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Abstract
We study the affine schemes of modules over gentle algebras. We describe the smooth
points of these schemes, and we also analyze their irreducible components in detail.
Several of our results generalize formerly known results, e.g. by dropping acyclicity,
and by incorporating band modules. A special class of gentle algebras are Jacobian
algebras arising from triangulations of unpunctured marked surfaces. For these we
obtain a bijection between the set of generically τ -reduced decorated irreducible com-
ponents and the set of laminations of the surface. As an application, we get that the
set of bangle functions (defined by Musiker–Schiffler–Williams) in the upper cluster
algebra associatedwith the surface coincides with the set of generic Caldero-Chapoton
functions (defined by Geiß–Leclerc–Schröer).
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1 Introduction andmain results

1.1 Overview

We study some geometric aspects of the representation theory of gentle algebras. This
class of finite-dimensional algebras was defined by Assem and Skowroński [5], who
were classifying the iterated tilted algebras of path algebras of extended Dynkin type
˜A. Gentle algebras are special biserial, which implies that their module categories can
be described combinatorially, see [56] and also [11].

The irreducible components of the affine schemes of modules over gentle algebras
are easy to classify (see Proposition 7.1). As a first main result, we describe all smooth
points of these schemes, and we show that most components are generically reduced.

A special class of gentle algebras are Jacobian algebras arising from triangulations
of unpunctured marked surfaces (S, M). For these we obtain a bijection between the
set of generically τ -reduced decorated irreducible components and the set of lami-
nations of the surface. This bijection is compatible with the parametrization of these
two sets via g-vectors and shear coordinates. This bijection has some application to
cluster algebras, a class of combinatorially defined commutative algebras discovered
by Fomin and Zelevinsky [27]. Initially meant as a tool to describe parts of Lusztig’s
dual canonical basis of quantum groups in a combinatorial way, cluster algebras turned
out to appear at numerous different places of mathematics and mathematical physics.
The generically τ -reduced decorated components parametrize the generic Caldero-
Chapoton functions, which belong to the coefficient-free upper cluster algebra U(S,M)

associated with (S, M). In many cases, these generic Caldero-Chapoton functions
are known to form a basis, called the generic basis, of U(S,M), see for example [30]
and [49]. We use the bijection mentioned above to show that the generic basis coin-
cides with Musiker–Schiffler–Williams’ bangle basis (see [45, Corollary 1.3]) of the
coefficient-free cluster algebra A(S,M) associated with (S, M). It is known in most
cases (for example, if |M| ≥ 2) that A(S,M) = U(S,M), see [42,43].

In the following subsections we describe our results in more detail.

1.2 Gentle algebras

Let Q = (Q0, Q1, s, t) be a quiver. Thus by definition, Q0 and Q1 are finite sets,
where the elements of Q0 and Q1 are the vertices and arrows of Q, respectively.
Furthermore, s and t are maps s, t : Q1 → Q0, where s(a) and t(a) are the starting
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vertex and terminal vertex of an arrow a ∈ Q1, respectively. A loop in Q is an arrow
a ∈ Q1 with s(a) = t(a).

A basic algebra A = K Q/I is a gentle algebra provided the following hold:

(i) For each i ∈ Q0 we have |{a ∈ Q1 | s(a) = i}| ≤ 2 and |{a ∈ Q1 | t(a) =
i}| ≤ 2.

(ii) The ideal I is generated by a set ρ of paths of length 2.
(iii) Let a, b, c ∈ Q1 such that a �= b and t(a) = t(b) = s(c). Then exactly one of

the paths ca and cb is in I .
(iv) Let a, b, c ∈ Q1 such that a �= b and s(a) = s(b) = t(c). Then exactly one of

the paths ac and bc is in I .

A gentle algebra A = K Q/I is a Jacobian algebra in the sense of [22] if and only
if the following hold:

(v) Q is connected.
(vi) Q does not have any loops.
(vii) Let a, b ∈ Q1 such that s(a) = t(b) and ab ∈ I . Then there exists an arrow

c ∈ Q1 with s(c) = t(a) and t(c) = s(b) such that bc, ca ∈ I .

The gentle Jacobian algebras are exactly the Jacobian algebras associated to triangu-
lations of unpunctured marked surfaces. This follows from [4, Section 2].

1.3 Smooth locus and generic reducedness of module schemes

Let Q be a quiverwith Q0 = {1, . . . , n}, and let A = K Q/I be a basic algebra. Ford ∈
N
n let Irr(A,d) be the set of irreducible components of the affine scheme mod(A,d)

of A-modules with dimension vector d. For Z ∈ Irr(A,d)we write dim(Z) := d. Let

Irr(A) :=
⋃

d∈Nn

Irr(A,d).

The group

GLd(K ) :=
n

∏

i=1

GLdi (K )

acts on the K -rational points of mod(A,d) by conjugation, where d = (d1, . . . , dn).
The orbit of M ∈ mod(A,d) is denoted by OM . The orbits in mod(A,d) correspond
bijectively to the isomorphism classes of A-modules with dimension vector d.

For Z ∈ Irr(A,d) let Z◦ be the interior of Z . These are all M ∈ Z such that M
is not contained in any other irreducible component of mod(A,d). Obviously Z◦ is a
non-empty, open, irreducible subset of mod(A,d).

A module M ∈ mod(A,d) is smooth, if

dim TM = max{dim(Z) | Z ∈ Irr(A,d), M ∈ Z},
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where TM is the tangent space of M at the affine scheme mod(A,d). Otherwise, M is
singular. Let smooth(A,d) denote the set of smooth points of mod(A,d).

For each gentle algebra A we obtain a complete description of smooth points of
mod(A,d) for all d, see Theorem 7.6. As a consequence we get the following neat
characterization for the case of gentle Jacobian algebras.

Theorem 1.1 (Smooth points) Let A be a gentle Jacobian algebra. For each dimension
vector d we have

smooth(A,d) =
⋃

Z∈Irr(A,d)

Z◦.

Note that the inclusion ⊆ in Theorem 1.1 is true for arbitrary basic algebras A. The
other inclusion ⊇ is wrong in general. For example, it fails for most gentle algebras
which are not Jacobian algebras.

A module M ∈ mod(A,d) is reduced if

dim TM = dim T red
M ,

where T red
M is the tangent space of M at the reduced affine scheme mod(A,d)red

associatedwithmod(A,d).Wecallmod(A,d) reduced ifmod(A,d) = mod(A,d)red.
This is the case if and only if M is reduced for all M ∈ mod(A,d).

An irreducible component Z ∈ Irr(A) is generically reduced provided Z contains
a dense open subset U such that each M ∈ U is reduced.

Theorem 1.2 (Generic reducedness) Let A be a gentle algebra without loops. Then
each Z ∈ Irr(A) is generically reduced.

We prove a slightly more general version of Theorem 1.2 where we characterize
all generically reduced components for arbitrary gentle algebras, see Theorem 7.4.

For acyclic gentle algebras, Theorem 1.2 is a consequence of [21].

1.4 Generically �-reduced components

For M ∈ mod(A,d) let

cA(M) := max{dim(Z) | Z ∈ Irr(A,d), M ∈ Z} − dimOM ,

eA(M) := dim Ext1A(M, M),

hA(M) := dimHomA(M, τA(M)).

Here τA denotes the Auslander-Reiten translation of A.
For each Z ∈ Irr(A) there is a dense open subset U ⊆ Z such that the maps cA,

eA and hA are constant on U . These generic values are denoted by cA(Z), eA(Z) and
hA(Z).
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It follows that

cA(Z) = min{dim(Z) − dimOM | M ∈ Z},
eA(Z) = min{dim Ext1A(M, M) | M ∈ Z}.

Voigt’s Lemma 2.2 and the Auslander-Reiten formulas (see Theorem 5.4) imply
that

cA(Z) ≤ eA(Z) ≤ hA(Z).

Clearly, an irreducible component Z is generically reduced if and only if cA(Z) =
eA(Z). We say that Z is generically τ -reduced provided

cA(Z) = eA(Z) = hA(Z).

Such irreducible components were first defined and studied in [30], where they ran
under the name strongly reduced components.

Let Irrτ (A) be the subset of Irr(A) consisting of the generically τ -reduced compo-
nents.

Recall that an A-module M is rigid (resp. τ -rigid) if Ext1A(M, M) = 0 (resp.
HomA(M, τA(M)) = 0). By the Auslander-Reiten formulas, any τ -rigid module is
rigid, wheras the converse is wrong in general. Each rigid A-module M yields a
generically reduced component Z = OM . If M is τ -rigid, then this Z is generically
τ -reduced.

The next result says that for gentle Jacobian algebras, the generically τ -reduced
components are determined by their dimension vectors.

Theorem 1.3 Let A be a gentle Jacobian algebra. For Z1, Z2 ∈ Irrτ (A) the following
are equivalent:

(i) dim(Z1) = dim(Z2);
(ii) Z1 = Z2.

Let A = K Q/I be a gentle Jacobian algebra with Q0 = {1, . . . , n}. Recall that the
ideal I is generated by a set ρ of paths of length 2.We denote the standard idempotents
of A by e1, . . . , en . Let a ∈ Q1. Then we are in one of the following two cases:

(i) There is no arrow b ∈ Q1 with s(a) = t(b) such that ab ∈ I . In this case, the
3-dimensional subalgebra of A spanned by es(a), et(a) and a is called a 2-block of
A.

(ii) There are arrows b, c ∈ Q1 with s(a) = t(b), s(c) = t(a) and s(b) = t(c) such
that ab, ca, bc ∈ I . In this case, the 6-dimensional subalgebra of A spanned by
es(a), es(b), es(c), a, b and c is called a 3-block of A.

In the special case where the quiver Q consists just of a single vertex, we call A itself a
1-block. A ρ-block of A is a subalgebra which is either a 1-block, 2-block or 3-block.
(Note that the ρ-blocks are not necessarily unital subalgebras, i.e. the unit of a ρ-block
of A does in general not coincide with the unit of A.)
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We say that a vertex j ∈ Q0 or an arrow a ∈ Q1 belongs to a ρ-block Ai of A if
e j ∈ Ai or a ∈ Ai , respectively. Note that each arrow of Q belongs to exactly one
ρ-block of A, and each vertex of Q belongs to at most two ρ-blocks.

The restriction of representations of a gentle Jacobian algebra A to its ρ-blocks
A1, . . . , At yields a bijection

Irr(A) → Irr(A1) × · · · × Irr(At )

Z 
→ (π1(Z), . . . , πt (Z)).

In Sect. 4 we extend this observation to arbitrary basic algebras A = K Q/I . This
reduces the study of schemes ofmodules over gentle algebras to schemes of complexes.

Our next result characterizes the generically τ -reduced components of a gentle
Jacobian algebra in terms of the generically τ -reduced components of its ρ-blocks.

The fact that the generic reducedness or the smooth locus of a component Z relate
to the generic reducedness or the smooth locus of the components πi (Z) does not
come as a surprise. The following result however is somewhat unexpected, since
the Auslander-Reiten translation for A is quite different from the Auslander-Reiten
translations for the ρ-blocks of A.

Theorem 1.4 Let A = K Q/I be a gentle Jacobian algebra, and let A1, . . . , At be its
ρ-blocks. For an irreducible component Z ∈ Irr(A) the following are equivalent:

(i) Z ∈ Irrτ (A);
(ii) πi (Z) ∈ Irrτ (Ai ) for all 1 ≤ i ≤ t .

One might ask if Theorem 1.4 holds for arbitrary finite-dimensional K -algebras
using of course a generalized definition for ρ-blocks.

1.5 Band components

The indecomposable modules over a gentle algebra A (or more generally, over a
string algebra) are either string modules or band modules, see [11,56] for details. The
band modules occur naturally in K ∗-parameter families. An irreducible component
Z ∈ Irr(A) is a string component if it contains a string module whose orbit is dense in
Z , and Z is a band component if it contains a K ∗-parameter family of band modules
whose union of orbits is dense in Z .

An irreducible component Z ∈ Irr(A) is a brick component if it contains a brick,
i.e. an A-module M with dim EndA(M) = 1. In this case, by upper semicontinuity
the bricks in Z form a dense open subset of Z .

Theorem 1.5 Let A be a gentle algebra. Then each band component is a brick com-
ponent.

Using the terminology of [20], each irreducible component Z ∈ Irr(A) is a direct
sum of uniquely determined indecomposable irreducible components. The string and
band components are the only indecomposable components for string algebras.

The generically τ -reduced string components are exactly the components contain-
ing an indecomposable τ -rigid module, which is then automatically a string module.
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Theorem 1.6 Let A be a gentle algebra. For Z ∈ Irr(A,d) the following are equiva-
lent:

(i) Z is a direct sum of band components.
(ii) dim(Z) = dim(GLd(K )).

In this case, Z is generically τ -reduced.

Theorem 1.6 is closely related to the seemingly different [15, Proposition 4.3]. The
proofs follow the same line of arguments. We thank Ryan Kinser for pointing this out
to us.

For acyclic gentle algebras, Theorems 1.5 and 1.6 can be extracted from Carroll
and Chindris [14, Corollary 10] and [14, Proposition 11], see also [13, Theorem 2].
As a consequence of Theorem 1.5, one gets the known result that a gentle algebra A is
representation-finite if and only if mod(A) contains just finitely many bricks, compare
[48, Theorem 1.1].

1.6 Laminations of marked surfaces and generically �-reduced components

A lamination of an unpunctured marked surface (S, M) is a set of homotopy classes of
curves and loops in (S, M), which do not intersect each other, together with a positive
integer attached to each class. Let Lam(S, M) be the set of such laminations. (For
more precise definitions, we refer to Sect. 10.)

Let T be a triangulation of (S, M), and let AT be the associated gentle Jacobian
algebra. A decorated irreducible component is roughly speaking an irreducible com-
ponent of mod(AT ,d) equipped with a certain integer datum. Similarly as before, one
defines generically τ -reduced decorated irreducible components. Let decIrrτ (AT ) be
the set of all generically τ -reduced decorated components of decmod(AT , (d, v)),
where (d, v) runs over all dimension vectors. A precise definition can be found in
Sect. 9.

Theorem 1.7 Let (S, M) be an unpunctured marked surface, and let T be a triangu-
lation of (S, M). Let A = AT be the associated Jacobian algebra. Then there is a
natural bijection

ηT : Lam(S, M) → decIrrτ (A).

In their ground breaking work, Fomin, Shapiro and Thurston [25] proved that the
laminations of (S, M) consisting of curves are in bijection with the cluster monomials
of a cluster algebra A(S,M) associated with (S, M). Note that Fomin, Shapiro and
Thurston work with cluster algebras with arbitrary coefficient systems, whereas we
always assume that A(S,M) is a coefficient-free cluster algebra.

