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Abstract

Let E/K be a finite Galois extension of totally real number fields with Galois group
G. Let p be an odd prime and let » > 1 be an odd integer. The p-adic Beilinson
conjecture relates the values at s = r of p-adic Artin L-functions attached to the
irreducible characters of G to those of corresponding complex Artin L-functions. We
show that this conjecture, the equivariant Iwasawa main conjecture and a conjecture
of Schneider imply the ‘p-part’ of the equivariant Tamagawa number conjecture for
the pair (hO(Spec(E)) (r), Z[G)).If r > 11is even we obtain a similar result for Galois
CM-extensions after restriction to ‘minus parts’.
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1 Introduction

Let E/K be a finite Galois extension of number fields with Galois group G and
let r be an integer. The equivariant Tamagawa number conjecture (ETNC) for the
pair (hO(Spec(E )(), Z[G]) as formulated by Burns and Flach [17] asserts that a
certain canonical element 7 Q2 (E /K, r) in the relative algebraic K -group Ko(Z[G], R)
vanishes. This element relates the leading terms at s = r of Artin L-functions to natural
arithmetic invariants.

If r = O this might be seen as a vast generalization of the analytic class number
formula for number fields, and refines Stark’s conjecture for E /K as discussed by Tate
in [75] and the ‘Strong Stark conjecture’ of Chinburg [25, Conjecture 2.2]. It is known
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to imply a whole bunch of conjectures such as Chinburg’s ‘€23-conjecture’ [25,26],
the Rubin—Stark conjecture [68], Brumer’s conjecture, the Brumer—Stark conjecture
(see [75, Chapitre IV, Sect. 6]) and generalizations thereof due to Burns [13] and the
author [57]. If r is a negative integer, the ETNC refines a conjecture of Gross [42]
and implies (generalizations of) the Coates—Sinnott conjecture [28] and a conjecture
of Snaith [71] on annihilators of the higher K-theory of rings of integers (see [56]).
If r > 1 the ETNC likewise predicts constraints on the Galois module structure of
p-adic wild kernels [62].

The functional equation of Artin L-functions suggests that the ETNC atr and 1 —r
are equivalent. This is not known in general, but leads to a further conjecture which is
sometimes referred to as the local ETNC. Except for the validity of the local ETNC
it therefore suffices to consider the (global) ETNC for either odd or even integers r.
Note that the local ETNC is widely believed to be easier to settle. For instance, the
‘global epsilon constant conjecture’ of Bley and Burns [6] measures the compatibility
of the closely related ‘leading term conjectures’ at s = 0 [12] and s = 1 [10] and is
known to hold for arbitrary tamely ramified extensions [6, Corollary 7.7] and also for
certain weakly ramified extensions [7].

Now suppose that E/K is a Galois extension of totally real number fields and let
p be an odd prime. If r < 0 is odd Burns [14] and the author [60] independently
have shown that the ‘p-part’ of the ETNC for the pair (hO(SpeC(E ))(r), Z[G])) holds
provided that a certain Iwasawa p ,-invariant vanishes (which conjecturally is always
true). The latter condition is mainly present because the equivariant Iwasawa main
conjecture (EIMC) for totally real fields then holds by independent work of Ritter and
Weiss [67] and of Kakde [51].

The case r > 0 is more subtle. Burns and Venjakob [22,23] (see also [14, Corol-
lary 2.8]) proposed a strategy for proving the p-part of the ETNC for the pair
(hO(Spec(E))(l), Z[G]). More precisely, this special case of the ETNC is implied
by the vanishing of the relevant u ,-invariant, Leopoldt’s conjecture for E at p and
the ‘p-adic Stark conjecture at s = 1’. The latter conjecture relates the leading
terms at s = 1 of the complex and p-adic Artin L-functions attached to charac-
ters of G by certain comparison periods. Note that Burns and Venjakob actually
assume these conjectures for all odd primes p and then deduce the ETNC for the pair
(hO(Spec(E N(), Z[%][G]), but their approach has recently been refined by Johnston
and the author [49] so that one can indeed work prime-by-prime.

There are similar results on minus parts if L/K is a Galois CM-extension with
Galois group G, i.e. K is totally real and L is a totally complex quadratic extension of
atotally real field L. Namely, if r < 0 is even and y, vanishes, then the minus p-part
of the ETNC for the pair (hO(SpeC(L))(r), Z[G]) holds [14,60]. Burns [15] recently
proposed a strategy for proving the minus p-part of the ETNC in the case r = 0.
In comparison with the strategy in the case r = 1, Leopoldt’s conjecture is replaced
with the conjectural non-vanishing of Gross’s regulator [41], and the p-adic Stark
conjecture is replaced with the ‘weak p-adic Gross—Stark conjecture’ [41, Conjecture
2.12b] (now a theorem for linear characters by work of Dasgupta, Kakde and Ventullo
[32]). For an approach that only relies upon the validity of the EIMC we refer the
reader to [58,61].
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The aim of this article is to propose a similar strategy in the remaining cases,
i.e. we will consider the ETNC for Tate motives h°(Spec(L))(r) where r > 1 and L
is a CM-field. Note that we can treat all integers r > 1 simultaneously as the ‘plus
p-part’ of the ETNC for the pair (hO(Spec(L))(r), Z[G]) naturally identifies with the
corresponding conjecture for the extension L™ /K of totally real fields. We show that
the p-adic Beilinson conjecture at s = r, a conjecture of Schneider [69] and the EIMC
imply the plus (resp. minus) p-part of the ETNC for the pair (h°(Spec(L))(r), Z[G1)
if r is odd (resp. even).

We follow the formulation of the p-adic Beilinson conjecture in [5]. It relates the
values at s = r of the complex and p-adic Artin L-functions by certain comparison
periods involving Besser’s syntomic regulator [4]. For absolutely abelian extensions
variants of the p-adic Beilinson conjecture have been formulated and proved by Cole-
man [29], Gros [39,40] and Kolster and Nguyen Quang Do [52]. Thus the p-adic
Beilinson conjecture holds for absolutely abelian characters (see Sect. 3.13 for a pre-
cise statement).

Let us compare our approach to the earlier work mentioned above. The formulation
of both the p-adic Beilinson conjecture and the p-adic Stark conjecture involves the
choice of a field isomorphism j : C ~ C,. We show in Sect. 3.12 that the p-adic
Beilinson conjecture does not depend upon this choice if and only if a conjecture of
Gross [42] holds. The latter is revisited in Sect. 3.8 and might be seen as a higher
analogue of Stark’s conjecture; a similar result in the case r = 1 has recently been
established by Johnston and the author in [49]. In both cases the independence of j is
therefore equivalent to the rationality part of the appropriate special case of the ETNC.
This eventually allows us to establish a prime-by-prime descent result analogous to
[49, Theorem 8.1].

In alittle more detail, we formulate conjectural ‘higher refined p-adic class number
formulae’ analogous to [15, Conjecture 3.5] (where r = 0), and show that these follow
from the EIMC and Schneider’s conjecture in Sect. 4.6. Here, as will be shown in
Sect. 4.5, the latter conjecture ensures that the relevant complexes are semisimple at
all Artin characters as Leopoldt’s conjecture does in the case r = 1 and the non-
vanishing of Gross’s regulator does in the case r = 0. This is a necessary condition in
order to apply the descent formalism of Burns and Venjakob [23]. A second condition is
the vanishing of the aforementioned Iwasawa p ,-invariant, but given recent progress
of Johnston and the author [47,50] on the EIMC without assuming ©, = 0, we
wish to circumvent this hypothesis. For this purpose, we develop a different descent
argument that makes no use of this assumption, but requires a more delicate analysis
of the relevant complexes. The higher refined p-adic class number formula at s = r
may then be combined with the p-adic Beilinson conjecture at s = r to deduce the
plus, respectively minus, p-part of the ETNC for the pair (h°(Spec(L))(r), Z[G])
in Sect. 4.7. For this, it is crucial to relate Besser’s syntomic regulators to Soulé’s
p-adic Chern class maps [72] and the Bloch—Kato exponential maps [8] that appear
in the formulation of the ETNC. This is carried out in Sect. 3.9 (in particular see
Proposition 3.16). The formulation of the ETNC that is most suitable for our purposes
is a reformulation due to the author [62]. This has primarily been introduced in order
to construct (conjectural) annihilators of p-adic wild kernels.
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Our prime example are totally real Galois extensions E/Q with Galois group iso-
morphic to Aff(g), where g = £" is a prime power and Aff(g) denotes the group of
affine transformations on the finite field IF, with ¢ elements. We show that Gross’s
conjecture holds in this case (Theorem 3.14 (iv)). Moreover, the relevant cases of the
EIMC hold unconditionally by recent work of Johnston and the author [47] (see also
[50]) and the p-adic Beilinson conjecture reduces to the case of the trivial extension
EH/EH where H denotes the subgroup GL (F,) of Aff(g). See Example 4.24 for
more details.

Finally, we note that the ETNC for the pair (hO(Spec(L)) (r), Z[G)) has been ver-
ified for any integer r whenever L is abelian over the rationals by work of Burns,
Greither and Flach [19,20,35]. However, if r > 1 and L is not absolutely abelian, then
we are not aware of any previous (conditional) results that establish the (p-part of the)
ETNC for the pair (h°(Spec(L))(r), Z[G]).

Notation and conventions

All rings are assumed to have an identity element and all modules are assumed to be
left modules unless otherwise stated. Unadorned tensor products will always denote
tensor products over Z. For a ring A we write {(A) for its center and A for the
group of units in A. For every field F we fix a separable closure F¢ of F and write
Gr = Gal(F°/F) for its absolute Galois group. If n > 0 is an integer coprime to the
characteristic of F', we let ¢, denote a primitive nth root of unity in F€.

A finite Galois extension of totally real number fields will usually be denoted by
E/K, whereas L/K denotes an arbitrary Galois extension of number fields. Galois
CM-extensions will usually be denoted by L/K as well.

2 Algebraic preliminaries
2.1 Derived categories and Galois cohomology

Let A be a noetherian ring and let PMod(A) be the category of all finitely generated
projective A-modules. We write D(A) for the derived category of A-modules and
C’(PMod(A)) for the category of bounded complexes of finitely generated projective
A-modules. Recall that a complex of A-modules is called perfect if it is isomorphic
in D(A) to an element of C?(PMod(A)). We denote the full triangulated subcategory
of D(A) comprising perfect complexes by DPE (A).

If M is a A-module and # is an integer, we write M[n] for the complex

— 00— M —0— -

where M is placed in degree —n. Note that this is compatible with the usual shift
operator on cochain complexes.

Let L be an algebraic extension of the number field K. For a finite set S of places
of K containing the set Sy, of all archimedean places we let G, s be the Galois group
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over L of the maximal extension of L that is unramified outside S(L); here we write
S(L) for the set of places of L lying above those in S. We let O, s be the ring of
S(L)-integers in L. For any topological G s-module M we write RI"(Op s, M) for
the complex of continuous cochains of G, s with coefficients in M. If F is a field and
M is a topological G r-module, we likewise define RI"(F, M) to be the complex of
continuous cochains of G g with coefficients in M.

If F is a global or alocal field of characteristic zero, and M is a discrete or a compact
G p-module, then for » € Z we denote the rth Tate twist of M by M (r). Now fix a
prime p and suppose that S also contains all p-adic places of K. Then for each inte-
ger i the cohomology group in degree i of RT'(O s, Zp(r)) naturally identifies with
H; (OL.s, Zp(r)), the ith étale cohomology group of the affine scheme Spec(OL )
with coefficients in the étale p-adic sheaf Z,(r). We set Hét(OL,Sa Qp(r)) =

Qp ®z, HS(OL.s5. Zp(r)).
2.2 Representations and characters of finite groups

Let G be a finite group and let F be a field of characteristic zero. We write R}'(G)
for the set of characters attached to finite-dimensional F-valued representations of
G, and RF(G) for the ring of virtual characters generated by R}'(G). Moreover, we
denote the subset of irreducible characters in R;(G) and the ring of F-valued virtual
characters of G by Irr £ (G) and Char ¢ (G), respectively.

For a subgroup H of G and ¢ € R;(H) we write indgw € R;(G) for the
induced character; for a normal subgroup N of G and x € R}'(G /N) we write
inﬂg/Nx € R} (G) for the inflated character. For o € Aut(F) and x € Charr(G)
we set x? := o o x and note that this defines a group action from the left even though
we write exponents on the right of . We denote the trivial character of G by 1.

2.3 y-twists

Let G be a finite group and let F be a field of characteristic zero. If M is a Z[ G]-module
we let M© be the maximal submodule of M upon which G acts trivially. Likewise we
write M¢ for the maximal quotient module with trivial G-action. For any x € R;E (G)
we fix a (left) F[G]-module V, with character x. For any F[G]-module M and any
a € Endp(G)(M) we write MX for the F-vector space

Hom rG1(Vy, M) = Homp(V,, M)°

and aX for the induced map (f — o o f) € Endp(MX). We note that detr(aX) is
independent of the choice of V,. The following is [49, Lemma 2.1] and very similar
to [75, Chapitre I, 6.4].

