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Abstract
Let E/K be a finite Galois extension of totally real number fields with Galois group
G. Let p be an odd prime and let r > 1 be an odd integer. The p-adic Beilinson
conjecture relates the values at s = r of p-adic Artin L-functions attached to the
irreducible characters of G to those of corresponding complex Artin L-functions. We
show that this conjecture, the equivariant Iwasawa main conjecture and a conjecture
of Schneider imply the ‘p-part’ of the equivariant Tamagawa number conjecture for
the pair (h0(Spec(E))(r), Z[G]). If r > 1 is even we obtain a similar result for Galois
CM-extensions after restriction to ‘minus parts’.

Keywords Beilinson conjecture · Equivariant Tamagawa number conjecture ·
Iwasawa theory · Regulator maps

Mathematics Subject Classification 19F27 · 11R23 · 11R42 · 11R70

1 Introduction

Let E/K be a finite Galois extension of number fields with Galois group G and
let r be an integer. The equivariant Tamagawa number conjecture (ETNC) for the
pair (h0(Spec(E))(r), Z[G]) as formulated by Burns and Flach [17] asserts that a
certain canonical elementT�(E/K , r) in the relative algebraic K -group K0(Z[G], R)

vanishes. This element relates the leading terms at s = r ofArtin L-functions to natural
arithmetic invariants.

If r = 0 this might be seen as a vast generalization of the analytic class number
formula for number fields, and refines Stark’s conjecture for E/K as discussed by Tate
in [75] and the ‘Strong Stark conjecture’ of Chinburg [25, Conjecture 2.2]. It is known
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to imply a whole bunch of conjectures such as Chinburg’s ‘�3-conjecture’ [25,26],
the Rubin–Stark conjecture [68], Brumer’s conjecture, the Brumer–Stark conjecture
(see [75, Chapitre IV, Sect. 6]) and generalizations thereof due to Burns [13] and the
author [57]. If r is a negative integer, the ETNC refines a conjecture of Gross [42]
and implies (generalizations of) the Coates–Sinnott conjecture [28] and a conjecture
of Snaith [71] on annihilators of the higher K -theory of rings of integers (see [56]).
If r > 1 the ETNC likewise predicts constraints on the Galois module structure of
p-adic wild kernels [62].

The functional equation of Artin L-functions suggests that the ETNC at r and 1−r
are equivalent. This is not known in general, but leads to a further conjecture which is
sometimes referred to as the local ETNC. Except for the validity of the local ETNC
it therefore suffices to consider the (global) ETNC for either odd or even integers r .
Note that the local ETNC is widely believed to be easier to settle. For instance, the
‘global epsilon constant conjecture’ of Bley and Burns [6] measures the compatibility
of the closely related ‘leading term conjectures’ at s = 0 [12] and s = 1 [10] and is
known to hold for arbitrary tamely ramified extensions [6, Corollary 7.7] and also for
certain weakly ramified extensions [7].

Now suppose that E/K is a Galois extension of totally real number fields and let
p be an odd prime. If r < 0 is odd Burns [14] and the author [60] independently
have shown that the ‘p-part’ of the ETNC for the pair (h0(Spec(E))(r), Z[G]) holds
provided that a certain Iwasawa μp-invariant vanishes (which conjecturally is always
true). The latter condition is mainly present because the equivariant Iwasawa main
conjecture (EIMC) for totally real fields then holds by independent work of Ritter and
Weiss [67] and of Kakde [51].

The case r ≥ 0 is more subtle. Burns and Venjakob [22,23] (see also [14, Corol-
lary 2.8]) proposed a strategy for proving the p-part of the ETNC for the pair
(h0(Spec(E))(1), Z[G]). More precisely, this special case of the ETNC is implied
by the vanishing of the relevant μp-invariant, Leopoldt’s conjecture for E at p and
the ‘p-adic Stark conjecture at s = 1’. The latter conjecture relates the leading
terms at s = 1 of the complex and p-adic Artin L-functions attached to charac-
ters of G by certain comparison periods. Note that Burns and Venjakob actually
assume these conjectures for all odd primes p and then deduce the ETNC for the pair
(h0(Spec(E))(1), Z[ 12 ][G]), but their approach has recently been refined by Johnston
and the author [49] so that one can indeed work prime-by-prime.

There are similar results on minus parts if L/K is a Galois CM-extension with
Galois group G, i.e. K is totally real and L is a totally complex quadratic extension of
a totally real field L+. Namely, if r < 0 is even andμp vanishes, then the minus p-part
of the ETNC for the pair (h0(Spec(L))(r), Z[G]) holds [14,60]. Burns [15] recently
proposed a strategy for proving the minus p-part of the ETNC in the case r = 0.
In comparison with the strategy in the case r = 1, Leopoldt’s conjecture is replaced
with the conjectural non-vanishing of Gross’s regulator [41], and the p-adic Stark
conjecture is replaced with the ‘weak p-adic Gross–Stark conjecture’ [41, Conjecture
2.12b] (now a theorem for linear characters by work of Dasgupta, Kakde and Ventullo
[32]). For an approach that only relies upon the validity of the EIMC we refer the
reader to [58,61].
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The aim of this article is to propose a similar strategy in the remaining cases,
i.e. we will consider the ETNC for Tate motives h0(Spec(L))(r) where r > 1 and L
is a CM-field. Note that we can treat all integers r > 1 simultaneously as the ‘plus
p-part’ of the ETNC for the pair (h0(Spec(L))(r), Z[G]) naturally identifies with the
corresponding conjecture for the extension L+/K of totally real fields. We show that
the p-adic Beilinson conjecture at s = r , a conjecture of Schneider [69] and the EIMC
imply the plus (resp. minus) p-part of the ETNC for the pair (h0(Spec(L))(r), Z[G])
if r is odd (resp. even).

We follow the formulation of the p-adic Beilinson conjecture in [5]. It relates the
values at s = r of the complex and p-adic Artin L-functions by certain comparison
periods involving Besser’s syntomic regulator [4]. For absolutely abelian extensions
variants of the p-adic Beilinson conjecture have been formulated and proved by Cole-
man [29], Gros [39,40] and Kolster and Nguyen Quang Do [52]. Thus the p-adic
Beilinson conjecture holds for absolutely abelian characters (see Sect. 3.13 for a pre-
cise statement).

Let us compare our approach to the earlier work mentioned above. The formulation
of both the p-adic Beilinson conjecture and the p-adic Stark conjecture involves the
choice of a field isomorphism j : C � Cp. We show in Sect. 3.12 that the p-adic
Beilinson conjecture does not depend upon this choice if and only if a conjecture of
Gross [42] holds. The latter is revisited in Sect. 3.8 and might be seen as a higher
analogue of Stark’s conjecture; a similar result in the case r = 1 has recently been
established by Johnston and the author in [49]. In both cases the independence of j is
therefore equivalent to the rationality part of the appropriate special case of the ETNC.
This eventually allows us to establish a prime-by-prime descent result analogous to
[49, Theorem 8.1].

In a little more detail, we formulate conjectural ‘higher refined p-adic class number
formulae’ analogous to [15, Conjecture 3.5] (where r = 0), and show that these follow
from the EIMC and Schneider’s conjecture in Sect. 4.6. Here, as will be shown in
Sect. 4.5, the latter conjecture ensures that the relevant complexes are semisimple at
all Artin characters as Leopoldt’s conjecture does in the case r = 1 and the non-
vanishing of Gross’s regulator does in the case r = 0. This is a necessary condition in
order to apply the descent formalismofBurns andVenjakob [23].A second condition is
the vanishing of the aforementioned Iwasawa μp-invariant, but given recent progress
of Johnston and the author [47,50] on the EIMC without assuming μp = 0, we
wish to circumvent this hypothesis. For this purpose, we develop a different descent
argument that makes no use of this assumption, but requires a more delicate analysis
of the relevant complexes. The higher refined p-adic class number formula at s = r
may then be combined with the p-adic Beilinson conjecture at s = r to deduce the
plus, respectively minus, p-part of the ETNC for the pair (h0(Spec(L))(r), Z[G])
in Sect. 4.7. For this, it is crucial to relate Besser’s syntomic regulators to Soulé’s
p-adic Chern class maps [72] and the Bloch–Kato exponential maps [8] that appear
in the formulation of the ETNC. This is carried out in Sect. 3.9 (in particular see
Proposition 3.16). The formulation of the ETNC that is most suitable for our purposes
is a reformulation due to the author [62]. This has primarily been introduced in order
to construct (conjectural) annihilators of p-adic wild kernels.
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Our prime example are totally real Galois extensions E/Q with Galois group iso-
morphic to Aff(q), where q = �n is a prime power and Aff(q) denotes the group of
affine transformations on the finite field Fq with q elements. We show that Gross’s
conjecture holds in this case (Theorem 3.14 (iv)). Moreover, the relevant cases of the
EIMC hold unconditionally by recent work of Johnston and the author [47] (see also
[50]) and the p-adic Beilinson conjecture reduces to the case of the trivial extension
EH/EH where H denotes the subgroup GL1(Fq) of Aff(q). See Example 4.24 for
more details.

Finally, we note that the ETNC for the pair (h0(Spec(L))(r), Z[G]) has been ver-
ified for any integer r whenever L is abelian over the rationals by work of Burns,
Greither and Flach [19,20,35]. However, if r > 1 and L is not absolutely abelian, then
we are not aware of any previous (conditional) results that establish the (p-part of the)
ETNC for the pair (h0(Spec(L))(r), Z[G]).

Notation and conventions

All rings are assumed to have an identity element and all modules are assumed to be
left modules unless otherwise stated. Unadorned tensor products will always denote
tensor products over Z. For a ring � we write ζ(�) for its center and �× for the
group of units in �. For every field F we fix a separable closure Fc of F and write
GF := Gal(Fc/F) for its absolute Galois group. If n > 0 is an integer coprime to the
characteristic of F , we let ζn denote a primitive nth root of unity in Fc.

A finite Galois extension of totally real number fields will usually be denoted by
E/K , whereas L/K denotes an arbitrary Galois extension of number fields. Galois
CM-extensions will usually be denoted by L/K as well.

2 Algebraic preliminaries

2.1 Derived categories and Galois cohomology

Let � be a noetherian ring and let PMod(�) be the category of all finitely generated
projective �-modules. We write D(�) for the derived category of �-modules and
Cb(PMod(�)) for the category of bounded complexes of finitely generated projective
�-modules. Recall that a complex of �-modules is called perfect if it is isomorphic
in D(�) to an element of Cb(PMod(�)). We denote the full triangulated subcategory
of D(�) comprising perfect complexes by Dperf(�).

If M is a �-module and n is an integer, we write M[n] for the complex

· · · −→ 0 −→ M −→ 0 −→ · · ·

where M is placed in degree −n. Note that this is compatible with the usual shift
operator on cochain complexes.

Let L be an algebraic extension of the number field K . For a finite set S of places
of K containing the set S∞ of all archimedean places we let GL,S be the Galois group
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over L of the maximal extension of L that is unramified outside S(L); here we write
S(L) for the set of places of L lying above those in S. We let OL,S be the ring of
S(L)-integers in L . For any topological GL,S-module M we write R�(OL,S, M) for
the complex of continuous cochains of GL,S with coefficients in M . If F is a field and
M is a topological GF -module, we likewise define R�(F, M) to be the complex of
continuous cochains of GF with coefficients in M .

If F is a global or a local field of characteristic zero, andM is a discrete or a compact
GF -module, then for r ∈ Z we denote the r th Tate twist of M by M(r). Now fix a
prime p and suppose that S also contains all p-adic places of K . Then for each inte-
ger i the cohomology group in degree i of R�(OL,S, Zp(r)) naturally identifies with
Hi
ét(OL,S, Zp(r)), the i th étale cohomology group of the affine scheme Spec(OL,S)

with coefficients in the étale p-adic sheaf Zp(r). We set Hi
ét(OL,S, Qp(r)) :=

Qp ⊗Zp Hi
ét(OL,S, Zp(r)).