Musiker, Schiffler and Williams [45] defined a set

BT := {ψL | L ∈ Lam(S, M)}



8 Page 8 of 78 C. Geiß et al.

of bangle functions, whose elements are parametrized by Lam(S, M), and which (by
results in [44]) contains all cluster monomials. They show that BT forms a basis of
A(S,M) provided |M| ≥ 2, see [45, Corollary 1.3].

A result by W. Thurston (see [26, Theorem 12.3]) says that there is a bijection

sT : Lam(S, M) → Z
n

sending a lamination to its shear coordinate. Combining a theorem by Brüstle and
Zhang [10, Theorem 1.6] with a result by Adachi, Iyama and Reiten [1, Theorem 4.1],
one gets a bijection between the laminations in Lam(S, M) which consist only of
curves, and the set of generically τ -reduced decorated components in decIrrτ (AT ),
which contain a dense orbit. On the other hand, Plamondon [47] proved that there is
a bijection

gT : decIrrτ (AT ) → Z
n

sending a component to its g-vector. Theorem 1.7 extends Brüstle-Zhang’s bijection
mentioned above to a bijection

ηT : Lam(S, M) → decIrrτ (AT )

such that gT ◦ ηT = sT .
Let

GT := {φZ | Z ∈ decIrrτ (AT )}

be the set of generic Caldero-Chapoton functions as defined in [30]. As a consequence
of more general results in [23], the set GT is contained in the upper cluster algebra
U(S,M) and contains all cluster monomials. Furthermore, by [47, Theorem 1.3], the set
GT is (in a certain sense) independent of the choice of the triangulation T of (S, M).See
also [29]

The proof of the next theorem is based on the bijection from Theorem 1.7.

Theorem 1.8 BT = GT .

The diagram in Fig. 1 summarizes the situation.

1.7 Overall structure of the article

The article is organized as follows. After the introduction (Sect. 1), we recall in Sect. 2
some fundamentals on schemes of modules over basic algebras. Section 3 contains a
characterization of generically τ -reduced components for tame algebras. In Section 4
we introduce ρ-block decompositions of schemes of modules and derive some conse-
quences on tangent spaces. Section 5 contains a few facts on the representation theory
of gentle algebras. We also recall the definition of rank functions of modules over
gentle algebras. Section 6 consists of a detailed study of schemes of complexes. We
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Fig. 1 Bangle functions BT and generic Caldero-Chapoton functions GT for the coefficient-free cluster
algebraA(S,M) associated with an unpunctured marked surface (S, M)

determine their smooth points, and we describe all rigid and τ -rigid modules over the
associated basic algebras. In Sect. 7 we apply the results obtained in Sect. 6 and prove
Theorems 1.1, 1.2, 1.6 and 1.5. The proofs of Theorems 1.3 and 1.4 can be found
in Sect. 8. In Sect. 9 we recall some basics on decorated modules and schemes of
decorated modules over finite-dimensional algebras. Section 10 contains the proof of
Theorem 1.7, and also the proof that under the bijection in Theorem 1.7, shear coor-
dinates and g-vectors are compatible. Theorem 1.8 is proved in Sect. 11. In Sect. 12
we illustrate the combinatorics used in Sect. 11 by an example.

2 Scheme of modules

In this section, we recall some definitions and elementary facts on the representation
theory of basic algebras and on schemes of modules over such algebras. Throughout,
let K be an algebraically closed field.

2.1 Orbits, tangent spaces andVoigt’s Lemma

Let Q = (Q0, Q1, s, t) be a quiver. If not mentioned otherwise, we always assume
that Q0 = {1, . . . , n}.

Apath in Q is a tuple p = (a1, . . . , am)of arrowsai ∈ Q1 such that s(ai ) = t(ai+1)

for all 1 ≤ i ≤ m−1.Then length(p) := m is the length of p, andwe set s(p) := s(am)

and t(p) := t(a1). Additionally, for each vertex i ∈ Q0 there is a path ei of length
0, and let s(ei ) = t(ei ) = i . We often just write a1 · · · am instead of (a1, . . . , am). A
path p = (a1, . . . , am) of length m ≥ 1 is a cycle in Q, or more precisely an m-cycle
in Q, if s(p) = t(p).

Let K Q be the path algebra of Q, and letm be the ideal generated by the arrows of
Q. An ideal I of K Q is admissible if there exists somem ≥ 2 such thatmm ⊆ I ⊆ m2.
In this case, we call A := K Q/I a basic algebra. Clearly, basic algebras are finite-
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dimensional. By a Theorem of Gabriel, each finite-dimensional K -algebra is Morita
equivalent to a basic algebra.

A relation in K Q is a linear combination

s
∑

i=1

λi pi

where the pi are pairwise different paths of length at least 2 in Q with s(pi ) = s(p j )

and t(pi ) = t(p j ) for all 1 ≤ i, j ≤ s and λi ∈ K ∗ for all i .
Each admissible ideal is generated by a finite set of relations.
Let A = K Q/I be a basic algebra. Up to isomorphism, there are n simple

A-modules S1, . . . , Sn corresponding to the vertices of Q. Let P1, . . . , Pn (resp.
I1, . . . , In) be the projective covers (resp. injective envelopes) of the simple mod-
ules S1, . . . , Sn .

A representationof a quiverQ = (Q0, Q1, s, t) is a tupleM = (Mi , Ma)i∈Q0,a∈Q1 ,
where Mi is a finite-dimensional K -vector space for each i ∈ Q0, and Ma : Ms(a) →
Mt(a) is a K -linear map for each arrow a ∈ Q1.

For a path p = (a1, . . . , am) in Q and a representation M as above, let

Mp := Ma1 ◦ · · · ◦ Mam .

We call

dim(M) := (dim(M1), . . . , dim(Mn))

the dimension vector of M , and let

dim(M) := dim(M1) + · · · + dim(Mn)

be the dimension of M . The i th entry dim(Mi ) of dim(M) equals the Jordan-Hölder
multiplicity [M : Si ] of Si in M .

A representation of a basic algebra A = K Q/I is a representation M of Q, which
is annihilated by the ideal I , i.e. for each relation

s
∑

j=1

λ j p j

in I we demand that

s
∑

j=1

λ j M(p j ) = 0.

In the usual way, we identify the category rep(A) of representations of A with the
category mod(A) of finite-dimensional left A-modules.
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For d = (d1, . . . , dn) ∈ N
n let mod(A,d) be the affine scheme of representations

of A with dimension vector d. By definition the K -rational points of mod(A,d) are
the representations M = (Mi , Ma)i∈Q0,a∈Q1 of A with Mi = Kdi for all i ∈ Q0.
When there is no danger of confusion, we will just write mod(A,d) for the set of
K -rational points of mod(A,d). One can regard mod(A,d) as a Zariski closed subset
of the affine space

mod(Q,d) :=
∏

a∈Q1

HomK (Kds(a) , Kdt(a) ).

The group GLd(K ) acts on the K -rational points of mod(A,d) by conjugation. More
precisely, for g = (g1, . . . , gn) ∈ GLd(K ) and M ∈ mod(A,d) let

g.M := (Mi , gt(a)Mag
−1
s(a))i∈Q0,a∈Q1 .

For M ∈ mod(A,d) let OM be the GLd(K )-orbit of M . The GLd(K )-orbits are in
bijection with the isomorphism classes of representations of A with dimension vector
d.

For M ∈ mod(A,d) we denote the tangent space of M at mod(A,d) by TM . Let
TM (OM ) be the tangent space of M at OM . Since the GLd(K )-orbit OM is smooth,
we have

dim TM (OM ) = dimOM = dimGLd(K ) − dim EndA(M).

The following lemma is obvious.

Lemma 2.1 For M ∈ mod(A,d) the following are equivalent:

(i) OM is open.
(ii) The Zariski closure OM is an irreducible component of mod(A,d).

For the following proposition we refer to Gabriel [28, Proposition 1.1] and Voigt
[55].

Lemma 2.2 (Voigt’s Lemma) For M ∈ mod(A,d) there is an isomorphism

TM/TM (OM ) → Ext1A(M, M).

of K -vector spaces.

Corollary 2.3 Let M ∈ mod(A,d) be rigid. Then OM is open.

The converse of Corollary 2.3 is in general wrong.

Corollary 2.4 Let M ∈ mod(A,d) be rigid. Then M is smooth.

Corollary 2.5 For M ∈ mod(A,d) the following are equivalent:

(i) M is rigid.
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(ii) The Zariski closure of OM is a generically reduced component of mod(A,d).

Lemma 2.6 Let M ∈ mod(A,d) be smooth. Then M is reduced.

Proof This is clear, since for each irreducible component Z with M ∈ Z we have

dim(Z) ≤ dim T red
M ≤ dim TM .

�
The following three results arewell knownandcanbe extracted e.g. from [35,52,53].

Proposition 2.7 Let Z ∈ Irr(A,d). Then there is a dense open subset U ⊆ Z such
that

dim T red
M = dim(Z)

for all M ∈ U.

Proposition 2.8 Let Z ∈ Irr(A,d). Then the smooth points in Z form a (possibly
empty) open subset of Z.

Proposition 2.9 Let M ∈ mod(A,d) be contained in at least two different irreducible
components. Then M is singular.

The following statement is proved in [31, Proposition 3.7]. It relies on results from
[32].

Proposition 2.10 Let M ∈ mod(A,d) with Ext2A(M, M) = 0. Then M is smooth.

2.2 Canonical decompositions of irreducible components

An irreducible component Z ∈ Irr(A,d) is indecomposable if

ind(Z) := {M ∈ Z | M is indecomposable}

is dense in Z . Let d and d1, . . . ,dt be dimension vectors with d = d1 + · · · + dt . For
Zi ∈ Irr(A,di ) with 1 ≤ i ≤ t let

Z1 ⊕ · · · ⊕ Zt

be the image of the morphism

GLd(K ) × Z1 × · · · × Zt → mod(A,d)

(g, M1, . . . , Mt ) 
→ g.(M1 ⊕ · · · ⊕ Mt ).
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For each Z ∈ Irr(A) there are uniquely determined (up to renumbering) indecompos-
able irreducible components Z1, . . . , Zt ∈ Irr(A) such that

Z = Z1 ⊕ · · · ⊕ Zt ,

see [20, Theorem 1.1]. This is called the canonical decomposition of Z . For Z ∈
Irr(A,d) set dim(Z) := d. For Z1, Z2 ∈ Irr(A) let

ext1A(Z1, Z2) := min{dim Ext1A(M1, M2) | M1 ∈ Z1, M2 ∈ Z2}.

Theorem 2.11 ([20, Theorem 1.2]) Let A be a finite-dimensional K -algebra. For
Z1, . . . , Zt ∈ Irr(A) the following are equivalent:

(i) Z1 ⊕ · · · ⊕ Zt ∈ Irr(A);
(ii) ext1A(Zi , Z j ) = 0 for all i �= j .

For each Z ∈ Irrτ (A) there are uniquely determined (up to renumbering) indecom-
posable components Z1, . . . , Zt ∈ Irrτ (A) such that

Z = Z1 ⊕ · · · ⊕ Zt .

Theorem 2.12 ([17, Theorem 5.11]) Let A be a finite-dimensional K -algebra. For
Z1, . . . , Zt ∈ Irrτ (A) the following are equivalent:

(i) Z1 ⊕ · · · ⊕ Zt ∈ Irrτ (A);
(ii) hA(Zi , Z j ) = 0 for all i �= j .

3 Generically �-reduced components for tame algebras

In this section, we characterize the indecomposable τ -reduced components for tame
algebras. The proof consists basically of combining some known results in a straight-
forward manner.

Let A be a finite-dimensional K -algebra. Then A is a tame algebra if for each
dimension d there exists a finite numberM1, . . . , Mt of A-K [X ]-bimodulesMi , which
are free of rank d as K [X ]-modules, such that all but finitely many d-dimensional A-
modules are isomorphic to

Mi ⊗K [X ] K [X ]/(X − λ)

for some 1 ≤ i ≤ t and some λ ∈ K .
The following lemma is well known folklore. A proof can be found in [14, Sec-

tion 2.2].

Lemma 3.1 Let A be a tame algebra, and let Z ∈ Irr(A) be an indecomposable
irreducible component. Then cA(Z) ∈ {0, 1}. Furthermore, the following hold:
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(i) cA(Z) = 0 if and only if Z contains an indecomposable module M with

Z = OM .

(ii) cA(Z) = 1 if and only if Z contains a rational curve C such that the points of C
are pairwise non-isomorphic indecomposable modules with

Z =
⋃

M∈C
OM .

Theorem 3.2 Let A be a tame algebra, and let Z ∈ Irr(A) be an indecomposable
irreducible component. Then the following hold:

(i) For cA(Z) = 0 the following are equivalent:

(a) Z is generically τ -reduced.
(b) Z contains an indecomposable τ -rigid module M.

In this case,

Z = OM .

(ii) For cA(Z) = 1 the following are equivalent:

(a) Z is generically τ -reduced.
(b) Z contains a rational curve C such that the points of C are pairwise non-

isomorphic bricks.
(c) Z contains infinitely many pairwise non-isomorphic bricks.

In this case,

Z =
⋃

M∈C
OM .

Proof Part (i) follows directly from the definitions. Thus assume cA(Z) = 1. By
Lemma 3.1, Z contains a rational curve C such that the points of C are pairwise
non-isomorphic indecomposable modules with

Z =
⋃

M∈C
OM .

Now a deep result by Crawley-Boevey [19, Theorem D] says that τA(M) ∼= M for all
but finitely many M ∈ C . Thus Z is generically τ -reduced if and only if hA(Z) = 1
if and only if dim HomA(M, τA(M)) = dim EndA(M) = 1 for all but finitely many
M ∈ C . Thus (a) and (b) are equivalent. In a brick component, the bricks always form
a dense open subset. Keeping in mind Lemma 3.1, this implies the equivalence of (b)
and (c). �
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For an arbitrary finite-dimensional K -algebra A, each generically τ -reduced
component Z ∈ Irr(A) is a direct sum of indecomposable generically τ -reduced
components. This is explained in Sect. 9.5.

4 �-block decomposition and tangent spaces

Let A = K Q/I , where K Q is a path algebra and I is an admissible ideal generated
by a set ρ = {ρ1, . . . , ρm} of relations.

For each

ρk =
s

∑

i=1

λi pi

with 1 ≤ k ≤ m let Q(ρk) be the smallest subquiver of Q containing the paths pi . Of
course, these subquivers might overlap for different relations.

For arrows a, b ∈ Q1 write a ∼ b if there is some k with a, b ∈ Q(ρk). Let ∼ be
the smallest equivalence relation on Q1 respecting this rule. In particular, each a ∈ Q1
which is not contained in any of the Q(ρk) forms its own equivalence class.

Each equivalence class in Q1 with respect to ∼ gives rise to a subquiver of Q
and also to a subalgebra of A. These subalgebras are the ρ-blocks of A. Each vertex
i ∈ Q0, which has no arrow attached to it yields a 1-dimensional subalgebra (with
basis ei ). Such subalgebras are also called ρ-blocks of A.

