Psi (N^*_{\mathrm {Dol}, k_1}) \subseteq \Psi (N^*_{\mathrm {Dol}})\), since \(N^*_{\mathrm {Dol}, k_1}\) and \(N^*_{\mathrm {Dol}}\) are stratified isotopic by Proposition 4.1.2, and \(\Psi \) is a homeomorphism. Therefore, we have the following sequence in homotopy

$$\begin{aligned} \pi _i(\Psi (N^*_{\mathrm {Dol}, k_1})) \rightarrow \pi _i( N^*_{\mathrm {B}, k_2}) \rightarrow \pi _i(\Psi (N^*_{\mathrm {Dol}})) \rightarrow \pi _i(N^*_{\mathrm {B}}), \end{aligned}$$

which has the property that the composition of two consecutive morphisms is an isomorphism. Hence, the inclusion \(N^*_{B, k_2} \subseteq \Psi (N^*_{\mathrm {Dol}})\) induces isomorphisms of homotopy groups, and it is a homotopy equivalence. We conclude that \(\Psi (N^*_{\mathrm {Dol}}) \rightarrow N^*_{\mathrm {B}}\) is a homotopy equivalence. \(\square \)

The geometric P=W conjecture is independent of the choice of the dlt compactification, the semialgebraic deleted neighbourhood \(N_{\mathrm {B}}^*\), \(N^*_i\), and of the partition of unity \(\{\varphi _i\}\), as shown in Lemma A.0.5.

To this end, we first extend the construction of a retraction between dual complexes of snc pairs in [7, Sect. 4.2] to the \({\mathbb {Q}}\)-factorial dlt setting. Let \((X, \Delta _X = \sum _{i \in I}\Delta _{X,i})\) be a dlt compactification of \(U = X \setminus \Delta _X\) satisfying Assumption 4.2.4. We say that a morphism of reduced dlt pairs \(g :(Z, \Delta _Z = \sum _{r \in R} \Delta _{Z,r}) \rightarrow (Y, \Delta _Y = \sum _{k \in K}\Delta _{Y,k})\) over \((X, \Delta _X)\) is a birational morphism of dlt compactifications over \((X, \Delta _X)\) if

  • The structural morphisms \(f_Z :Z \rightarrow X\) and \(f_Y :Y \rightarrow X\) are birational, and \(f_Z = f_Y \circ g\);

  • \(U \simeq Y \setminus \Delta _Y \simeq X \setminus \Delta _X\);

  • \((Z,\Delta _Z)\) and \((Y,\Delta _Y)\) satisfy Assumption 4.2.4.

Suppose that X, Y and Z are \({\mathbb {Q}}\)-factorial. Write \(f_Y^*{\Delta _X}= \sum _{k \in K}n_k \Delta _{Y,k}\) for some \(n_k \in {\mathbb {Q}}\), and

$$\begin{aligned} f_Z^*{\Delta _X} = g^*(f_Y^*{\Delta _X}) = \sum _{k \in K}n_k g^*(\Delta _{Y,k}) = \sum _{k \in K}n_k \bigg (\sum _{r \in R} a_{kr} \Delta _{Z,r} \bigg ) {=:}\sum _{r \in R}m_r \Delta _{Z,r} \end{aligned}$$

for some \(a_{kr} \in {\mathbb {Q}}\) and \(m_r= \sum _{k \in K} n_k a_{kr}\).

A stratum \(\Delta _{Z,S}\) of \(\Delta _Z\), with \(S \subseteq R\), corresponds to a cell \(\sigma _S\) of \({\mathcal {D}}(\Delta _Z)\), which we identify with the standard simplex \(\{\sum _{s \in S} w_s =1\}\subset {\mathbb {R}}^S_{\ge 0} \subseteq {\mathbb {R}}^R\). Let \(\Delta _{Y,L}\) be the minimum stratum of \(\Delta _Y\) such that \(g(\Delta _{Z,S}) \subseteq \Delta _{Y,L}\). Denote by \(\sigma _L\) the corresponding cell in \({\mathcal {D}}(\Delta _Y)\), identified with the standard simplex \(\{\sum _{l \in L} u_l =1\}\subset {\mathbb {R}}^L_{\ge 0} \subseteq {\mathbb {R}}^K\).