Lemma 2.1 Let M be an F[G]-module and let « € End G| (M). Let H be a subgroup
of G and let M|y denote M considered as an F[H]-module. Let N be a normal
subgroup of G and view M as an F[G /N ]-module in the obvious way.

(i) For x1, x2 € R}:(G) one has detp (a¥1772) = detp (a!)det p (a2).
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(i) For x € R;(H) there is an isomorphism Mindgx ~ (M|g)* and an equality
detp (a™i ) = detp(ak).
(iii) Forx € R;(G/N) there is an isomorphism M

detp @™/ = detp (] yn)%).

G
G/ ~ (MN)X and an equality

Let p be a prime. For each x € Irr(cp (G) we fix a subfield F,, of C, which is both
Galois and of finite degree over Q, and such that x can be realized over F,. We write
ey == Gl x (DY 2eG X (g)g~! for the associated primitive central idempotent in
C,[G] and choose an indecomposable idempotent f, of F,[Gle,.Let O, be the ring
of integers in F,, and choose a maximal O, -order M, in Fy[G] containing f, . Then
Ty := fyMy is an O, -free right O, [G]-module.

For any (left) Z,[G]-module M we define a (left) O,[G]-module M[x] :=
Ty ®z, M, where g € G acts upon ¢ ® m by the rule g(t ® m) = tg7' ® gm
for all t € T, and m € M. We define O,-modules M) := M[x]® and
My = Mlxlc = Ty ®z,1G1 M. We thereby obtain left, respectively right exact func-
tors M > MY and M + My from the category of Z ,[ G]-modules to the category
of O,-modules. Note that there is an isomorphism F R0, MO ~ (Fy ®z, M)*
for every finitely generated Z,[G]-module M.

Since multiplication by the trace Trg := deG g gives rise to an isomorphism

Py =~ PO for each projective Z p[G]-module P (in fact for each cohomologically
trivial G-module P), these functors extend to naturally isomorphic exact functors
DP(Zy[G1) — DP(Oy) (and D' (Q,[G1) — DP(Fy)).

Lemma2.2 Let x € Irrc,(G) and let a < b be integers. If C* € Dperf(Zp[G]) is
acyclic outside [a, b], then C(.x) is also acyclic outside [a, b] and there are natural
isomorphisms of O, -modules

HY(CP ) ~ HY(CHW  and  H"(CP,) ~ H"(C*)y).

For C* € D™ (Q,[G]) we have isomorphisms H' (Ce,) = H'(C*)(y) = H (C*)W
foreveryi € 7.
Proof Since (finitely generated) Q, [ G ]-modules are cohomologically trivial, the func-
tors M — M and M +— My, are naturally isomorphic exact functors on the
category of finitely generated QQ,[G]-modules. The final assertion of the lemma is
therefore clear.

Now suppose that C® € Dperf(Zp[G]) is acyclic outside [a, b]. If b —a < 1 the
claim is [15, Lemma 5.1]. We repeat the short argument for convenience. Choose a
complex A — B of cohomologically trivial Z,[G]-modules that is isomorphic to C*®
in D(Z,[G]). Here A and B are placed in degrees a and a + 1, respectively. Then we
obtain a commutative diagram of O, -modules

A B(y) HHN(C®) () —=0

E T

00— H“(C')(X) A BX)
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which implies the claim. If b —a > 2 we choose a complex P*® € C?(PMod(Z »[G])
that is isomorphic to C*® in D(Z,[G]) and consider the exact sequence of perfect
complexes

0 — 75p_ 1 P* — P®* —> 1< 2 P* — 0,

where 7>5_1 and T<,—2 denote naive truncation. Note that the complexes 7>5_1 P*
and t<,_p P*® are acyclic outside [b — 1, b] and [a, b — 2], respectively. It follows by
induction that C(.x) is acyclic outside [a, b] and, since H?(C*) = Hb(rzb_l P*), that
we have an isomorphism Hb(C('X)) ~ Hb(C')(X). If b —a > 3 then we likewise have
that H(C*®) = H%(t<p—2 P*®) and we may again conclude by induction that we have
an isomorphism H¢ (C('X)) ~ HY(CHO . Ifb—a =2 we may alternatively consider
the exact sequence of perfect complexes

0 — tpP* — P* — 171 P* — 0

and deduce as above. O

3 The p-adic Beilinson conjecture
3.1 Setup and notation

Let L/K be a finite Galois extension of number fields with Galois group G. For
any place v of K we choose a place w of L above v and write G, and [, for the
decomposition group and inertia subgroup of L/K at w, respectively. We denote the
completions of L and K at w and v by L, and K, respectively, and identify the Galois
group of the extension L,/ K, with G,,. For each non-archimedean place w we let O,
be the ring of integers in L,,. We identify G, := G, /I,, with the Galois group of the
corresponding residue field extension which we denote by L(w)/K (v). Finally, we
let ¢, € G, be the Frobenius automorphism, and we denote the cardinality of K (v)
by N (v). We let S be a finite set of places of K containing the set Sy, of archimedean
places. If a prime p is fixed, we will usually assume that the set S, of all p-adic places
is also contained in S.

By a Galois CM-extension of number fields we shall mean a finite Galois extension
L/K suchthat K is totally real and L is a CM-field. Thus complex conjugation induces
a unique automorphism t in the center of G and we denote the maximal totally real
subfield of L by L*. Then L™ /K is also Galois with group GT := G/(t).

3.2 Higher K-theory

For an integer n > 0 and a ring R we write K,,(R) for the Quillen K-theory of R. In
the cases R = O, s and R = L the groups K,(Or s) and K, (L) are equipped with
a natural G-action and for every integer » > 1 the inclusion Op g € L induces an
isomorphism of Z[G]-modules
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Ko —1(Or,s) >~ Kor—1(L). 3.1

Moreover, if S’ is a second finite set of places of K containing S, then for every r > 1
there is a natural exact sequence of Z[G]-modules

0— K»(OLs) — Ko (Ors) — P Kpa(Lw) — 0. (3.2)
weS (L)\S(L)

Both results (3.1) and (3.2) are due to Soulé [72]; see [77, Chapter V, Theorem 6.8].
We also note that sequence (3.2) remains left-exact in the case r = 1. The structure
of the finite Z[G,]-modules K»,_(L(w)) has been determined by Quillen [63] (see
also [77, Chapter IV, Theorem 1.12 and Corollary 1.13]) to be

Ko 1 (L(w)) = Z[G /(¢ — N(@)"). (33)
3.3 The regulators of Borel and Beilinson

Let (L) be the set of embeddings of L into the complex numbers; we then have
|Z(L)| = r; 4+ 2rp, where r; and rp are the number of real embeddings and the
number of pairs of complex embeddings of L, respectively. For an integer k € Z we
define a finitely generated Z-module

Hi(L) = @iy *z

(L)

which is endowed with a natural Gal(C/R)-action, diagonally on X (L) and on
(27i)~k. The invariants of Hy (L) under this action will be denoted by Hk+ (L), and it
is easily seen that we have

ri+ry if 21’](

) if 2] k. 34

dy == rankZ(Hl"’_k(L)) = {

The action of G on X (L) endows H, k+ (L) with a natural G-module structure.

Let r > 1 be an integer. Borel [9] has proved that the even K-groups Ko,_2(Or)
(and thus Ko,_2(Op. s) for any S as above by (3.2) and (3.3)) are finite, and that
the odd K-groups K»,_1(Op) are finitely generated abelian groups of rank d,. More
precisely, for each r > 1 Borel constructed an equivariant regulator map

PP Ko 1(OL) — HP (L) ® R (3.5)

with finite kernel. Its image is a full lattice in Hlt (L) ® R. The covolume of this

lattice is called the Borel regulator and will be denoted by RP‘”(L). Moreover, Borel
showed that

gr(l—r)

fmorr) €@ (3.6)
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where ¢/ (1 — r) denotes the leading term at s = 1 — r of the Dedekind zeta function
¢1 (s) attached to the number field L.

In the context of the ETNC, however, it is more natural to work with Beilinson’s
regulator map [3]. By a result of Burgos Gil [11] Borel’s regulator map is twice the

regulator map of Beilinson. Hence we will work with p, := % 0B in the following.

Remark 3.1 We will sometimes refer to [62] where we have worked with Borel’s
regulator map. However, if we are interested in rationality questions or in verifying
the p-part of the ETNC for an odd prime p, the factor 2 essentially plays no role. In
contrast, the p-adic Beilinson conjecture below predicts an equality of two numbers
in C,, so that this factor indeed matters.

3.4 The Quillen-Lichtenbaum conjecture

Fix an odd prime p and assume that S contains S, and the set S, of all p-adic places
of K. Then for any integer r > 1 and i = 1, 2 Soulé [72] has constructed canonical
G-equivariant p-adic Chern class maps

chif)i) : Kor—i(OL,5) ® Zp —> Hi(OL,s5, Zp(r)).

We need the following deep result.

Theorem 3.2 (Quillen—Lichtenbaum Conjecture) Let p be an odd prime. Then for
everyintegerr > landi = 1,2 the p-adic Chern class maps chiﬁ) are isomorphisms.

Proof Soulé [72] proved surjectivity. Building on work of Rost and Voevodsky, Weibel
[76] completed the proof of the Quillen-Lichtenbaum Conjecture. O

Let p be a prime. For an integer n > 0 and a ring R we write K, (R; Z,) for the
K -theory of R with coefficients in Z,. The following result is due to Hesselholt and
Madsen [43].

Theorem 3.3 Let p be an odd prime and let w be a finite place of L. Then for every
integerr > 1 andi = 1, 2 there are canonical isomorphisms of Z,|[G,]-modules

Kor—i(Ow: Zp) ~ H (Ly, Zy(r)).

3.5 Local Galois cohomology

We keep the notation of Sect. 3.1. In particular, L/K is a Galois extension of number
fields with Galois group G. Let p be an odd prime. We denote the (finite) set of places
of K that ramify in L/K by S;am and let S be a finite set of places of K containing
Sram and all archimedean and p-adic places (i.e. Soo U Sp U Stam € S).

Let M be a topological G s-module. Then M becomes a topological G, -module
for every w € S(L) by restriction. For any i € Z we put

P(OLs.M):= @ Hi(Ly. M).
weS(L)
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For any integers 7 and i we define P'(Or.s,Q,(r)) tobe P/(Or.s. Zy(r)) ®z, Qp.

Lemma3.4 Letr > 1 be an integer. Then we have isomorphisms of Q,G-modules

_ HY (L)®Q, ifi=0
[ﬂ((QL,Sv((@p(r))2 L®QQ[7 lf‘lzl
0 otherwise.

Proof This is [62, Lemma 3.3] (see also [1, Lemma 5.2.4]). The case i = 1 will be
crucial in the following so that we briefly recall its proof. Let w € §,(L) and put

Dﬁ,"é‘ Qp(r) = H%L,, Bar ®q, Qp(r)), where B;g denotes Fontaine’s de Rham
period ring. Then the Bloch—Kato exponential map

expPX Ly = DIE(Qp(r) — H(Ly, Qp(r)) 3.7

is an isomorphism for every w € S,(L) as follows from [8, Corollary 3.8.4 and
Example 3.9]. Since the groups Hélt(Lw, Zp(r)) are finite for w ¢ S, (L), we obtain
isomorphisms of Q,[G]-modules

P OLs, Qp(r) = @ HyLw, Q)= P Lu=>L®gQ,.

weS,(L) weS,(L)

3.6 Schneider’s conjecture

Let M be a topological G, s-module. For any integer i we denote the kernel of the
natural localization map

H!(Op.5, M) — P'(OL5, M)

by I (0.5, M). We call IIT! (05, M) the Tate—Shafarevich group of M in degree
i. We recall the following conjecture of Schneider [69, p. 192].

Conjecture 3.5 (Sch(L, p,r)) Let r # 0 be an integer. Then the Tate—Shafarevich
group TII! (OL,s, Z,(r)) vanishes.

Remark 3.6 1t is not hard to show that Conjecture 3.5 does not depend on the choice
of the set S.

Remark 3.7 Schneider originally conjectured that H ezt (Or,s,Qp/Z,(1—r)) vanishes.
Both conjectures are in fact equivalent (see [62, Proposition 3.8 (ii)]).

Remark 3.8 It can be shown that Schneider’s conjecture for » = 1 is equivalent to
Leopoldt’s conjecture (see [54, Chapter X, Sect. 3]).
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Remark 3.9 For a given number field L and a fixed prime p, Schneider’s conjecture
holds for almost all . This follows from [69, Sect. 5, Corollar 4] and [69, Sect. 6, Satz
3].