2.2 Representations and characters of finite groups

Let G be a finite group and let F be a field of characteristic zero. We write R+
F (G)

for the set of characters attached to finite-dimensional F-valued representations of
G, and RF (G) for the ring of virtual characters generated by R+

F (G). Moreover, we
denote the subset of irreducible characters in R+

F (G) and the ring of F-valued virtual
characters of G by IrrF (G) and CharF (G), respectively.

For a subgroup H of G and ψ ∈ R+
F (H) we write indGHψ ∈ R+

F (G) for the
induced character; for a normal subgroup N of G and χ ∈ R+

F (G/N ) we write
inflGG/Nχ ∈ R+

F (G) for the inflated character. For σ ∈ Aut(F) and χ ∈ CharF (G)

we set χσ := σ ◦χ and note that this defines a group action from the left even though
we write exponents on the right of χ . We denote the trivial character of G by 1G .

2.3 �-twists

LetG be a finite group and let F be a field of characteristic zero. IfM is aZ[G]-module
we let MG be the maximal submodule of M upon which G acts trivially. Likewise we
write MG for the maximal quotient module with trivial G-action. For any χ ∈ R+

F (G)

we fix a (left) F[G]-module Vχ with character χ . For any F[G]-module M and any
α ∈ EndF[G](M) we write Mχ for the F-vector space

HomF[G](Vχ , M) � HomF (Vχ , M)G

and αχ for the induced map ( f 	→ α ◦ f ) ∈ EndF (Mχ ). We note that detF (αχ ) is
independent of the choice of Vχ . The following is [49, Lemma 2.1] and very similar
to [75, Chapitre I, 6.4].

Lemma 2.1 Let M be an F[G]-module and let α ∈ EndF[G](M). Let H be a subgroup
of G and let M |H denote M considered as an F[H ]-module. Let N be a normal
subgroup of G and view MN as an F[G/N ]-module in the obvious way.
(i) For χ1, χ2 ∈ R+

F (G) one has detF (αχ1+χ2) = detF (αχ1)detF (αχ2).
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(ii) For χ ∈ R+
F (H) there is an isomorphism M indGHχ � (M |H )χ and an equality

detF (αindGHχ ) = detF (αχ ).

(iii) Forχ ∈ R+
F (G/N ) there is an isomorphism M inflGG/Nχ � (MN )χ and an equality

detF (α
inflGG/Nχ

) = detF ((α|MN )χ ).

Let p be a prime. For each χ ∈ IrrCp (G) we fix a subfield Fχ of Cp which is both
Galois and of finite degree over Qp and such that χ can be realized over Fχ . We write
eχ := |G|−1χ(1)

∑
g∈G χ(g)g−1 for the associated primitive central idempotent in

Cp[G] and choose an indecomposable idempotent fχ of Fχ [G]eχ . LetOχ be the ring
of integers in Fχ and choose a maximalOχ -orderMχ in Fχ [G] containing fχ . Then
Tχ := fχMχ is an Oχ -free right Oχ [G]-module.

For any (left) Zp[G]-module M we define a (left) Oχ [G]-module M[χ ] :=
Tχ ⊗Zp M , where g ∈ G acts upon t ⊗ m by the rule g(t ⊗ m) = tg−1 ⊗ gm

for all t ∈ Tχ and m ∈ M . We define Oχ -modules M (χ) := M[χ ]G and
M(χ) := M[χ ]G � Tχ ⊗Zp[G]M .We thereby obtain left, respectively right exact func-
tors M 	→ M (χ) and M 	→ M(χ) from the category ofZp[G]-modules to the category
of Oχ -modules. Note that there is an isomorphism Fχ ⊗Oχ

M (χ) � (Fχ ⊗Zp M)χ

for every finitely generated Zp[G]-module M .
Since multiplication by the trace TrG := ∑

g∈G g gives rise to an isomorphism

P(χ) � P(χ) for each projective Zp[G]-module P (in fact for each cohomologically
trivial G-module P), these functors extend to naturally isomorphic exact functors
Dperf(Zp[G]) → Dperf(Oχ ) (and Dperf(Qp[G]) → Dperf(Fχ )).
Lemma 2.2 Let χ ∈ IrrCp (G) and let a ≤ b be integers. If C• ∈ Dperf(Zp[G]) is
acyclic outside [a, b], then C•

(χ) is also acyclic outside [a, b] and there are natural
isomorphisms of Oχ -modules

Ha(C•
(χ)) � Ha(C•)(χ) and Hb(C•

(χ)) � Hb(C•)(χ).

ForC• ∈ Dperf(Qp[G])wehave isomorphisms Hi (C•
(χ)) � Hi (C•)(χ) � Hi (C•)(χ)

for every i ∈ Z.
Proof Since (finitely generated)Qp[G]-modules are cohomologically trivial, the func-
tors M 	→ M (χ) and M 	→ M(χ) are naturally isomorphic exact functors on the
category of finitely generated Qp[G]-modules. The final assertion of the lemma is
therefore clear.

Now suppose that C• ∈ Dperf(Zp[G]) is acyclic outside [a, b]. If b − a ≤ 1 the
claim is [15, Lemma 5.1]. We repeat the short argument for convenience. Choose a
complex A → B of cohomologically trivial Zp[G]-modules that is isomorphic to C•
inD(Zp[G]). Here A and B are placed in degrees a and a + 1, respectively. Then we
obtain a commutative diagram of Oχ -modules

A(χ)
��

�
��

B(χ)

�
��

�� Ha+1(C•)(χ)
�� 0

0 �� Ha(C•)(χ) �� A(χ) �� B(χ)
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which implies the claim. If b− a ≥ 2 we choose a complex P• ∈ Cb(PMod(Zp[G]))
that is isomorphic to C• in D(Zp[G]) and consider the exact sequence of perfect
complexes

0 −→ τ≥b−1P
• −→ P• −→ τ≤b−2P

• −→ 0,

where τ≥b−1 and τ≤b−2 denote naive truncation. Note that the complexes τ≥b−1P•
and τ≤b−2P• are acyclic outside [b − 1, b] and [a, b − 2], respectively. It follows by
induction that C•

(χ) is acyclic outside [a, b] and, since Hb(C•) = Hb(τ≥b−1P•), that
we have an isomorphism Hb(C•

(χ)) � Hb(C•)(χ). If b−a ≥ 3 then we likewise have
that Ha(C•) = Ha(τ≤b−2P•) and we may again conclude by induction that we have
an isomorphism Ha(C•

(χ)) � Ha(C•)(χ). If b− a = 2 we may alternatively consider
the exact sequence of perfect complexes

0 −→ τ≥b P
• −→ P• −→ τ≤b−1P

• −→ 0

and deduce as above. ��

3 The p-adic Beilinson conjecture

3.1 Setup and notation

Let L/K be a finite Galois extension of number fields with Galois group G. For
any place v of K we choose a place w of L above v and write Gw and Iw for the
decomposition group and inertia subgroup of L/K at w, respectively. We denote the
completions of L and K atw and v by Lw and Kv , respectively, and identify the Galois
group of the extension Lw/Kv withGw. For each non-archimedean placew we letOw

be the ring of integers in Lw. We identify Gw := Gw/Iw with the Galois group of the
corresponding residue field extension which we denote by L(w)/K (v). Finally, we
let φw ∈ Gw be the Frobenius automorphism, and we denote the cardinality of K (v)

by N (v). We let S be a finite set of places of K containing the set S∞ of archimedean
places. If a prime p is fixed, we will usually assume that the set Sp of all p-adic places
is also contained in S.

By a Galois CM-extension of number fields we shall mean a finite Galois extension
L/K such that K is totally real and L is a CM-field. Thus complex conjugation induces
a unique automorphism τ in the center of G and we denote the maximal totally real
subfield of L by L+. Then L+/K is also Galois with group G+ := G/〈τ 〉.

3.2 Higher K-theory

For an integer n ≥ 0 and a ring R we write Kn(R) for the Quillen K -theory of R. In
the cases R = OL,S and R = L the groups Kn(OL,S) and Kn(L) are equipped with
a natural G-action and for every integer r > 1 the inclusion OL,S ⊆ L induces an
isomorphism of Z[G]-modules
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K2r−1(OL,S) � K2r−1(L). (3.1)

Moreover, if S′ is a second finite set of places of K containing S, then for every r > 1
there is a natural exact sequence of Z[G]-modules

0 −→ K2r (OL,S) −→ K2r (OL,S′) −→
⊕

w∈S′(L)\S(L)

K2r−1(L(w)) −→ 0. (3.2)

Both results (3.1) and (3.2) are due to Soulé [72]; see [77, Chapter V, Theorem 6.8].
We also note that sequence (3.2) remains left-exact in the case r = 1. The structure
of the finite Z[Gw]-modules K2r−1(L(w)) has been determined by Quillen [63] (see
also [77, Chapter IV, Theorem 1.12 and Corollary 1.13]) to be

K2r−1(L(w)) � Z[Gw]/(φw − N (v)r ). (3.3)

3.3 The regulators of Borel and Beilinson

Let 
(L) be the set of embeddings of L into the complex numbers; we then have
|
(L)| = r1 + 2r2, where r1 and r2 are the number of real embeddings and the
number of pairs of complex embeddings of L , respectively. For an integer k ∈ Z we
define a finitely generated Z-module

Hk(L) :=
⊕


(L)

(2π i)−k
Z

which is endowed with a natural Gal(C/R)-action, diagonally on 
(L) and on
(2π i)−k . The invariants of Hk(L) under this action will be denoted by H+

k (L), and it
is easily seen that we have

dk := rankZ(H+
1−k(L)) =

{
r1 + r2 if 2 � k
r2 if 2 | k. (3.4)

The action of G on 
(L) endows H+
k (L) with a natural G-module structure.

Let r > 1 be an integer. Borel [9] has proved that the even K -groups K2r−2(OL)

(and thus K2r−2(OL,S) for any S as above by (3.2) and (3.3)) are finite, and that
the odd K -groups K2r−1(OL) are finitely generated abelian groups of rank dr . More
precisely, for each r > 1 Borel constructed an equivariant regulator map

ρBor
r : K2r−1(OL) −→ H+

1−r (L) ⊗ R (3.5)

with finite kernel. Its image is a full lattice in H+
1−r (L) ⊗ R. The covolume of this

lattice is called the Borel regulator and will be denoted by RBor
r (L). Moreover, Borel

showed that

ζ ∗
L(1 − r)

RBor
r (L)

∈ Q
×, (3.6)
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where ζ ∗
L(1− r) denotes the leading term at s = 1− r of the Dedekind zeta function

ζL(s) attached to the number field L .
In the context of the ETNC, however, it is more natural to work with Beilinson’s

regulator map [3]. By a result of Burgos Gil [11] Borel’s regulator map is twice the
regulator map of Beilinson. Hence we will work with ρr := 1

2ρ
Bor
r in the following.

Remark 3.1 We will sometimes refer to [62] where we have worked with Borel’s
regulator map. However, if we are interested in rationality questions or in verifying
the p-part of the ETNC for an odd prime p, the factor 2 essentially plays no role. In
contrast, the p-adic Beilinson conjecture below predicts an equality of two numbers
in Cp so that this factor indeed matters.

3.4 The Quillen–Lichtenbaum conjecture

Fix an odd prime p and assume that S contains S∞ and the set Sp of all p-adic places
of K . Then for any integer r > 1 and i = 1, 2 Soulé [72] has constructed canonical
G-equivariant p-adic Chern class maps

ch(p)
r ,i : K2r−i (OL,S) ⊗ Zp −→ Hi

ét(OL,S, Zp(r)).

We need the following deep result.

Theorem 3.2 (Quillen–Lichtenbaum Conjecture) Let p be an odd prime. Then for
every integer r > 1 and i = 1, 2 the p-adic Chern class maps ch(p)

r ,i are isomorphisms.

Proof Soulé [72] proved surjectivity. Building onwork of Rost andVoevodsky,Weibel
[76] completed the proof of the Quillen–Lichtenbaum Conjecture. ��

Let p be a prime. For an integer n ≥ 0 and a ring R we write Kn(R; Zp) for the
K -theory of R with coefficients in Zp. The following result is due to Hesselholt and
Madsen [43].

Theorem 3.3 Let p be an odd prime and let w be a finite place of L. Then for every
integer r > 1 and i = 1, 2 there are canonical isomorphisms of Zp[Gw]-modules

K2r−i (Ow; Zp) � Hi
ét(Lw, Zp(r)).