We define the map \(r_{ZY} :{\mathcal {D}}(\Delta _Z) \rightarrow {\mathcal {D}}(\Delta _Y)\) on each cell \(\sigma _S\) by

$$\begin{aligned} (w_s)_{s \in S} \in \sigma _S \mapsto \bigg (n_l \sum _{s \in S} a_{ls} \frac{w_s}{m_s}\bigg )_{l \in L} \in \sigma _L. \end{aligned}$$
(A.0.2)

Observe that \(r_{ZX} = r_{YX} \circ r_{ZY}\), with \(f_X= \text {Id}_X\). We show now that the map \(r_{YX}\) is a retraction. To this end, we first recall the definition of simple blow-up.

Definition A.0.3

Let \(t:(V_2, \Delta _{V_2}{:=}(t^{-1}\Delta _{V_1})_{red }) \rightarrow (V_1, \Delta _{V_1})\) is a morphism of snc pairs. We say that \(\rho \) is a simple blow-up if it is a blowup along a smooth, connected subvariety W of \(\Delta _{V_1}\) meeting transversely (or not at all) every irreducible component of \(\Delta _{V_1}\) that does not contain W; see for instance [42, Definition 22].

Lemma A.0.4

The map \(r_{YX}\) is a retraction.

Proof

The idea of the proof is to reduce to the snc case and apply [7, Proposition 4.3]. Let \(X^{\mathrm {snc}}\) be the largest locus in X where the pair \((X, \Delta _X)\) is snc. There exists a birational modification \(g:Z \rightarrow Y\) such that \(h {:=}f \circ g :Z \rightarrow X\) is a composition of simple blow-up over \(X^{\mathrm {snc}}\); see for instance [7, Lemma 4.1]. Up to passing to a dlt modification of Z which is an isomorphism over \(h^{-1}(X^{\mathrm {snc}})\), we can suppose that \(g:(Z, \Delta _Z) \rightarrow (Y, \Delta _Y)\) is a morphism of dlt compactifications. Note that \((X^{\mathrm {snc}}, \Delta ^{\mathrm {snc}}_X{:=}\Delta _X|_{X^{\mathrm {snc}}})\) and \((h^{-1}(X^{\mathrm {snc}}), h^{-1}(\Delta ^{\mathrm {snc}}_X))\) are snc pairs by definition of dlt pair and simple blow-up.

Taking dual complexes, we have that \({\mathcal {D}}(\Delta _X) = {\mathcal {D}}(\Delta ^{\mathrm {snc}}_X)\) again by definition of dlt pair, and \({\mathcal {D}}(h^{-1}(\Delta ^{\mathrm {snc}}_X))\) is a subcomplex of \({\mathcal {D}}(\Delta _Z)\). By construction, the restriction \(r_{ZX}\) to \({\mathcal {D}}(h^{-1}(\Delta ^{\mathrm {snc}}_X))\) coincides with \(r_{h^{-1}(X^{\mathrm {snc}}) X^{\mathrm {snc}}}\), which is a retraction by [7, Lemma 4.7]. The commutativity of the square

figure k

implies that \(r_{ZX}\) is a retraction, and so \(r_{YX}\) is a retraction too, since \(r_{ZX}= r_{YX} \circ r_{ZY}\). \(\square \)