Remark 3.10 Schneider’s conjecture Sch(L, p, r) holds whenever r < 0 by work of
Soulé [72]; see also [54, Theorem 10.3.27].

For an integer r we let III'(OL 5, @, () 1= Q, ®z, ' (OL 5, Zp ().

Lemma3.11 Let r # 0 be an integer and let p be an odd prime. Then the
Tate—Shafarevich group Jilk (OL,s, Z,(r)) is torsion-free. In particular, Schneider’s
conjecture Sch(L, p, r) holds if and only if III' (Or,s,Qp,(r)) vanishes.

Proof The first claim is [62, Proposition 3.8 (i)]. The second claim is immediate. O

3.7 Artin L-series

Let L/K be a finite Galois extension of number fields with Galois group G and
let S be a finite set of places of K containing all archimedean places. For any irre-
ducible complex-valued character x of G we denote the S-truncated Artin L-series by
Ls(s, x), and the leading coefficient of Lg(s, x) at an integer r by Lz(r, x). We shall
sometimes use this notion even if L’;(r, x) = Ls(r, x) (which will happen frequently
in the following).

Recall that there is a canonical isomorphism ¢ (C[G]) = [, cjyr. () C- We define
the equivariant S-truncated Artin L-series to be the meromorphic ¢(C[G])-valued
function

Ls(s) := (Ls(s, X)) yelre(G)-

For any r € Z we also put
Ls(r) := (Ls(r, X)) yemrre(G) € CRIGD™.

3.8 A conjecture of Gross

Let r > 1 be an integer. Since Borel’s regulator map (3.5) induces an isomorphism of
R[G]-modules, the Noether—Deuring Theorem (see [54, Lemma 8.7.1] for instance)
implies the existence of Q[G]-isomorphisms

$1-r: H (L) ®Q — K2—1(O1) ® Q. (3.8)

Let x be a complex character of G and let V,, be a C[G]-module with character .
Composition with p, o ¢1_, induces an automorphism of Homg (V;, H 1+_ (L) ®C).
Let Rp,_,(x) = detc((pr o qﬁl_r))?) € C* be its determinant. If x’ is a second
character, then Ry, (x + x') = Rg,_, (x) - Rg,_, (x') by Lemma 2.1 so that we
obtain a map
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Ry, : R(G) — C*
x > detc(pr o ¢1—, | Homg(Vy, H" (L) ® C)),

where R(G) := Rc(G) denotes the ring of virtual complex characters of G. We
likewise define

A} i R(G) — C*
X = Ry, (X)/Lg(l —r, X).

Gross [42, Conjecture 3.11] conjectured the following higher analogue of Stark’s
conjecture.

Conjecture 3.12 (Gross) We have A (x°) = A3 (x)° forall o € Aut(C).

Remark 3.13 1t is not hard to see that Gross’s conjecture does not depend on S and the
choice of ¢1_, (see also [56, Remark 6]). A straightforward substitution shows that if
it is true for x then it is true for x © for every choice of 7 € Aut(C).

We record some cases where Gross’s conjecture is known and deduce a few new
cases. If g = £" is a prime power, we let Aff (g) be the group of affine transformations
on [F,. Thus we may write Aff(g) as a semi-direct product N x H, where H =
{(x > ax|a e]F;} :IF; actson N = {x — x +b | b € F;} >~ I, in the natural
way. Note that N is the commutator subgroup of Aff(g).

Theorem 3.14 Let L/ K be a finite Galois extension of number fields with Galois group
G and let x € R(G) be a virtual character. Let r > 1 be an integer. Then Gross’s
conjecture (Conjecture 3.12) holds in each of the following cases.

(1) x is absolutely abelian, i.e. there is a normal subgroup N of G such that

factors through G /N ~ Gal(L" /K) and L" /Q is abelian;

(1) x = Ll is the trivial character;

(iii) x is a virtual permutation character, i.e. a Z-linear combination of characters
of the form indg 1 where H ranges over subgroups of G;

(iv) G ~ Aff(q) = N x H and LV )Q is abelian;

(v) LXerCO s totally real and r is even;

(vi) LX) /K is a CM-extension, x is an odd character and r is odd.

Proof We first note that (ii) is Borel’s result (3.6) above. Since Gross’s conjecture
is invariant under induction and respects addition of characters, (ii) implies (iii). For
(1), (v) and (vi) we refer the reader to [62, Theorem 5.2] and the references given
therein. We now prove (iv). It suffices to show that Gross’s conjecture holds for every
x € Irrc(G). If x is linear, it factors through G/N so that x is indeed absolutely
linear. Thus Gross’s conjecture holds by (i). It has been shown in the proof of [49,
Theorem 10.5] that there is a unique non-linear irreducible character y, of G and
that this character can be expressed as a Z-linear combination of indg 1y and linear
characters in Irrc(G). As Gross’s conjecture holds for the linear characters and for
indgﬂ g by (iii), it also holds for xy. |
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For any integer k we write

w:L®gC— @ C=(H" (L)®H(L)&C (3.9)
(L)

for the canonical C[G x Gal(C/R)]-equivariant isomorphism which is induced by
mapping [ ® z to (0 (I)z)sex ) forl € L and z € C. Now fix an integer r > 1. We
define a C[G]-isomorphism

A (Kor—1(Op) @ HY(L)) ® C =~ (H{" (L) ® HY (L)) ® C
~ L ®qC. (3.10)

Here, the first isomorphism is induced by p, @ id HY (L) whereas the second isomor-

phism is Lr_l. As above, there exist Q[ G]-isomorphisms

¢r i L —> (Ka1(O) ® HY, (L)) ® Q. (3.11)
We now define maps

Ry, : R(G) — C*
x > detc (A, o ¢, | Homg(Vy, L ®q C))

and
A} R(G) — C*
X = Ry, (0O/Ls(r, X)-

Proposition 3.15 Fix an integer r > 1 and a character x. Then Gross’s conjecture
3.12 holds if and only if we have Agr(x”) = A;;r (x)? forall o € Aut(C).

Proof This is [62, Proposition 5.5]. O

3.9 The comparison period

We henceforth assume that p is an odd prime and that L /K is a Galois CM-extension.
Recall that t € G is the unique automorphism induced by complex conjugation. For
each n € Z we define a central idempotent e;, := # in Z[%][G]. Now letr > 1
be an integer. Since L is CM, the idempotent e, acts trivially on H 1*7 +(L)®C, whereas
e, (Hfr(L) ® C) vanishes. Thus (3.10) induces a C[G]-isomorphism

poo(r) 1 Ko,—1(O) ® C — ¢,(L 8 O).
We likewise define a C,[G]-homomorphism

wp() : Ko 1(0OL) ® C) —> e,(L ®q Cp)
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as follows. For each w € S, (L) we let Hsiyn((’)w, r) be the ith syntomic cohomology

group as considered by Besser [4]. We let reg)” : K2, —1(Oy,) — Hslyn(Ow, r) be the
syntomic regulator [4, Theorem 7.5]. By [5, Lemma 2.15] (which heavily relies on
[4, Proposition 8.6]) we have canonical isomorphisms Hslyn((’)w, r) ~ L, for each
w € Sp(L). The map 1, (r) is induced by the following chain of homomorphisms

K> —1(0Op) — @ Ko —1(Oy)

weS,(L)

— P Hin(Ow.r)
weS,(L)

D L
weS, (L)
~ L®gQ,. (3.12)

[

The map w () shows up in the formulation of the p-adic Beilinson conjecture. How-
ever, the following map will be more suitable for the relation to the ETNC. We define
a C,[G]-homomorphism

fp(r): Ky 1(O)®C, = K2—1(Or,5) ®C,
~ Hy(OLs.Zy(r) ®z, Cp
— ¢,(P'(OL,5.Z,(r)) ®2z, Cp)
>~ e.(L®gC)).

Here, the first map is induced by the p-adic Chern class map chip 1) which is an iso-
morphism by Theorem 3.2; the arrow is the natural localization map, and the last
isomorphism is induced by the Bloch—Kato exponential maps (see Lemma 3.4).

The following result will be crucial for relating the p-adic Beilinson conjecture to
the ETNC.

Proposition 3.16 For each r > 1 we have 1, (r) = [i,(r).

Proof For any abelian group A we write A for its p-completion, that is A =
1(ir_nn A/p"™A. The localization maps (3.12) induce a map

Koy 1(O)®Zp — @ K2 1(Oy).
wes, (L)

For each w € §,(L) the Universal Coefficient Theorem [77, Chapter 1V, Theorem
2.5] implies that there is a natural (injective) map

Kme) —> K2 1(Oy; Zp)~



On the p-adic Beilinson conjecture and the ETNC Page150f39 3

By [4, Corollary 9.10] there is a natural map Hslyn(Ow, r) — Hélt(Lw, Qp(r)) such
that the diagram

Ko 1(Oy) — Kop_1(O; Zp)

| |

Hslyn((’)w, r) —— Hélt(Lzm Qp(r))

commutes. Here, the left-hand vertical arrow is induced by the syntomic regulator, and
the map on the right by the isomorphism in Theorem 3.3. Moreover, the composite
map

Lw ~ Slyn(Ow, r) — Hélt(va Q[?(r))

is the Bloch—Kato exponential map (3.7) by [4, Proposition 9.11]. Unravelling the
definitions we now see that the maps (1, (r) and i, (r) coincide. O

We will henceforth often not distinguish between the maps ¢, (r) and ji, (). Since
the Tate—Shafarevich group 11! (OL,s, Z,(r)) is torsion-free by Lemma 3.11, the
following result is now immediate.

Lemma3.17 The map u,(r) is a C,[G]-isomorphism if and only if Sch(L, p,r)
holds.

Definition 3.18 Let j : C >~ C,, be a field isomorphism and let p € R(ép (G). Let
r > 1 be an integer. We define the comparison period attached to j, p and r to be

Qj(r. p) == detc, (1p(r) o (Cp ®c,j 1oo(r) ) € Cp.

We record some basic properties of £2;(r, —).

Lemma3.19 Let H, N be subgroups of G with N normal in G.

(i) Let p1, p2 € REP(G)- Then Q2 (r, p1 + p2) = Q;(r, p1)2;(r, p2).
(i) Letp € Rgp(H). Then Qj(r,ind$ p) = Q;(r, p).
(iii) Let p € R;gp(G/N). Then Q;(r, inflg NP = Qj(r, p).

Proof Each part follows from the corresponding part of Lemma 2.1. O

Remark 3.20 Since (oo (r) is an isomorphism, for any two choices of field isomor-
phism j, j : C >~ C, we have that Q;(r, p) = 0 if and only if 2 (r, p) = 0.

Remark 3.21 For any fixed choice of field isomorphism j : C ~ C, we have

Sch(L, p, r) holds <= p,(r) is an isomorphism
& Qj(r,p) #0 Vp € lirc, (G),
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where the first equivalence is Lemma 3.17. Thus the non-vanishing of ©;(r, p) can
be thought of as the ‘p-part’ of Sch(L, p,r). Moreover, if Q;(r, p) # 0 then we
may set Q;(r, —p) = Q;(r, ,0)_1 and so if we assume Sch(L, p, r) then Lemma
3.19 (i) shows that the definition of 2 (r, p) naturally extends to any virtual character
p € Re,(G).

Remark 3.22 Assume that G is abelian. For each integer r, Burns, Kurihara and Sano
[21, Sect. 2.2] define canonical period-regulator isomorphisms

&
ré
J

re
J
er \ HyOLs. Zp(1=1) ®z,Cp— e [\ PUOLs.Zp(-1) ®2, Cp.
C,lG] C,lG]
(3.13)

Here e, € Zp,[G]are certainidempotents such that the g, -parts of both C, [G ]-modules
in the exterior products are free of the same rank r;. If r > 1 and Sch(L, p, r) holds,
then one may take ¢, = e, and r$ = 0. In this case the diagram [21, p. 125] gives an
exact sequence of C,[G]-modules

0= er(Hélt(OL,S, Zp(1=1) ®z, Cp) — er(L ®q Cp)* — er(H1+_r(L) ®Cp)* -0,

where (—)* denotes C,-linear duals (note also that their Hy (r — DT is Hlt +(L) in

our notation). The non-trivial map is (up to sign) the dual of w,(r) o p,~ ! Hence the
exterior product on the left of (3.13) canonically identifies with

er dete, [61((L ®g Cp)*) ®c, (61 et (H, (L) ® Cp)*)

and the isomorphisms 1, (r) o p,~ Uand ¢, induce a map to detc p[G](Hfr (L)®Cp
which can be identified with the exterior power on the right by a variant of Lemma
3.4. For more details we refer the interested reader to [21, Sect. 2.2.4].