3.5 Local Galois cohomology

We keep the notation of Sect. 3.1. In particular, L/K is a Galois extension of number
fields with Galois group G. Let p be an odd prime. We denote the (finite) set of places
of K that ramify in L/K by Sram and let S be a finite set of places of K containing
Sram and all archimedean and p-adic places (i.e. S∞ ∪ Sp ∪ Sram ⊆ S).

Let M be a topologicalGL,S-module. Then M becomes a topologicalGLw -module
for every w ∈ S(L) by restriction. For any i ∈ Z we put

Pi (OL,S, M) :=
⊕

w∈S(L)

Hi
ét(Lw, M).
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For any integers r and i we define Pi (OL,S, Qp(r)) to be Pi (OL,S, Zp(r)) ⊗Zp Qp.

Lemma 3.4 Let r > 1 be an integer. Then we have isomorphisms of Qp[G]-modules

Pi (OL,S, Qp(r)) �
⎧
⎨

⎩

H+−r (L) ⊗ Qp if i = 0
L ⊗Q Qp if i = 1
0 otherwise.

Proof This is [62, Lemma 3.3] (see also [1, Lemma 5.2.4]). The case i = 1 will be
crucial in the following so that we briefly recall its proof. Let w ∈ Sp(L) and put
DLw

dR (Qp(r)) := H0(Lw, BdR ⊗Qp Qp(r)), where BdR denotes Fontaine’s de Rham
period ring. Then the Bloch–Kato exponential map

expBKr : Lw = DLw

dR (Qp(r)) −→ H1
ét(Lw, Qp(r)) (3.7)

is an isomorphism for every w ∈ Sp(L) as follows from [8, Corollary 3.8.4 and
Example 3.9]. Since the groups H1

ét(Lw, Zp(r)) are finite for w /∈ Sp(L), we obtain
isomorphisms of Qp[G]-modules

P1(OL,S, Qp(r)) �
⊕

w∈Sp(L)

H1
ét(Lw, Qp(r)) �

⊕

w∈Sp(L)

Lw � L ⊗Q Qp.

��

3.6 Schneider’s conjecture

Let M be a topological GL,S-module. For any integer i we denote the kernel of the
natural localization map

Hi
ét(OL,S, M) −→ Pi (OL,S, M)

byXi (OL,S, M). We callXi (OL,S, M) the Tate–Shafarevich group of M in degree
i . We recall the following conjecture of Schneider [69, p. 192].

Conjecture 3.5 (Sch(L, p, r)) Let r �= 0 be an integer. Then the Tate–Shafarevich
group III1(OL,S, Zp(r)) vanishes.

Remark 3.6 It is not hard to show that Conjecture 3.5 does not depend on the choice
of the set S.

Remark 3.7 Schneider originally conjectured that H2
ét(OL,S, Qp/Zp(1−r)) vanishes.

Both conjectures are in fact equivalent (see [62, Proposition 3.8 (ii)]).

Remark 3.8 It can be shown that Schneider’s conjecture for r = 1 is equivalent to
Leopoldt’s conjecture (see [54, Chapter X, Sect. 3]).



On the p-adic Beilinson conjecture and the ETNC Page 11 of 39 3

Remark 3.9 For a given number field L and a fixed prime p, Schneider’s conjecture
holds for almost all r . This follows from [69, Sect. 5, Corollar 4] and [69, Sect. 6, Satz
3].

Remark 3.10 Schneider’s conjecture Sch(L, p, r) holds whenever r < 0 by work of
Soulé [72]; see also [54, Theorem 10.3.27].

For an integer r we let X1(OL,S, Qp(r)) := Qp ⊗Zp X
1(OL,S, Zp(r)).

Lemma 3.11 Let r �= 0 be an integer and let p be an odd prime. Then the
Tate–Shafarevich group X1(OL,S, Zp(r)) is torsion-free. In particular, Schneider’s
conjecture Sch(L, p, r) holds if and only ifX1(OL,S, Qp(r)) vanishes.

Proof The first claim is [62, Proposition 3.8 (i)]. The second claim is immediate. ��

3.7 Artin L-series

Let L/K be a finite Galois extension of number fields with Galois group G and
let S be a finite set of places of K containing all archimedean places. For any irre-
ducible complex-valued character χ of G we denote the S-truncated Artin L-series by
LS(s, χ), and the leading coefficient of LS(s, χ) at an integer r by L∗

S(r , χ). We shall
sometimes use this notion even if L∗

S(r , χ) = LS(r , χ) (which will happen frequently
in the following).

Recall that there is a canonical isomorphism ζ(C[G]) � ∏
χ∈IrrC(G) C. We define

the equivariant S-truncated Artin L-series to be the meromorphic ζ(C[G])-valued
function

LS(s) := (LS(s, χ))χ∈IrrC(G).

For any r ∈ Z we also put

L∗
S(r) := (L∗

S(r , χ))χ∈IrrC(G) ∈ ζ(R[G])×.

3.8 A conjecture of Gross

Let r > 1 be an integer. Since Borel’s regulator map (3.5) induces an isomorphism of
R[G]-modules, the Noether–Deuring Theorem (see [54, Lemma 8.7.1] for instance)
implies the existence of Q[G]-isomorphisms

φ1−r : H+
1−r (L) ⊗ Q

�−→ K2r−1(OL) ⊗ Q. (3.8)

Let χ be a complex character of G and let Vχ be a C[G]-module with character χ .
Composition with ρr ◦ φ1−r induces an automorphism of HomG(Vχ̌ , H+

1−r (L) ⊗ C).

Let Rφ1−r (χ) = detC((ρr ◦ φ1−r )
χ̌ ) ∈ C

× be its determinant. If χ ′ is a second
character, then Rφ1−r (χ + χ ′) = Rφ1−r (χ) · Rφ1−r (χ

′) by Lemma 2.1 so that we
obtain a map
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Rφ1−r : R(G) −→ C
×

χ 	→ detC(ρr ◦ φ1−r | HomG(Vχ̌ , H+
1−r (L) ⊗ C)),

where R(G) := RC(G) denotes the ring of virtual complex characters of G. We
likewise define

AS
φ1−r

: R(G) −→ C
×

χ 	→ Rφ1−r (χ)/L∗
S(1 − r , χ).

Gross [42, Conjecture 3.11] conjectured the following higher analogue of Stark’s
conjecture.

Conjecture 3.12 (Gross) We have AS
φ1−r

(χσ ) = AS
φ1−r

(χ)σ for all σ ∈ Aut(C).

Remark 3.13 It is not hard to see that Gross’s conjecture does not depend on S and the
choice of φ1−r (see also [56, Remark 6]). A straightforward substitution shows that if
it is true for χ then it is true for χτ for every choice of τ ∈ Aut(C).

We record some cases where Gross’s conjecture is known and deduce a few new
cases. If q = �n is a prime power, we let Aff(q) be the group of affine transformations
on Fq . Thus we may write Aff(q) as a semi-direct product N � H , where H =
{x 	→ ax | a ∈ F

×
q } � F

×
q acts on N = {x 	→ x + b | b ∈ Fq} � Fq in the natural

way. Note that N is the commutator subgroup of Aff(q).

Theorem 3.14 Let L/K be a finiteGalois extension of number fields withGalois group
G and let χ ∈ R(G) be a virtual character. Let r > 1 be an integer. Then Gross’s
conjecture (Conjecture 3.12) holds in each of the following cases.

(i) χ is absolutely abelian, i.e. there is a normal subgroup N of G such that χ

factors through G/N � Gal(LN/K ) and LN/Q is abelian;
(ii) χ = 1G is the trivial character;
(iii) χ is a virtual permutation character, i.e. a Z-linear combination of characters

of the form indGH1H where H ranges over subgroups of G;
(iv) G � Aff(q) = N � H and LN/Q is abelian;
(v) Lker(χ) is totally real and r is even;
(vi) Lker(χ)/K is a CM-extension, χ is an odd character and r is odd.

Proof We first note that (ii) is Borel’s result (3.6) above. Since Gross’s conjecture
is invariant under induction and respects addition of characters, (ii) implies (iii). For
(i), (v) and (vi) we refer the reader to [62, Theorem 5.2] and the references given
therein. We now prove (iv). It suffices to show that Gross’s conjecture holds for every
χ ∈ IrrC(G). If χ is linear, it factors through G/N so that χ is indeed absolutely
linear. Thus Gross’s conjecture holds by (i). It has been shown in the proof of [49,
Theorem 10.5] that there is a unique non-linear irreducible character χnl of G and
that this character can be expressed as a Z-linear combination of indGH1H and linear
characters in IrrC(G). As Gross’s conjecture holds for the linear characters and for
indGH1H by (iii), it also holds for χnl. ��
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For any integer k we write

ιk : L ⊗Q C −→
⊕


(L)

C = (
H+
1−k(L) ⊕ H+

−k(L)
) ⊗ C (3.9)

for the canonical C[G × Gal(C/R)]-equivariant isomorphism which is induced by
mapping l ⊗ z to (σ (l)z)σ∈
(L) for l ∈ L and z ∈ C. Now fix an integer r > 1. We
define a C[G]-isomorphism

λr : (
K2r−1(OL) ⊕ H+−r (L)

) ⊗ C � (
H+
1−r (L) ⊕ H+−r (L)

) ⊗ C

� L ⊗Q C. (3.10)

Here, the first isomorphism is induced by ρr ⊕ idH+−r (L), whereas the second isomor-

phism is ι−1
r . As above, there exist Q[G]-isomorphisms

φr : L �−→ (
K2r−1(OL) ⊕ H+−r (L)

) ⊗ Q. (3.11)

We now define maps

Rφr : R(G) −→ C
×

χ 	→ detC
(
λr ◦ φr | HomG(Vχ̌ , L ⊗Q C)

)

and

AS
φr

: R(G) −→ C
×

χ 	→ Rφr (χ)/LS(r , χ̌).

Proposition 3.15 Fix an integer r > 1 and a character χ . Then Gross’s conjecture
3.12 holds if and only if we have AS

φr
(χσ ) = AS

φr
(χ)σ for all σ ∈ Aut(C).

Proof This is [62, Proposition 5.5]. ��

3.9 The comparison period

We henceforth assume that p is an odd prime and that L/K is a Galois CM-extension.
Recall that τ ∈ G is the unique automorphism induced by complex conjugation. For
each n ∈ Z we define a central idempotent en := 1−(−1)nτ

2 in Z[ 12 ][G]. Now let r > 1
be an integer. Since L is CM, the idempotent er acts trivially on H+

1−r (L)⊗C, whereas
er (H

+−r (L) ⊗ C) vanishes. Thus (3.10) induces a C[G]-isomorphism

μ∞(r) : K2r−1(OL) ⊗ C
∼−→ er (L ⊗Q C).

We likewise define a Cp[G]-homomorphism

μp(r) : K2r−1(OL) ⊗ Cp −→ er (L ⊗Q Cp)
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as follows. For each w ∈ Sp(L) we let Hi
syn(Ow, r) be the i th syntomic cohomology

group as considered by Besser [4]. We let regw
r : K2r−1(Ow) → H1

syn(Ow, r) be the
syntomic regulator [4, Theorem 7.5]. By [5, Lemma 2.15] (which heavily relies on
[4, Proposition 8.6]) we have canonical isomorphisms H1

syn(Ow, r) � Lw for each
w ∈ Sp(L). The map μp(r) is induced by the following chain of homomorphisms

K2r−1(OL) −→
⊕

w∈Sp(L)

K2r−1(Ow)

−→
⊕

w∈Sp(L)

H1
syn(Ow, r)

�
⊕

w∈Sp(L)

Lw

� L ⊗Q Qp. (3.12)

The map μp(r) shows up in the formulation of the p-adic Beilinson conjecture. How-
ever, the following map will be more suitable for the relation to the ETNC. We define
a Cp[G]-homomorphism

μ̃p(r) : K2r−1(OL) ⊗ Cp = K2r−1(OL,S) ⊗ Cp

� H1
ét(OL,S, Zp(r)) ⊗Zp Cp

−→ er (P
1(OL,S, Zp(r)) ⊗Zp Cp)

� er (L ⊗Q Cp).