Lemma A.0.5

(Independence of auxiliary choices) Let \((X, \Delta _X = \sum _{i \in I}\Delta _{X,i})\) and \((Y, \Delta _Y = \sum _{k \in K}\Delta _{Y,k})\) be dlt compactifications of \(M_{\mathrm {B}}\). Let \(ev_X:N^*_X \rightarrow {\mathcal {D}}(\Delta _X)\) and \(ev_Y:N^*_Y \rightarrow {\mathcal {D}}(\Delta _Y)\) be evaluation maps for suitable semialgebraic neighbourhoods \(N_X\) of \(\Delta _X\) and \(N_Y\) of \(\Delta _Y\) containing \(\Psi (N^*_{\mathrm {Dol}})\). If \({\mathcal {D}}(\Delta _X)\) (equivalently \({\mathcal {D}}(\Delta _Y)\)) has the homotopy type of a sphere, then there exists a homotopy equivalence \({\mathfrak {s}}:{\mathcal {D}}(\Delta _Y) \rightarrow {\mathcal {D}}(\Delta _X)\) which makes the following diagram homotopy commutative:

figure l

Proof

We proceed in several steps.

  1. Step 1

    We can suppose that \((X, \Delta _X)\) and \((Y, \Delta _Y)\) are \({\mathbb {Q}}\)-factorial. If \((X, \Delta _X)\) is not so (the same argument holds for \((Y, \Delta _Y)\) too), we take a small dlt \({\mathbb {Q}}\)-factorial modification \(\pi _1:(X_1, \Delta _1) \rightarrow (X, \Delta _X)\) such that \({{\,\mathrm{Supp}\,}}(\Delta _1)=\pi _1^{-1}({{\,\mathrm{Supp}\,}}(\Delta _X))\) as in [17, Definition 26] (mind that in our case \(\Delta _1\) and \(\Delta _X\) are reduced). Since \(M_{\mathrm {B}}\) has \({\mathbb {Q}}\)-factorial singularities, \(\pi _1\) is an isomorphism over \(M_{\mathrm {B}}\), and so \((X_1, \Delta _1)\) is a \({\mathbb {Q}}\)-factorial dlt compactification of \(M_{\mathrm {B}}\). Note that \({\mathcal {D}}(\Delta _1)={\mathcal {D}}(\Delta _X)\), and rug functions for \(\Delta _{X, i}\) pull-back to rug functions for the divisor \(\pi _1^{-1}(\Delta _{X, i})\). We conclude that the map \(ev \circ \pi _1 :\pi _1^{-1}(N^*_X) \rightarrow {\mathcal {D}}(\Delta _X)\) is an evaluation map associated to the pair \((X_1, \Delta _1)\), and it can be identified with ev itself via the isomorphisms \(\pi _1^{-1}(N^*_X) \simeq N^*_X\) and \({\mathcal {D}}(\Delta _1)={\mathcal {D}}(\Delta _X)\).

  2. Step 2

    We can suppose that there exists a birational morphism \(f:(Y, \Delta _Y) \rightarrow (X, \Delta _X)\). By construction, there exists a priori only a birational map \(X \dashrightarrow Y\). Then choose \(X_2\) a resolution of indeterminacy of the map which is an isomorphism over \(M_{\mathrm {B}}\), i.e.

    figure m

    Up to taking a dlt modification of \(X_2\), we can suppose that \((X_2, \Delta _2 {:=}f^{-1}(\Delta _1)_{\mathrm {red}})\) is a \({\mathbb {Q}}\)-factorial dlt compactification of \(M_{\mathrm {B}}\). Therefore, Lemma A.0.5 for \((X, \Delta _X)\) and \((Y, \Delta _Y)\) holds if and only if it it holds simultaneously for the pairs \((X, \Delta _X)\) and \((X_2, \Delta _2)\), and for the pairs \((X_2, \Delta _2)\) and \((Y, \Delta _Y)\). Hence, we can suppose that Y dominates X, and we can now take \({\mathfrak {s}}{:=}r_{YX}\) as defined in (A.0.2).