The authors then use the isomorphism (3.13) to define generalized Stark elements
and to state [21, Conjecture 3.6] which might be seen as an analogue and refinement
of a conjecture of Rubin [68] in the case » = 0. It is then shown in [21, Sect. 4]
that their conjecture is implied by the appropriate special case of the ETNC. As the
formulation of the latter involves the Bloch—Kato exponential map rather than the
syntomic regulator, a variant of Proposition 3.16 is already implicit in their work (for
instance, see [21, Remark 2.7])

3.10 p-adic Artin L-functions

Let E/K be a finite Galois extension of totally real number fields and let G =
Gal(E/K). Let p be an odd prime and let S be a finite set of places of K containing
SpUSec. Foreach p € Rc,(G) the S-truncated p-adic Artin L-function attached to p
is the unique p-adic meromorphic function L, (s, p) : Z, — C,, with the property
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that for each strictly negative integer n and each field isomorphism j : C ~ C, we
have

Ly.s,p) = (Lstn. (o @ &™),

wherew : Gg — Z; is the Teichmiiller character and we view p®w" ! as a character
of Gal(E(¢p)/K). By aresult of Siegel [70] the right-hand side does indeed not depend
on the choice of j. In the case that p is linear, L, s(s, p) was constructed independently
by Deligne and Ribet [33], Barsky [2] and Cassou-Nogués [24]. Greenberg [37] then
extended the construction to the general case using Brauer induction.

3.11 Statement of the p-adic Beilinson conjecture

We now formulate our variant of the p-adic Beilinson conjecture.

Conjecture 3.23 (The p-adic Beilinson conjecture) Let E /K be a finite Galois exten-
sion of totally real number fields and let G = Gal(E/K). Let p be an odd prime and
let S be a finite set of places of K containing S, U Sxo. Let p € R(Erp (G)andletr > 1

be an integer. Then for every choice of field isomorphism j : C = C, we have

Lpsr.p) =20 p®0 ™) j (Lt (e@0™) ). G4

Remark 3.24 1t is straightforward to show that Conjecture 3.23 does not depend on
the choice of S.

Remark 3.25 One can show (see Theorem 4.12 below) that L, s(r, p) # 0 if and
only if Q;(r, p ® "1 # 0. In this case (and thus in particular if Sch(E(¢p), p, 1)
holds) the statement of Conjecture 3.23 naturally extends to all virtual characters
p € Rc,(G).

Remark 3.26 1t is clear from the definitions that Conjecture 3.23 is compatible with
the p-adic Beilinson conjecture as considered by Besser, Buckingham, de Jeu and
Roblot [5, Conjecture 3.18]. More concretely, the equality (3.14) is equivalent to the
appropriate special case of [5, Conjecture 3.18 (i)—(iii)], whereas [5, Conjecture 3.18
(iv)] then is equivalent to the non-vanishing of Q;(r, p @ @" —1y as follows from
Remark 3.25.

Remark 3.27 Since both complex and p-adic Artin L-functions satisfy properties anal-
ogous to those of ;(r, —) given in Lemma 3.19, the truth of Conjecture 3.23 is
invariant under induction and inflation; moreover, if it holds for p;, po € Rc p(G)
then it holds for p; + 3.

3.12 Therelation to Gross’s conjecture

The following results are the analogues of [49, Theorem 4.16 and Corollary 4.18],
respectively.
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Theorem 3.28 Let E /K be afinite Galois extension of totally real number fields and let

G = Gal(E/K). Let p be an odd prime and let S be a finite set of places of K containing

Sp U Seo. Let p € RE}}(G) and let r > 1 be an integer. We put ¥ ‘= p @ o'~ L. If

Q(r,¥) # 0 for some (and hence every) choice of field isomorphism j : C = C,

then the following statements are equivalent.

i) i, ) j(Ls(r, wj_l)) is independent of the choice of j : C = C,,.

(i) Gross’s conjecture at s = 1 — r holds for &jq € RE(Gal(E({p)/K) and some
(and hence every) choice of j : C = C,,.

Proof The first and second occurrence of ‘and hence every’ in the statement of the
theorem follow from Remarks 3.13 and 3.20, respectively.

Let j, j/ : C = C,, be field isomorphisms and let x := 1//j_1. Then j = j' oo for

some o € Aut(C) and so ij = x°. For every Q[G]-isomorphism ¢, as in (3.11)
we have

Qj(r. ) - j (Rg, (X)) = detc, (up(r) o (C, g ¢r))Y .

which does not depend on j. Hence we have

Q. ¥) - jLsro W) (R, ) - j(Ls(r, X))
Qjri(r, ) - j/(Ls(r, yUD))  j(Ry, (X)) - j'(Ls(r, x7))
o ( o(Ls(r, x)) - Rg, (X) )
7 \o Ry, (X)) - Ls(r. x0) )"

By Proposition 3.15 the last expression is equal to 1 if and only if Gross’s conjecture
at s = 1 — r (Conjecture 3.12) holds for the character x. O

Corollary 3.29 Let E/K be a finite Galois extension of totally real number fields
and let G = Gal(E/K). Fix a prime p and let r > 1 be an integer. Assume that
Sch(E(¢p), p,r) holds. If the p-adic Beilinson conjecture at s = r holds for all
p € R(Erp (G) then Gross’s conjecture at s = 1 — r holds for x ® "~ for all

x € RE(G).

3.13 Absolutely abelian characters

Since our conjecture is compatible with that of [5] by Remark 3.26 and invariant under
induction and inflation of characters by Remark 3.27, we deduce the following result
from work of Coleman [29] (see [5, Proposition 4.17]).

Theorem 3.30 Let E/K be a finite Galois extension of totally real number fields and
let G = Gal(E/K). Let p be a prime and let r > 1 be an integer. Suppose that
pE Rgp(G) is an absolutely abelian character, i.e., there exists a normal subgroup

N of G such that p factors through G /N = Gal(EN /K) and EN /Q is abelian. Then
the p-adic Beilinson conjecture (Conjecture 3.23) holds for p.
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4 Equivariant lwasawa theory
4.1 Bockstein homomorphisms
We recall some background material regarding Bockstein homomorphisms. The reader
may also consult [22, Sect. 3.1-Sect. 3.2].
Let G be a compact p-adic Lie group that contains a closed normal subgroup H

such that I' := G/ H is isomorphic to Z,. We fix a topological generator y of I'. The
Iwasawa algebra of G is

A©) = Z,[G] = lim Z,[G/N,
where the inverse limit is taken over all open normal subgroups N of G. If F is a finite
field extension of Q, with ring of integers O = OF, we put A9 Q) = 0®z,AG) =
O[G]. We consider continuous homomorphisms

.G — Autp(Ty), 4.1)

where T is a finitely generated free O-module. For g € G we denote its image in I'
under the canonical projection by g. We view AO(F) Qo Tr as a (AO(F), A(G))-
bimodule, where AO(F) acts by left multiplication and A (G) acts on the right via

1

A®o1g =2gQ0 g 't

forr € A9, t € Ty and g € G. For each complex C* € DPT(A(G)) we define a
complex C* € DP (AP (")) by

° . O L °
s = (00D @0 Tn) &k g, C*.

Given an open normal subgroup U of G we set CZ, = Z,[G/U] ®H;\(g) C® and, if U
is contained in the kernel of 7, we furthermore obtain a complex

CY .y = T ®”de[9 01 € =Tx @I}\(g) C* € DP*(0)

which does actually not depend on U. The natural exact triangles

cs 2L ¢

T T CZ/,(J‘[)

in D(O) induce short exact sequences of O-modules

0 — HI(CHr <> H(CY ) ~> HIT'(CHT — 0 4.2)
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foreachi € Z. The Bockstein homomorphism in degree i is defined to be the composite
homomorphism

] ) i ) . i+1 .
Been: H'(CY () — HTHCHT — H (Coyr — HTH(CY (),

where the middle arrow is the tautological map. We obtain a bounded complex of
O-modules

ﬁt l ﬁt+l
Acey ... —5 H(C} H' Ty
cemw t-- ( U, (n)) _) ( U, (7-[))

where the term H'(C ;]’(n)) is placed in degree i. Note that the Bockstein homomor-
phisms and the complex Ace ; actually depend on the choice of y, though our notation
does not reflect this. The complex C*® is called semisimple at 7 if Q,, ®z, Acex 18
acyclic (for any and hence every choice of y).

For any A (G)-module M we put M, := (AO(F) ®0 Tx) ®ag) M.

Lemma 4.1 Assume that G is a compact p-adic Lie group of dimension 1 and let
C* € DP(A(G)) be acyclic outside degree a for some a € 7. Further assume that the
A(G)-module H*(C*®) has projective dimension at most 1. Then for every continuous
homomorphism w : G — Autp(Ty) the complex Cy, is acyclic outside degree a and
there is a canonical isomorphism of AO(F)-modules HY(Cy) =~ H*(C®)y.

Proof This has been shown in the course of the proof of [15, Lemma 5.6]. We repeat
the short argument for convenience.

We may assume that a = 0. Then C*® may be represented by a complex P~! 4
PO, where P~! and P are projective A(G)-modules placed in degrees —1 and 0,
respectively, and the homomorphism d is injective. Then C;, is represented by

_ d’
(Tr ®z, PO = (Ty ®z, P,

where d’ is injective since d is. The result follows. O

4.2 Algebraic K-theory

Let R be a noetherian integral domain with field of fractions E. Let A be a finite-
dimensional semisimple E-algebraand let2 be an R-orderin A. For any field extension
F of E weset A := F Q@ A. Let Ko, F) = Ky, Ar) denote the relative
algebraic K-group associated to the ring homomorphism 2 < Ar. We recall that
Ko(2(, Ar) is an abelian group with generators [X, g, Y] where X and Y are finitely
generated projective 2-modules and g : F Qg X — F ®g Y is an isomorphism of
A p-modules; for a full description in terms of generators and relations, we refer the
reader to [74, p. 215]. Moreover, there is a long exact sequence of relative K -theory
(see [74, Chapter 15])

Ki®) — Ki(Ap) —> Ko@. Ap) — Ko@) — Ko(Ap). 4.3)
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The reduced norm map Nrd = Nrd4, : Ar — {(AF) is defined componentwise on
the Wedderburn decomposition of Ar and extends to matrix rings over Ar (see [31,
Sect. 7D)); thus it induces a map K{(Ar) —> ((Ap)*™, which we also denote by
Nrd.

In the case E = F the relative K -group Ko(2(, A) identifies with the Grothendieck
group whose generators are [C*®], where C* is an object of the category Cf:)rs (PMod (X))
of bounded complexes of finitely generated projective 2-modules whose cohomology
modules are R-torsion, and the relations are as follows: [C*] = 0 if C* is acyclic, and
[C3]1=[C7] + [C3] for every short exact sequence

0—C—C;—C;—0
in Cfgrs(PMod(Ql)) (see [77, Chapter 2] or [73, Sect. 2], for example).
We denote the full triangulated subcategory of DP'f () comprising perfect com-

Pl 91). Then every object C*

plexes whose cohomology modules are R-torsion by D,

of DF;?(Q[) defines a class [C®] in Ko (%, A).

Let p be an odd prime and let G be a one-dimensional compact p-adic Lie group that
surjects onto Z,. Then G may be written as G = H x I" with a finite normal subgroup
H of G and a subgroup I' > Z,. Let O be the ring of integers in some finite extension
F of Q,. We consider 2 = A9©) = O[G] as an order over R := A9 (Ty), where Iy
is an open subgroup of I" that is central in G. We denote the fraction field of A9 ()
by QF (I'g) and let A = QF (G) := QF (I'y) ®& A9 (G) be the total ring of fractions
of AO(Q). Then [78, Corollary 3.8] shows that the map 9 in (4.3) is surjective; thus
the sequence

Ki1(A%©) — K1(QF(9)) -5 Ko(A9(G). QF (G)) —> 0 4.4

is exact. If & € K1(QF(G)) is a pre-image of some x € Ko(AC(G), QF (G)), we say
that £ is a characteristic element for x. We also set Q(G) := Q% (G).
We include the following consequence of (4.4) for later use.