Here, the first map is induced by the p-adic Chern class map ch(p)
r ,1 which is an iso-

morphism by Theorem 3.2; the arrow is the natural localization map, and the last
isomorphism is induced by the Bloch–Kato exponential maps (see Lemma 3.4).

The following result will be crucial for relating the p-adic Beilinson conjecture to
the ETNC.

Proposition 3.16 For each r > 1 we have μp(r) = μ̃p(r).

Proof For any abelian group A we write Â for its p-completion, that is Â :=
lim←−n

A/pn A. The localization maps (3.12) induce a map

K2r−1(OL) ⊗ Zp −→
⊕

w∈Sp(L)

̂K2r−1(Ow).

For each w ∈ Sp(L) the Universal Coefficient Theorem [77, Chapter IV, Theorem
2.5] implies that there is a natural (injective) map

̂K2r−1(Ow) −→ K2r−1(Ow; Zp).
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By [4, Corollary 9.10] there is a natural map H1
syn(Ow, r) → H1

ét(Lw, Qp(r)) such
that the diagram

̂K2r−1(Ow) ��

��

K2r−1(Ow; Zp)

��
H1
syn(Ow, r) �� H1

ét(Lw, Qp(r))

commutes. Here, the left-hand vertical arrow is induced by the syntomic regulator, and
the map on the right by the isomorphism in Theorem 3.3. Moreover, the composite
map

Lw � H1
syn(Ow, r) −→ H1

ét(Lw, Qp(r))

is the Bloch–Kato exponential map (3.7) by [4, Proposition 9.11]. Unravelling the
definitions we now see that the maps μp(r) and μ̃p(r) coincide. ��

Wewill henceforth often not distinguish between the mapsμp(r) and μ̃p(r). Since
the Tate–Shafarevich group X1(OL,S, Zp(r)) is torsion-free by Lemma 3.11, the
following result is now immediate.

Lemma 3.17 The map μp(r) is a Cp[G]-isomorphism if and only if Sch(L, p, r)
holds.

Definition 3.18 Let j : C � Cp be a field isomorphism and let ρ ∈ R+
Cp

(G). Let
r > 1 be an integer. We define the comparison period attached to j , ρ and r to be

� j (r , ρ) := detCp (μp(r) ◦ (Cp ⊗C, j μ∞(r))−1)ρ ∈ Cp.

We record some basic properties of � j (r ,−).

Lemma 3.19 Let H , N be subgroups of G with N normal in G.

(i) Let ρ1, ρ2 ∈ R+
Cp

(G). Then � j (r , ρ1 + ρ2) = � j (r , ρ1)� j (r , ρ2).

(ii) Let ρ ∈ R+
Cp

(H). Then � j (r , indGHρ) = � j (r , ρ).

(iii) Let ρ ∈ R+
Cp

(G/N ). Then � j (r , inflGG/Nρ) = � j (r , ρ).

Proof Each part follows from the corresponding part of Lemma 2.1. ��
Remark 3.20 Since μ∞(r) is an isomorphism, for any two choices of field isomor-
phism j, j ′ : C � Cp we have that � j (r , ρ) = 0 if and only if � j ′(r , ρ) = 0.

Remark 3.21 For any fixed choice of field isomorphism j : C � Cp we have

Sch(L, p, r) holds ⇐⇒ μp(r) is an isomorphism

⇐⇒ � j (r , ρ) �= 0 ∀ρ ∈ IrrCp (G),
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where the first equivalence is Lemma 3.17. Thus the non-vanishing of � j (r , ρ) can
be thought of as the ‘ρ-part’ of Sch(L, p, r). Moreover, if � j (r , ρ) �= 0 then we
may set � j (r ,−ρ) := � j (r , ρ)−1 and so if we assume Sch(L, p, r) then Lemma
3.19 (i) shows that the definition of� j (r , ρ) naturally extends to any virtual character
ρ ∈ RCp (G).

Remark 3.22 Assume that G is abelian. For each integer r , Burns, Kurihara and Sano
[21, Sect. 2.2] define canonical period-regulator isomorphisms

εr

rε
j∧

Cp[G]
H1
ét(OL,S, Zp(1 − r)) ⊗Zp Cp → εr

rε
j∧

Cp[G]
P0(OL,S, Zp(−r)) ⊗Zp Cp.

(3.13)

Here εr ∈ Zp[G] are certain idempotents such that the εr -parts of bothCp[G]-modules
in the exterior products are free of the same rank rε

j . If r > 1 and Sch(L, p, r) holds,
then one may take εr = er and r ε

j = 0. In this case the diagram [21, p. 125] gives an
exact sequence of Cp[G]-modules

0 = er (H
1
ét(OL,S, Zp(1 − r)) ⊗Zp Cp) → er (L ⊗Q Cp)

∗ → er (H
+
1−r (L) ⊗ Cp)

∗ → 0,

where (−)∗ denotes Cp-linear duals (note also that their HL(r − 1)+ is H+
1−r (L) in

our notation). The non-trivial map is (up to sign) the dual of μp(r) ◦ ρ−1
r . Hence the

exterior product on the left of (3.13) canonically identifies with

er detCp[G]((L ⊗Q Cp)
∗) ⊗Cp[G] det−1

Cp[G]((H
+
1−r (L) ⊗ Cp)

∗)

and the isomorphisms μp(r) ◦ ρ−1
r and ιr induce a map to detCp[G](H+−r (L) ⊗ Cp)

which can be identified with the exterior power on the right by a variant of Lemma
3.4. For more details we refer the interested reader to [21, Sect. 2.2.4].

The authors then use the isomorphism (3.13) to define generalized Stark elements
and to state [21, Conjecture 3.6] which might be seen as an analogue and refinement
of a conjecture of Rubin [68] in the case r = 0. It is then shown in [21, Sect. 4]
that their conjecture is implied by the appropriate special case of the ETNC. As the
formulation of the latter involves the Bloch–Kato exponential map rather than the
syntomic regulator, a variant of Proposition 3.16 is already implicit in their work (for
instance, see [21, Remark 2.7])

3.10 p-adic Artin L-functions

Let E/K be a finite Galois extension of totally real number fields and let G =
Gal(E/K ). Let p be an odd prime and let S be a finite set of places of K containing
Sp ∪ S∞. For each ρ ∈ RCp (G) the S-truncated p-adic Artin L-function attached to ρ

is the unique p-adic meromorphic function L p,S(s, ρ) : Zp → Cp with the property
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that for each strictly negative integer n and each field isomorphism j : C � Cp we
have

L p,S(n, ρ) = j
(
LS(n, (ρ ⊗ ωn−1) j

−1
)
)

,

whereω : GK → Z
×
p is the Teichmüller character andwe view ρ⊗ωn−1 as a character

ofGal(E(ζp)/K ). By a result of Siegel [70] the right-hand side does indeed not depend
on the choice of j . In the case thatρ is linear, L p,S(s, ρ)was constructed independently
by Deligne and Ribet [33], Barsky [2] and Cassou-Nogués [24]. Greenberg [37] then
extended the construction to the general case using Brauer induction.

3.11 Statement of the p-adic Beilinson conjecture

We now formulate our variant of the p-adic Beilinson conjecture.

Conjecture 3.23 (The p-adic Beilinson conjecture) Let E/K be a finite Galois exten-
sion of totally real number fields and let G = Gal(E/K ). Let p be an odd prime and
let S be a finite set of places of K containing Sp ∪ S∞. Let ρ ∈ R+

Cp
(G) and let r > 1

be an integer. Then for every choice of field isomorphism j : C ∼= Cp we have

L p,S(r , ρ) = � j (r , ρ ⊗ ωr−1) · j
(
LS(r , (ρ ⊗ ωr−1) j

−1
)
)

. (3.14)

Remark 3.24 It is straightforward to show that Conjecture 3.23 does not depend on
the choice of S.

Remark 3.25 One can show (see Theorem 4.12 below) that L p,S(r , ρ) �= 0 if and
only if � j (r , ρ ⊗ ωr−1) �= 0. In this case (and thus in particular if Sch(E(ζp), p, r)
holds) the statement of Conjecture 3.23 naturally extends to all virtual characters
ρ ∈ RCp (G).

Remark 3.26 It is clear from the definitions that Conjecture 3.23 is compatible with
the p-adic Beilinson conjecture as considered by Besser, Buckingham, de Jeu and
Roblot [5, Conjecture 3.18]. More concretely, the equality (3.14) is equivalent to the
appropriate special case of [5, Conjecture 3.18 (i)–(iii)], whereas [5, Conjecture 3.18
(iv)] then is equivalent to the non-vanishing of � j (r , ρ ⊗ ωr−1) as follows from
Remark 3.25.

Remark 3.27 Since both complex and p-adicArtin L-functions satisfy properties anal-
ogous to those of � j (r ,−) given in Lemma 3.19, the truth of Conjecture 3.23 is
invariant under induction and inflation; moreover, if it holds for ρ1, ρ2 ∈ RCp (G)

then it holds for ρ1 + ρ2.

3.12 The relation to Gross’s conjecture

The following results are the analogues of [49, Theorem 4.16 and Corollary 4.18],
respectively.
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Theorem 3.28 Let E/K be a finiteGalois extension of totally real number fields and let
G = Gal(E/K ). Let p beanoddprimeand let S beafinite set of places of K containing
Sp ∪ S∞. Let ρ ∈ R+

Cp
(G) and let r > 1 be an integer. We put ψ := ρ ⊗ ωr−1. If

� j (r , ψ) �= 0 for some (and hence every) choice of field isomorphism j : C ∼= Cp

then the following statements are equivalent.

(i) � j (r , ψ) · j(LS(r , ψ j−1
)) is independent of the choice of j : C ∼= Cp.

(ii) Gross’s conjecture at s = 1 − r holds for ψ̌ j−1 ∈ R+
C

(Gal(E(ζp)/K ) and some
(and hence every) choice of j : C ∼= Cp.

Proof The first and second occurrence of ‘and hence every’ in the statement of the
theorem follow from Remarks 3.13 and 3.20, respectively.

Let j, j ′ : C ∼= Cp be field isomorphisms and let χ := ψ j−1
. Then j = j ′ ◦ σ for

some σ ∈ Aut(C) and so ψ j ′−1 = χσ . For every Q[G]-isomorphism φr as in (3.11)
we have

� j (r , ψ) · j (
Rφr (χ̌)

) = detCp (μp(r) ◦ (Cp ⊗Q φr ))
ψ ,

which does not depend on j . Hence we have

� j (r , ψ) · j(LS(r , ψ j−1
))

� j ′(r , ψ) · j ′(LS(r , ψ( j ′)−1
))

= j ′(Rφr (χ̌)) · j(LS(r , χ))

j(Rφr (χ̌)) · j ′(LS(r , χσ ))

= j ′
(

σ(LS(r , χ)) · Rφr (χ̌)

σ (Rφr (χ̌)) · LS(r , χσ )

)

.

By Proposition 3.15 the last expression is equal to 1 if and only if Gross’s conjecture
at s = 1 − r (Conjecture 3.12) holds for the character χ̌ . ��
Corollary 3.29 Let E/K be a finite Galois extension of totally real number fields
and let G = Gal(E/K ). Fix a prime p and let r > 1 be an integer. Assume that
Sch(E(ζp), p, r) holds. If the p-adic Beilinson conjecture at s = r holds for all
ρ ∈ R+

Cp
(G) then Gross’s conjecture at s = 1 − r holds for χ ⊗ ωr−1 for all

χ ∈ R+
C

(G).

3.13 Absolutely abelian characters

Since our conjecture is compatible with that of [5] by Remark 3.26 and invariant under
induction and inflation of characters by Remark 3.27, we deduce the following result
from work of Coleman [29] (see [5, Proposition 4.17]).

Theorem 3.30 Let E/K be a finite Galois extension of totally real number fields and
let G = Gal(E/K ). Let p be a prime and let r > 1 be an integer. Suppose that
ρ ∈ R+

Cp
(G) is an absolutely abelian character, i.e., there exists a normal subgroup

N of G such that ρ factors through G/N ∼= Gal(EN/K ) and EN/Q is abelian. Then
the p-adic Beilinson conjecture (Conjecture 3.23) holds for ρ.
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4 Equivariant Iwasawa theory

4.1 Bockstein homomorphisms

Werecall somebackgroundmaterial regardingBockstein homomorphisms. The reader
may also consult [22, Sect. 3.1–Sect. 3.2].