Not under this name and for a different purpose (tameness proofs), ρ-blocks appear
already in [9], see also [3]. We thank Thomas Brüstle for pointing this out.

Let us remark that each arrow of Q belongs to exactly one ρ-block, whereas a
standard idempotent ei can belong to several ρ-blocks. For an arrow a which does not
appear in any of the relations in ρ, the path algebra of the quiver

s(a)
a

t(a)

is a ρ-block. For example, let Q be the quiver

1
a1 2 · · · an−1

n

and let A = K Q. (In this trivial example, we have I = 0 and ρ = ∅.) For n ≥ 2 the
ρ-blocks of A are the path algebras of the subquivers

i
ai

i + 1

where 1 ≤ i ≤ n − 1. For n = 1 there is only one ρ-block, namely A itself.
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As another example, let Q be the quiver

3

c

a3 1

a1 b1

4
b3

2

a2 b2

and let I be the ideal in K Q generated by ρ = {a1a3, a2a1, a3a2, b1b3, b2b1, b3b2}.
Then K Q/I is a gentle Jacobian algebra, and there are twoρ-blockswith three vertices
and one ρ-block with two vertices. (This algebra arises from a torus with one boundary
component and one marked point on the boundary.)

Our ρ-blocks are in general very different from the classically defined blocks of an
algebra. However, on the geometric level there is at least some resemblance. This will
be explained at the end of this subsection.

Now let A1, . . . , At be the ρ-blocks of A. For each dimension vector d ∈ N
n and

1 ≤ i ≤ t let πi (d) denote the corresponding dimension vector for Ai . Each M ∈
mod(A,d) induces via restriction modules πi (M) ∈ mod(Ai , πi (d)) for 1 ≤ i ≤ t in
the obvious way.

For each d we obtain an isomorphism

mod(A,d) → mod(A1, π1(d)) × · · · × mod(At , πt (d))

M 
→ (π1(M), . . . , πt (M))

of affine schemes and therefore a bijection

Irr(A,d) → Irr(A1, π1(d)) × · · · × Irr(At , πt (d))

Z 
→ (π1(Z), . . . , πt (Z)).

Proposition 4.1 Let A and A1, . . . , At be defined as above. For M ∈ mod(A,d) the
following hold:

(i) TM ∼= ∏n
i=1 Tπi (M);

(ii) T red
M

∼= ∏n
i=1 T

red
πi (M).

Proof (i): Obvious.
(ii): For a ring R let nil(R) be its ideal of nilpotent elements. For R commutative

and finitely generated, let Spec(R) be as usual its prime ideal spectrum, which is an
affine scheme.

We have an isomorphism of affine schemes

mod(A,d) ∼=
t

∏

i=1

mod(Ai , πi (d)).
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Let Ri be the coordinate algebra of mod(Ai , πi (d)) for 1 ≤ i ≤ t . We get an isomor-
phism of affine schemes

mod(A,d) ∼= Spec(R1 ⊗ · · · ⊗ Rt ).

Furthermore, we have

mod(A,d)red ∼= Spec((R1 ⊗ · · · ⊗ Rt )/ nil(R1 ⊗ · · · ⊗ Rt )).

Let B and C be finitely generated commutative K -algebras. Then one easily shows
that

nil(B ⊗ C) = nil(B) ⊗ C + B ⊗ nil(C).

This yields

(B ⊗ C)/ nil(B ⊗ C) ∼= B/ nil(B) ⊗ C/ nil(C).

Applying this via induction to the situation above, we get

(R1 ⊗ · · · ⊗ Rt )/ nil(R1 ⊗ · · · ⊗ Rt ) ∼= R1/ nil(A1) ⊗ · · · ⊗ Rt/ nil(At ).

We get

mod(A,d)red ∼=
t

∏

i=1

mod(Ai , πi (d))red,

which implies (ii). �
Proposition 4.1 allows us to study the tangent spaces of mod(A,d) in terms of the

often easier to compute tangent spaces of mod(Ai , πi (d)).

Corollary 4.2 Let M ∈ mod(A,d). Then the following are equivalent:

(i) M is smooth.
(ii) πi (M) is smooth for all 1 ≤ i ≤ t .

Corollary 4.3 Let M ∈ mod(A,d). Then the following are equivalent:

(i) M is reduced.
(ii) πi (M) is reduced for all 1 ≤ i ≤ t .

Corollary 4.4 Let Z ∈ Irr(A). Then the following are equivalent:

(i) Z is generically reduced.
(ii) πi (Z) is generically reduced for all 1 ≤ i ≤ t .
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For the basic algebra A = K Q/I , let Q(1), . . . , Q(m) be the connected compo-
nents of the quiver Q. For 1 ≤ i ≤ m let I (i) := I ∩ K Q(i). Then I (i) is generated
by a subset ρ(i) of ρ. With Bi := K Q(i)/I (i) we get an algebra isomorphism

A ∼= B1 × · · · × Bm .

The Bi are indecomposable algebras, i.e. they are not isomorphic to the product of
two algebras of smaller dimension. In other words, the Bi are the classical blocks of
A. For a dimension vector d ∈ N

n let d(i) be the corresponding dimension vector for
Bi . We get an isomorphism

mod(A,d) → mod(B1,d(1)) × · · · × mod(Bm,d(m))

of affine schemes. The ρ-blocks of A are the disjoint union of the ρ(i)-blocks of the
Bi .

5 Modules over gentle algebras

Throughout this section, let A = K Q/I be a gentle algebra with Q = (Q0, Q1, s, t).

5.1 Themaps� and "

We need two maps

σ, ε : Q1 → {±1}

satisfying the following properties:

(i) If a1, a2 ∈ Q1 with a1 �= a2 and s(a1) = s(a2), then σ(a1) = −σ(a2).
(ii) If b1, b2 ∈ Q1 with b1 �= b2 and t(b1) = t(b2), then ε(b1) = −ε(b2).
(iii) If a, b ∈ Q1 with s(a) = t(b) and ab /∈ I , then σ(b) = −ε(γ ).

It is straightforward to see that such maps σ and ε exist. We fix σ and ε for the rest of
this section.

Later on we will define 1-sided and 2-sided standard homomorphisms. To make
this anambiguous, we need the functions σ and ε.

5.2 Strings

For each arrow a ∈ Q1 we introduce a formal inverse a−. We extend the maps
s, t by defining s(a−) := t(a) and t(a−) := s(a). We also set (a−)− = a. Let
Q−

1 = {a− | a ∈ Q1} be the set of inverse arrows. Now a string C of length
l(C) := m ≥ 1 is an m-tuple

C = (c1, . . . , cm)
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such that the following hold:

• ci ∈ Q1 ∪ Q−
1 for all 1 ≤ i ≤ m;

• s(ci ) = t(ci+1) for all 1 ≤ i ≤ m − 1;
• ci �= c−

i+1 for all 1 ≤ i ≤ m − 1.
• {ci ci+1, c−

i+1c
−
i | 1 ≤ i ≤ m − 1} ∩ I = ∅.

We often just write C = c1 · · · cm instead of C = (c1, . . . , cm). Let C− :=
(c−

m , . . . , c−
1 ) be the inverse of C , which is obviously again a string.

Additionally, for each vertex i ∈ Q0 there are two strings 1i,t with t = ±1 of
length l(1i,t ) := 0. We set s(1i,t ) = t(1i,t ) = i and 1−

i,t = 1i,−t .
Sometimes we will just write 1i instead of 1(i,t).
We extend the maps σ and ε to strings as follows:

(i) For a ∈ Q1 define σ(a−) := ε(a) and ε(a−) := σ(a).
(ii) For a string C = (c1, . . . , cm) of length m ≥ 1, let σ(C) := σ(cm) and ε(C) :=

ε(c1).
(iii) σ(1i,t ) := −t and ε(1i,t ) := t .

For strings C = (c1, . . . , cp) and D = (d1, . . . , dq) of length p, q ≥ 1, the
composition ofC and D is defined, provided (c1, . . . , cp, d1, . . . , dq) is again a string.
We write then CD = c1 · · · cpd1 · · · dq .

Now let C be any string. The composition of 1(u,t) and C is defined if t(C) = i
and ε(C) = t . In this case, we write 1(i,t)C = C . The composition of C and 1(i,t) is
defined if s(C) = i and σ(C) = −t . In this case we write C1(i,t) = C .

If C and D are arbitrary strings such that the composition CD is defined, then
σ(C) = −ε(D).

For a string C we write C ∼ C−. This defines an equivalence relation on the set of
all strings. Let S denote a set of representatives of all equivalence classes of strings
for A.

A string C is a direct string if C is of length 0 or if it does not contain any inverse
arrows. A direct string C is right-bounded (resp. left-bounded) if Ca ∈ I (resp.
aC ∈ I ) for all a ∈ Q1.

When visualizing a string we draw an arrow a ∈ Q1 often pointing from northeast
to southwest:

•
a

•

Instead of the bullets one often displays the numbers i := s(a) and j := t(a):

i
a

j
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On the other hand, an inverse arrow a− ∈ Q−
1 is pointing from northwest to southeast:

•
a

•

Note that in this picture the arrow a− carries just the label a.

5.3 Example

Let again A = K Q/I , where Q is the quiver

3

c

a3 1

a1 b1

4
b3

2

a2 b2

and I is the ideal in K Q generated by a1a3, a2a1, a3a2, b1b3, b2b1, b3b2. Then

C = a−
1 b1a3c

−b2a1b−
1 = (a−

1 , b1, a3, c
−, b2, a1, b

−
1 )

is a string, which looks as follows:

1
a1 b1

3
a3 c

2

b2

2

1

a1

1

b1

4

2

5.4 Stringmodules

Let C = (c1, . . . , cm) be a string of length m ≥ 1. We define a string module M(C)

as follows: The module M(C) has a standard basis (b1, . . . , bm+1). The generators
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of the algebra A act on this basis as follows: For i ∈ Q0 and 1 ≤ j ≤ m + 1 we have

eib j :=

⎧

⎪

⎨

⎪

⎩

b j if t(c j ) = i and 1 ≤ j ≤ m,

b j if s(cm) = i and j = m + 1,

0 otherwise.

and for a ∈ Q1 and 1 ≤ j ≤ m + 1 we have

ab j :=

⎧

⎪

⎨

⎪

⎩

b j−1 if a = c j−1 and 2 ≤ j ≤ m + 1,

b j+1 if a− = c j+1 and 1 ≤ j ≤ m,

0 otherwise.

For strings E1 and E2 with E1 ∼ E2, let

φE1,E2 : M(E1) → M(E2)

be the obvious canonical isomorphism. (If E1 = E2, then φE1,E2 is just the identity.
Let E1 = E−

2 , and let (b1, . . . , bm) (resp. (b′
1, . . . , b

′
m)) be the standard basis of

M(E1) (resp. M(E2)). Then φE1,E2(bi ) = b′
m−i+1 for 1 ≤ i ≤ m.)

5.5 Bands

A band for A is a string B such that the following hold:

• l(B) ≥ 2;
• Bt is a string for all t ≥ 1;
• B is not of the form Cs for some string C and some s ≥ 2.

Let B be a band, and let C and D be strings such that B = CD. Then DC is a
rotation of B. Obviously, any rotation of B is again a band. We write

B ∼b DC ∼b B−.

This yields an equivalence relation on the set of all bands for A. Let B be a set of
representatives of all equivalence classes of bands for A.

As an example, let A = K Q/I as in Sect. 5.3. Then

B = c−b−
3 a

−
1 b1a

−
1 b1a3

is a band.

5.6 Bandmodules

Now let B = (c1, . . . , cm) be a band, and let λ ∈ K ∗. We define a band module
M(B, λ, 1) as follows: The module M(B, λ, 1) has a standard basis (b1, . . . , bm).
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The generators of the algebra A act on this basis as follows: For i ∈ Q0 and 1 ≤ j ≤ m
we have

eib j :=
{

b j if t(c j ) = i and 1 ≤ j ≤ m,

0 otherwise.

and for a ∈ Q1 and 1 ≤ j ≤ m we have

ab j :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

b j−1 if a = c j−1 and 2 ≤ j ≤ m,

λbm if a = cm and j = 1,

b j+1 if a− = c j+1 and 1 ≤ j ≤ m − 1,

λb1 if a− = cm and j = m,

0 otherwise.

For q ≥ 2 and λ ∈ K ∗ there are also band modules M(B, λ, q). They do not play
a major role in this article, so we omit their definition. Let us just mention that they
form Auslander-Reiten sequences

0 → M(B, λ, 1) → M(B, λ, 2) → M(B, λ, 1) → 0

and

0 → M(B, λ, q) → M(B, λ, q − 1) ⊕ M(B, λ, q + 1) → M(B, λ, q) → 0

for q ≥ 2. For q ≥ 1, we say that M(B, λ, q) has quasi-length q.

5.7 Classification of modules

The following classification theorem was first proved by Wald and Waschbüsch [56]
using covering techniques. There is an alternative proof by Butler and Ringel [11]
using functorial filtrations. Both articles [11] and [56] also contain a combinatorial
description of all Auslander-Reiten sequences for string algebras. Recall that all gentle
algebras are string algebras.

Theorem 5.1 Let A = K Q/I be a gentle algebra. Themodules M(C) and M(B, λ, q)

with C ∈ S, B ∈ B, λ ∈ K ∗ and q ≥ 1 are a complete set of pairwise non-isomorphic
representatives of isomorphism classes of indecomposable modules in mod(A).

For string modules we have M(C1) ∼= M(C2) if and only if C1 ∼ C2, and for band
modules we have M(B1, λ1, q1) ∼= M(B2, λ2, q2) if and only if B1 ∼b B2, λ1 = λ2
and q1 = q2.

5.8 Homomorphisms

For a string C we define S(C) as the set of triples (D, E, F) such that the following
hold:
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(i) C = DEF ;
(ii) Either l(D) = 0, or D = D′a− for some a ∈ Q1 and some string D′;
(iii) Either l(F) = 0, or F = bF ′ for some b ∈ Q1 and some string F ′.

Following our convention for displaying strings, a triple (D, E, F) ∈ S(C) with
l(D), l(F) ≥ 1 yields the following picture, where the left (resp. right) hand red line
stands for the string D′ (resp. F ′), and the blue line stands for E .

• D′ •
a

•
b

F ′ •

• E •
We clearly see that M(C) has a submodule isomorphic to M(E) and that the corre-
sponding factor module is isomorphic to M(D′) ⊕ M(F ′). Let

ι(D,E,F) : M(E) → M(C)

be the obvious canonical inclusion.
Dually, for a string C we define F(C) as the set of triples (D, E, F) such that the

following hold:

(i) C = DEF ;
(ii) Either l(D) = 0, or D = D′a for some a ∈ Q1 and some string D′;
(iii) Either l(F) = 0, or F = b−F ′ for some b ∈ Q1 and some string F ′.