Lemma4.2 Let M be a finitely generated A (G)-module of projective dimension at
most one. Assume that M is torsion as an R-module. Then M admits a free resolution
of the form

0— A920G)" - A°©G)" - M — 0 4.5)

for some positive integer m.
Let T >~ Z, be an open normal subgroup of G and set G := G/ "', If in addition
My is finite, then M" vanishes and (4.5) induces a short exact sequence of 7. p[Gl-

modules

0 — Zp[G1" — Zp[G]" - M — 0.
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Proof Choose a surjective Ao(g)-homomorphism AP@G)" — M. Its kernel is a
projective A9 (G)-module P by assumption. Since M is R-torsion, we see that the
classes of P and A9 (G)" in Ko(AP(G)) have the same image in Ko(QF (G)). Hence
they coincide by (4.4). In other words, P and AP Q)™ are stably isomorphic. By
enlarging m if necessary, we may assume that P is free of rank m and we have
established the existence of (4.5). By [54, Lemma 5.3.11] this sequence induces an
exact sequence of Z,[G]-modules

0— M" — Z,[GI" — Z,[G]" — Mp — 0.
It follows that M™ is a free Zp-module of the same rank as My . This proves the

remaining claims. O

Now let 7 : G — Autp(Ty) be a continuous homomorphism as in (4.1) and set
n := rankp(Ty). There is a ring homomorphism &, : A(G) — Mnxn(AO(F))
induced by the continuous group homomorphism

G —> (Myxn(0) ®z, A1) = GL,(AP(I)
g — (@) ®g,
where g denotes the image of g in G/H =~ I'. By [27, Lemma 3.3] this homomorphism

extends to a ring homomorphism Q(G) — My 5n (QF (IN) and this in turn induces a
homomorphism

Oy K1(Q(G)) — K1(Myxn(QF (D)) =~ QF ().

For & € K1(Q(G)) we set £(mr) := &, (§). If m = 7, is an Artin representation with
character p, we also write ®,, and &(p) for @, and §(7,), respectively, and let

Jp 1 0(QG)* — QF ()

be the map defined by Ritter and Weiss in [66]. By [60, Lemma 2.3] (choose r = 0)
we have a commutative triangle

K1(Q(9))

S

£(QG))* —L= QF (M)

We shall also write £*(p) for the leading term at T = O of the power series ®,(£).
We choose a maximal A (I'g)-order 91(G) in Q(G) such that A(G) is contained in
MG).

Lemma4.3 LetC*® € DF:IZF(A(Q)) be a complex and let & be a characteristic element
for C®. Let w, be an Artin representation with character p. Then £(p) - j,(x) is a

characteristic element for C} for every x € ¢ MG *.
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Proof In the case that x = 1 this is [15, Lemma 5.4 (vii)] (and follows from the
naturality of connecting homomorphisms). By [66, Remark H] the image of ¢ (91(G))*
under j, is contained in AC(I")*. This proves the claim. O

4.3 Cohomology with compact support

Let p be an odd prime. We denote the cyclotomic Z,-extension of a number field K
by Ko and set 'k := Gal(K~/K). Let S be a finite set of places of K containing
the set Soo U Sp,. Let M be a topological G g, s-module. Following Burns and Flach
[17] we define the compactly supported cohomology complex to be

RT'.(Ok . s, M) := cone <RF((9K,5, M) — @ RI'(Ky, M)) [—1],

vesS

where the arrow is induced by the natural restriction maps. For any integers i and
r we abbreviate H"RI‘C(OK,S, M) to HCi (Ok.s, M) and set HC"(OK,S, Qp(r)) =
Qp ®z, H.(Ok s, Zp(r)).

Let E/K be a finite Galois extension of totally real fields and set L := E({),). Then
L is a CM-field and we denote its maximal totally real subfield by L™ as in Sect. 3.9.
Set G := Gal(Ls/K) and let

Xeyce - g — Z;,

be the p-adic cyclotomic character defined by o (¢) = ¢*¢(®) for any ¢ € G and any
p-power root of unity {. The composition of xcyc with the projections onto the first
and second factors of the canonical decomposition ZIX, = (¢p—1) x (1 + pZ,) are
given by the Teichmiiller character @ and a map that we denote by «.

Assume in addition that S contains all places that ramify in L,/ K . For each integer
r we define a complex of A(G)-modules

Cr s = RT(Ok s, e, AG)* (1)),

where A(G)?(r) denotes the A(G)-module A(G) upon which ¢ € Gk acts on the
right via multiplication by the element ngc (0)a~!; here & denotes the image of o in
g. Note that the complexes C; ¢ are perfect by [36, Proposition 1.6.5] and we have
natural isomorphisms

Crs=Cls®5 Zp(r—1) 4.6)

for every integer r.

Each A(G)-module M naturally decomposes as a direct sum MT @ M~ with
M* = liT’M . Similarly, each complex C*® of DP" (A (G)) gives rise to subcomplexes
(C*)T and (C*®)~. Moreover, we let (C*)Y := RHom(C®, Qp/Z,) be the Pontryagin
dual of C*®. By a Shapiro Lemma argument and Artin—Verdier duality we then have
isomorphisms
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. N{RF(OL;’S,QP/Z,,(I—r))V[—3] if24r @

75T (RT(OLa.s. Qp/Zp(1 — 1)) [-3]if 2| 7.

in D(e, A(G)). We let Mg be the maximal abelian pro-p-extension of L7}, unramified
outside S. Then Xg := Gal(Mg /Lgo) is a finitely generated A(G*)-module, where
we put G := G/(r) = Gal(LI /K). Iwasawa [45] has shown that Xg is in fact
torsion as a A(I'z+)-module. We let 1, (LT) denote the Iwasawa p-invariant of X
and note that this does not depend on the choice of S (see [54, Corollary 11.3.6]).
Hence (L) vanishes if and only if X is finitely generated as a Z,-module. It
is conjectured that we always have u p(L+) = 0 and as explained in [47, Remark
4.3], this is closely related to the classical Iwasawa ‘u = 0’ conjecture for L at p.
Thus a result of Ferrero and Washington [34] on this latter conjecture implies that
pp(LT) =0 whenever E/Q and thus L/Q is abelian.

The only non-trivial cohomology groups of RT" (O LS Qp/7Zp)Y occurin degrees
—1 and 0 and canonically identify with X and Z,, respectively. Hence (4.7) with
r = 1 and (4.6) imply that for each integer r the cohomology of C? ¢ is concentrated
in degrees 2 and 3 and we have

H*(Crg) ~Xs(r—1), H(CPg) ~Z,(r—1).

4.4 The main conjecture

The following is an obvious reformulation of the equivariant Iwasawa main conjecture
for the extension L;ro /K (without its uniqueness statement).

Conjecture 4.4 (equivariant Iwasawa main conjecture) Let L/K be a Galois CM-
extension such that L contains a primitive pth root of unity. Let S be a finite set of
places of K containing S and all places that ramify in LY, /K. Then there exists an
element s € K1(Q(GT)) such that 9(¢s) = [Cl.,s] and for every irreducible Artin
representation 7w, of G with character p and for each integer n > 1 divisible by
p — 1 we have

&™) = Lps(l=n,p) = j (Ls(1=n, p7 ) “8)

for every field isomorphism j : C = C.

Part (i) of the following theorem has been shown by Ritter and Weiss [67] and by
Kakde [51] independently. Part (ii) is due to Johnston and the present author [50].

Theorem 4.5 Conjecture 4.4 holds for LY /K in each of the following cases.

(i) The p-invariant i p (L) vanishes.
(ii) The Galois group G* has an abelian Sylow p-subgroup.

By starting out from the work of Deligne and Ribet [33], Greenberg [37] has shown
that for each topological generator y of I' there is a unique element f, §(7) in the
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quotient field of Q}, ®z, Z,[T] (which we will identify with Qf, ®z, A(T') via the
usual map that sends y to 1 + T') such that

Lps(1—s,p)=fps@' —1),

where u := «(y). For each integer a we let x — tgyc (x) be the automorphisms on

Q°(G) induced by g > xcyc(g)“g for g € G. We use the same notation for the induced
group homomorphisms on K1(Q(G)) and K1 (e, Q(9)), r € Z.

Proposition 4.6 Suppose that Conjecture 4.4 holds for L} /K. Then for each r € Z
there exists an element ¢ s € K1(e, Q(G)) such that 9(¢r.s) = [C;‘S] and for every
irreducible Artin representation 7, of G with character p we have

Gs(p@a™ Y = fo s T4+ T)—1). (4.9)

Proof When r = 1 we may take 1,5 = (s by [49, Proposition 7.5]. Then ¢, 5 =

tcl};’ (¢1,s) is a characteristic element for C; ¢ by (4.6) and (4.9) follows from [15,

Lemma 5.4 (v)] (see also [14, Lemma 9.5]). O

Corollary 4.7 Letr € Z be an integer and let 7, be an irreducible Artin representation
of G with character p. Then fp,s(ul’r(l + T) — 1) is a characteristic element of

[ ]
r.oQw 1

Proof Since the main conjecture (Conjecture 4.4) holds ‘over the maximal order’ by
[47, Theorem 4.9] (this result is essentially due to Ritter and Weiss [66]), the equality
(4.9) holds unconditionally up to a factor j,(x) for some x € ¢(M(G))*. Thus the
claim follows from Lemma 4.3. O

4.5 Schneider’s conjecture and semisimplicity

We recall the following result from [62, Propositions 3.11 and 3.12]. Part (i) is a special
case of [16, Proposition 1.20] and of [36, Proposition 1.6.5].

Proposition 4.8 Let L/K be a Galois extension of number fields with Galois group
G. Letr > 1 be an integer and let p be an odd prime. Then the following hold.

(i) The complex RT':(Oy s, Z,(r)) belongs to Dperf(Zp[G]) and is acyclic outside
degrees 1,2 and 3.
(ii) We have an exact sequence of Z,|G]-modules
0— HY' (L)®Z, — HNOLs,Z,(r)) —> II'(OL.5,Zp(r)) —> 0.
(iii) We have an isomorphism of Z,[G]-modules
HX(OL,s, Zp(r)) = Zp(r = Vg, -

(iv) The Z,[G1-module IIF(Oy, s, Z.,(r)) is finite.
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(v) The Z,-rank of HCZ(OL,S, Zp(r)) equals dyy1 if and only if Schneider’s conjec-
ture Sch(L, p, r) holds.

We now return to the situation considered in Sect. 4.3. Before proving the next
result we recall that for a finitely generated A9 (I')-torsion module M the following
are equivalent: (i) MPT is finite; (ii) My is finite; (iii) fm(0) # 0, where fjs denotes
a characteristic element for M. Moreover, by [54, Proposition 5.3.19] we have that
M = 0 if and only if M = M" = 0.

Proposition4.9 Let r > 1 be an integer and let p be an irreducible Artin charac-
ter of G such that ker(p) contains T +. Set ¥ = p @ " ~!. Then we have that
H' (C;’S’w) = 0 fori # 2,3 and natural isomorphisms of Oy,-modules

H*(CP g )" ~ H(OL5. Zp(r))V) ~ IIT'(Op 5. Z,(r))Y (4.10)
and

H? (C? g y)r = HX(Op 5, (1)) = (Zp(r — )6, ) 4.11)

and a short exact sequence of Oy -modules

0 — H*(CP g )r —> H*(RT(OL.s. Zp(r)(y) — H(CPg )" —> 0.
(4.12)

In particular, the Oy -modules H3(C;,S,¢)F and H3 (C;’S 1//)F are finite.

Proof We put O := Oy, for brevity. Since the complex C » s 1s acyclic outside degrees

2 and 3 and the functor M — My = (A9() ®0 Ty) ®ag) M is right exact, it is
clear that H' (C‘S ) vanishes fori > 4. Welet U = 'y = Gal(Ly/L). Then U is
contained in the kernel of ¥, and by [36, Proposition 1.6.5] we have an isomorphism

Crsu > erRT(OLs, Zy(r) = e, Z,[G] ®H21,[G] RT(Op s, Zp(r))

in D(e,Z,[G]). We now consider the exact sequence (4.2) for the case at hand and
various integers i. We will repeatedly apply Lemma 2.2. In particular, the complex
Cs. U is ac;yclic outside degrees 1, 2 and 3 by Proposition 4.8 (i). Fori < 0
we find that H* (Cr.,s,w)r and H“rl(CrfSJ//)r vanish. Thus H? < s 1//) vanishes for
i < 0and even fori = 1 once we show that the @-module H' (C;,S,x//)r is trivial. We
already know that it is finite. Sequence (4.2) in the case i = | and Lemma 2.2 now
give rise to a short exact sequence

0— H'(C g, )r — H)(OLs. Zp(r)V) — H*(C5.,)" — 0.

Since the central idempotent e, annihilates H~ + (L) ® Zp and e;ey, = ey, we have an
isomorphism

HNOL5,2,r))V) =111 (O 5, 7, (r)V
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by Proposition 4.8 (ii). Since the Tate—Shafarevich group IIT! (OL.,s, Zp(r)) is
torsion-free by Lemma 3.11, the @-module I1I' OL,s,Zy (r))W) is free. Therefore
H(C r’ s, w)r vanishes as desired and we have established (4.10). Proposition 4.8 (iii),
Lemma 2.2 and the case i = 3 of sequence (4.2) imply (4.11). Finally, sequence (4.12)
is the case i = 2 of sequence (4.2). O

Lemma 4.10 Let r be an arbitrary integer. Then there are finitely generated e, A(G)-
modules Y, s and Z, with all of the following properties:

(1) The projective dimension of both Y, s and Z, is at most 1;
(1) both Y, s and Z, are torsion as R-modules;
(iii) there is an exact triangle

Z,[-3] — C;,S — Yr,S[_z]

in D(e, A(G));
(iv) we have that Y, s = Yo s(r) and Z, = Zy(r);
(V) the coinvariants (Z,)r, are finite if r # 1.