Let G be a compact p-adic Lie group that contains a closed normal subgroup H
such that � := G/H is isomorphic to Zp. We fix a topological generator γ of �. The
Iwasawa algebra of G is

�(G) := Zp�G� = lim←− Zp[G/N ],

where the inverse limit is taken over all open normal subgroupsN of G. If F is a finite
field extension ofQp with ring of integersO = OF , we put�O(G) := O⊗Zp �(G) =
O�G�. We consider continuous homomorphisms

π : G −→ AutO(Tπ ), (4.1)

where Tπ is a finitely generated free O-module. For g ∈ G we denote its image in �

under the canonical projection by g. We view �O(�) ⊗O Tπ as a (�O(�),�(G))-
bimodule, where �O(�) acts by left multiplication and �(G) acts on the right via

(λ ⊗O t)g := λg ⊗O g−1t

for λ ∈ �O(�), t ∈ Tπ and g ∈ G. For each complex C• ∈ Dperf(�(G)) we define a
complex C•

π ∈ Dperf(�O(�)) by

C•
π := (�O(�) ⊗O Tπ ) ⊗L

�(G) C
•.

Given an open normal subgroup U of G we set C•
U := Zp[G/U ] ⊗L

�(G)
C• and, if U

is contained in the kernel of π , we furthermore obtain a complex

C•
U ,(π) = Tπ ⊗L

Zp[G/U ] C
•
U = Tπ ⊗L

�(G) C
• ∈ Dperf(O)

which does actually not depend on U . The natural exact triangles

C•
π

γ−1−−→ C•
π −→ C•

U ,(π)

in D(O) induce short exact sequences of O-modules

0 −→ Hi (C•
π )�

αi−→ Hi (C•
U ,(π))

α̃i−→ Hi+1(C•
π )� −→ 0 (4.2)
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for each i ∈ Z. TheBockstein homomorphism in degree i is defined to be the composite
homomorphism

β i
C•,π : Hi (C•

U ,(π))
α̃i−→ Hi+1(C•

π )� −→ Hi+1(C•
π )�

αi+1−→ Hi+1(C•
U ,(π)),

where the middle arrow is the tautological map. We obtain a bounded complex of
O-modules

�C•,π : . . .
βi−1
C•,π−−−→ Hi (C•

U ,(π))
βi
C•,π−−−→ Hi+1(C•

U ,(π))
βi+1
C•,π−−−→ . . .

where the term Hi (C•
U ,(π)) is placed in degree i . Note that the Bockstein homomor-

phisms and the complex�C•,π actually depend on the choice of γ , though our notation
does not reflect this. The complex C• is called semisimple at π if Qp ⊗Zp �C•,π is
acyclic (for any and hence every choice of γ ).

For any �(G)-module M we put Mπ := (�O(�) ⊗O Tπ ) ⊗�(G) M .

Lemma 4.1 Assume that G is a compact p-adic Lie group of dimension 1 and let
C• ∈ Dperf(�(G)) be acyclic outside degree a for somea ∈ Z. Further assume that the
�(G)-module Ha(C•) has projective dimension at most 1. Then for every continuous
homomorphism π : G → AutO(Tπ ) the complex C•

π is acyclic outside degree a and
there is a canonical isomorphism of �O(�)-modules Ha(C•

π ) � Ha(C•)π .
Proof This has been shown in the course of the proof of [15, Lemma 5.6]. We repeat
the short argument for convenience.

We may assume that a = 0. Then C• may be represented by a complex P−1 d→
P0, where P−1 and P0 are projective �(G)-modules placed in degrees −1 and 0,
respectively, and the homomorphism d is injective. Then C•

π is represented by

(Tπ ⊗Zp P−1)H
d ′−→ (Tπ ⊗Zp P0)H ,

where d ′ is injective since d is. The result follows. ��

4.2 Algebraic K-theory

Let R be a noetherian integral domain with field of fractions E . Let A be a finite-
dimensional semisimple E-algebra and letAbe an R-order in A. For anyfield extension
F of E we set AF := F ⊗E A. Let K0(A, F) = K0(A, AF ) denote the relative
algebraic K -group associated to the ring homomorphism A ↪→ AF . We recall that
K0(A, AF ) is an abelian group with generators [X , g,Y ] where X and Y are finitely
generated projective A-modules and g : F ⊗R X → F ⊗R Y is an isomorphism of
AF -modules; for a full description in terms of generators and relations, we refer the
reader to [74, p. 215]. Moreover, there is a long exact sequence of relative K -theory
(see [74, Chapter 15])

K1(A) −→ K1(AF )
∂−→ K0(A, AF ) −→ K0(A) −→ K0(AF ). (4.3)



On the p-adic Beilinson conjecture and the ETNC Page 21 of 39 3

The reduced norm map Nrd = NrdAF : AF → ζ(AF ) is defined componentwise on
the Wedderburn decomposition of AF and extends to matrix rings over AF (see [31,
Sect. 7D]); thus it induces a map K1(AF ) −→ ζ(AF )×, which we also denote by
Nrd.

In the case E = F the relative K -group K0(A, A) identifies with the Grothendieck
groupwhose generators are [C•], whereC• is an object of the categoryCbtors(PMod(A))

of bounded complexes of finitely generated projectiveA-modules whose cohomology
modules are R-torsion, and the relations are as follows: [C•] = 0 if C• is acyclic, and
[C•

2 ] = [C•
1 ] + [C•

3 ] for every short exact sequence

0 −→ C•
1 −→ C•

2 −→ C•
3 −→ 0

in Cbtors(PMod(A)) (see [77, Chapter 2] or [73, Sect. 2], for example).
We denote the full triangulated subcategory of Dperf(A) comprising perfect com-

plexes whose cohomology modules are R-torsion by Dperf
tors (A). Then every object C•

of Dperf
tors (A) defines a class [C•] in K0(A, A).

Let p be an odd prime and letG be a one-dimensional compact p-adic Lie group that
surjects onto Zp. Then G may be written as G = H �� with a finite normal subgroup
H of G and a subgroup � � Zp. LetO be the ring of integers in some finite extension
F ofQp. We considerA = �O(G) = O�G� as an order over R := �O(�0), where�0

is an open subgroup of � that is central in G. We denote the fraction field of �O(�0)

by QF (�0) and let A = QF (G) := QF (�0) ⊗R �O(G) be the total ring of fractions
of �O(G). Then [78, Corollary 3.8] shows that the map ∂ in (4.3) is surjective; thus
the sequence

K1(�
O(G)) −→ K1(QF (G))

∂−→ K0(�
O(G),QF (G)) −→ 0 (4.4)

is exact. If ξ ∈ K1(QF (G)) is a pre-image of some x ∈ K0(�
O(G),QF (G)), we say

that ξ is a characteristic element for x . We also set Q(G) := QQp (G).
We include the following consequence of (4.4) for later use.

Lemma 4.2 Let M be a finitely generated �O(G)-module of projective dimension at
most one. Assume that M is torsion as an R-module. Then M admits a free resolution
of the form

0 → �O(G)m → �O(G)m → M → 0 (4.5)

for some positive integer m.
Let �′ � Zp be an open normal subgroup of G and set G := G/�′. If in addition

M�′ is finite, then M�′
vanishes and (4.5) induces a short exact sequence of Zp[G]-

modules

0 → Zp[G]m → Zp[G]m → M�′ → 0.
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Proof Choose a surjective �O(G)-homomorphism �O(G)m → M . Its kernel is a
projective �O(G)-module P by assumption. Since M is R-torsion, we see that the
classes of P and �O(G)m in K0(�

O(G)) have the same image in K0(QF (G)). Hence
they coincide by (4.4). In other words, P and �O(G)m are stably isomorphic. By
enlarging m if necessary, we may assume that P is free of rank m and we have
established the existence of (4.5). By [54, Lemma 5.3.11] this sequence induces an
exact sequence of Zp[G]-modules

0 → M�′ → Zp[G]m → Zp[G]m → M�′ → 0.

It follows that M�′
is a free Zp-module of the same rank as M�′ . This proves the

remaining claims. ��
Now let π : G → AutO(Tπ ) be a continuous homomorphism as in (4.1) and set

n := rankO(Tπ ). There is a ring homomorphism �π : �(G) → Mn×n(�
O(�))

induced by the continuous group homomorphism

G −→ (Mn×n(O) ⊗Zp �(�))× = GLn(�
O(�))

g 	→ π(g) ⊗ g,

where g denotes the image of g inG/H � �. By [27, Lemma 3.3] this homomorphism
extends to a ring homomorphism Q(G) → Mn×n(QF (�)) and this in turn induces a
homomorphism

�π : K1(Q(G)) −→ K1(Mn×n(QF (�))) � QF (�)×.

For ξ ∈ K1(Q(G)) we set ξ(π) := �π(ξ). If π = πρ is an Artin representation with
character ρ, we also write �ρ and ξ(ρ) for �πρ and ξ(πρ), respectively, and let

jρ : ζ(Q(G))× −→ QF (�)×

be the map defined by Ritter and Weiss in [66]. By [60, Lemma 2.3] (choose r = 0)
we have a commutative triangle

K1(Q(G))

Nrd
��

�ρ

����
���

���
��

ζ(Q(G))×
jρ �� QF (�)×

We shall also write ξ∗(ρ) for the leading term at T = 0 of the power series �ρ(ξ).
We choose a maximal �(�0)-order M(G) in Q(G) such that �(G) is contained in

M(G).

Lemma 4.3 Let C• ∈ Dperf
tors (�(G)) be a complex and let ξ be a characteristic element

for C•. Let πρ be an Artin representation with character ρ. Then ξ(ρ) · jρ(x) is a
characteristic element for C•

ρ for every x ∈ ζ(M(G))×.
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Proof In the case that x = 1 this is [15, Lemma 5.4 (vii)] (and follows from the
naturality of connecting homomorphisms). By [66,RemarkH] the image of ζ(M(G))×
under jρ is contained in �O(�)×. This proves the claim. ��

4.3 Cohomology with compact support

Let p be an odd prime. We denote the cyclotomic Zp-extension of a number field K
by K∞ and set �K := Gal(K∞/K ). Let S be a finite set of places of K containing
the set S∞ ∪ Sp. Let M be a topological GK ,S-module. Following Burns and Flach
[17] we define the compactly supported cohomology complex to be

R�c(OK ,S, M) := cone

(

R�(OK ,S, M) −→
⊕

v∈S
R�(Kv, M)

)

[−1],

where the arrow is induced by the natural restriction maps. For any integers i and
r we abbreviate Hi R�c(OK ,S, M) to Hi

c (OK ,S, M) and set Hi
c (OK ,S, Qp(r)) :=

Qp ⊗Zp Hi
c (OK ,S, Zp(r)).