  3. Step 3

    For any \(L \subseteq K\), let \(\Delta _{X, J}\) be the minimum stratum of \(\Delta _X\) such that \(f(\Delta _{Y, L}) \subseteq \Delta _{X,J}\), with \(J \subseteq I\). Assume first that \(f(N_{Y, L})\subset N_{X,J}\). Consider the open cover of \(N_Y\)

    $$\begin{aligned} U_i {:=}\bigcup _{k :f(N_{Y,k})\subset N_{X,i}} N_{Y,k}, \text { with }i \in I. \end{aligned}$$

    By construction \(\{{\mathfrak {s}} \circ ev_Y(i)\}_{i \in I}\) is a partition of unity subordinate to \(\{U_i\}_{i \in I}\), while \(\{ev_X (i) \circ f\}_{i \in I}\) is a partition of unity subordinate to \(\{f^{-1}(N_i)\}_{i \in I}\). Note that for any \(y \in U^{\circ }_J{:=}U_J \setminus \bigcup _{i \not \in J} U_i\), there exists \(M \subseteq I\) containing J such that \(y \in f^{-1}((N_{X,M})^{\circ })\). Denoting \(\sigma _J\) the (closed) cell in \({\mathcal {D}}(\Delta _X)\) corresponding to \(\Delta _{X,J}\), we have that \({\mathfrak {s}} \circ ev_Y(y) \in \sigma _J \subseteq \sigma _M\) and \(ev_X \circ f(y) \in \sigma _M\). Hence, the segment \(t \, ({\mathfrak {s}} \circ ev_Y(y)) +(1-t)\, (ev_X \circ f(y))\subset {\mathbb {R}}^M\), with \(t \in [0,1]\), is entirely contained in \(\sigma _M\), and so the convex convolution of \({\mathfrak {s}} \circ ev_Y \circ \Psi \) and \(ev_X \circ \Psi \) gives the desired homotopy.

  4. Step 4

    In Step 3 we assumed that \(f(N_{Y,L})\subset N_{X,J}\) for any \(L \subset K\). If this is not the case, we can shrink \(N_{Y}= \beta ^{-1}[0, \delta )\) to \(N'_{Y}{:=}\beta ^{-1}[0, \delta ')\), with \(\delta '\ll \delta \), such that \(f(N'_{Y, L})\subset N_{X,J}\). Choose an auxiliary evaluation map \(ev'_Y :N'_{Y} \rightarrow {\mathcal {D}}(\Delta _Y)\). Applying Step 3 with \(f=\mathrm {Id}_Y :Y \rightarrow Y\), we obtain that the maps \(ev'_Y \circ \Psi \) and \(ev_Y \circ \Psi \) are homotopic equivalent, and so again by Step 3 the following maps are homotopic to each other

    $$\begin{aligned} {\mathfrak {s}} \circ ev_Y \circ \Psi \sim {\mathfrak {s}} \circ ev'_Y \circ \Psi \sim ev_X \circ \Psi . \end{aligned}$$
  5. Step 5

    By [17, Theorem 28] \({\mathcal {D}}(\Delta _X)\) and \({\mathcal {D}}(\Delta _Y)\) have the same homotopy type. If \({\mathcal {D}}(\Delta _X)\) has the homotopy of a sphere, then the retraction \(r_{YX}\) has topological degree \(\pm 1\), and so \({\mathfrak {s}}=r_{YX}\) is a homotopy equivalence by Hopf theorem.

\(\square \)

Appendix B: Local computations on the Tate curve

The goal of this appendix is to prove Corollary B.0.7, which is a technical ingredient needed in the proof of Lemma 5.3.4. To this end, we recall the construction of the Tate curve. Following [18, VII], it is a model over \(R{:=}{\mathbb {C}}[[t]]\) of the multiplicative group \({\mathbb {G}}_{m}\) with special fibre given by an infinite chain of \({\mathbb {P}}^1\)’s.