For such a (D, E, F) ∈ F(C) with l(D), l(F) ≥ 1 we get the following picture,
where the left (resp. right) hand green line stands for the string D′ (resp. F ′), and the
blue line stands for E .

•
a

E •
b

• D′ • • F ′ •

Then M(C) has a submodule isomorphic to M(D′) ⊕ M(F ′) and the corresponding
factor module is isomorphic to M(E). Let

π(D,E,F) : M(C) → M(E)

be the obvious canonical projection.
For a pair (C1,C2) of strings we call a pair

h = ((D1, E1, F1), (D2, E2, F2)) ∈ F(C1) × S(C2)

admissible if E1 = E2 or E1 = E−
2 .
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Suppose that h is admissible. For E1 = E2, h is 2-sided if l(Di ) ≥ 1 and l(Fj ) ≥ 1
for at least one i ∈ {1, 2} and at least one j ∈ {1, 2}. For E1 = E−

2 , h is 2-sided if
((D1, E1, F1), (F

−
2 , E−

2 , D−
2 )) is 2-sided.

Let h be admissible as above, and let

fh := ι(D2,E2,F2) ◦ φE1,E2 ◦ π(D1,E1,F1) : M(C1) → M(C2)

be the associated standard homomorphism. We call fh oriented if E1 = E2. Further-
more, fh is 2-sided if h is 2-sided. Otherwise, fh is 1-sided.

The following picture describes fh for the case E1 = E2 and l(Di ), l(Fi ) ≥ 1 for
i = 1, 2.

• D′
2 •

a2
•

b2

F ′
2 •

•
a1

E2

E1
•
b1• D′

1 • • F ′
1 •

Thus we have C1 = D′
1a1E1b

−
1 F ′

1 and C2 = D′
2a

−
2 E2b2F ′

2. Furthermore, it follows
that a1a2, b1b2 ∈ I .

Depending if some of the four strings D1, F1, D2, F2 are of length 0 or not, there
are 16 different types of oriented standard homomorphisms.

Theorem 5.2 ([18]) For M and N string modules, the set of standard homomorphisms
M → N is a basis of HomA(M, N ).

In this article, we are mainly concerned with the question if certain homomorphism
spaces HomA(M, N ) are zero or not. The actual dimension of these spaces does not
matter.

For a band module M = M(B, λ, q) and an arbitrary indecomposable A-module
N , the conditions HomA(M, N ) �= 0 and HomA(N , M) �= 0 do not depend on the
quasi-length q. (This follows from the description of the Auslander-Reiten sequences
involving band modules, see for example [11].) Therefore we can restrict our attention
to band modules of quasi-length 1.

Krause [37] extended Theorem 5.2 to homomorphisms also involving band mod-
ules. We just recall a special case here, where we only consider band modules of
quasi-length 1.

For a band B let

S∞(B) := {(D, E, F) ∈ S(Bt ) | 1 ≤ l(D), l(F) ≤ l(B), t ≥ 1},
F∞(B) := {(D, E, F) ∈ F(Bt ) | 1 ≤ l(D), l(F) ≤ l(B), t ≥ 1}.
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Let B1 and B2 be bands, and let C be a string. Let

h = ((D1, E1, F1), (D2, E2, F2))

be an element in F∞(B1) × S(C), F(C) × S∞(B1) or F∞(B1) × S∞(B2). Then
h is admissible if E1 = E2 or E1 = E−

2 . In this case, one can again define a
standard homomorphism fh : M(B1, λ1, 1) → M(C), fh : M(C) → M(B1, λ1, 1)
or fh : M(B1, λ1, 1) → M(B2, λ2, 1), respectively. All of these are 2-sided. This
involves of course a choice of scalars λ1 and/or λ2, in case we deal with B1 and/or B2.
For a band module M(B, λ, 1), the identity is also called a standard homomorphism.
Similarly as before, we call fh oriented if E1 = E2. For further details we refer to
[37].

Theorem 5.3 ([37]) For M and N string modules or band modules of quasi-length 1,
the set of standard homomorphisms M → N is a basis of HomA(M, N ).

5.9 Auslander-Reiten translation of stringmodules

Let A be a gentle algebra, and let M ∈ mod(A) be a non-projective string module. It
follows that τA(M) is also a string module, and that we are in one of the five situations
displayed in Fig. 2, see [11, Section 3]. (We use here the sameway of illustrating strings
and string modules as in [51, Section 3].) The subfactor of M and τA(M) defined by
the string between the two red points is called the core of M . (In the 5th case, the
core is just the 0-module.) The core of M does not change under the Auslander-Reiten
translation.

The strings Ei in Fig. 2 are left-bounded direct strings, and the strings Fi are right-
bounded direct strings. The strings E1a

−
1 and a2E

−
2 are hooks in the sense of [11],

and the strings F−
1 b1 and b−

2 F2 are cohooks in the sense of [11].
For each arrow a = a1 = b2 ∈ Q1 there is exactly one Auslander-Reiten sequence

of type 5. In this case, there is a string
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Fig. 2 The Auslander-Reiten translation of string modules

•
F2•

E1 b2

a1

•
•

which yields the middle term of an Auslander-Reiten sequence

0 → M(F2) → M(E1a
−F2) → M(E1) → 0.

All other Auslander-Reiten sequences involving string modules are of types 1, . . . , 4,
and their middle terms are a direct sum of two indecomposable string modules. For
details we refer to [11].

5.10 Auslander-Reiten formulas

The following is a well known statement from Auslander-Reiten theory, see for exam-
ple [6,7,50].
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Theorem 5.4 (Auslander, Reiten) Let A be a finite-dimensional basic algebra. For
M, N ∈ mod(A) the following hold:

(i) Ext1A(M, N ) ∼= DHomA(N , τA(M)) ∼= DHomA(τ−1
A (N ), M).

(ii) If proj. dim(M) ≤ 1, then Ext1A(M, N ) ∼= DHomA(N , τA(M)).
(iii) If inj. dim(N ) ≤ 1, then Ext1A(M, N ) ∼= DHomA(τ−1(N ), M).

Lemma 5.5 Let A be a gentle algebra. For any band module M ∈ mod(A) the fol-
lowing hold:

(i) proj. dim(M) ≤ 1 and inj. dim(M) ≤ 1;
(ii) τA(M) ∼= M.

Proof (i): This is well known, see for example [8, Corollary 3.6].
(ii): This is proved for example in [11, Section 3]. �
Note that part (ii) of the above lemma holds also for all string algebras A.

Corollary 5.6 Let A be a gentle algebra, and let M, N ∈ mod(A). If M is a band
module, then

Ext1A(N , M) ∼= DHomA(τ−1(M), N ) ∼= DHomA(τ−1
A (M), N ) ∼= DHomA(M, N )

and

Ext1A(M, N ) ∼= DHomA(N , τA(M)) ∼= DHomA(N , τA(M)) ∼= DHomA(N , M).

5.11 Rank functions for gentle algebras

Let A = K Q/I be a gentle algebra, and let d ∈ N
n be a dimension vector. A map

r : Q1 → N is a rank function for (A,d) if the following hold:

(i) r(a) ≤ min{ds(a), dt(a)} for all a ∈ Q1;
(ii) Let a, b ∈ Q1 with s(a) = t(b) and ab ∈ I . Then r(a) + r(b) ≤ ds(a).

(Using a slightly different wording, this definition appears in [14, Section 5].)
For M ∈ mod(A) the rank function of M is defined by

rM : Q1 → N

a 
→ rank(Ma).

One easily checks that rM is a rank function for (A,d) where d = dim(M). Further-
more, each rank function for (A,d) is obtained in this way.

The following lemma is well known and follows directly from the definitions of
string and band modules.

Lemma 5.7 Let A be a gentle algebra. The number of string modules in a direct sum
decomposition of M ∈ mod(A) into indecomposable modules is

dim(M) −
∑

a∈Q1

rM (a).
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Proof It follows directly from the definition of a string module M that

dim(M) −
∑

a∈Q1

rM (a) = 1.

For a band module M we have

dim(M) −
∑

a∈Q1

rM (a) = 0.

Since each A-module is isomorphic to a direct sum of string modules and band mod-
ules, the claim follows. �

Let r and r ′ be rank functions for (A,d). We write r ≤ r ′ if r(a) ≤ r ′(a) for all
a ∈ Q1. This defines a partial order on the set of rank functions for (A,d).

For a rank function r for (A,d) let

mod(A,d, r) := {M ∈ mod(A,d) | rM ≤ r}.

This is a non-empty closed subset of mod(A,d).

6 Schemes of complexes

As alreadymentioned in the introduction, the study of schemes of modules over gentle
algebras can (to a large extent) be reduced to schemes of complexes. This section deals
with all necessary results on schemes of complexes.

6.1 Definition of schemes of complexes

For n ≥ 1 let

Cn := K Q/I ,

where Q is the quiver

1
a1 2

a2 · · · an−2
n − 1

an−1
n

and I is the ideal generated by all paths of length 2. (For n = 1, Q has just one vertex
and no arrows. For n = 1, 2, we set I = 0.)

For n ≥ 1 let

˜Cn := K Q/I ,
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where Q is the quiver

1
a1 2

a2 · · · an−2
n − 1

an−1
n

an

and I is the ideal generated by all paths of length 2. For ˜Cn we adopt the convention
that all indices are meant modulo n.

Let A be one of the algebras Cn or ˜Cn . By scheme of complexes we mean the affine
schemes mod(A,d) with d ∈ N

n . This definition is a bit more general than the one
used by De Concini and Strickland [21], who consider only the case Cn .

The representation theory of A is extremely well understood. Obviously, A is
a representation-finite gentle algebra. So all its indecomposable modules are string
modules. For each vertex i ∈ Q0 there is a simple module Si and an indecomposable
projective modules Pi , and these are all indecomposable A-modules up to isomor-
phism. The modules S1, . . . , Sn, P1, . . . , Pn are pairwise non-isomorphic, with the
exception of Pn being equal to Sn in case A = Cn . Using the usual notation for string
modules, for each i ∈ Q0 we have Si = M(ei ) and

Pi =
{

M(ei ) if A = Cn and i = n,

M(ai ) otherwise.

It is straightforward to compute homomorphism spaces and extension groups between
A-modules. All this can be proved in an elementary fashion using mainly Linear
Algebra. The next two lemmas contain all the homological data we need.

Lemma 6.1 Let A be one of the algebras Cn or ˜Cn. The only pairs (X ,Y ) of indecom-
posable A-modules with HomA(X ,Y ) �= 0 are

(Si , Si ), (Pi , Pi ), (Pi , Si ), (St(a), Ps(a)), (Pt(a), Ps(a)),

where i ∈ Q0 and a ∈ Q1. In these cases, we have dimHomA(X ,Y ) = 1 with only
one exception for A = ˜C1, where we have dimHomA(P1, P1) = 2.

Lemma 6.2 Let A be one of the algebras Cn or ˜Cn. The only pairs (X ,Y ) of indecom-
posable A-modules with Ext1A(X ,Y ) �= 0 are

(Ss(a), St(a)),

where a ∈ Q1. In these cases, we have dim Ext1A(X ,Y ) = 1.

Let A be one of the algebras Cn or ˜Cn . Let d = (d1, . . . , dn) ∈ N
n be a dimension

vector, and let r be a rank function for (A,d). Then there exists a unique (up to
isomorphism) A-module M = Md,r with dim(M) = d and rM = r . More precisely,
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we have

Md,r =
⊕

a∈Q1

Pr(a)
s(a) ⊕

⊕

i∈Q0

Sdi−ri
i

where

ri :=

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

r(ai ) + r(ai−1) if 2 ≤ i ≤ n − 1,

r(a1) if i = 1 and A = Cn,

r(a1) + r(an) if i = 1 and A = ˜Cn,

r(an−1) if i = n and A = Cn,

r(an) + r(an−1) if i = n and A = ˜Cn .

Proposition 6.3 Let A be one of the algebras Cn or ˜Cn, and let d ∈ N
n. For each rank

function r for (A,d) we have

mod(A,d, r) = OMd,r .

Proof For M ∈ mod(A,d) and a ∈ Q1 we have

rM (a) = ds(a) − dimHomA(Ss(a), M).

Now the claim follows from [57, Theorem 1 and its Corollary]. �
Corollary 6.4 Let A be one of the algebras Cn or ˜Cn, and let d ∈ N

n. For each
M = Md,r the following are equivalent:

(i) OM is open;
(ii) The rank function r is maximal.

Corollary 6.5 Let A be one of the algebras Cn or ˜Cn, and let d ∈ N
n. Then

Irr(A,d) = {mod(A,d, r) | r is a maximal rank function for (A,d)}.

Lemma 6.6 Let A = K Q/I be one of the algebras Cn or ˜Cn. For M ∈ mod(A) we
have

∑

a∈Q1

rM (a) ≤ 1

2
dim(M).

Furthermore, this becomes an equality if and only if M does not have a simple direct
summand.

Proof We have

M ∼=
⊕

a∈Q1

Pma
s(a) ⊕

⊕

i∈Q0

Smi
i
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for some ma,mi ≥ 0. Thus for a ∈ Q1 we have rM (a) = ma . This implies

dim(M) =
∑

a∈Q1

2rM (a) +
∑

i∈Q0

mi ≥
∑

a∈Q1

2rM (a).

The claim follows. �

6.2 Rigid and �-rigid modules

Proposition 6.7 (Rigidmodules) Let A be one of the algebrasCn or ˜Cn, and letd ∈ N
n.

For M ∈ mod(A,d) the following are equivalent:

(i) M is rigid;
(ii) M does not have a direct summand isomorphic to

Sa :=
⊕

i∈{s(a),t(a)}
Si

for some a ∈ Q1.

For A = ˜C1 we assume now additionally that d = (d1) with d1 even. Then the two
conditions above are equivalent to the following:

(iii) OM is open.

Proof The equivalence (i) ⇐⇒ (ii) follows from Lemma 6.2. The implication (i)
�⇒ (iii) is true in general and follows from Voigt’s Lemma 2.2.
(iii) �⇒ (ii): Assume that (ii) does not hold. Thus there is an arrow a such that Sa

is isomorphic to a direct summand of M . For A �= ˜C1 there is a non-split short exact
sequence

0 → St(a) → Ps(a) → Ss(a) → 0.

Thus M is properly contained in the orbit closure of

N := Ps(a) ⊕ M/Sa .

For A = ˜C1 and d = (d1) with d1 even, we get that M has a direct summand
isomorphic to Ss(a) ⊕ Ss(a). (Here we used that d1 is even.) We get a non-split short
exact sequence

0 → Ss(a) → Ps(a) → Ss(a) → 0.

Thus M is properly contained in the orbit closure of

N := Ps(a) ⊕ M/(Ss(a) ⊕ Ss(a)).