Let E/K be a finite Galois extension of totally real fields and set L := E(ζp). Then
L is a CM-field and we denote its maximal totally real subfield by L+ as in Sect. 3.9.
Set G := Gal(L∞/K ) and let

χcyc : G −→ Z
×
p ,

be the p-adic cyclotomic character defined by σ(ζ ) = ζχcyc(σ ) for any σ ∈ G and any
p-power root of unity ζ . The composition of χcyc with the projections onto the first
and second factors of the canonical decomposition Z

×
p = 〈ζp−1〉 × (1 + pZp) are

given by the Teichmüller character ω and a map that we denote by κ .
Assume in addition that S contains all places that ramify in L∞/K . For each integer

r we define a complex of �(G)-modules

C•
r ,S := R�c(OK ,S, er�(G)�(r)),

where �(G)�(r) denotes the �(G)-module �(G) upon which σ ∈ GK acts on the
right via multiplication by the element χr

cyc(σ )σ−1; here σ denotes the image of σ in
G. Note that the complexes C•

r ,S are perfect by [36, Proposition 1.6.5] and we have
natural isomorphisms

C•
r ,S � C•

1,S ⊗L

Zp
Zp(r − 1) (4.6)

for every integer r .
Each �(G)-module M naturally decomposes as a direct sum M+ ⊕ M− with

M± = 1±τ
2 M . Similarly, each complexC• ofDperf(�(G)) gives rise to subcomplexes

(C•)+ and (C•)−. Moreover, we let (C•)∨ := RHom(C•, Qp/Zp) be the Pontryagin
dual of C•. By a Shapiro Lemma argument and Artin–Verdier duality we then have
isomorphisms
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C•
r ,S �

{
R�(OL+∞,S, Qp/Zp(1 − r))∨[−3] if 2 � r
(
R�(OL∞,S, Qp/Zp(1 − r))∨

)− [−3] if 2 | r . (4.7)

in D(er�(G)). We let MS be the maximal abelian pro-p-extension of L+∞ unramified
outside S. Then XS := Gal(MS/L+∞) is a finitely generated �(G+)-module, where
we put G+ := G/〈τ 〉 = Gal(L+∞/K ). Iwasawa [45] has shown that XS is in fact
torsion as a �(�L+)-module. We let μp(L+) denote the Iwasawa μ-invariant of XS

and note that this does not depend on the choice of S (see [54, Corollary 11.3.6]).
Hence μp(L+) vanishes if and only if XS is finitely generated as a Zp-module. It
is conjectured that we always have μp(L+) = 0 and as explained in [47, Remark
4.3], this is closely related to the classical Iwasawa ‘μ = 0’ conjecture for L at p.
Thus a result of Ferrero and Washington [34] on this latter conjecture implies that
μp(L+) = 0 whenever E/Q and thus L/Q is abelian.

The only non-trivial cohomology groups of R�(OL+∞,S, Qp/Zp)
∨ occur in degrees

−1 and 0 and canonically identify with XS and Zp, respectively. Hence (4.7) with
r = 1 and (4.6) imply that for each integer r the cohomology of C•

r ,S is concentrated
in degrees 2 and 3 and we have

H2(C•
r ,S) � XS(r − 1), H3(C•

r ,S) � Zp(r − 1).

4.4 Themain conjecture

The following is an obvious reformulation of the equivariant Iwasawamain conjecture
for the extension L+∞/K (without its uniqueness statement).

Conjecture 4.4 (equivariant Iwasawa main conjecture) Let L/K be a Galois CM-
extension such that L contains a primitive pth root of unity. Let S be a finite set of
places of K containing S∞ and all places that ramify in L+∞/K. Then there exists an
element ζS ∈ K1(Q(G+)) such that ∂(ζS) = [C•

1,S] and for every irreducible Artin
representation πρ of G+ with character ρ and for each integer n ≥ 1 divisible by
p − 1 we have

ζ ∗
S (ρκn) = L p,S(1 − n, ρ) = j

(
LS(1 − n, ρ j−1

)
)

(4.8)

for every field isomorphism j : C ∼= Cp.

Part (i) of the following theorem has been shown by Ritter and Weiss [67] and by
Kakde [51] independently. Part (ii) is due to Johnston and the present author [50].

Theorem 4.5 Conjecture 4.4 holds for L+∞/K in each of the following cases.

(i) The μ-invariant μp(L+) vanishes.
(ii) The Galois group G+ has an abelian Sylow p-subgroup.

By starting out from the work of Deligne and Ribet [33], Greenberg [37] has shown
that for each topological generator γ of � there is a unique element fρ,S(T ) in the
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quotient field of Q
c
p ⊗Zp Zp�T � (which we will identify with Q

c
p ⊗Zp �(�) via the

usual map that sends γ to 1 + T ) such that

L p,S(1 − s, ρ) = fρ,S(u
s − 1),

where u := κ(γ ). For each integer a we let x 	→ tacyc(x) be the automorphisms on
Qc(G) induced by g 	→ χcyc(g)ag for g ∈ G.We use the same notation for the induced
group homomorphisms on K1(Q(G)) and K1(erQ(G)), r ∈ Z.

Proposition 4.6 Suppose that Conjecture 4.4 holds for L+∞/K. Then for each r ∈ Z

there exists an element ζr ,S ∈ K1(erQ(G)) such that ∂(ζr ,S) = [C•
r ,S] and for every

irreducible Artin representation πρ of G+ with character ρ we have

ζr ,S(ρ ⊗ ωr−1) = fρ,S(u
1−r (1 + T ) − 1). (4.9)

Proof When r = 1 we may take ζ1,S = ζS by [49, Proposition 7.5]. Then ζr ,S :=
t1−r
cyc (ζ1,S) is a characteristic element for C•

r ,S by (4.6) and (4.9) follows from [15,
Lemma 5.4 (v)] (see also [14, Lemma 9.5]). ��
Corollary 4.7 Let r ∈ Z be an integer and let πρ be an irreducible Artin representation
of G+ with character ρ. Then fρ,S(u1−r (1 + T ) − 1) is a characteristic element of
C•
r ,ρ⊗ωr−1 .

Proof Since the main conjecture (Conjecture 4.4) holds ‘over the maximal order’ by
[47, Theorem 4.9] (this result is essentially due to Ritter and Weiss [66]), the equality
(4.9) holds unconditionally up to a factor jρ(x) for some x ∈ ζ(M(G))×. Thus the
claim follows from Lemma 4.3. ��

4.5 Schneider’s conjecture and semisimplicity

We recall the following result from [62, Propositions 3.11 and 3.12]. Part (i) is a special
case of [16, Proposition 1.20] and of [36, Proposition 1.6.5].

Proposition 4.8 Let L/K be a Galois extension of number fields with Galois group
G. Let r > 1 be an integer and let p be an odd prime. Then the following hold.

(i) The complex R�c(OL,S, Zp(r)) belongs toDperf(Zp[G]) and is acyclic outside
degrees 1, 2 and 3.

(ii) We have an exact sequence of Zp[G]-modules

0 −→ H+−r (L) ⊗ Zp −→ H1
c (OL,S, Zp(r)) −→ X1(OL,S, Zp(r)) −→ 0.

(iii) We have an isomorphism of Zp[G]-modules

H3
c (OL,S, Zp(r)) � Zp(r − 1)GL .

(iv) The Zp[G]-module X2(OL,S, Zp(r)) is finite.
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(v) The Zp-rank of H2
c (OL,S, Zp(r)) equals dr+1 if and only if Schneider’s conjec-

ture Sch(L, p, r) holds.

We now return to the situation considered in Sect. 4.3. Before proving the next
result we recall that for a finitely generated �O(�)-torsion module M the following
are equivalent: (i) M� is finite; (ii) M� is finite; (iii) fM (0) �= 0, where fM denotes
a characteristic element for M . Moreover, by [54, Proposition 5.3.19] we have that
M = 0 if and only if M� = M� = 0.

Proposition 4.9 Let r > 1 be an integer and let ρ be an irreducible Artin charac-
ter of G+ such that ker(ρ) contains �L+ . Set ψ := ρ ⊗ ωr−1. Then we have that
Hi (C•

r ,S,ψ ) = 0 for i �= 2, 3 and natural isomorphisms of Oψ -modules

H2(C•
r ,S,ψ )� � H1

c (OL,S, Zp(r))
(ψ) � X1(OL,S, Zp(r))

(ψ) (4.10)

and

H3(C•
r ,S,ψ )� � H3

c (OL,S, Zp(r))(ψ) � (Zp(r − 1)GL )(ψ) (4.11)

and a short exact sequence of Oψ -modules

0 −→ H2(C•
r ,S,ψ )� −→ H2(R�c(OL,S, Zp(r))(ψ)) −→ H3(C•

r ,S,ψ )� −→ 0.

(4.12)

In particular, the Oψ -modules H3(C•
r ,S,ψ )� and H3(C•

r ,S,ψ )� are finite.

Proof We putO := Oψ for brevity. Since the complex C•
r ,S is acyclic outside degrees

2 and 3 and the functor M 	→ Mψ = (�O(�) ⊗O Tψ) ⊗�(G) M is right exact, it is
clear that Hi (C•

r ,S,ψ ) vanishes for i ≥ 4. We let U = �L = Gal(L∞/L). Then U is
contained in the kernel of ψ , and by [36, Proposition 1.6.5] we have an isomorphism

C•
r ,S,U � er R�c(OL,S, Zp(r)) := erZp[G] ⊗L

Zp[G] R�c(OL,S, Zp(r))

in D(erZp[G]). We now consider the exact sequence (4.2) for the case at hand and
various integers i . We will repeatedly apply Lemma 2.2. In particular, the complex
C•
r ,S,U ,(ψ) is acyclic outside degrees 1, 2 and 3 by Proposition 4.8 (i). For i ≤ 0

we find that Hi (C•
r ,S,ψ )� and Hi+1(C•

r ,S,ψ )� vanish. Thus Hi (C•
r ,S,ψ ) vanishes for

i ≤ 0 and even for i = 1 once we show that theO-module H1(C•
r ,S,ψ )� is trivial. We

already know that it is finite. Sequence (4.2) in the case i = 1 and Lemma 2.2 now
give rise to a short exact sequence

0 −→ H1(C•
r ,S,ψ )� −→ H1

c (OL,S, Zp(r))
(ψ) −→ H2(C•

r ,S,ψ )� −→ 0.

Since the central idempotent er annihilates H
+−r (L) ⊗ Zp and er eψ = eψ we have an

isomorphism

H1
c (OL,S, Zp(r))

(ψ) � X1(OL,S, Zp(r))
(ψ)
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by Proposition 4.8 (ii). Since the Tate–Shafarevich group X1(OL,S, Zp(r)) is
torsion-free by Lemma 3.11, the O-module X1(OL,S, Zp(r))(ψ) is free. Therefore
H1(C•

r ,S,ψ )� vanishes as desired and we have established (4.10). Proposition 4.8 (iii),
Lemma 2.2 and the case i = 3 of sequence (4.2) imply (4.11). Finally, sequence (4.12)
is the case i = 2 of sequence (4.2). ��
Lemma 4.10 Let r be an arbitrary integer. Then there are finitely generated er�(G)-
modules Yr ,S and Zr with all of the following properties:

(i) The projective dimension of both Yr ,S and Zr is at most 1;
(ii) both Yr ,S and Zr are torsion as R-modules;
(iii) there is an exact triangle

Zr [−3] −→ C•
r ,S −→ Yr ,S[−2]

in D(er�(G));
(iv) we have that Yr ,S = Y0,S(r) and Zr = Z0(r);
(v) the coinvariants (Zr )�L are finite if r �= 1.

Proof We first consider the case r = 0. It is shown in [48, Proposition 8.5] that the
complex C•

0,S is isomorphic in D(e0�(G)) to a complex

. . . −→ 0 −→ Y0,S −→ Z0 −→ 0 −→ . . .

where Y0,S is placed in degree 2. More precisely, in the notation of [48] we have

C•
0,S = C•

S(L
+∞/K )(−1)[−3], Y0,S = Y T

S (−1), Z0 = IT =
(

⊕

v∈T
indGGw∞

Zp(−1)

)−

where T is a finite set of places of K disjoint from S with certain properties, and
Gw∞ denotes the decomposition group at a chosen place w∞ of L∞ above v for each
v ∈ T ; moreover, we write indGUM := �(G) ⊗�(U) M for any open subgroup U of
G and any �(U)-module M . By [48, Lemmas 8.4 and 8.5] the modules Z0 and Y0,S
are R-torsion and of projective dimension at most 1. Thus (i) and (ii) also hold for
Yr ,S := Y0,S(r) = Y T

S (r − 1) and Zr := Z0(r) = er
⊕

v∈T indGGw∞
Zp(r − 1). It is

now clear that (iv) holds and that C•
r ,S is isomorphic to the complex

. . . −→ 0 −→ Yr ,S −→ Zr −→ 0 −→ . . .

in D(er�(G)). Hence (iii) also holds. Moreover, the coinvariants (Zr )�L are clearly
finite for r �= 1. ��
Remark 4.11 Wepoint out that similar constructions repeatedly appear in the literature.
In fact, by [60, Theorem 2.4] the complex C•

S(L
+∞/K ) naturally identifies with the

complex constructed by Ritter and Weiss [65]. Choosing their maps � and ψ̃ in [66,



3 Page 28 of 39 A. Nickel

p.562 f.] suitably one can take Y1,S = coker(�) and Z1 = coker(ψ̃). Moreover, Burns
[15, Sect. 5.3.1] constructed an exact triangle in D(e0�(G)) of the form

R�T (OK ,S, e0�(G)�(1)) −→ R�(OK ,S, e0�(G)�(1)) −→
⊕

v∈T
R�(K (v), e0�(G)�(1))

where the set T is as in the proof of Lemma 4.10. For each v ∈ T the
complex R�(K (v), e0�(G)�(1)) is acyclic outside degree 1 and we have an e0�(G)-
isomorphism

H1(K (v), e0�(G)�(1)) � e0ind
G
Gw∞

Zp(1).