(B.0.1) Let \((x_i,y_{i+1})_{i \in {\mathbb {Z}}}\) be a collection of indeterminates. The Tate curve \({\overline{\mathscr {G}}}_m\) over \(R\) is the union of the affine charts \((U_{i+1/2})_{i \in {\mathbb {Z}}}\) given by

$$\begin{aligned} U_{i+1/2}{:=}{{\,\mathrm{Spec}\,}}\left( \frac{R[x_i, y_{i+1}]}{(x_iy_{i+1}-t)} \right) . \end{aligned}$$

For each \(i \in {\mathbb {Z}}\), the charts \(U_{i-1/2}\) and \(U_{i+1/2}\) are glued along the open subscheme

$$\begin{aligned} T_i {:=}U_{i-1/2} \cap U_{i+1/2}&= {{\,\mathrm{Spec}\,}}\left( {\mathcal {O}}(U_{i+1/2})[x_i^{-1}] \right) = {{\,\mathrm{Spec}\,}}\left( R[x_i, x^{-1}_i ]\right) \qquad \quad&(y_{i+1}= t/x_i)\\&= {{\,\mathrm{Spec}\,}}\left( {\mathcal {O}}(U_{i-1/2})[y_i^{-1}]\right) = {{\,\mathrm{Spec}\,}}\left( R[y_i, y^{-1}_i ] \right) \qquad \quad&(x_{i-1}= t/y_i) \end{aligned}$$

via the identification \(x_iy_i =1.\)

(B.0.2) The \(R\)-group scheme \(\mathscr {G}_m {:=}\bigcup _{i \in {\mathbb {Z}}} T_i\), obtained from \({\overline{\mathscr {G}}}_m\) by removing the nodes in the special fibre, is the Néron model of the multiplicative group \({\mathbb {G}}_m\), as explained in [18, Example 1.2.c]. In particular, the n-th multiplication map \( {\mathbb {G}}_m \times \ldots \times {\mathbb {G}}_m \rightarrow {\mathbb {G}}_m \) extends to a homomorphism

$$\begin{aligned} \mu _n :\mathscr {G}^n_m {:=}\mathscr {G}_m \times _R\ldots \times _R\mathscr {G}_m \longrightarrow \mathscr {G}_m \end{aligned}$$

of \(R\)-group schemes. When \(n=2\), \(\mu _n\) is given in local charts by

As \(x_{i-1}y_i =t\) and \(x_i y_i =1\), it follows that \(x_i = t^{-i}x_0\). In particular, the identity section \({\mathcal {I}}d\) of \(\mathscr {G}_m\) is cut out in the chart \(T_i\) by the equation \(x_i = t^{-i}\).

Let \(\mathscr {V}_{n-1}{:=}\mu _n^{-1}({\mathcal {I}}d)\) be the fibre of the identity section \({\mathcal {I}}d\) via \(\mu _n\), and let \({\overline{\mathscr {V}}}_{n-1}\) denote the closure of \(\mathscr {V}_{n-1}\) in \({\overline{\mathscr {G}}}_m^n\). Proposition B.0.3 describes some properties of \(({\overline{\mathscr {V}}}_{n-1}, {\overline{\mathscr {V}}}_{n-1,0})\), where \({\overline{\mathscr {V}}}_{n-1,0}\) is the special fibre of \({\overline{\mathscr {V}}}_{n-1}\);

Proposition B.0.3

The pair \(({\overline{\mathscr {V}}}_{n-1}, {\overline{\mathscr {V}}}_{n-1, 0})\) is normal, reduced, and toric, i.e. \({\overline{\mathscr {V}}}_{n-1}\) is the formal completion of a normal toric scheme along its reduced toric boundary \({\overline{\mathscr {V}}}_{n-1, 0}\). Furthermore, the intersection \({\overline{\mathscr {V}}}_{n-1} \setminus \mathscr {V}_{n-1}\) has codimension two in \({\overline{\mathscr {V}}}_{n-1}\).

The Proposition B.0.3 is an immediate corollary of Lemma B.0.4 below. Indeed, the assertions in Proposition B.0.3 are local: we may work on the the open subsets

$$\begin{aligned} U_{\alpha }\,{:=}\, U_{\alpha _1 + 1/2} \times _{R} \ldots \times _{R} U_{\alpha _n + 1/2}, \end{aligned}$$