In both case, this shows that OM is not open. �
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The module Sa in Proposition 6.7(ii) is a critical summand of type I of M . In
Proposition 6.7(ii) we have

|{s(a), t(a)}| =
{

1 if A = ˜C1,

2 otherwise.

Consequently, we have

Sa =
{

S1 if A = ˜C1,

Ss(a) ⊕ St(a) otherwise.

Recall that a τ -rigid module is automatically rigid. Thus to get a decription of all
τ -rigid modules, it suffices to look at rigid modules.

Proposition 6.8 (τ -rigid modules) Let A be one of the algebras Cn or ˜Cn, and let
d ∈ N

n. For a rigid M ∈ mod(A,d) the following are equivalent:

(i) M is τ -rigid;
(ii) M has no direct summand isomorphic to

Pa := Pt(a) ⊕ Ss(a)

for some a ∈ Q1.

Proof We have τA(Pi ) = 0 for i ∈ Q0 and τA(Ss(a)) = St(a) for a ∈ Q1.
(i) �⇒ (ii): Assume that M has a direct summand isomorphic to Pa . Then

dimHomA(M, τA(M)) ≥ dimHomA(Pt(a), τA(Ss(a))) = dimHomA(Pt(a), St(a)) = 1.

(ii) �⇒ (i): Assume that HomA(M, τA(M)) �= 0. Thus there are indecomposable
direct summands X and Y of M with HomA(X , τA(Y )) �= 0. We get Y ∼= Ss(a) and
τA(Y ) ∼= St(a) for some a ∈ Q1. This implies X ∼= St(a) or X ∼= Pt(a). If X ∼= St(a),
then the rigid module M has a direct summand isomorphic to Sa , a contradiction to
Proposition 6.7. If X ∼= Pt(a), then X ⊕ Y ∼= Pa . This proves the claim. �

The module Pa in Proposition 6.8(ii) is a critical summand of type I I of M .

6.3 Generic reducedness and singular locus

Proposition 6.9 Let A = K Q/I be one of the algebras Cn or ˜Cn, and let d =
(d1, . . . , dn) ∈ N

n. For Z ∈ Irr(A,d) the following are equivalent:

(i) Z is not generically reduced.
(ii) A = ˜C1 and d1 is odd.
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Proof (i) �⇒ (ii): Suppose that (ii) does not hold. Then it follows from Proposi-
tion 6.7 that Z contains a rigid module M . Then Z = OM and Z is generically reduced
by Corollary 2.5.

(ii) �⇒ (i): Assume that (ii) holds. Then

Z = OM = mod(A,d)

withM = S1⊕P(d1−1)/2
1 . In particular,M is not rigid and therefore Z is not generically

reduced, again by Corollary 2.5. �
Proposition 6.9 is not really original. Using very different methods, it is shown in

[21, Theorem 1.7] that mod(Cn,d) is reduced for all d. Reducedness is in general a
much stronger and harder to prove property than being generically reduced. Also the
schemes mod(˜Cn,d) should be reduced provided n ≥ 2. A proof for n = 2 is in [54,
Proposition 1.3].

Proposition 6.10 Let A = K Q/I be one of the algebras Cn or ˜Cn, and let d ∈ N
n.

For M ∈ mod(A,d) the following are equivalent:

(i) M is singular;
(ii) There exist arrows a, b ∈ Q1 with s(a) = t(b) such that the module

Sab :=
⊕

k∈{s(a),t(a),s(b)}
Sk

is isomorphic to a direct summand of M.

Proof Let r be a rank function for (A,d) and let

M = Md,r =
⊕

a∈Q1

Pr(a)
s(a) ⊕

⊕

i∈Q0

Sqii .

For A = Cn we adopt the convention that Pj = S j = 0 and r j = q j = 0 for all
j /∈ Q0, and for A = ˜Cn we use all indices modulo n.
Case 1: A = C1 or A = C2. In this case, mod(A,d) is always an affine space.

Therefore all modulesM are smooth. On the other hand condition (ii) is never satisfied.
This proves (i) ⇐⇒ (ii).

Case 2: A = ˜C1. In this case, M is of the form

M = Pr1
1 ⊕ Sq11 .

We have dim Ext1A(M, M) = q21 and dimOM = 2r21 + 2r1q1. Thus

dim TM = dimOM + dim Ext1A(M, M) = 2r21 + 2r1q1 + q21 .

Now Z = ON = mod(A,d) is irreducible, where

N =
{

Pr1+q1/2
1 if q1 is even,

Pr1+(q1−1)/2
1 ⊕ S1 if q1 is odd.
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We get

dim(Z) =
{

2r21 + 2r1q1 + 1/2q21 if q1 is even,

2r21 + 2r1q1 + 1/2q21 − 1/2 if q1 is odd.

This shows that M is smooth if and only if q1 = 0. (Thus if d = (d1) is odd, then
mod(A,d) does not contain any smooth module, and if d is even, then there is only
one smooth module up to isomorphism, namely M = Pd1/2

1 .) Note that (ii) holds if
and only if q1 ≥ 1. This proves (i) ⇐⇒ (ii).

Case 3: A = ˜C2. In this case, M is of the form

M = Pr1
1 ⊕ Pr2

2 ⊕ Sq11 ⊕ Sq22 .

Assume thatq1 = 0 orq2 = 0.ThenM is rigid and therefore smooth.Next, assume that
q1, q2 ≥ 1. Then M is contained in the intersection of at least two different irreducible
components Z1 and Z2, with maximal rank functions r1 and r2, respectively, which
are defined by

r1(a1) := r1 + min{q1, q2}, r1(a2) := r2,

r2(a1) := r1, r2(a2) := r2 + min{q1, q2}.

Thus M is singular.
This shows that M is singular if and only if q1, q2 ≥ 1. But this condition is

equivalent to (ii).
Case 4: n ≥ 3. Let

H2 := {1 ≤ i ≤ n | qi , qi+1 ≥ 1 and qi−1 = qi+2 = 0},
H3 := {1 ≤ i ≤ n | qi , qi+1, qi+2 ≥ 1 and qi−1 = qi+3 = 0}.

Case 4(a): Assume that qi , qi+1, qi+2 ≥ 1 and qi + qi+2 > qi+1 for some i .
Similarly as inCase 3 one shows thatM is contained in at least two different irreducible
components of mod(A,d). Thus M is singular.

Case 4(b): Assume that for all i with qi , qi+1, qi+2 ≥ 1 we have qi + qi+2 ≤ qi+1.
It follows immediately that qi−1 = qi+3 = 0 for all such i . In other words, we have
i ∈ H3.

We get that M is contained in exactly one irreducible component Z = ON , where
N is obtained from M as follows: For each i ∈ H2 replace

Sqii ⊕ Sqi+1
i+1 by Pmin{qi ,qi+1}

i ⊕ S|qi−qi+1|
i+1 .

Furthermore, for each i ∈ H3 replace

Sqii ⊕ Sqi+1
i+1 ⊕ Sqi+2

i+2 by Pqi
i ⊕ Pqi+2

i+1 ⊕ Sqi+1−qi−qi+2
i+1 .

The module N is rigid and therefore smooth.
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Now M is smooth if and only if

dimON = dim(Z) = dim(TM ) = dimOM + dim Ext1A(M, M).

(Note that the first and third equality always hold.) Thus M is smooth if and only if

dim EndA(M) − dim EndA(N ) = dim Ext1A(M, M). (6.1)

We have

dim Ext1A(M, M) =
∑

a∈Q1

qs(a)qt(a).

Now a straightforward but lengthy calculation shows that Equation (6.1) holds if and
only if H3 = ∅. More precisely, one gets that

dim EndA(M) − dim EndA(N ) = dim Ext1A(M, M) +
∑

i∈H3

qiqi+2.

Thus M is smooth if and only if H3 = ∅. This finishes the proof. �
In Proposition 6.10(ii) we have

|{s(a), t(a), s(b)}| =

⎧

⎪

⎨

⎪

⎩

1 if A = ˜C1,

2 if A = ˜C2,

3 otherwise.

Consequently, we have

Sab =

⎧

⎪

⎨

⎪

⎩

S1 if A = ˜C1,

S1 ⊕ S2 if A = ˜C2,

Ss(a) ⊕ St(a) ⊕ Ss(b) otherwise.

The singularities of the closures of the GLd(K )-orbits of the schemes mod(Cn,d)

have been described by Lakshmibai [40] for n = 3 and by Gonciulea [33] for arbitrary
n. Note the difference to Proposition 6.10, where we look at the singularities of the
whole scheme.

6.4 �-blocks of gentle Jacobian algebras

Let A = K Q/I be a gentle Jacobian algebra. It follows from the definitions that the
ρ-blocks of A are isomorphic to C1, C2 or ˜C3. We call them 1-blocks, 2-blocks or
3-blocks, respectively.

A 1-block can only occur if A = C1. Here we used that gentle Jacobian algebras
are by definition connected.
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Now let As be a 1-block or 2-block. Then the schemes mod(As,d) are obviously
just affine spaces. In particular, they are irreducible, and all modules M ∈ mod(As,d)

are smooth and reduced. Furthermore, mod(As,d) contains a unique τ -rigid module.
In particular, mod(As,d) is generically τ -reduced.

Next, let As be a 3-block of A. For convenience, we assume that A = ˜C3 = K Q/I ,
where Q is the quiver

1
a1

2 a2
3

a3

and I is generated by the paths a2a1, a3a2 and a1a3.
For later use, we define

I3 := {(1, 3, 2), (2, 1, 3), (3, 2, 1)}.
Lemma 6.11 Let A be a 1-block, 2-block or 3-block as above. For τ -rigid A-modules
M and N the following are equivalent:

(i) M ∼= N;
(ii) dim(M) = dim(N ).

Proof By the discussion above, the statement is clear for 1-blocks and 2-block. Thus
assume A is a 3-block as above.

(i) �⇒ (ii): This is trivial.
(ii) �⇒ (i): By Proposition 6.8 there are four types of τ -rigid A-modules:

Pr1
1 ⊕ Pr2

2 ⊕ Pr3
3 type 0

Pri
i ⊕ P

r j
j ⊕ Ssii type i (i, j, k) ∈ I3

where ri ≥ 0 and si ≥ 1 for all i .
First, let M be of type 0 with dim(M) = d = (d1, d2, d3). It follows that

r1 + r3 = d1,

r2 + r1 = d2,

r3 + r2 = d3.

For a fixed d, this system of linear equations has exactly one solution. This proves (ii)
�⇒ (i) for modules of type 0.
Next, let M be of type i for some 1 ≤ i ≤ 3 with dim(M) = d = (d1, d2, d3). It

follows that

ri + r j + si = di ,

r j = d j ,

ri = dk .
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For a fixed d, this system of linear equations has exactly one solution. This proves (ii)
�⇒ (i) for modules of type i .
Finally, we observe that modules of different types have always different dimension

vectors. This finishes the proof. �
Lemma 6.12 Let A be a 1-block, 2-block or 3-block as above. For M ∈ mod(A,d)

the following are equivalent:

(i) M is singular;
(ii) M is contained in at least two different irreducible components of mod(A,d).

Proof By the discussion above, the statement is clear for 1-blocks and 2-block. Thus
assume A is a 3-block as above.

(i) �⇒ (ii): Assume M is singular. Now Proposition 6.10 implies that

M =
3

⊕

i=1

Pri
i ⊕

3
⊕

i=1

Sqii

with q1, q2, q3 ≥ 1. Without loss of generality assume that

q1 = min{q1, q2, q3}.

It follows that q2 + q3 > q1. Now one proceeds as in the proof of Proposition 6.10 to
show that M is contained in at least two different irreducible components.

(ii) �⇒ (i): This holds for arbitrary finite-dimensional K -algebras, see Proposi-
tion 2.9. �

7 Irreducible components for gentle algebras

7.1 Irreducible components

Finding the irreducible components of schemes of modules over gentle algebras is
rather easy, since each of these schemes is isomorphic to a product of schemes of
complexes.

Let A = K Q/I be a gentle algebra, and let A1, . . . , At be its ρ-blocks. For each
ρ-block As there is a unique

A′
s ∈ {Cn, ˜Cn | n ≥ 1}

such that there exists an algebra homomorphism

fs : A′
s → As

with the following properties:

(i) fs sends vertices to vertices and arrows to arrows.
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(ii) fs is bijective on the sets of arrows.

(In (i) we think of the vertices as standard idempotents.) This follows directly from
the definition of a gentle algebra and from the definition of a ρ-block. We say that As

is of type A′
s . Let ns (resp. n

′
s) be the number of vertices of As (resp. A′

s). For each
dimension vector d = (d1, . . . , dns ), the homomorphism fs induces an isomorphism

fs,d : mod(As,d) → mod(A′
s,d

′)

of affine schemes, where

d′ = (d fs (1), . . . , d fs (n′
s )
).

For example, let A = K Q, where Q is the quiver

1
a

2
b

3

So here we have I = 0 and ρ = ∅. There are two ρ-blocks A1 and A2 of type C2,
i.e. A′

1 = A′
2 = C2. Define f1 : A′

1 → A1 by 1 
→ 1, 2 
→ 2, a1 
→ a, and define
f2 : A′

2 → A2 by 1 
→ 2, 2 
→ 3 and a1 
→ b. For s = 1, 2 and a dimension vector d
for As we have d′ = d.

As a less trivial example, let A = K Q/I , where Q is the quiver

2

a2

1

a1

a7

3
a3a6 4

a4

5

a5

and I is generated by the paths {ai+1ai | 1 ≤ i ≤ 6}. Then A has only one ρ-block,
namely A1 = A, which is of type C8. Define fs : A′

1 → A1 by

fs(i) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

i if 1 ≤ i ≤ 5,

3 if i = 6,

1 if i = 7,

5 if i = 8,

and fs(ai ) := ai for 1 ≤ i ≤ 7.
For d = (d1, d2, d3, d4, d5) ∈ N

5 we get an isomorphism

mod(As,d) → mod(A′
1,d

′)

of affine schemes, where d′ = (d1, d2, d3, d4, d5, d3, d1, d5).



Schemes of modules over gentle algebras and laminations… Page 39 of 78 8

The following result follows almost immediately from [21], see also [16, Proposi-
tions 3.4 and 5.2]. Note that Carroll andWeyman [16] only consider the class of gentle
algebras admitting a colouring. However, the result holds in general.

Proposition 7.1 ([16,21]) Let A be a gentle algebra, and let d ∈ N
n . Then we have

Irr(A,d) = {mod(A,d, r) | r is a maximal rank function for (A,d)}.

Proof Let A1, . . . , At be the ρ-blocks of A. Recall that for each d we have an isomor-
phism

mod(A,d) → mod(A1, π1(d)) × · · · × mod(At , πt (d))

which yields a bijection

Irr(A,d) → Irr(A1, π1(d)) × · · · × Irr(At , πt (d)).