For each �(G)-module M and i ∈ Z we set Ei (M) := Exti
�(G)

(M,�(G)). We then
have an isomorphism of e0�(G)-modules

⊕

v∈T
H1(K (v), e0�(G)�(1)) � E1(IT ).

If C• is a complex in D(e0�(G)), we denote the complex RHome0�(G)(C•, e0�(G))

by (C•)∗. If M is an R-torsion e0�(G)-module of projective dimension at most 1, then
we have isomorphisms M[−n]∗ � E1(M)[n − 1] in D(e0�(G)) for every n ∈ Z.
This yields

⊕

v∈T
R�(K (v), e0�(G)�(1)) � I ∗

T .

The complex R�T (OK ,S, e0�(G)�(1)) is acyclic outside degree 2 and its second
cohomology group H2

T (OK ,S, e0�(G)�(1)) is of projective dimension at most 1 by
[15, Proposition 5.5]. Since we have an isomorphism

R�(OK ,S, e0�(G)�(1)) � (C•
0,S)

∗[−3]

by Artin–Verdier duality, it follows that we have an isomorphism

R�T (OK ,S, e0�(G)�(1)) � Y T
S (−1)∗[−1]

in D(e0�(G)) and an isomorphism of e0�(G)-modules

H2
T (OK ,S, e0�(G)�(1)) � E1(Y T

S (−1)).

Finally, theminus Tatemodule Tp(MK
S,T )− of the Iwasawa-theoretic 1-motiveMK

S,T
constructed by Greither and Popescu [38] plays the role of E1(Y T

S (−1)); the e0�(G)-
module Tp(�K,T )− is our E1(IT ). See in particular [38, Remark 3.10].
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Theorem 4.12 Let r > 1 be an integer and let ρ be an irreducible Artin character of
G+ such that ker(ρ) contains �L+ . Set ψ := ρ ⊗ωr−1. Then the following conditions
are equivalent.

(i) We have that X1(OL,S, Zp(r))(ψ) vanishes.
(ii) We have that X1(OL,S, Qp(r))(ψ) vanishes.
(iii) We have that H2

c (OL,S, Qp(r))(ψ) vanishes.
(iv) The period� j (r , ψ) is non-zero for any (and hence every) choice of j : C � Cp.
(v) We have that L p,S(r , ρ) �= 0.

If these equivalent conditions hold (in particular if Sch(L, p, r) holds), then the com-
plex C•

r ,S is semisimple at ψ .

Proof We again set O := Oψ for brevity. We have already observed in the proof of
Proposition 4.9 that X1(OL,S, Zp(r))(ψ) is a free O-module. The equivalence of (i)
and (ii) is therefore clear. We have an exact sequence of Zp[G]-modules

0 −→ X1(OL,S, Zp(r)) −→ H1
ét(OL,S, Zp(r)) −→ P1(OL,S, Zp(r))

−→ H2
c (OL,S, Zp(r)) −→ X2(OL,S, Zp(r)) −→ 0.

Since X2(OL,S, Zp(r)) is finite by Proposition 4.8 (iv) and the erQp[G]-modules
er H1

ét(OL,S, Qp(r)) � er K2r−1(OL)⊗Qp and er P1(OL,S, Qp(r)) � er (L ⊗Q Qp)

are (non-canonically) isomorphic, there is a (non-canonical) isomorphismof erQp[G]-
modules

erX1(OL,S, Qp(r)) � er H
2
c (OL,S, Qp(r)).

Thus also X1(OL,S, Qp(r))(ψ) and H2
c (OL,S, Qp(r))(ψ) are (non-canonically) iso-

morphic and so (ii) and (iii) are indeed equivalent. The equivalence of (ii) and (iv) is
easy (see Remark 3.21).

We next establish the equivalence of (i) and (v). By Lemma 4.1 the triangle of
Lemma 4.10 (iii) induces an exact triangle

Zr ,ψ [−3] −→ C•
r ,S,ψ −→ Yr ,S,ψ [−2] (4.13)

in D(�O(�)). Let hr ,ψ (T ) and gr ,S,ψ (T ) be characteristic elements of Zr ,ψ and
Yr ,S,ψ , respectively. Corollary 4.7 implies that we may assume that

gr ,S,ψ (T ) = hr ,ψ (T ) · fρ,S(u
1−r (1 + T ) − 1).

Since (Zr ,ψ )� is finite by Lemma 4.10 (v) we have hr ,ψ (0) �= 0. Thus L p,S(r , ρ) =
fρ,S(u1−r − 1) is non-zero if and only if gr ,S,ψ (0) �= 0 if and only if Y�

r ,S,ψ vanishes,
where the latter equivalence uses Lemma 4.2 (with M = Yr ,S,ψ and G = �) and
Lemma 4.10 (i) and (ii). By (4.13) we have an exact sequence of �O(�)-modules

0 −→ H2(C•
r ,S,ψ ) −→ Yr ,S,ψ −→ Zr ,ψ −→ H3(C•

r ,S,ψ ) −→ 0.
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Since taking �-invariants is left exact and Z�
r ,ψ vanishes by another application of

Lemma 4.2, it follows that there is an isomorphism Y�
r ,S,ψ � H2(C•

r ,S,ψ )� . The latter

identifies withX1(OL,S, Zp(r))(ψ) by Proposition 4.9 which proves the claim.
Finally, if these equivalent conditions all hold, then Proposition 4.9 implies that

theO-modules Hi (C•
r ,S,ψ )� and Hi (C•

r ,S,ψ )� are finite for all i ∈ Z. It follows from

the short exact sequences (4.2) that Hi (C•
r ,S,U ) is finite for all i ∈ Z, where we set

U = �L as before. Thus the whole complex Qp ⊗Zp �C•
r ,S ,ψ

vanishes. In particular,
the complex C•

r ,S is semisimple at ψ . ��

Remark 4.13 By specializing K = L+ in the above argument, we see that Schneider’s
conjecture Sch(L, p, r) implies that Y�L

r ,S vanishes and that (Yr ,S)�L is finite.

4.6 Higher refined p-adic class number formulae

We keep the notation of Sect. 4.3. We let ∂p : ζ(Cp[G])× � K1(Cp[G]) →
K0(Zp[G], Cp) be the composition of the inverse of the reduced norm and the con-
necting homomorphism to relative K -theory. By abuse of notation we shall use the
same symbol for the induced maps on ‘er -parts’. We recall that G denotes Gal(L/K )

and that G+ = G/〈τ 〉 = Gal(L+/K ). We define

L p,S(r) :=
∑

ρ∈IrrCp (G+)

L p,S(r , ρ)eρ⊗ωr−1 ∈ ζ(erQp[G]).

Let us assume that Schneider’s conjecture Sch(L, p, r) holds. Then we actually
have that L p,S(r) ∈ ζ(erQp[G])× and the cohomology groups of the complex
er R�c(OL,S, Zp(r)) are finite by Proposition 4.8 and Theorem 4.12. This complex

therefore is an object in Dperf
tors (erZp[G]). We now state our conjectural higher refined

p-adic class number formula.

Conjecture 4.14 Let r > 1 be an integer and assume that Sch(L, p, r) holds. Then in
K0(erZp[G], Qp) one has

∂p(L p,S(r)) = [er R�c(OL,S, Zp(r))].

Remark 4.15 In the case r = 1 Burns [15, Conjecture 3.5] has formulated a conjec-
tural refined p-adic class number formula. Conjecture 4.14 might be seen as a higher
analogue of his conjecture. Accordingly, Theorem 4.17 below is the higher analogue
of [15, Theorem 3.6].

Lemma 4.16 Let r > 1 be an integer and assume that Sch(L, p, r) holds. Then

H Rp(L/K , r) := ∂p(L p,S(r)) − [er R�c(OL,S, Zp(r))]

does not depend on the set S.
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Proof Let S′ be a second sufficiently large finite set of places of K . By embedding S
and S′ into the union S ∪ S′ we may and do assume that S ⊆ S′. By induction we
may additionally assume that S′ = S ∪ {v}, where v is not in S. In particular, v is
unramified in L/K and v � p. By [17, (30)] we have an exact triangle

⊕

w|v
R� f (Lw, Zp(r))[−1] −→ R�c(OL,S′ , Zp(r)) −→ R�c(OL,S, Zp(r)),

(4.14)

where R� f (Lw, Zp(r)) is a perfect complex of Zp[Gw]-modules which is naturally
quasi-isomorphic to

Zp[Gw] 1−φwN (v)−r
�� Zp[Gw] (4.15)

with terms in degree 0 and 1. We set

εv(r) :=
(
detCp (1 − φwN (v)−r | Vχ )−1

)

χ∈IrrCp (G)
∈ ζ(Qp[G])×.

We compute

[er R�c(OL,S, Zp(r))] − [er R�c(OL,S′ , Zp(r))] = [er
⊕

w|v
R� f (Lw, Zp(r))]

= ∂p(erεv(r))

= ∂p(L p,S(r)) − ∂p(L p,S′(r)),

where the first and second equality follow from (4.14) and (4.15), respectively. This
implies the claim. ��

Our main evidence for Conjecture 4.14 is provided by the following result which,
crucially, does not depend upon the vanishing of μp(L+).

Theorem 4.17 Let r > 1 be an integer and assume that Sch(L, p, r) holds. If the
equivariant Iwasawa main conjecture (Conjecture 4.4) holds for L+∞/K (and so in
particular ifμp(L+) = 0 or if G+ has an abelian Sylow p-subgroup), then Conjecture
4.14 holds.

Proof We first observe that the complex C•
r ,S is semisimple at ρ ⊗ ωr−1 for all ρ ∈

IrrCp (G
+) by Theorem 4.12. Moreover, if we put U = �L as above, then we have an

isomorphism

C•
r ,S,U � er R�c(OL,S, Zp(r)) (4.16)

inD(erZp[G]). If Conjecture 4.4 holds, then byProposition 4.6 there is a characteristic
element ζr ,S of [C•

r ,S] such that ζr ,S(ρ ⊗ ωr−1) = fρ,S(u1−r (1 + T ) − 1). Since
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fρ,S(u1−r − 1) = L p,S(r , ρ) �= 0 we have that ζ ∗
r ,S(ρ ⊗ ωr−1) = L p,S(r , ρ). If

μp(L+) vanishes or p does not divide the cardinality of G+, then [23, Theorem 2.2]
implies the claim (as noted above the complexes Qp ⊗Zp �C•

r ,S ,ρ⊗ωr−1 all vanish).
In order to avoid these assumptions, we proceed as follows. Observe that both

(Zr )�L and (Yr ,s)�L are finite by Lemma 4.10 (v) and Theorem 4.12 (or rather Remark
4.13), respectively, since Schneider’s conjecture holds by assumption. Recall from
Lemma 4.10 (iii) that we have an exact triangle

Zr [−3] −→ C•
r ,S −→ Yr ,S[−2]

in D(er�(G)). It now follows from (4.16) and Lemma 4.2 for both Zr and Yr ,S that
we likewise have an exact triangle

(Zr )�L [−3] −→ er R�c(OL,S, Zp(r)) −→ (Yr ,S)�L [−2]

in D(erZp[G]). Let Hr and Gr ,S in ζ(erQ(G))× be the reduced norms of character-
istic elements of Zr and Yr ,S , respectively. Note that both Hr and Gr ,S are actually
reduced norms of matrices with coefficients in er�(G). Since Conjecture 4.4 holds
by assumption, we may assume that Nrd(ζr ,S) = Gr ,S/Hr , where ζr ,S is the charac-
teristic element of [C•

r ,S] that occurs in Proposition 4.6. Now by (the proof of) [55,
Theorem 6.4] one has

∂p(Gr ,S) = [(Yr ,S)�L ], ∂p(Hr ) = [(Zr )�L ],

where

Gr ,S :=
∑

ρ∈IrrCp (G+)

aug�( jρ⊗ωr−1(Gr ,S))eρ⊗ωr−1 ∈ ζ(erQp[G])×

and Hr is defined similarly. Hence we obtain

[er R�c(OL,S, Zp(r))]
= [(Yr ,S)�L ] − [(Zr )�L ]
= ∂p(Gr ,S/Hr )

= ∂p

⎛

⎜
⎝

∑

ρ∈IrrCp (G+)

aug�( jρ⊗ωr−1(Nrd(ζr ,S)))eρ⊗ωr−1

⎞

⎟
⎠

(∗)=∂p(L p,S(r)).