for any multi-index \(\alpha =(\alpha _1, \ldots , \alpha _n) \in {\mathbb {Z}}^n\), since the \(U_{\alpha }\)’s cover \({\overline{\mathscr {G}}}_m^n\). Let \(\mathscr {V}_{\alpha }\) be the restriction of \(\mathscr {V}_{n-1}\) to \(T_{\alpha }{:=}T_{\alpha _1} \times _{R} \ldots \times _{R} T_{\alpha _n}\), \({\overline{\mathscr {V}}}_{\alpha }\) be its closure in \(U_{\alpha }\), and \({\overline{\mathscr {V}}}_{\alpha , 0}\) be the special fibre of \({\overline{\mathscr {V}}}_{\alpha }\). In local coordinates,

figure n

Lemma B.0.4

For any \(\alpha \in {\mathbb {Z}}^n\), the pair \(({\overline{\mathscr {V}}}_{\alpha }, {\overline{\mathscr {V}}}_{\alpha , 0})\) is normal, reduced, and toric. Furthermore, the intersection \({\overline{\mathscr {V}}}_{\alpha } \setminus \mathscr {V}_\alpha \) has codimension two in \({\overline{\mathscr {V}}}_{\alpha }\).

Proof

The proof is divided into cases depending on the sign of \(|\alpha | {:=}\sum _{i=1}^n \alpha _i\).

  1. Case 1.

    Assume \(|\alpha | >0\). The equation \(t^{|\alpha |} \prod _{i=1}^n x_{\alpha _i} = 1\) vanishes on \({\overline{\mathscr {V}}}_\alpha \). This implies that t and all \(x_{\alpha _i}\) are invertible on it, thus \({\overline{\mathscr {V}}}_{\alpha ,0} = \emptyset \) and \({\overline{\mathscr {V}}}_\alpha = \mathscr {V}_\alpha \simeq {\mathbb {G}}^{n-1}_{{\mathbb {C}}((t))}\).

  2. Case 2.

    Assume \(|\alpha |=0\). The equation \(\prod _{i=1}^n x_{\alpha _i} = 1\) implies that all \(x_{\alpha _i}\) are invertible on \({\overline{\mathscr {V}}}_\alpha \). We obtain that

    $$\begin{aligned} {\overline{\mathscr {V}}}_{\alpha } \subseteq \left\{ \prod _{i=1}^n x_{\alpha _i} = 1, \, x_{\alpha _i}y_{\alpha _i +1} = t \right\} \simeq {\mathbb {G}}^{n-1}_R, \end{aligned}$$

    thus \(({\overline{\mathscr {V}}}_{\alpha }, {\overline{\mathscr {V}}}_{\alpha , 0})=({\mathbb {G}}^{n-1}_R, {\mathbb {G}}^{n-1}_{\mathbb {C}})\) and \({\overline{\mathscr {V}}}_{\alpha } \setminus \mathscr {V}_\alpha = \emptyset \).

  3. Case 3.

    Assume \(|\alpha |<0\). We will show that \({\overline{\mathscr {V}}}_{\alpha }\) is normal by proving the conditions \(\mathrm {S}_2\) and \(\mathrm {R}_1\), and in the process we deduce that \(({\overline{\mathscr {V}}}_{\alpha }, {\overline{\mathscr {V}}}_{\alpha , 0})\) is toric, \({\overline{\mathscr {V}}}_{\alpha , 0}\) is reduced and \({\overline{\mathscr {V}}}_{\alpha }\setminus {\mathscr {V}}_{\alpha }\) has codimension two in \({\overline{\mathscr {V}}}_{\alpha }\).

    1. Step 1.

      We prove that \({\overline{\mathscr {V}}}_{\alpha }\) is Cohen-Macaulay (hence \(\mathrm {S}_2\)) by applying [36, Lemma 7]: if a Gorenstein scheme of pure dimension d is a union of two closed subschemes of pure dimension d and one is Cohen-Macaulay, then the other is Cohen-Macaulay. Let \(\mathscr {Z}_\alpha \) be the closed toric subscheme of \(U_\alpha \) given by the equations

      $$\begin{aligned} \mathscr {Z}_\alpha {:=}{\left\{ \begin{array}{ll} t \big ( \prod ^n_{i=1} x_{\alpha _i}- t^{-|\alpha |} \big )=0,\\ x_{\alpha _1}y_{\alpha _1 +1}=\ldots =x_{\alpha _n}y_{\alpha _n +1}=t. \end{array}\right. } \end{aligned}$$