Now the isomorphisms

fs,πs (d) : mod(As, πs(d)) → mod(A′
s, πs(d)′)

and the description of irreducible components of varieties of complexes (see Corol-
lary 6.5) yield the result. �

7.2 String and band components and generic decompositions

Let A = K Q/I be a gentle algebra. An indecomposable irreducible component Z of
mod(A,d) is a string component provided there is a stringC such that the orbitOM(C)

is dense in Z . In this case, C is (up to equivalence of strings) uniquely determined by
Z , and we write Z = Z(C).

An indecomposable component Z ∈ Irr(A,d) is a band component provided there
is a band B such that the union

⋃

λ∈K ∗
OM(B,λ,1)

is dense in Z . In this case, B is (up to equivalence of bands) uniquely determined by Z ,
and we write Z = Z(B). (The band modules M(B, λ, q) are contained in the closure
of the union

⋃

λ1,...,λq∈K ∗
OM(B,λ1,1)⊕···⊕M(B,λt ,1),

so they do no play a role here.)
Any indecomposable component Z ∈ Irr(A) is either a string or a band component.
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For Z ∈ Irr(A,d) let

Z = Z(C1) ⊕ · · · ⊕ Z(Cp) ⊕ Z(B1) ⊕ · · · ⊕ Z(Bq)

be the canonical decomposition of Z . Then M is generic in Z , if

M ∼= M(C1) ⊕ · · · ⊕ M(Cp) ⊕ M(B1, λ1, 1) ⊕ · · · ⊕ M(Bq , λq , 1)

with pairwise different λ1, . . . , λq ∈ K ∗.

Lemma 7.2 Let A be a gentle algebra. For Z ∈ Irr(A,d) let

Z = Z(C1) ⊕ · · · ⊕ Z(Cp) ⊕ Z(B1) ⊕ · · · ⊕ Z(Bq)

be the canonical decomposition of Z. Then cA(Z) = q.

Proof Let f : GLd(K ) × (K ∗)q → mod(A,d) be defined by

(g, (λ1, . . . , λq)) 
→ g.(M(C1) ⊕ · · · ⊕ M(Cp) ⊕ M(B1, λ1, 1)

⊕ · · · ⊕ M(Bq , λq , 1)).

ForM ∈ Im( f ) the fibre f −1(M) is obviously isomorphic to the automorphism group
AutA(M) of M . This implies

dim f −1(M) = dim EndA(M).

Thus we have

dimOM + dim f −1(M) = dim(G).

By definition

cA(Z) = dim(Z) − dimOM

where M is generic in Z . By Chevelley’s Theorem we have

dim(Z) + dim f −1(M) = dim(G × (K ∗)q) = dim(G) + q

where M is again generic in Z . Combining these equations yields cA(Z) = q. �
Corollary 7.3 Let A be a gentle algebra. For Z ∈ Irr(A,d) the following hold:

(i) If Z is a string component, then cA(Z) = 0.
(ii) If Z is a band component, then cA(Z) = 1.

Note that Corollary 7.3 is just a special case of Lemma 3.1.
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7.3 Generically reduced components

Theorem 7.4 Let A be a gentle algebra, and let A1, . . . , At be its ρ-blocks. For d =
(d1, . . . , dn) ∈ N

n and Z ∈ Irr(A,d) the following are equivalent:

(i) Z is generically reduced;
(ii) For each loop a ∈ Q1, the number ds(a) is even.

Proof We know from Corollary 4.4 that Z is generically reduced if and only if πi (Z)

is generically reduced for all 1 ≤ i ≤ t . Now the result follows from Proposition 6.9.
�

Corollary 7.5 Let A be a gentle algebra without loops. Then each Z ∈ Irr(A) is
generically reduced.

Note that Corollary 7.5 is exactly the statement of Theorem 1.2.

7.4 Singular locus

The following theorem describes the singular locus of schemes of modules over gentle
algebras. It turns out that the rank function of a module determines completely if this
module is singular or not.

Theorem 7.6 Let A = K Q/I be a gentle algebra. Let M ∈ mod(A,d), and let
r = rM : Q1 → Q0 be the rank function of M. The following are equivalent:

(i) M is singular;
(ii) There exist a, b ∈ Q1 with s(a) = t(b) and ab ∈ I such that the following hold:

(1) r(a) < dt(a), r(b) < ds(b) and r(a) + r(b) < ds(a).
(2) If a′ ∈ Q1 with s(a′) = t(a) and a′a ∈ I , then r(a′) + r(a) < dt(a).
(3) If b′ ∈ Q1 with t(b′) = s(b) and bb′ ∈ I , then r(b) + r(b′) < ds(b).

b′
s(b)

b
s(a)

a
t(a)

a′

Proof Let A1, . . . , At be the ρ-blocks of A. For M ∈ mod(A,d) we know from
Corollary 4.2 that M is smooth if and only if πi (M) is smooth for all 1 ≤ i ≤ t . Now
for each ρ-block Ai and each dimension vector d there is an algebra A′

i = Cn′
i
or

A′
i = ˜Cn′

i
and an isomorphism

fs,πi (d) : mod(Ai , πi (d)) → mod(A′
i , πi (d)′).

of affine schemes. In particular, πi (M) is singular if and only if fs,πi (d)(πi (M)) is
singular.

By Proposition 6.10we know all singular points ofmod(A′
i , πi (d)′). The conditions

Theorem 7.6(ii) and Proposition 6.10(ii) are equivalent. More precisely, let Ai be the
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ρ-block containing the arrows a and b. Then fi,πi (d)(πi (M)) has a direct summand
isomorphic to Sab if and only if condition Theorem 7.6(ii) holds. This finishes the
proof. �
Theorem 7.7 Let A be a gentle Jacobian algebra. For M ∈ mod(A,d) the following
are equivalent:

(i) M is singular;
(ii) M is contained in at least two different irreducible components of mod(A,d).

Proof Let A1, . . . , At be the ρ-blocks of A. We know that M is singular if and only
if πi (M) is singular for some 1 ≤ i ≤ t .

We also know that M is contained in two different components if and only if πi (M)

is contained in two different components.
Now the claim follows from Lemma 6.12. �

Corollary 7.8 Let A be a gentle Jacobian algebra. For each d we have

smooth(A,d) =
⋃

Z∈Irr(A,d)

Z◦.

Note that Corollary 7.8 is exactly the statement of Theorem 1.1.

7.5 Band components

Proposition 7.9 Let A be a gentle algebra, and let M ∈ mod(A,d) be a direct sum of
band modules. Then M is smooth.

Proof By Lemma 5.5(i) we have proj. dim(M) ≤ 1. This implies Ext2A(M, M) = 0.
Now Proposition 2.10 yields that M is smooth. �
Corollary 7.10 Let A be a gentle algebra, and let Z ∈ Irr(A) be a direct sum of band
components. Then Z is generically reduced.

Proof In a direct sum of band components, the direct sums of band modules form a
dense open subset. Now the statement follows from Proposition 7.9 combined with
Lemma 2.6. �
Proposition 7.11 Let A be a gentle algebra. For any band component Z ∈ Irr(A) we
have

cA(Z) = eA(Z) = hA(Z) = 1.

In particular, Z is a brick component.

Proof Let Z be a band component. Thus there is a band B such that the union

⋃

λ∈K ∗
OM(B,λ,1)



Schemes of modules over gentle algebras and laminations… Page 43 of 78 8

forms a dense subset of Z . Let M = M(B, λ, 1) for some λ ∈ K ∗.
By Corollary 7.3 we have cA(Z) = 1. Now Corollary 7.10 implies eA(Z) = 1. In

other words, we have

cA(Z) = eA(Z) = dim Ext1A(M, M) = 1.

Now Lemma 5.5(ii) together with Corollary 5.6 imply that

dim HomA(M, τA(M)) = dim EndA(M) = 1.

In other words, hA(Z) = 1 and M is a brick. It follows that Z is a brick component. �
Note that Proposition 7.11 yields Theorem 1.5.

Corollary 7.12 Let A be a gentle algebra, and let Z ∈ Irr(A) be a direct sum of band
components. Then Z is generically τ -reduced.

Proof We have

Z = Z1 ⊕ · · · ⊕ Zm

for some band components Zi = Z(Bi ), 1 ≤ i ≤ m. By Lemma 7.2 we have
cA(Z) = m.

By Theorem 2.11 we get ext1A(Zi , Z j ) = 0 for all i �= j . Let

M = M(B1, λ1, 1) ⊕ · · · ⊕ M(Bt , λm, 1)

with pairwise different λ1, . . . , λm . In other words, M is generic in Z . For brevity we
set Mi := M(Bi , λi , 1). It follows that

0 = dim Ext1A(Mi , Mj ) = dimHomA(Mj , τA(Mi )) = dimHomA(Mj , τA(Mi ))

for all i �= j . For the last equality we used again Corollary 5.6. By Proposition 7.11
we have

hA(Zi ) = dimHomA(Mi , τA(Mi )) = 1

for all i . Combining this, we get

hA(Z) = dimHomA(M, τA(M)) = m.

In other words, cA(Z) = hA(Z), thus Z is generically τ -reduced. �
Theorem 7.13 Let A be a gentle algebra. For Z ∈ Irr(A,d) the following are equiv-
alent:

(i) Z is a direct sum of band components.
(ii) dim(Z) = dim(GLd(K )).
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Proof (i) �⇒ (ii): Let

Z = Z(B1) ⊕ · · · ⊕ Z(Bm)

be a direct sum of band components, and let

M = M(B1, λ1, 1) ⊕ · · · ⊕ M(Bm, λm, 1)

be generic in Z . It follows from Proposition 7.11 and the proof of Corollary 7.12 that

dim EndA(M) = dim Ext1A(M, M) = m.

By Proposition 7.9, M is smooth. Thus

dim(Z) = dimOM + dim Ext1A(M, M)

= dim(GLd(K )) − dim EndA(M) + dim Ext1A(M, M)

= dim(GLd(K )).

(ii) �⇒ (i): Let

Z = Z(C1) ⊕ · · · ⊕ Z(Cp) ⊕ Z(B1) ⊕ · · · ⊕ Z(Bq)

be a direct sumof string andband components. For a genericM ∈ Z weget cA(Z) = q,
see Lemma 7.2. In other words,

dim(Z) = q + dimOM = dim(GLd(K )) − dim EndA(M) + q.

Clearly dim EndA(M) ≥ p+ q. So dim(Z) = dim(GLd(K )) implies p = 0. In other
words, Z is a direct sum of band components. This finishes the proof. �

Combining Corollary 7.12 and Theorem 7.13 proves Theorem 1.6.
The following theorem is a combination of [14, Corollary 10] and [14, Proposi-

tion 11], see also [13, Theorem 2]. Proposition 7.11 generalizes Theorem 7.14(ii) to
arbitrary gentle algebras, whereas Theorem 7.14(i) fails in general.

Theorem 7.14 ([14]) Let A be an acyclic gentle algebra. Then the following hold:

(i) For each dimension vector d there exists at most one band component Z in
Irr(A,d).

(ii) Each band component Z ∈ Irr(A,d) is a brick component.

For acyclic gentle algebras A, a combinatorial construction of generic modules for
each irreducible component of mod(A,d) is described in [13].
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7.6 Examples

7.6.1. Let A = K Q/I , where Q is the quiver

1

a

and I is generated by {a2}. Obviously, A is gentle. Let d = (1). Then mod(A,d) has
just one K -rational point, corresponding to the simple A-module M = S1. Clearly, M
is not smooth and not reduced.

7.6.2. Let A = K Q/I , where Q is the quiver

1 2
a

3
b

and I is generated by {ab}. Clearly, A is a gentle algebra. Let d = (1, 1, 1). Then
mod(A,d) has 2 irreducible components. ThemoduleM = S1⊕S2⊕S3 ∈ mod(A,d)

is reduced, but not smooth. For d = (1, 2, 1), the affine scheme mod(A,d) is irre-
ducible, reduced, but not smooth.

7.6.3. Let A = K Q/I , where Q is the quiver

1
b

2
a

and I is generated by {ab}. Then A is a gentle algebra,which does not admit a colouring
in the sense of [14].
7.6.4. Let A = K Q/I , where Q is the quiver

1a 2
b

c2

3
c1

d
4 e

and I is generated by {a2, e2, c1c2, c2c1}. This is a gentle algebra admitting a colour-
ing. For d = (2, 2, 2, 2), the affine scheme mod(A,d) has 3 irreducible components,
and all of these are band components.

8 Generically �-reduced components for gentle Jacobian algebras

In this section, we concentrate on the description of generically τ -reduced compo-
nents for gentle Jacobian algebras. Some of this can be generalized to arbitrary gentle
algebras. We leave this endeavor to the reader.
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8.1 Simple summands of restrictions

Let A = K Q/I be a gentle Jacobian algebra and let A1, . . . , At be its ρ-blocks. For
a ∈ Q0 ∪ Q1 and 1 ≤ s ≤ t let

δa,As :=
{

1 if a belongs to As,

0 otherwise.

Lemma 8.1 Let A = K Q/I be a gentle Jacobian algebra and let A1, . . . , At be
its ρ-blocks. For a string module M = M(C) ∈ mod(A) and any ρ-block As, the
As-module πs(M) has a simple direct summand if and only if one of the following
hold:

• C = 1i and i ∈ As;
• C = (c1, . . . , cr ) with s(C) ∈ As and cr /∈ As;
• C = (c1, . . . , cr ) with t(C) ∈ As and c1 /∈ As.

Proof For C = 1i the claim is clear. Thus let C = (c1, . . . , cr ). For each 1 ≤ i ≤ r
we have ci = a±

i for some ai ∈ Q1. For M = M(C) we get

πs(M) ∼= S
δs(cr ),As (1−δar ,As )

s(cr )
⊕ S

δt(c1),As (1−δa1,As )

t(c1)
⊕

r
⊕

i=1

P
δai ,As
s(ai )

.

This follows directly from the definition of a string module. The claim follows. �
Lemma 8.2 Let A = K Q/I be a gentle Jacobian algebra, and let A1, . . . , At be its
ρ-blocks. For a band module M ∈ mod(A) and any ρ-block As, the module πs(M)

has no simple direct summand. In particular, πs(M) is a projective As-module.

Proof Let M = M(B, λ, q) be a band module where B = (c1, . . . , cr ). For each
1 ≤ i ≤ r we have ci = a±

i for some ai ∈ Q1. We get

πs(M) ∼=
r

⊕

i=1

P
qδai ,As
s(ai )

.

This follows directly from the definition of a band module. The claim follows. �

8.2 Non-vanishing of HomA(M, �A(M))

Let A be a gentle Jacobian algebra, and let A1, . . . , At be its ρ-blocks. Recall from
Sect. 6.2 the definition of critical summands of type I or I I for modules over Cn or
˜Cn . We say that M ∈ mod(A,d) has a critical summand of type I (resp. type I I ) if
there exists some 1 ≤ i ≤ t such that πi (M) has a critical summand of type I (resp.
of type I I ).