Proof We first consider the case r = 0. It is shown in [48, Proposition 8.5] that the
complex C{ g is isomorphic in D(epA(G)) to a complex

—0—Yys —Zp—0— ...

where Yy s is placed in degree 2. More precisely, in the notation of [48] we have

Cos = Cy(LL/K)(=D[=3], Yos = YI (=1), Zo=Ir = <@ indgmz,,(—l))

veT

where T is a finite set of places of K disjoint from S with certain properties, and
Gu., denotes the decomposition group at a chosen place w, of Lo, above v for each
v € T; moreover, we write indgM = A(G) ®a) M for any open subgroup U/ of
G and any A (U)-module M. By [48, Lemmas 8.4 and 8.5] the modules Z¢ and Yy s
are R-torsion and of projective dimension at most 1. Thus (i) and (ii) also hold for
Y5 = Yo5() = YL (r — 1) and Z, := Zo(r) = ¢, @veTindgwocZ,,(r —1). Ttis
now clear that (iv) holds and that C? ¢ is isomorphic to the complex

. > 0—Y,s—7Z, —0— ...

in D(e, A(G)). Hence (iii) also holds. Moreover, the coinvariants (Z,)r, are clearly
finite for r # 1. O

Remark 4.11 We point out that similar constructions repeatedly appear in the literature.
In fact, by [60, Theorem 2.4] the complex Cg (L% /K) naturally identifies with the

complex constructed by Ritter and Weiss [65]. Choosing their maps W and v in [66,
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p.562 f.] suitably one can take Y; s = coker(¥) and Z; = coker(lﬁ). Moreover, Burns
[15, Sect. 5.3.1] constructed an exact triangle in D(egA(G)) of the form

RT7(Ok 5, c0AG) (1)) — RT(Ok 5, 0 A (1)) — €D RT(K (v), egA(G) (1))
veT

where the set 7 is as in the proof of Lemma 4.10. For each v € T the
complex RT'(K (v), egA(G)*(1)) is acyclic outside degree 1 and we have an eg A (G)-
isomorphism

H' (K (v), o A(G)* (1)) =~ eoindgm Zp(1).

For each A(G)-module M and i € Z we set E/ (M) := ExtiA(g) (M, A(G)). We then
have an isomorphism of ey A (G)-modules

P H' (K ), eoAG) (1)) ~ E'(I).

veT
If C* is a complex in D(eg A(G)), we denote the complex RHom,, 4 (g)(C*, eg A(G))
by (C*)*.1f M is an R-torsion eg A (G)-module of projective dimension at most 1, then

we have isomorphisms M[—n]* ~ E'(M)[n — 1] in D(egA(G)) for every n € Z.
This yields

P RT (K (v), eoA G (1)) ~ I

veT
The complex RI'7(Ok s, eoA(G)E(1)) is acyclic outside degree 2 and its second

cohomology group H% (Ok s, eoA(G)#(1)) is of projective dimension at most 1 by
[15, Proposition 5.5]. Since we have an isomorphism

RT(Ok.s. e0A(G) (1) ~ (C§ 9)*[-3]
by Artin—Verdier duality, it follows that we have an isomorphism
RTT(Ok 5. 0AG)* (1) 2= Y{ (= 1)*[~1]
in D(egA(G)) and an isomorphism of ey A (G)-modules
H} (Ok s, «0AG)F (1) = E' (Y (~1)).

Finally, the minus Tate module 7), (./\/l§ 1)~ of the Iwasawa-theoretic 1-motive M§ T

constructed by Greither and Popescu [38] plays the role of El(Y ST (—1)); the eg A(G)-
module T, (A, 7)™ is our EY(I7). See in particular [38, Remark 3.10].
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Theorem 4.12 Let r > 1 be an integer and let p be an irreducible Artin character of
G* such that ker(p) contains T +. Set 1= p @ "~ '. Then the following conditions
are equivalent.

(i) We have that III" (OL,s, Zp ()W) vanishes.
(ii) We have that III" (Or.s, (@p(r))(‘”) vanishes.
(iii) We have that HCZ(@L,S, Qp(r))(‘/’) vanishes.
(iv) Theperiod Q2 (r, yr) is non-zero for any (and hence every) choice of j : C >~ C,,.
(v) We have that L, s(r, p) # 0.

If these equivalent conditions hold (in particular if Sch(L, p, r) holds), then the com-
plex C} ¢ is semisimple at .

Proof We again set O := Oy, for brevity. We have already observed in the proof of
Proposition 4.9 that juig Or,s,Z, (r)W) is a free O-module. The equivalence of (i)
and (ii) is therefore clear. We have an exact sequence of Z,[G]-modules

0 — UI'(OL5,Z)(r) — H%(OL,S’ Zy(r)) — PYOL.s, Zp(r))
— H2(Op 5, Zp(r)) — HUI*(Op 5, Zp(r)) —> O.

Since HJZ(OL,S, Z,(r)) is finite by Proposition 4.8 (iv) and the e,Q,[G]-modules

e HY(O1.5.Qp(r) = e, K21 (O1) ® Qp and ¢, P1(OL 5. Qp(r)) = (L ®g Q)
are (non-canonically) isomorphic, there is a (non-canonical) isomorphismof e, Q , [ G ]-
modules

e 1N (Op.5,Qp(r) = e, HX(OL 5, Q, ().

Thus also IIT! Or,s5,Qp (r))Y) and HCZ((’)L,S, (@p(r))(w) are (non-canonically) iso-
morphic and so (ii) and (iii) are indeed equivalent. The equivalence of (ii) and (iv) is
easy (see Remark 3.21).

We next establish the equivalence of (i) and (v). By Lemma 4.1 the triangle of
Lemma 4.10 (iii) induces an exact triangle

Zryl=3] — Clgy — Yrsyl-2] (4.13)

in D(AO(F)). Let h, y(T) and g sy (T) be characteristic elements of Z, y and
Y, sy, respectively. Corollary 4.7 implies that we may assume that

g5y (1) =hyy(T) - frs@' (1 +T)—1).

Since (Z;,y)r is finite by Lemma 4.10 (v) we have h, y (0) # 0. Thus L, s(r, p) =
fp,g(ul_r — 1) is non-zero if and only if g, s 4 (0) # 0 if and only if YrF’SJ// vanishes,
where the latter equivalence uses Lemma 4.2 (with M = Y, 5y and G = I') and
Lemma 4.10 (i) and (ii). By (4.13) we have an exact sequence of AO(F )-modules

00— HZ(C:’SJ//) — Yr sy —> Zry — H3(C:,S,1//) — 0.
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Since taking I'-invariants is left exact and Z{ v vanishes by another application of
Lemma 4.2, it follows that there is an isomorphism lejs, y=H 2(Cr" s, w)r. The latter
identifies with ITT' OL,s, Zp rHw by Proposition 4.9 which proves the claim.
Finally, if these equivalent conditions all hold, then Proposition 4.9 implies that
the O-modules H"(Cr"&w)r and H' (C:,S,w)r are finite for all i € Z. It follows from
the short exact sequences (4.2) that H' (Cr" S,U) is finite for all i € Z, where we set
U = I, as before. Thus the whole complex Q) ®z, Acs ¢y vanishes. In particular,
the complex Cr" 5 18 semisimple at . O

Remark 4.13 By specializing K = L™ in the above argument, we see that Schneider’s
conjecture Sch(L, p, r) implies that lejg vanishes and that (Y, s)r, is finite.

4.6 Higher refined p-adic class number formulae

We keep the notation of Sect. 4.3. We let 9, : ¢(C,[G])* =~ Ki(C,[G]) —
Ko(Z,|G], Cp) be the composition of the inverse of the reduced norm and the con-
necting homomorphism to relative K-theory. By abuse of notation we shall use the
same symbol for the induced maps on ‘e,-parts’. We recall that G denotes Gal(L/K)
and that G = G/(t) = Gal(L™/K). We define

Lysr)i= > Lps(r. pesgy1 € t(e/QplG)).
pelirc, (GT)

Let us assume that Schneider’s conjecture Sch(L, p,r) holds. Then we actually
have that L, s(r) € ¢(e,Q,[G])™ and the cohomology groups of the complex

e,RI:(OL,s, Z,(r)) are finite by Proposition 4.8 and Theorem 4.12. This complex

. . . perf
therefore is an object in Dy

p-adic class number formula.

(erZp[G]). We now state our conjectural higher refined

Conjecture 4.14 Letr > 1 be an integer and assume that Sch(L, p, r) holds. Then in
Ko(erZplGl, Qp) one has

ap (Lp,S(r)) = [er RFC(OL,Sv Zp )]
Remark 4.15 In the case r = 1 Burns [15, Conjecture 3.5] has formulated a conjec-
tural refined p-adic class number formula. Conjecture 4.14 might be seen as a higher

analogue of his conjecture. Accordingly, Theorem 4.17 below is the higher analogue
of [15, Theorem 3.6].

Lemma4.16 Letr > 1 be an integer and assume that Sch(L, p, r) holds. Then
HRp(L/K» r) = ap(Lp,S(r)) - [erRFc(OL,Sv Zp(r))]

does not depend on the set S.
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Proof Let S’ be a second sufficiently large finite set of places of K. By embedding S
and S’ into the union S U S’ we may and do assume that § € §’. By induction we
may additionally assume that S = S U {v}, where v is not in S. In particular, v is
unramified in L/K and v { p. By [17, (30)] we have an exact triangle

@Rl"f(Lw, Zp(r)I=11 —> RU(OL 5, Zp(r)) —> RUA(OL,s, Zp(r)),
wlv

(4.14)

where RI" ¢ (L, Z,(r)) is a perfect complex of Z,[ G, ]-modules which is naturally
quasi-isomorphic to

1= N @)
Zp[Guw] — 22 7,1G o] (4.15)

with terms in degree 0 and 1. We set

eu(r) = (dete, (1 = guN @) | V) ™!) € L(QyIGD .

X eIrGC (G)

We compute

leRTc(OL.s, Zp(r))] — e RU(OL s/, Zp(r)] = ler EB RI ¢ (Lw, Zp(r))]
wlv
= 0p(erey(r))
= 0p(Lp,s(r)) —p(Lp s (r)),

where the first and second equality follow from (4.14) and (4.15), respectively. This
implies the claim. O

Our main evidence for Conjecture 4.14 is provided by the following result which,
crucially, does not depend upon the vanishing of 11, (L ™).

Theorem 4.17 Let r > 1 be an integer and assume that Sch(L, p, r) holds. If the
equivariant Iwasawa main conjecture (Conjecture 4.4) holds for LY, /K (and so in
particular tf,up(L"') = 00rif G has an abelian Sylow p-subgroup), then Conjecture
4.14 holds.

Proof We first observe that the complex C? g is semisimple at p ® o ' forall p €
Irrc, (G™) by Theorem 4.12. Moreover, if we put U = I';, as above, then we have an
isomorphism

Cr sy~ erRU(OLs, Zp(r)) (4.16)

inD(e, Z,[G)). If Conjecture 4.4 holds, then by Proposition 4.6 there is a characteristic
element ¢, s of [Cy g] such that ¢ 5(p ® @™ 1) = f, s@'~"(1 + T) — 1). Since
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fo.s@!™" = 1) = L, 5(r,p) # 0 we have that {¢(p ® 1) = L, s(r, p). If
w p(L+) vanishes or p does not divide the cardinality of G*, then [23, Theorem 2.2]
implies the claim (as noted above the complexes Q, ®z, A C* 5 p@w ! all vanish).

In order to avoid these assumptions, we proceed as follows Observe that both
(Z,)r, and (Y, 5)r, are finite by Lemma 4.10 (v) and Theorem 4.12 (or rather Remark
4.13), respectively, since Schneider’s conjecture holds by assumption. Recall from
Lemma 4.10 (iii) that we have an exact triangle

Z,[-3] — Ctg —> Y, s[-2]

in D(e-A(G)). It now follows from (4.16) and Lemma 4.2 for both Z, and Y, s that
we likewise have an exact triangle

(Z)r [=3]1 —> e, RTc(OL,s5. Zp(r)) —> (Yr,$)r, [-2]

in D(e;Z,[G)). Let H, and G, 5 in { (e, Q(G))™ be the reduced norms of character-
istic elements of Z, and Y, g, respectively. Note that both H, and G, s are actually
reduced norms of matrices with coefficients in e, A(G). Since Conjecture 4.4 holds
by assumption, we may assume that Nrd(¢, s) = G, s/H,, where ¢, s is the charac-
teristic element of [C} ¢] that occurs in Proposition 4.6. Now by (the proof of) [55,
Theorem 6.4] one has

3,(Grs) =Yy 9)r, 1, 8,(H)=[(Z)r,],

where

Grs = Z augr (J,gw—1(Gr.s))epge—1 € ¢(e,QplGD™
pelre, (GF)

and H, is defined similarly. Hence we obtain

[erRFc(OL,Sa Zp(r))]
=[(Y,.$)r,] = [(Z)r,]
= 3,(G, s/Hy)

=9, D augr(pger-1 (NId(Zr,5)))€ g
pelre, (G*)

9, (Ly.s(r).