      We have

      $$\begin{aligned}&\mathscr {Z}_{\alpha , 0} = U_{\alpha ,0} = \{x_{\alpha _1}y_{\alpha _1 +1}=\ldots =x_{\alpha _n}y_{\alpha _n +1}=0 \}, \\&\mathscr {Z}_\alpha \cap \{t \ne 0 \} = \mathscr {V}_\alpha \cap \{t \ne 0 \} \simeq {\mathbb {G}}_{m, {\mathbb {C}}((t))}^{n-1}, \end{aligned}$$

      so \(\mathscr {Z}_\alpha = U_{\alpha ,0} \cup {\overline{\mathscr {V}}}_\alpha \). We can then apply [36, Lemma 7] as \(\mathscr {Z}_\alpha \) and \(U_{\alpha ,0}\) are complete intersections. Hence, \({\overline{\mathscr {V}}}_\alpha \) is Cohen-Macaulay. In particular, the pair \(({\overline{\mathscr {V}}}_{\alpha }, {\overline{\mathscr {V}}}_{\alpha , 0})\) is toric, as both \({\overline{\mathscr {V}}}_{\alpha }\) and \({\overline{\mathscr {V}}}_{\alpha , 0}\) are torus-invariant subschemes of \(\mathscr {Z}_{\alpha }\) and \({\overline{\mathscr {V}}}_{\alpha } \setminus {\overline{\mathscr {V}}}_{\alpha ,0} \simeq {\mathbb {G}}_{m,{\mathbb {C}}((t))}^{n-1}\).

    2. Step 2.

      To prove that \({\overline{\mathscr {V}}}_\alpha \) is \(\mathrm {R}_1\), it suffices to check that \({\overline{\mathscr {V}}}_\alpha \) is smooth at the generic point of the irreducible components of \({\overline{\mathscr {V}}}_{\alpha ,0}\), since \({\overline{\mathscr {V}}}_\alpha \cap \{t \ne 0 \}=\mathscr {V}_\alpha \cap \{t \ne 0\}\) is smooth. Let \(D \subseteq {\overline{\mathscr {V}}}_{\alpha ,0}\) be one of them. Up to relabelling, there exists an integer m such that the chart U of \(U_{\alpha ,0}\)

      $$\begin{aligned} U {:=}\left\{ \begin{aligned}&x_{\alpha _1}= \ldots = x_{\alpha _m} = y_{\alpha _{m+1} +1}= \ldots = y_{\alpha _{n} +1}=0 \\&y_{\alpha _{2}+1} \ne 0, \ldots , y_{\alpha _{m}+1} \ne 0, x_{\alpha _{m+1}}\ne 0, \ldots , x_{\alpha _{n}} \ne 0 \end{aligned} \right\} \simeq {\mathbb {G}}_{m, {\mathbb {C}}}^{n-1} \times {\mathbb {A}}^1_{\mathbb {C}}\end{aligned}$$

      contains the generic point of D. At the generic point of D we have

      $$\begin{aligned} {\left\{ \begin{array}{ll} x_{\alpha _i}= x_{\alpha _1} y_{\alpha _1 + 1} y_{\alpha _i+1}^{-1} &{} \text { for }2 \leqslant i \leqslant m \\ y_{\alpha _i+1}= x_{\alpha _1} y_{\alpha _1 + 1} x_{\alpha _i}^{-1} &{} \text { for }m+1 \leqslant i \leqslant n, \\ \end{array}\right. } \end{aligned}$$

      and \({\overline{\mathscr {V}}}_\alpha \) is an irreducible component of the locus given by the equation

      $$\begin{aligned} \prod _{i=1}^{n} x_{\alpha _i} = x_{\alpha _1}^{m} y_{\alpha _1 +1}^{m-1} \underbrace{\bigg ( \prod _{j=2}^m y_{\alpha _{j}+1}^{-1}\prod _{i=m+1}^n x_{\alpha _i}\bigg )}_{u} = x_{\alpha _1}^{-|\alpha |} y_{\alpha _1 +1}^{-|\alpha |}. \end{aligned}$$
      (B.0.5)