Lemma 8.3 Let A be a gentle Jacobian algebra, and let A1, . . . , At be its ρ-blocks.
For M ∈ mod(A) the following are equivalent:
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(i) M does not have a critical summand of type I or I I .
(ii) πi (M) is τ -rigid for all 1 ≤ i ≤ t .

Proof This follows from Propositions 6.7 and 6.8 �
Lemma 8.4 Let A be a gentle Jacobian algebra, and let A1, . . . , At be its ρ-blocks. Let
M1, M2 ∈ mod(A) such that the following hold: There exists a ρ-block Ai containing
an arrow a ∈ Q1 such that Ss(a) is (up to isomorphism) a direct summand of πi (M1),
and St(a) is (up to isomorphism) a direct summand of πi (M2). Then Ext1A(M1, M2) �=
0.

Proof We can assume that M1 and M2 are both indecomposable. By Lemma 8.2 we
know that M1 = M(C1) and M2 = M(C2) are both string modules. By Lemma 8.1
we can assume without loss of generality that s(C1) = s(a) and t(C2) = t(a) and
that C1a−1C2 is a string. We obtain a non-split short exact sequence

0 → M(C2) → M(C1a
−1C2) → M(C1) → 0.

Thus Ext1A(M1, M2) �= 0. �
Corollary 8.5 Let A be a gentle Jacobian algebra, and let A1, . . . , At be its ρ-blocks.
Let M1, M2 ∈ mod(A) such that Ext1A(M1, M2) = 0. Then

Ext1A(πi (M1), πi (M2)) = 0

for all 1 ≤ i ≤ t .

Proof Combine Lemma 8.4 with Proposition 6.7. �
Lemma 8.6 Let A be a gentle Jacobian algebra, and let A1, . . . , At be its ρ-blocks. Let
M1, M2 ∈ mod(A) such that the following hold: There exists a 3-block As containing
an arrow a ∈ Q1 such that Ss(a) is (up to isomorphism) a direct summand of πs(M1),
and Pt(a) is (up to isomorphism) a direct summand of πs(M2). Then

dimHomA(M2, τA(M1)) �= 0.

Proof We can assume that M1 and M2 are both indecomposable. We know that M1 =
M(C1) for some string C1 (see Lemma 8.2) and M2 = M(C2) or M2 = M(C2, λ, q)

for some string or band C2, respectively.
If M2 is a band module, then there is a surjective homomorphism M(C1, λ, q) →

M(C1, λ, 1). Thus in this case we can assume without loss of generality that q = 1.
We can assume that the 3-block As is of the form

1
a1

2 a2
3

a3
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with a2a1, a3a2, a1a3 ∈ I and a = a1.
Without loss of generality we can assume that s(C1) = 1 and that either l(C1) = 0

or C1 = (c1, . . . , cm) such that cm /∈ A2. We can also assume that C2 = C ′a2C ′′ for
some strings C ′ and C ′′ and we can assume that C ′ = (c′

1, . . . , c
′
r ) with c

′
1 ∈ Q−1

1 .
We want to construct a non-zero homomorphism

M2 → τA(M1).

Let E be a path of maximal length such that a−1
1 E is a string. It follows that

τA(M(C1)) = M(E ′E) for some string E ′, where E ′ is either of length 0 or of the
form E ′ = E ′′a−1

1 for some string E ′′, compare Sect. 5.9.
Let F be a path of maximal length such that FF ′ = C ′′. Thus C2 = C ′a2FF ′. It

follows that F ′ is of length 0 or of the form F ′ = b−1F ′′ for some b ∈ Q1 and some
string F ′′. This yields a surjective homomorphism

f1 : M2 → M(F).

Furthermore, we have E = FG ′ for some direct string G ′. We get a standard homo-
morphism

f2 = f(1t(F),F,1s(F)),(E ′,F,G ′) : M(F) → τA(M(C1)).

Thus

f2 ◦ f1 : M2 → τA(M1)

is the desired non-zero homomorphism. This finishes the proof. �
Corollary 8.7 Let A be a gentle Jacobian algebra, and let A1, . . . , At be its ρ-blocks.
Let M1, M2 ∈ mod(A) such that HomA(M2, τA(M1)) = 0. Then

HomAi (πi (M2), τAi (πi (M1))) = 0

for all 1 ≤ i ≤ t .

Proof Combine Lemma 8.6, Corollary 8.5 and Proposition 6.8. �
Corollary 8.8 Let A be a gentle Jacobian algebra, and assume that M ∈ mod(A) has
a critical summand of type I or I I . Then

dimHomA(M, τA(M)) �= 0.

8.3 Proof of Theorem 1.4

Let A = K Q/I be a gentle Jacobian algebra, and let A1, . . . , At be its ρ-blocks. Let
Z ∈ Irr(A). We want to show that the following are equivalent:
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(i) Z ∈ Irrτ (A);
(ii) πs(Z) ∈ Irrτ (As) for all 1 ≤ s ≤ t .

Throughout, let

M = M(C1) ⊕ · · · ⊕ M(Cp) ⊕ M(B1, λ1, 1) ⊕ · · · ⊕ M(Bq , λq , 1)

be generic in Z .
For 1 ≤ i ≤ p let Ni := M(Ci ), and for 1 ≤ j ≤ q let Np+ j := M(Bj , λ j , 1).
(i) �⇒ (ii): Assume that Z ∈ Irrτ (A). Then Theorem 9.2 yields that

HomA(Ni , τA(N j )) = 0 for all i �= j . Furthermore we have

dimHomA(Ni , τA(Ni )) =
{

0 if 1 ≤ i ≤ p,

1 if p + 1 ≤ i ≤ p + q.

Now it follows from Corollary 8.7 that

HomAs (πs(Ni ), τAs (πs(N j ))) = 0

for all i �= j , and also for all i = j with 1 ≤ i ≤ p. Since Np+1, . . . , Np+q are band
modules, we get from Lemma 8.2 that also in this case

HomAs (πs(Ni ), τAs (πs(Ni ))) = 0.

This proves that πs(M) is a τ -rigid As-module for all s. Thus πs(Z) ∈ Irrτ (As).
(ii) �⇒ (i): Assume that πs(Z) ∈ Irrτ (As) for all 1 ≤ s ≤ t .
We have

0 = Ext1A(Np+ j , Nk) ∼= HomA(Nk, τA(Np+ j )) = HomA(Nk, τA(Np+ j ))

for all 1 ≤ j ≤ q and 1 ≤ k ≤ p + q. For the third equality we used Corollary 5.6.
Thus Z is generically τ -reduced if and only if HomA(Nk, τA(Ni )) = 0 for all

1 ≤ i ≤ p and 1 ≤ k ≤ p + q. To get a contradiction, assume that

HomA(Nk, τA(Ni )) �= 0

for some 1 ≤ i ≤ p and some 1 ≤ k ≤ p + q. On the other hand, we know that

0 = Ext1A(Ni , Nk) ∼= HomA(Nk, τA(Ni )).

Let

f : Nk → τA(Ni )

be a non-zero homomorphism. We know that f factors through some injective A-
module. Without loss of generality, we can assume that this injective module equals
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Ir for some r ∈ Q0. Thus we have f = f1 ◦ f2 with f1 ∈ HomA(Ir , τA(Ni )) and
f2 ∈ HomA(Nk, Ir ). Again without loss of generality we can assume that

f1 = f(E,F,G),(E ′,F,G ′) : Ir → τA(Ni )

is a standard homomorphism. (Here we use the same notation and terminology as in
[51].)

The module Ir is of the form

Ir = M(D−1C),

where C and D are direct strings in Q such that Cγ, Dγ ∈ I for all γ ∈ Q1. Since
τA(Mi ) is not injective, we know that f1 cannot be a monomorphism. Thus Ir is not
simple and we can assume without loss of generality that C = α1 · · ·αv and that

Ker( f1) = M(D−1α1 . . . αk)

for some 1 ≤ k ≤ v. Thus we have

E = D−1α1 · · · αk,

F = αk+1 · · · αv if k < v,

F = 1s(C) if k = v,

G = 1s(C).

Since A is a gentle algebra, we also know that αvγ ∈ I for all γ ∈ Q1. This implies
E ′ = 1s(α). Set a := αk .

The following picture shows Ir , where Ir/Ker( f1) is given by the string F between
the blue vertices.

•

D

•

F

•
a

•

•

By the properties of f1 discussed above, we see that we must be in the 2nd, 4th or
5th case and that F coincideswith the subfactor of τA(M)marked by the two rightmost
blue points. Here we refer to Sect. 5.9 for the description of τA(M).

We get ab ∈ I . Thus there exists a third arrow c ∈ Q1 with s(c) = t(a) and
t(c) = s(b). So the arrows a, b, c form a 3-block, say As , of A. So we are in the
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following situation:

•

F•
b

•
a

•

c

(In the 5th case, the red bullet in this picture should be green.)
Clearly πs(Nk) contains M(a) as a direct summand, and πs(Ni ) contains Ss(b) as

a direct summand.
It follows that πs(Nk ⊕Ni ) has a direct summand isomorphic to Ss(b) ⊕ Ps(a). Now

Proposition 6.8 implies that πs(Nk ⊕ Ni ) and therefore also πs(M) is not τ -rigid in
mod(As). This finishes the proof.

8.4 Proof of Theorem 1.3

Let A be a gentle Jacobian algebra, and let A1, . . . , At be its ρ-blocks. Let Z1, Z2 ∈
Irrτ (A). We want to show that the following are equivalent:

(i) dim(Z1) = dim(Z2);
(ii) Z1 = Z2.

(ii) �⇒ (i): This direction is trivial.
(i) �⇒ (ii): Assume that dim(Z1) = dim(Z2). We know from Theorem 1.4

that πi (Z1) and πi (Z2) are generically τ -reduced for all 1 ≤ i ≤ t . In particular,
πi (Z1) and πi (Z2) both contain a τ -rigid Ai -module. We clearly have dim(πi (Z1)) =
dim(πi (Z2)) for all i . Note that for gentle Jacobian algebras, we have Ai = A′

i for all
i . Now the statement follows from Lemma 6.11.

9 Schemes of decoratedmodules

9.1 Decoratedmodules

Let A = K Q/I be a basic algebra. A decorated A-module is a pair M = (M, V ),
where M ∈ mod(A) and V = (V1, . . . , Vn) is a tuple of finite-dimensional K -vector
spaces.

One defines morphisms and direct sums of decorated modules in the obvious way.
Let decmod(A) be the abelian category of decorated A-modules.

For 1 ≤ i ≤ n set Si := (Si , 0), and let S−
i := (0, V ), where Vi = K and Vj = 0

for all j �= i . The decorated modules Si and S−
i are the simple and negative simple

decorated A-modules, respectively.
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9.2 Schemes of decoratedmodules

For (d, v) ∈ N
n × N

n let decmod(A, (d, v)) be the affine scheme of decorated A-
modules M = (M, V ) with M ∈ mod(A,d) and V = K v := (K v1, . . . , K vn ),
where v = (v1, . . . , vn). Note that mod(A,d) ∼= decmod(A, (d, v)) for all (d, v).

For M = (M, V ) ∈ decmod(A, (d, v)) let g.M := (g.M, V ). This defines a
GLd(K )-action on decmod(A, (d, v)). The GLd(K )-orbit of M is denoted by OM.

9.3 E-invariants and g-vectors of decoratedmodules

Let M = (M, V ) be a decorated A-module, and let

n
⊕

i=1

Pmi
i →

n
⊕

i=1

Pni
i → M → 0

be a minimal projective presentation of M . The g-vector of M is defined as

gA(M) := (g1, . . . , gn)

with

gi := gi (M) := mi − ni + dim(Vi )

for 1 ≤ i ≤ n.
For decorated A-modules M = (M, V ) and N = (N ,W ) let

EA(M,N ) := dimHomA(N , τA(M)) +
n

∑

i=1

dim(Vi ) dim(Ni ).

For finite-dimensional Jacobian algebras A arising from quivers with potentials,
EA(M,N ) coincides with Eproj(M,N ) as defined in [23, Section 10].

The E-invariant ofM is defined as EA(M) := EA(M,M). The decorated mod-
uleM is called E-rigid if EA(M) = 0.

ForM = (M, 0)we also write gA(M) and EA(M) instead of gA(M) and EA(M),
respectively.

Dualizing the results from [23, Section 10] (for Jacobian algebras A) and [17,
Section 3] (for arbitrary A), for decorated A-modulesM = (M, V ) andN = (N ,W )

we have

EA(M,N ) = dimHomA(M, N ) +
n

∑

i=1

gi (M) dim(Ni ).

Note that in [23] and [17], this equation is used as a definition.



Schemes of modules over gentle algebras and laminations… Page 53 of 78 8

9.4 Generically �-reduced decorated components

Let A = K Q/I be a basic algebra, and let (d, v) ∈ N
n × N

n . By decIrr(A, (d, v))
we denote the set of irreducible components of decmod(A, (d, v)). For Z ∈
decIrr(A, (d, v)) we write dim(Z) := (d, v). Let

decIrr(A) :=
⋃

(d,v)∈Nn×Nn

decIrr(A, (d, v)).

For Z ∈ decIrr(A, (d, v)) set Z ′ := {M ∈ mod(A,d) | (M, K v) ∈ Z}. We
clearly have Z ′ ∈ Irr(A,d), and write Z = (Z ′, K v). Define cA(Z) := cA(Z ′) and
eA(Z) := eA(Z ′).

For Z , Z1, Z2 ∈ decIrr(A) there are dense open subsets U ⊆ Z and U ′ ⊆ Z1 ×
Z2 such that the maps gA(−), EA(−) and EA(−,−) are constant on U and U ′,
respectively. These generic values are denoted by gA(Z), EA(Z) and EA(Z1, Z2),
respectively.

For Z ∈ decIrr(A) we have

cA(Z) ≤ eA(Z) ≤ EA(Z).

An irreducible component Z ∈ decIrr(A) is generically reduced if cA(Z) = eA(Z)

and generically τ -reduced provided

cA(Z) = eA(Z) = EA(Z).

Let decIrrτ (A, (d, v)) be the set of all generically τ -reduced components of
decmod(A, (d, v)), and let

decIrrτ (A) :=
⋃

(d,v)∈Nn×Nn

decIrrτ (A, (d, v)).

It follows from the definitions that

decIrrτ (A, (d, v)) = {(Z , K v) | Z ∈ Irrτ (A,d), d1v1 + · · · + dnvn = 0},

where d = (d1, . . . , dn) and v = (v1, . . . , vn).
The following beautiful result due to Plamondon shows that the generic g-vectors

parametrize the generically τ -reduced decorated components.