It remains to justify the last equality (x). For this we compute

augr (j,ger—1 (Nd(8r,5))) = augp (& s(o ® @ 1)
= fos@' ™ —1) =L, s, p).
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Here the first and second equality follow from [59, Lemma 2.3] and (4.9), respectively.
This finishes the proof of (). O

Let us write Ko(e,Z,[G1, Qp)iors for the torsion subgroup of Ko(e,Z,[G], Qp).

Corollary 4.18 Let r > 1 be an integer and assume that Sch(L, p, r) holds. Then we
have that HR,,(L/K,r) € Ko(e;Zp[G], Qp)rors.

Proof Let K’ € L™ be a totally real field containing K. Denote the Galois group
Gal(L/K') by G'. Then HR,(L/K,r) maps to HR,(L/K’, r) under the natural
restriction map Ko(e,Z,[G1,Qp) — Ko(e,Zp[G'],Qp). If L' C L is a Galois
CM-extension of K, then likewise HR,(L/K,r) maps to HR,(L'/K,r) under
the natural quotient map Ko(e,Z,[G], Q,) — Ko(eer[Gal(L’/K)], Qp). Since
HR(L'/K’, r) vanishes for each intermediate Galois CM-extension of degree prime
to p by Theorem 4.17, we deduce the result by a slight modification of the argument
given in [64, Proof of Proposition 11] (also see [58, Proof of Corollary 2]). O

4.7 An application to the equivariant Tamagawa number conjecture

Let r be an integer and let L/K be a finite Galois extension of number fields with
Galois group G. We set Q(r)p = hO(Spec(L))(r) which we regard as a motive
defined over K and with coefficients in the semisimple algebra Q[G]. The ETNC
[17, Conjecture 4 (iv)] for the pair (Q(r)., Z[G]) asserts that a certain canoni-
cal element TQ(Q(r)r, Z[G)) in Ko(Z[G], R) vanishes. Note that in this case the
element TQ(Q(r)r, Z[G)) is indeed well-defined as observed in [18, Sect. 1]. If
TQ(Q(r)r, Z[G])) is rational, i.e. belongs to Ko(Z[G], Q), then by means of the
canonical isomorphism

Ko(ZIG, Q) ~ €D Ko(Z,[G1. Q)
p

we obtain elements T'Q(Q(r)r, Z[G)), in Ko(Zp[G], Qp).
If r > 1is an integer and L/K is a Galois CM-extension, the following result
provides a strategy for proving the ETNC for the pair (Q(r)r, e,Z[%][G]). We let

TQQr) g, erZ[%][G]) be the image of T Q2 (Q(r) 1, Z[G]) under the canonical maps
Ko(Z[G], R) — Ko(Z[51[G], R) — Ko(e,Z[51[G], R)

induced by extension of scalars. We define TQ (Q(r)r, e,Z[%][G]) p similarly.

Theorem4.19 Let r > 1 be an integer and let p be an odd prime. Let L/K be a
Galois CM-extension with Galois group G and set L := L(¢p). Assume that both

Schneider’s conjecture Sch(L, p, r) and the p-adic Beilinson conjecture (Conjecture
3.23) for LT /K hold. Then TQ(Q(r)y, erZ[%][G]) is rational and we have that

TQQ)L, e ZIFG) )y € KolerZp[Gl, Qp)iors-
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If we assume in addition that the equivariant Iwasawa main conjecture (Conjecture
4.4) holds for I:éro/l(, then the p-part of the ETNC for the pair (Q(r)r, erZ[%][G])
holds, i.e. the element T Q2 (Q(r)r, erZ[%][G])I7 vanishes.

Proof Since TQ(Q(r);, e,Z[$][Gal(L/K)]) maps to T2 (Q(r) ., e,Z[$][G]) under
the canonical quotient map Ko (e, Z[51[Gal(L/K)], R) — Ko(e,Z[51[G], R) by [17,
Theorem 4.1], we may and do assume that L = L. Since both Schneider’s conjecture
and the p-adic Beilinson conjecture hold, Corollary 3.29 implies that Gross’s conjec-
ture at s = 1 — r holds for all even (odd) irreducible characters of G if  is even (odd).
By [62, Proposition 5.5 and Theorem 6.5] (or rather the ‘e,-parts’ of these results) this

is indeed equivalent to the rationality of T (Q(r)r, erZ[%][G]).
Let us define

Q)= Y. Q. p®0  Ne,g,1 € 0(e,CyplGD .
pelrrqu(G*)

By the validity of the p-adic Beilinson conjecture we have that
Lp,s(r) = j(erLs(r)<;(r). (4.17)

We clearly have that 2 (r) = Nrd([e,(L ®g Cp) | up(r) o (Cp ®c,j oo () 1D).
Moreover, by Proposition 3.16 the automorphism

t(r.S. j) =10 (Cp ®C.j too(r) 0 pup(r) " 017! € Aute,c,16)(H;", ®2 C)p)

coincides with the ‘e,-part’ of the trivialization of the same name in [62, Sect. 6.2]
(up to an insignificant factor 2; cf. Remark 3.1). Since we have that

Nrd([H;", ®2 C, | 1(r, S, D) = ()",
the object

‘Ifj,s = [erRTc(OL,s, Zp(r)] — 0,(2;(r)) € Ko(e,Zp[G],Cp)  (4.18)

;
is equal to the e,-part of the object denoted by Qf 5 1n[62, Sect. 6.2]. We now compute

HRp(L/K,r) =03p(Lps(r) —le,RTc(OL,s, Zp(r))]
= 3p(j(erLg(r))) + (2 () — e, RT(OL 5, Zp(r))]
= 0,(jler L) — W ¢
= TQQ()L, & ZIF1IGD).
Here, the first equality holds by definition of HR,(L/K,r), the second and third
equality follow from (4.17) (essentially the p-adic Beilinson conjecture) and (4.18),

respectively, and the last equality follows from [62, Proposition 6.4 and Theorem 6.5].
Now Corollary 4.18 and Theorem 4.17 give the result. O
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Remark 4.20 Fix an integer r > 1. We have assumed throughout that L contains a pth
root of unity. What was actually needed in the above considerations, however, is that
" ! restricted to G j is trivial. Let £ C I:r - L be the smallest intermediate field
such that o’ ~! restricted to G i is trivial. Then we can replace L by L, throughout.

Note that ir is totally real and thus Z;” = Zr whenever r is odd, whereas we have
L, = L otherwise. In particular, we can replace L by E wheneverr =1 mod (p—1).

Corollary 4.21 Let p be an odd prime and let r > 1 be an integer such that r = 1
mod (p — 1). Let E/K be a Galois extension of totally real fields with Galois group
G. Assume that Schneider’s conjecture Sch(E, p, r), the p-adic Beilinson conjecture
(Conjecture 3.23) for E /| K and the equivariant Iwasawa main conjecture (Conjecture
4.4) for Exo/K all hold. Then TQ(Q(r) g, Z[%][G]) is rational and the p-part of the

ETNC for the pair (Q(r)g, Z[%][G]) holds.
Proof This follows from Theorem 4.19 and Remark 4.20. |

Corollary 4.22 Let L/K be a Galois extension of number fields with Galois group
G and let p be an odd prime. Assume in addition that L/Q is abelian. Then
TQ(Q(r)L,erZ[%][G]) is rational and the p-part of the ETNC for the pair

Q), e,Z[%][G]) holds for all but finitely many r > 1.

Proof We may assume that K = (Q by functoriality. As L(¢,) is abelian over the
rationals, the relevant Iwasawa invariant 1, (L(;“,,)+) vanishes by the aforementioned
result of Ferrero and Washington [34] (see the discussion following (4.7)). Hence
Conjecture 4.4 holds for L(¢,)% /Q by either part of Theorem 4.5 (but note that
in this case a variant of the equivariant Iwasawa main conjecture can be deduced
from work of Mazur and Wiles [53] as in [65, Theorem 8] for example). The p-
adic Beilinson conjecture holds for L(¢,)"/Q by Theorem 3.30. Finally, Schneider’s
conjecture Sch(L(¢p), p, r) holds for all but finitely many » by Remark 3.9. Thus the
result follows from Theorem 4.19. O

Remark 4.23 Of course, the result of Corollary 4.22 is not new. In fact, the ETNC for
the pair (Q(r)r, Z[G]) holds for every integer r whenever L/Q is abelian. If » < 0
this is the main result of Burns and Greither in [20] (important difficulties with the
prime 2 have subsequently been resolved by Flach [35]). The case » > 0 is due to
Burns and Flach [19]. A slightly weaker variant of the ETNC, where the integral group
ring Z[G] is essentially replaced by a maximal order containing it, has been studied
earlier by Huber and Kings [44].

Example 4.24 1et E/Q be a Galois extension of totally real fields with Galois
group G =~ Aff(q), where ¢ = ¢" is a prime power. Let r > 1 be an inte-
ger. Since Gross’s conjecture holds for all x € R(G) by Theorem 3.14 (iv), we
have that TQ(Q(r), Z[%][G]) is rational by [62, Theorem 6.5 (i)]. Let us write
Aff(q) ~ N x H, where N denotes the commutator subgroup of Aff(q). Then the
p-adic group ring Z,[Aff (q)]is ‘N-hybrid’ in the sense of [46, Definition 2.5] by [46,
Example 2.16] for every prime p # £. Since every p-adic group ring is {1}-hybrid,
we deduce from [48, Theorem 10.2] (or just as well from Theorem 4.5 (ii)) that the
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equivariant Iwasawa main conjecture holds unconditionally for E ()%, /Q for every
odd prime p. Thus Conjecture 4.14 holds by Theorem 4.17 whenever Sch(E(¢,), p, 7)
holds. In particular, this conjecture holds for almost all r > 1 for a fixed prime p.

We now assume for simplicity that r = 1 mod (p — 1). The p-adic Beilinson
conjecture holds for all linear characters of G by Theorem 3.30. As we have already
observed in the proof of Theorem 3.14 (iv) there is only one non-linear character yp
of Aff(q) which is a Z-linear combination of linear characters and of indg 1. Hence
it suffices to show Conjecture 3.23 for the trivial character 1y, i.e. for the trivial
extension EX JEH . Assuming this we can apply Corollary 4.21 to deduce that the
p-part of the ETNC for the pair (Q(r)g, e,Z[%][G]) holds. So what is missing here
(apart from Schneider’s conjecture) is a higher analogue of Colmez’s p-adic analytic
class number formula [30] and its complex analytic counterpart. (A closer analysis of
the proof of Theorem 4.19 shows that similar observations indeed hold for arbitrary
r>1.)

Acknowledgements The author acknowledges financial support provided by the Deutsche Forschungsge-
meinschaft (DFG) within the Heisenberg programme (Project No. 334383116).

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Barrett, J.P.: Annihilating the Tate-Shafarevic groups of Tate motives. Ph.D. thesis, King’s College
London (2009)

2. Barsky, D.: Fonctions zeta p-adiques d’une classe de rayon des corps de nombres totalement réels, in
Groupe d’Etude d’Analyse Ultramétrique (Se année: 1977/78), Secrétariat Math., Paris, pp. Exp. No.
16, 23 (1978)

3. Beilinson, A.A.: Higher regulators and values of L-functions. In: Current Problems in Mathematics,
Vol. 24, Ttogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow,
pp. 181-238 (1984)

4. Besser, A.: Syntomic regulators and p-adic integration. I. Rigid syntomic regulators. Israel J. Math.
120, 291-334 (2000)

5. Besser, A., Buckingham, P., de Jeu, R., Roblot, X.-F.: On the p-adic Beilinson conjecture for number
fields. Pure Appl. Math. Q. 5, 375-434 (2009)

6. Bley, W., Burns, D.: Equivariant epsilon constants, discriminants and étale cohomology. Proc. Lond.
Math. Soc. 3(87), 545-590 (2003)

7. Bley, W., Cobbe, A.: Equivariant epsilon constant conjectures for weakly ramified extensions. Math.
7.283, 1217-1244 (2016)

8. Bloch, S., Kato, K.: L-functions and Tamagawa numbers of motives, in The Grothendieck Festschrift,
Vol. I, vol. 86 of Progr. Math., Birkhduser Boston, Boston, MA, pp. 333—-400 (1990)

9. Borel, A.: Stable real cohomology of arithmetic groups. Ann. Sci. Ecole Norm. Sup. (4) 7(1974),
235-272 (1975)


http://creativecommons.org/licenses/by/4.0/

On the p-adic Beilinson conjecture and the ETNC Page370f39 3

10.