      If \(m > - |\alpha | \), then (B.0.5) implies that \(x_{\alpha _{1}}^{-|\alpha |} y_{\alpha _1 + 1}^{{-|\alpha |}}(u x_{\alpha _{1}}^{m+|\alpha |} y_{\alpha _1 + 1}^{{m-1+|\alpha |}}- 1)=0\). This is impossible: \({\overline{\mathscr {V}}}_\alpha \) would be cut by the equation \(u x_{\alpha _{1}}^{m+|\alpha |} y_{\alpha _1 + 1}^{{m-1+|\alpha |}}= 1\) at the generic point of D, but then \(D \not \subseteq {\overline{\mathscr {V}}}_\alpha \). The same argument proves that the case \(m < - |\alpha | \) cannot occur. If \(m = - |\alpha |\), then (B.0.5) implies that \(x_{\alpha _{1}}^m y_{\alpha _1 + 1}^{m-1}(u- y_{\alpha _1 +1})=0\). It follows that

      $$\begin{aligned} {\overline{\mathscr {V}}}_\alpha {\mathop {=}\limits ^{\text {loc at { D}}}} \{u- y_{\alpha _1 +1} =0 \}, \end{aligned}$$
      (B.0.6)

      hence \({\overline{\mathscr {V}}}_\alpha \) is \(\mathrm {R}_1\), and \({\overline{\mathscr {V}}}_{\alpha , 0} {\mathop {=}\limits ^{\text {loc at D}}} \{x_{\alpha _1} =0 \}\) is reduced.

    3. Step 3

      A point in \({\overline{\mathscr {V}}}_{\alpha } \setminus \mathscr {V}_\alpha \subseteq U_{\alpha } \setminus T_\alpha \) is characterised by the property that a pair of coordinates \((x_{\alpha _i}, y_{\alpha _i +1})\) vanishes simultaneously. Hence, (B.0.6) yields that \(\mathscr {V}_\alpha \) coincides with \({\overline{\mathscr {V}}}_{\alpha }\) at the generic point of D. Therefore, \({\overline{\mathscr {V}}}_{\alpha } \setminus \mathscr {V}_\alpha \) has codimension two in \({\overline{\mathscr {V}}}_{\alpha }\).

\(\square \)

Let \(\mathscr {X}_{n-1}\) and \({\overline{\mathscr {X}}}_{n-1}\) be as in Proposition 5.3.2 and consider the diagram (5.3.3). Given the uniformisation \(p:{\overline{\mathscr {G}}}_m \rightarrow {\mathscr {E}}\), we have

figure o

Corollary B.0.7

The pair \(({\overline{\mathscr {X}}}_{n-1}, {\overline{\mathscr {X}}}_{n-1,0})\) is reduced lc and \({\overline{\mathscr {X}}}_{n-1} \setminus \mathscr {X}_{n-1}\) has codimension two in \({\overline{\mathscr {X}}}_{n-1}\).

Proof

The restriction of P to \({\overline{\mathscr {V}}}_{n-1} \times _R {\overline{\mathscr {V}}}_{n-1}\) is étale. Hence it suffices to prove the statement for the pair \(\big ({\overline{\mathscr {V}}}_{n-1} \times _R {\overline{\mathscr {V}}}_{n-1} , ({\overline{\mathscr {V}}}_{n-1} \times _R {\overline{\mathscr {V}}}_{n-1})\,_0 \big )\). This follows directly from Proposition B.0.3, taking the fibre product. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mauri, M., Mazzon, E. & Stevenson, M. On the geometric P=W conjecture. Sel. Math. New Ser. 28, 65 (2022). https://doi.org/10.1007/s00029-022-00776-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-022-00776-0

Mathematics Subject Classification

Navigation