It remains to justify the last equality (∗). For this we compute

aug�( jρ⊗ωr−1(Nrd(ζr ,S))) = aug�(ζr ,S(ρ ⊗ ωr−1))

= fρ,S(u
1−r − 1) = L p,S(r , ρ).
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Here the first and second equality follow from [59, Lemma 2.3] and (4.9), respectively.
This finishes the proof of (∗). ��

Let us write K0(erZp[G], Qp)tors for the torsion subgroup of K0(erZp[G], Qp).

Corollary 4.18 Let r > 1 be an integer and assume that Sch(L, p, r) holds. Then we
have that H Rp(L/K , r) ∈ K0(erZp[G], Qp)tors.

Proof Let K ′ ⊆ L+ be a totally real field containing K . Denote the Galois group
Gal(L/K ′) by G ′. Then HRp(L/K , r) maps to HRp(L/K ′, r) under the natural
restriction map K0(erZp[G], Qp) → K0(erZp[G ′], Qp). If L ′ ⊆ L is a Galois
CM-extension of K , then likewise HRp(L/K , r) maps to HRp(L ′/K , r) under
the natural quotient map K0(erZp[G], Qp) → K0(erZp[Gal(L ′/K )], Qp). Since
HR(L ′/K ′, r) vanishes for each intermediate Galois CM-extension of degree prime
to p by Theorem 4.17, we deduce the result by a slight modification of the argument
given in [64, Proof of Proposition 11] (also see [58, Proof of Corollary 2]). ��

4.7 An application to the equivariant Tamagawa number conjecture

Let r be an integer and let L/K be a finite Galois extension of number fields with
Galois group G. We set Q(r)L := h0(Spec(L))(r) which we regard as a motive
defined over K and with coefficients in the semisimple algebra Q[G]. The ETNC
[17, Conjecture 4 (iv)] for the pair (Q(r)L , Z[G]) asserts that a certain canoni-
cal element T�(Q(r)L , Z[G]) in K0(Z[G], R) vanishes. Note that in this case the
element T�(Q(r)L , Z[G]) is indeed well-defined as observed in [18, Sect. 1]. If
T�(Q(r)L , Z[G]) is rational, i.e. belongs to K0(Z[G], Q), then by means of the
canonical isomorphism

K0(Z[G], Q) �
⊕

p

K0(Zp[G], Qp)

we obtain elements T�(Q(r)L , Z[G])p in K0(Zp[G], Qp).
If r > 1 is an integer and L/K is a Galois CM-extension, the following result

provides a strategy for proving the ETNC for the pair (Q(r)L , erZ[ 12 ][G]). We let
T�(Q(r)L , erZ[ 12 ][G]) be the image of T�(Q(r)L , Z[G]) under the canonical maps

K0(Z[G], R) −→ K0(Z[ 12 ][G], R) −→ K0(erZ[ 12 ][G], R)

induced by extension of scalars. We define T�(Q(r)L , erZ[ 12 ][G])p similarly.

Theorem 4.19 Let r > 1 be an integer and let p be an odd prime. Let L/K be a
Galois CM-extension with Galois group G and set L̃ := L(ζp). Assume that both
Schneider’s conjecture Sch(L̃, p, r) and the p-adic Beilinson conjecture (Conjecture
3.23) for L̃+/K hold. Then T�(Q(r)L , erZ[ 12 ][G]) is rational and we have that

T�(Q(r)L , erZ[ 12 ][G])p ∈ K0(erZp[G], Qp)tors.
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If we assume in addition that the equivariant Iwasawa main conjecture (Conjecture
4.4) holds for L̃+∞/K, then the p-part of the ETNC for the pair (Q(r)L , erZ[ 12 ][G])
holds, i.e. the element T�(Q(r)L , erZ[ 12 ][G])p vanishes.
Proof Since T�(Q(r)L̃ , erZ[ 12 ][Gal(L̃/K )]) maps to T�(Q(r)L , erZ[ 12 ][G]) under
the canonical quotient map K0(erZ[ 12 ][Gal(L̃/K )], R) → K0(erZ[ 12 ][G], R) by [17,
Theorem 4.1], we may and do assume that L̃ = L . Since both Schneider’s conjecture
and the p-adic Beilinson conjecture hold, Corollary 3.29 implies that Gross’s conjec-
ture at s = 1− r holds for all even (odd) irreducible characters of G if r is even (odd).
By [62, Proposition 5.5 and Theorem 6.5] (or rather the ‘er -parts’ of these results) this
is indeed equivalent to the rationality of T�(Q(r)L , erZ[ 12 ][G]).

Let us define

� j (r) :=
∑

ρ∈IrrCp (G+)

� j (r , ρ ⊗ ωr−1)eρ⊗ωr−1 ∈ ζ(erCp[G])×.

By the validity of the p-adic Beilinson conjecture we have that

L p,S(r) = j(er L
∗
S(r))� j (r). (4.17)

We clearly have that � j (r) = Nrd([er (L ⊗Q Cp) | μp(r) ◦ (Cp ⊗C, j μ∞(r))−1]).
Moreover, by Proposition 3.16 the automorphism

t(r , S, j) := ιr ◦ (Cp ⊗C, j μ∞(r)) ◦ μp(r)
−1 ◦ ι−1

r ∈ AuterCp[G](H+
1−r ⊗Z Cp)

coincides with the ‘er -part’ of the trivialization of the same name in [62, Sect. 6.2]
(up to an insignificant factor 2; cf. Remark 3.1). Since we have that

Nrd([H+
1−r ⊗Z Cp | t(r , S, j)]) = � j (r)

−1,

the object

�
j
r ,S := [er R�c(OL,S, Zp(r))] − ∂p(� j (r)) ∈ K0(erZp[G], Cp) (4.18)

is equal to the er -part of the object denoted by�
j
r ,S in [62, Sect. 6.2].We now compute

HRp(L/K , r) = ∂p(L p,S(r)) − [er R�c(OL,S, Zp(r))]
= ∂p( j(er L

∗
S(r))) + ∂p(� j (r)) − [er R�c(OL,S, Zp(r))]

= ∂p( j(er L
∗
S(r))) − �

j
r ,S

= T�(Q(r)L , erZ[ 12 ][G])p.

Here, the first equality holds by definition of HRp(L/K , r), the second and third
equality follow from (4.17) (essentially the p-adic Beilinson conjecture) and (4.18),
respectively, and the last equality follows from [62, Proposition 6.4 and Theorem 6.5].
Now Corollary 4.18 and Theorem 4.17 give the result. ��
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Remark 4.20 Fix an integer r > 1. We have assumed throughout that L̃ contains a pth
root of unity. What was actually needed in the above considerations, however, is that
ωr−1 restricted to GL̃ is trivial. Let E ⊆ L̃r ⊆ L̃ be the smallest intermediate field
such that ωr−1 restricted to GL̃r

is trivial. Then we can replace L̃ by L̃r throughout.

Note that L̃r is totally real and thus L̃+
r = L̃r whenever r is odd, whereas we have

L̃r = L̃ otherwise. In particular, we can replace L̃ by E whenever r ≡ 1 mod (p−1).

Corollary 4.21 Let p be an odd prime and let r > 1 be an integer such that r ≡ 1
mod (p − 1). Let E/K be a Galois extension of totally real fields with Galois group
G. Assume that Schneider’s conjecture Sch(E, p, r), the p-adic Beilinson conjecture
(Conjecture 3.23) for E/K and the equivariant Iwasawa main conjecture (Conjecture
4.4) for E∞/K all hold. Then T�(Q(r)E , Z[ 12 ][G]) is rational and the p-part of the
ETNC for the pair (Q(r)E , Z[ 12 ][G]) holds.
Proof This follows from Theorem 4.19 and Remark 4.20. ��
Corollary 4.22 Let L/K be a Galois extension of number fields with Galois group
G and let p be an odd prime. Assume in addition that L/Q is abelian. Then
T�(Q(r)L , erZ[ 12 ][G]) is rational and the p-part of the ETNC for the pair
(Q(r)L , erZ[ 12 ][G]) holds for all but finitely many r > 1.

Proof We may assume that K = Q by functoriality. As L(ζp) is abelian over the
rationals, the relevant Iwasawa invariant μp(L(ζp)

+) vanishes by the aforementioned
result of Ferrero and Washington [34] (see the discussion following (4.7)). Hence
Conjecture 4.4 holds for L(ζp)

+∞/Q by either part of Theorem 4.5 (but note that
in this case a variant of the equivariant Iwasawa main conjecture can be deduced
from work of Mazur and Wiles [53] as in [65, Theorem 8] for example). The p-
adic Beilinson conjecture holds for L(ζp)

+/Q by Theorem 3.30. Finally, Schneider’s
conjecture Sch(L(ζp), p, r) holds for all but finitely many r by Remark 3.9. Thus the
result follows from Theorem 4.19. ��
Remark 4.23 Of course, the result of Corollary 4.22 is not new. In fact, the ETNC for
the pair (Q(r)L , Z[G]) holds for every integer r whenever L/Q is abelian. If r ≤ 0
this is the main result of Burns and Greither in [20] (important difficulties with the
prime 2 have subsequently been resolved by Flach [35]). The case r > 0 is due to
Burns and Flach [19]. A slightly weaker variant of the ETNC, where the integral group
ring Z[G] is essentially replaced by a maximal order containing it, has been studied
earlier by Huber and Kings [44].

Example 4.24 Let E/Q be a Galois extension of totally real fields with Galois
group G � Aff(q), where q = �n is a prime power. Let r > 1 be an inte-
ger. Since Gross’s conjecture holds for all χ ∈ R(G) by Theorem 3.14 (iv), we
have that T�(Q(r)L , Z[ 12 ][G]) is rational by [62, Theorem 6.5 (i)]. Let us write
Aff(q) � N � H , where N denotes the commutator subgroup of Aff(q). Then the
p-adic group ringZp[Aff(q)] is ‘N -hybrid’ in the sense of [46, Definition 2.5] by [46,
Example 2.16] for every prime p �= �. Since every p-adic group ring is {1}-hybrid,
we deduce from [48, Theorem 10.2] (or just as well from Theorem 4.5 (ii)) that the
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equivariant Iwasawa main conjecture holds unconditionally for E(ζp)
+∞/Q for every

odd prime p. ThusConjecture 4.14 holds byTheorem4.17whenever Sch(E(ζp), p, r)
holds. In particular, this conjecture holds for almost all r > 1 for a fixed prime p.

We now assume for simplicity that r ≡ 1 mod (p − 1). The p-adic Beilinson
conjecture holds for all linear characters of G by Theorem 3.30. As we have already
observed in the proof of Theorem 3.14 (iv) there is only one non-linear character χnl
of Aff(q) which is a Z-linear combination of linear characters and of indGH1H . Hence
it suffices to show Conjecture 3.23 for the trivial character 1H , i.e. for the trivial
extension EH/EH . Assuming this we can apply Corollary 4.21 to deduce that the
p-part of the ETNC for the pair (Q(r)E , erZ[ 12 ][G]) holds. So what is missing here
(apart from Schneider’s conjecture) is a higher analogue of Colmez’s p-adic analytic
class number formula [30] and its complex analytic counterpart. (A closer analysis of
the proof of Theorem 4.19 shows that similar observations indeed hold for arbitrary
r > 1.)
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