13.
14.

15.
. Burns, D., Flach, M.: Motivic L-functions and Galois module structures. Math. Ann. 305, 65-102

17.
18.
19.
20.

21.

22.
23.
24.
25.

26.
27.

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
. Greither, C., Popescu, C.D.: An equivariant main conjecture in Iwasawa theory and applications. J.

39.

40.

Breuning, M., Burns, D.: Leading terms of Artin L-functions ats = 0 and s = 1. Compos. Math. 143,
1427-1464 (2007)

. Burgos Gil, J.I.: The Regulators of Beilinson and Borel. CRM Monograph Series, vol. 15. American

Mathematical Society, Providence (2002)

. Burns, D.: Equivariant Tamagawa numbers and Galois module theory. I. Compos. Math. 129, 203-237

(2001)

Burns, D.: On derivatives of Artin L-series. Invent. Math. 186, 291-371 (2011)

Burns, D.: On main conjectures in non-commutative Iwasawa theory and related conjectures. J. Reine
Angew. Math. 698, 105-159 (2015)

Burns, D.: On derivatives of p-adic L-series at s = 0. J. Reine Angew. Math. 762, 53—-104 (2020)

(1996)

Burns, D., Flach, M.: Tamagawa numbers for motives with (non-commutative) coefficients. Doc. Math.
6, 501-570 (2001)

Burns, D., Flach, M.: Tamagawa numbers for motives with (noncommutative) coefficients. II. Am. J.
Math. 125, 475-512 (2003)

Burns, D., Flach, M.: On the equivariant Tamagawa number conjecture for Tate motives. II, Doc. Math.,
pp. 133-163 (2006)

Burns, D., Greither, C.: On the equivariant Tamagawa number conjecture for Tate motives. Invent.
Math. 153, 303-359 (2003)

Burns, D., Kurihara, M., Sano, T.: On Stark elements of arbitrary weight and their p-adic families, in
Development of Iwasawa Theory—The Centennial of K. Iwasawa’s Birth, vol. 86 of Adv. Stud. Pure
Math., Math. Soc. Japan, Tokyo, pp. 113-140 (2020)

Burns, D., Venjakob, O.: On the leading terms of zeta isomorphisms and p-adic L-functions in non-
commutative Iwasawa theory. Doc. Math., pp. 165-209 (2006)

Burns, D., Venjakob, O.: On descent theory and main conjectures in non-commutative Iwasawa theory.
J. Inst. Math. Jussieu 10, 59-118 (2011)

Cassou-Nogues, P.: Valeurs aux entiers négatifs des fonctions z€ta et fonctions zéta p-adiques. Invent.
Math. 51, 29-59 (1979)

Chinburg, T.: On the Galois structure of algebraic integers and S-units. Invent. Math. 74, 321-349
(1983)

Chinburg, T.: Exact sequences and Galois module structure. Ann. Math. 2(121), 351-376 (1985)
Coates, J., Fukaya, T., Kato, K., Sujatha, R., Venjakob, O.: The GL, main conjecture for elliptic curves
without complex multiplication. Publ. Math. Inst. Hautes Etudes Sci. 101, 163-208 (2005)

Coates, J., Sinnott, W.: An analogue of Stickelberger’s theorem for the higher K -groups. Invent. Math.
24, 149-161 (1974)

Coleman, R.F.: Dilogarithms, regulators and p-adic L-functions. Invent. Math. 69, 171-208 (1982)
Colmez, P.: Résidu en s = 1 des fonctions zéta p-adiques. Invent. Math. 91, 371-389 (1988)

Curtis, C.W., Reiner, I.: Methods of Representation Theory. Pure and Applied Mathematics. With
applications to finite groups and orders, vol. I. Wiley, New York (1981)

Dasgupta, S., Kakde, M., Ventullo, K.: On the Gross—Stark conjecture. Ann. Math. 2(188), 833-870
(2018)

Deligne, P., Ribet, K.A.: Values of abelian L-functions at negative integers over totally real fields.
Invent. Math. 59, 227-286 (1980)

Ferrero, B., Washington, L.C.: The Iwasawa invariant u P vanishes for abelian number fields. Ann.
Math. 2(109), 377-395 (1979)

Flach, M.: On the cyclotomic main conjecture for the prime 2. J. Reine Angew. Math. 661, 1-36 (2011)
Fukaya, T., Kato, K.: A formulation of conjectures on p-adic zeta functions in noncommutative Iwasawa
theory, in Proceedings of the St. Petersburg Mathematical Society. Vol. XII, vol. 219 of Amer. Math.
Soc. Transl. Ser. 2, pp. 1-85. Amer. Math. Soc., Providence, RI (2006)

Greenberg, R.: On p-adic Artin L-functions. Nagoya Math. J. 89, 77-87 (1983)

Algebraic Geom. 24, 629-692 (2015)

Gros, M.: Régulateurs syntomiques et valeurs de fonctions L p-adiques I. Invent. Math. 99, 293-320
(1990). (With an appendix by M. Kurihara)

Gros, M.: Régulateurs syntomiques et valeurs de fonctions L p-adiques. II. Invent. Math. 115, 61-79
(1994)



Page 38 of 39 A. Nickel

41.
42.
43.
44.

45.
46.

47.
48.
49.
50.
S1.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.

62.
63.

64.
65.
66.
. Ritter, J., Weiss, A.: On the "main conjecture" of equivariant Iwasawa theory. J. Am. Math. Soc. 24,

68.

69.
70.

71.
72.

73.

74.

Gross, B.H.: p-adic L-series at s = 0. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28, 979-994 (1982)
Gross, B.H.: On the values of Artin L-functions. Q. J. Pure Appl. Math. 1, 1-13 (2005)

Hesselholt, L., Madsen, I.: On the K-theory of local fields. Ann. Math. 2(158), 1-113 (2003)

Huber, A., Kings, G.: Bloch-Kato conjecture and main conjecture of Iwasawa theory for Dirichlet
characters. Duke Math. J. 119, 393-464 (2003)

Iwasawa, K.: On Z;-extensions of algebraic number fields. Ann. Math. 2(98), 246-326 (1973)
Johnston, H., Nickel, A.: On the equivariant Tamagawa number conjecture for Tate motives and uncon-
ditional annihilation results. Trans. Am. Math. Soc. 368, 6539-6574 (2016)

Johnston, H., Nickel, A.: Hybrid Iwasawa algebras and the equivariant Iwasawa main conjecture. Am.
J. Math. 140, 245-276 (2018)

Johnston, H., Nickel, A.: On the non-abelian Brumer—Stark conjecture and the equivariant Iwasawa
main conjecture. Math. Z. 292, 1233-1267 (2019)

Johnston, H., Nickel, A.: On the p-adic Stark conjecture at s = 1 and applications. J. Lond. Math.
Soc. 101, 1320-1354 (2020). (With an appendix by T. Hofmann, Johnston and Nickel)

Johnston, H., Nickel, A.: An unconditional proof of the abelian equivariant Iwasawa main conjecture
and applications. arXiv:2010.03186 (2020)

Kakde, M.: The main conjecture of Iwasawa theory for totally real fields. Invent. Math. 193, 539-626
(2013)

Kolster, M., Nguyen Quang Do, T.: Syntomic regulators and special values of p-adic L-functions.
Invent. Math. 133, 417-447 (1998)

Mazur, B., Wiles, A.: Class fields of abelian extensions of Q. Invent. Math. 76, 179-330 (1984)
Neukirch, J., Schmidt, A., Wingberg, K.: Cohomology of Number Fields. Grundlehren der Mathe-
matischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 323, 2nd edn.
Springer, Berlin (2008)

Nickel, A.: Non-commutative Fitting invariants and annihilation of class groups. J. Algebra 323, 2756—
2778 (2010)

Nickel, A.: Leading terms of Artin L-series at negative integers and annihilation of higher K -groups.
Math. Proc. Camb. Philos. Soc. 151, 1-22 (2011)

Nickel, A.: On non-abelian Stark-type conjectures. Ann. Inst. Fourier (Grenoble) 61(2011),2577-2608
(2012)

Nickel, A.: On the equivariant Tamagawa number conjecture in tame CM—extensions. Math. Z. 268,
1-35 (2011)

Nickel, A.: On the equivariant Tamagawa number conjecture in tame CM—extensions. II. Compos.
Math. 147, 1179-1204 (2011)

Nickel, A.: Equivariant Iwasawa theory and non-abelian Stark-type conjectures. Proc. Lond. Math.
Soc. 3(106), 1223-1247 (2013)

Nickel, A.: Integrality of Stickelberger elements and the equivariant Tamagawa number conjecture. J.
Reine Angew. Math. 719, 101-132 (2016)

Nickel, A.: Annihilating wild kernels. Doc. Math. 24, 2381-2422 (2019)

Quillen, D.: On the cohomology and K-theory of the general linear groups over a finite field. Ann.
Math. 2(96), 552-586 (1972)

Ritter, J., Weiss, A.: Cohomology of units and L-values at zero. J. Am. Math. Soc. 10, 513-552 (1997)
Ritter, J., Weiss, A.: Toward equivariant Iwasawa theory. Manuscr. Math. 109, 131-146 (2002)
Ritter, J., Weiss, A.: Toward equivariant Iwasawa theory. II. Indag. Math. (N.S.) 15, 549-572 (2004)

1015-1050 (2011)

Rubin, K.: A Stark conjecture "over Z" for abelian L-functions with multiple zeros. Ann. Inst. Fourier
(Grenoble) 46, 33-62 (1996)

Schneider, P.: Uber gewisse Galoiscohomologiegruppen. Math. Z. 168, 181-205 (1979)

Siegel, C.L.: Uber die Fourierschen Koeffizienten von Modulformen. Nachr. Akad. Wiss. Gottingen
Math.-Phys. K1. 11 1970, 15-56 (1970)

Snaith, V.: Stark’s conjecture and new Stickelberger phenomena. Canad. J. Math. 58, 419-448 (2006)
Soulé, C.: K-théorie des anneaux d’entiers de corps de nombres et cohomologie étale. Invent. Math.
55, 251-295 (1979)

Sujatha, R.: Reductions of the main conjecture, in Noncommutative Iwasawa Main Conjectures Over
Totally Real Fields, vol. 29 of Springer Proc. Math. Stat., pp. 23-50. Springer, Heidelberg (2013)
Swan, R. G.: Algebraic K-Theory. Lecture Notes in Mathematics, No. 76. Springer, Berlin (1968)


http://arxiv.org/abs/2010.03186

On the p-adic Beilinson conjecture and the ETNC Page390f39 3

75. Tate, J.: Les conjectures de Stark sur les fonctions L d’Artin en s = 0, vol. 47 of Progress in Math-
ematics. Lecture notes edited by Dominique Bernardi and Norbert Schappacher. Birkhiduser Boston
Inc., Boston, MA (1984)

76. Weibel, C.: The norm residue isomorphism theorem. J. Topol. 2, 346-372 (2009)

77. Weibel, C.: The K-Book, vol. 145 of Graduate Studies in Mathematics. An Introduction to Algebraic
K-Theory. American Mathematical Society, Providence, RI (2013)

78. Witte, M.: On a localisation sequence for the K-theory of skew power series rings. J. K-Theory 11,
125-154 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.



	On the p-adic Beilinson conjecture and the equivariant Tamagawa number conjecture
	Abstract
	1 Introduction
	Notation and conventions

	2 Algebraic preliminaries
	2.1 Derived categories and Galois cohomology
	2.2 Representations and characters of finite groups
	2.3 χ-twists

	3 The p-adic Beilinson conjecture
	3.1 Setup and notation
	3.2 Higher K-theory
	3.3 The regulators of Borel and Beilinson
	3.4 The Quillen–Lichtenbaum conjecture
	3.5 Local Galois cohomology
	3.6 Schneider's conjecture
	3.7 Artin L-series
	3.8 A conjecture of Gross
	3.9 The comparison period
	3.10 p-adic Artin L-functions
	3.11 Statement of the p-adic Beilinson conjecture
	3.12 The relation to Gross's conjecture
	3.13 Absolutely abelian characters

	4 Equivariant Iwasawa theory
	4.1 Bockstein homomorphisms
	4.2 Algebraic K-theory
	4.3 Cohomology with compact support
	4.4 The main conjecture
	4.5 Schneider's conjecture and semisimplicity
	4.6 Higher refined p-adic class number formulae
	4.7 An application to the equivariant Tamagawa number conjecture

	Acknowledgements
	References