Theorem 9.1 ([47, Theorem 1.2]) Let A be a basic algebra. Then the map

gA : decIrrτ (A) → Z
n

Z 
→ gA(Z)

is bijective.
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9.5 Decomposition of generically �-reduced components

An irreducible component Z ∈ decIrr(A, (d, v)) is called indecomposable if there
exists a dense open subset U ⊆ Z , which contains only indecomposable decorated
modules. This is the case if and only if Z = (Z ′, 0) with Z ′ ∈ Irr(A,d) indecompos-
able or Z = {S−

i } for some i . In particular, if Z ∈ decIrr(A, (d, v)) is indecomposable,
then either d = 0 or v = 0.

Given irreducible components Zi of decmod(A, (di , vi )) for 1 ≤ i ≤ t , let
(d, v) := (d1, v1) + · · · + (dt , vt ), and let

Z1 ⊕ · · · ⊕ Zt

be the image of the morphism

GLd(K ) × Z1 × · · · × Zt → decmod(A, (d, v))

(g, (M1, . . . ,Mt )) 
→ g.(M1 ⊕ · · · ⊕ Mt ).

The Zariski closure Z1 ⊕ · · · ⊕ Zt of Z1⊕· · ·⊕Zt is an irreducible closed subset of
decmod(A, (d, v)) and is called the direct sum of Z1, . . . , Zt . Note that Z1 ⊕ · · · ⊕ Zt

is in general not an irreducible component.

Theorem 9.2 ([17,Theorem1.3]) For Z1, . . . , Zt ∈ decIrr(A) the following are equiv-
alent:

(i) Z1 ⊕ · · · ⊕ Zt is a generically τ -reduced component.
(ii) Each Zi is generically τ -reduced and EA(Zi , Z j ) = 0 for all i �= j .

Each Z ∈ decIrrτ (A) is a direct sum of indecomposable generically τ -reduced
components, which are uniquely determined up to reordering.

10 Laminations and generically �-reduced decorated components

10.1 Marked surfaces

By an unpuntured marked surface (S, M) we mean a connected, compact, oriented
surface S with non-empty boundary ∂S together with a finite set M of marked points
on the boundary. We set S

◦ := S \ ∂S. We assume that there is at least one marked
point on each boundary component. We also require that (S, M) is not a monogon,
digon or triangle. (This ensures the existence of non-trivial triangulations.)

10.2 Curves and loops

A curve in (S, M) is a map

γ : [0, 1] → S
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of differentiability class C1, with derivative vanishing in at most finitely many points
of [0, 1], such that the following hold:

(A1) γ (0) and γ (1) are in M;
(A2) Im(γ ) \ {γ (0), γ (1)} is disjoint from ∂S;
(A3) Im(γ ) does not cut out a monogon or digon.

A curve γ in (S, M) is simple if additionally the following holds:

(A4) γ is injective on the open interval (0, 1), i.e. γ does not intersect itself, except
that γ (0) and γ (1) may coincide.

Simple curves in (S, M) are also called arcs.
Let S1 be the unit circle in C. A loop in (S, M) is a map

γ : S1 → S

of differentiability class C1, with derivative vanishing in at most finitely many points
of S1, such that the following hold:

(L1) Im(γ ) is disjoint from ∂S;
(L2) Im(γ ) is non-contractible.

A loop γ in (S, M) is simple if additionally the following holds:

(L3) γ is injective, i.e. γ does not intersect itself.

Let A(S, M) be the set of curves in (S, M) up to homotopy (relative to γ (0) and
γ (1)) and up to the equivalence γ ∼ γ −1. For a curve γ let [γ ] be its class in A(S, M).

Let L(S, M) be the set of loops in (S, M) up to homotopy and up to the equivalence
γ ∼ γ −1. For a loop γ let [γ ] be its class in L(S, M).

For a curve or loop γ in (S, M) we just write γ for the image Im(γ ).
For

[γ ], [δ] ∈ A(S, M) ∪ L(S, M)

let

Int([γ ], [δ]) := min{|γ ′ ∩ δ′ ∩ S
◦| | γ ′ ∈ [γ ], δ′ ∈ [δ]}.

Note that for a simple curve or loop γ we get Int([γ ], [γ ]) = 0.
From now on we will not distinguish between a curve or loop γ and its class [γ ].
A loop γ is primitive of it is not of the form γ = θm for some loop θ and some

m ≥ 2. Here θm(z) := θ(zm) for all z ∈ S1. Let

L(S, M)prim ⊂ L(S, M)

be the subset of primitive loops.
Let π : ˜S1 → S1 be the universal cover of S1. For a loop γ : S1 → S in (S, M) let

γ̃ := γ ◦ π : ˜S1 → S.
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Fig. 3 The green curve cuts out
a monogon, so it is not a curve in
S \ M

We call this the periodic curve associated with γ .
For later convenience, for γ ∈ A(S, M) we set γ̃ := γ .
For γ1, γ2 ∈ A(S, M) ∪ L(S, M), define Int(γ̃1, γ2) and Int(γ̃1, γ̃2) similarly as

above. Note that the value ∞ might occur in this situation.
The following lemma is straightforward

Lemma 10.1 For γ1, γ2 ∈ A(S, M) ∪ L(S, M)prim the following are equivalent:

1. Int(γ1, γ2) = 0;
2. Int(γ̃1, γ2) = 0;
3. Int(γ̃1, γ̃2) = 0.

10.3 Laminations and triangulations

By a lamination of (S, M) we mean a pair L = (γ,m), where γ is a (finite) subset of
A(S, M) ∪ L(S, M) such that Int(γi , γ j ) = 0 for all γi , γ j ∈ γ , and m : γ → Z>0
is a map. Instead of L = (γ,m) we also write L = {(γ1,m1), . . . , (γt ,mt )}, where
γ = {γ1, . . . , γt } and mi = m(γi ) for 1 ≤ i ≤ t . By abuse of terminology, we also
say that γ is a lamination. Note that each element in γ is a simple curve or a simple
loop. We think of mi as the multiplicity of γi in the lamination L . Let Lam(S, M) be
the set of laminations of (S, M). Note that in [45, Definition 3.17], the set Lam(S, M)

is denoted by C◦(S, M).
Each boundary component of (S, M) with m marked points has m boundary seg-

ments, each connecting two consecutive marked points.
Next, a curve in S \ M is a map

γ : [0, 1] → S \ M

of differentiability class C1, with derivative vanishing in at most finitely many points
of [0, 1], such that the following hold:

(A1) γ (0) and γ (1) are in ∂S \ M;
(A2) Im(γ ) \ {γ (0), γ (1)} is disjoint from ∂S;
(A3) Im(γ ) is non-contractible (with respect to the relative homotopy described

below) and does not cut out a monogon, see Fig. 3.

A curve γ in S \ M is simple if additionally the following holds:

(A4) γ is injective, i.e. γ does not intersect itself.
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Let A(S\M) be the set of curves in S\M up to homotopy, such that γ (0) and γ (1)
never leave their respective boundary segment, and up to the equivalence γ ∼ γ −1.
More precisely, we consider here homotopies

H : [0, 1] × [0, 1] → S \ M

such that for each t ∈ [0, 1] the map Ht := H(t,−) is a curve in S \ M with Ht (0)
(resp. Ht (1)) belonging to the same boundary segment as γ (0) (resp. γ (1)) and such
that H0 = γ .

As before, we just write γ for the class of γ in A(S \ M).
By a classical lamination of (S, M) we mean a pair L = (γ,m), where γ is a

(finite) subset of A(S \ M) ∪ L(S, M) such that Int(γi , γ j ) = 0 for all γi , γ j ∈ γ ,
and m : γ → Z>0 is a map. Here Int(γi , γ j ) is defined in the obvious way. Again by
abuse of terminology, we also say that γ is a classical lamination. Let Lam(S \ M) be
the set of classical laminations of (S, M).

Given a curve γ ∈ A(S, M), let τ 1/2(γ ) ∈ A(S \ M) be the curve obained from
γ by rotating its endpoints in clockwise direction to the adjacent boundary segment.
This yields a bijection

τ 1/2 : Lam(S, M) → Lam(S \ M).

A triangulation T of (S, M) consists of all boundary segments together with a
maximal collection T ◦ of curves in (S, M) such that Int(γi , γ j ) = 0 for all γi , γ j ∈ T ◦.
In this case, we have

|T ◦| = 6g + 3b + |M| − 6,

where g is the genus of S and b is the number of boundary components of S, see for
example [25, Proposition 2.10].

Note that the classical laminations defined above correspond to the X -laminations
in the sense of Fock andGoncharov [24]. Let T be a triangulation of (S, M), and let AT

be the associated gentle Jacobian algebra.We refer to Sect. 10.5 for a precise definition
of AT . To a lamination L of (S, M) we will associate a certain generic decorated AT -
module, which is a direct sum of indecomposable τ -rigid modules, of certain band
modules of quasi-length 1, and of negative simples. In Sect. 11, we will look at the
Caldero-Chapoton functions of these modules, which can be thought of as generating
functions of Euler characteristics of quiver Grassmannians. In contrast, Allegretti [2]
works with certain A-laminations (see [2,24] for a definition), and he associates AT -
modules, which are direct sums of indecomposable τ -rigid modules, of band modules
with arbitrary quasi-length, and of negative simples.He then looks at certain generating
functions of Euler characteristics of transversal quiver Grassmannians.
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Fig. 4 A curve (a, τ j1 , . . . , τ j9 , b)

10.4 Curves and loops as combinatorial objects

A triangulation cuts the surface into triangles. Each triangle has exactly three sides.
(Recall that we work here with unpunctured marked surfaces, i.e. we do not have any
marked points in the interior of S.)

Let T be a fixed triangulation of (S, M) with T ◦ = {τ1, . . . , τt }. Let γ : [0, 1] → S

be a curve in (S, M), and let

m := Int(γ, T ) :=
∑

τ∈T ◦
Int(γ, τ )

We assume that γ is minimal in the sense that

m =
∑

τ∈T ◦
|γ ∩ τ ∩ S

◦|.

To γ we associate a sequence

(a, τ j1 , . . . , τ jm , b),

where a = γ (0) and b = γ (1), and there exist 0 < t1 < · · · < tm < 1 such that
γ (ti ) ∈ τ ji . We illustrate this in Fig. 4. Note that the curves τi1 , . . . , τim do not have
to be pairwise different. We do have, however, τi j �= τi j+1 for all 1 ≤ i ≤ m − 1. The
curve γ −1 yields (b, τ jm , . . . , τ j1 , a).

Analogously, with a loop γ : S1 → S in (S, M) we associate a sequence

(a, τ j1 , τ j2 , . . . , τ jm , τ j1 , a),

where a = γ (1). Starting in 1 ∈ S1 in clockwise orientation, we assume that γ first
passes through τ j1 , then through τ j2 etc. We can assume here that a ∈ τ j1 . This is
illustrated in Fig. 5.

The periodic curve γ̃ : R → S associated with γ is represented by the infinite
sequence

(· · · , τ j1 , τ j2 , . . . , τ jm , τ j1 , τ j2 , . . . , τ jm , τ j1 , τ j2 , . . . , τ jm , · · · ).
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Fig. 5 A loop (a, τ j1 , . . . , τ j8 , τ j1 , a)

Fig. 6 How triangles yield arrows

Arguing similarly as in [4, Section 4.2], we can identify each γ ∈ A(S, M) ∪
L(S, M) with its associated sequence (a, τ j1 , . . . , τ jm , b) modulo the equivalence

(a, τ j1 , . . . , τ jm , b) ∼ (b, τ jm , . . . , τ j1 , a).

10.5 From triangulations to gentle Jacobian algebras

Let T be a triangulation of an unpunctured marked surface (S, M). Assume that T ◦
consists of n curves τ1, . . . , τn . Then Q = QT is by definition the quiver with vertices
1, . . . , n. The arrows of Q are defined as follows: As displayed in Fig. 6, there are three
types of triangles defined by T , and two of these yield arrows in Q, as indicated in
the picture. Note that the non-labelled sides of the triangles are meant to be boundary
segments of (S, M), and note that our arrows point in clockwise direction. Other
authors might choose the opposite convention. The algebra associated to T is then
AT := K Q/I , where I is generated by the paths a2a1, a3a2, a1a3 arising from
triangles with all three sides in T ◦.

The algebra AT was first studied by [4] and [38], where it was defined as the
Jacobian algebra PC(QT ,WT ) of a quiver with potential.

Theorem 10.2 ([4, Section 2]) The Jacobian algebras AT arising from triangulations
of unpunctured marked surfaces are exactly the gentle Jacobian algebras.

10.6 From curves and loops to string and bandmodules

Let (S, M) be an unpunctured marked surface, and let T be a fixed triangulation of
(S, M).

Theorem 10.3 ([4, Propositions 4.2 and 4.3])For (S, M) and T as above the following
hold:
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(i) There is a bijection γ 
→ Mγ between A(S, M) \ T ◦ and the set of isoclasses of
string modules in mod(AT ).

(ii) There is a bijection (γ, λ) 
→ Mγ,λ between L(S, M)×K ∗ and the set of isoclasses
of band modules in mod(AT ).

The arcs in T ◦ correspond bijectively to the negative simple decorated AT -modules.
Thus the isoclasses of indecomposable decorated AT -modules are in bijection with
A(S, M) ∪ L(S, M) × K ∗.

For an indecomposable decorated AT -module M let γM be the corresponding
curve or loop in A(S, M) ∪ L(S, M). For M = (M, 0) we set γM := γM.

The string associated with the curve in Fig. 4 looks as follows:

j4 j6

j1 j3 j5 j7 j9

j2 j8

The band associated with the curve in Fig. 5 looks as in the following picture, where
the two blue vertices have to be identified:

j4 j6

j1 j3 j5 j7 j1

j2 j8

Note that for an arbitrary gentle algebra A there is also a geometric model for the
derived category Db(mod(A)) (see [34,41,46]), which differs substantially from the
one for mod(A) used in this article.

Theorem 10.4 ([10, Corollary 5.4]) Let A = AT as above, and let M, N ∈ mod(A)

be string modules. Then the following are equivalent:

(i) Int(γM , γN ) = 0;
(ii) HomA(N , τA(M)) = 0 = HomA(M, τA(N )) = 0.

Note that the results in [10] are formulated in terms of the cluster category associated
with (S, M). Theorem 10.4 is a straightforward reformulation in terms of decorated
AT -modules.

In Sect. 10.9 we reprove and generalize Theorem 10.4 by also including band
modules.
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Fig. 7 Intersections of types I and I I

10.7 Rotation of curves and the Auslander-Reiten translation

Let T be a triangulation of (S, M), and let A = AT . Let M ∈ mod(A) be a string
module, and let γM = (a, τ j1 , . . . , τ jt , b) be the associated curve in A(S, M) \ T ◦.

For the following two statements we refer to [10, Theorem 3.6]. (Note that the
orientation of our QT is opposite to the one used in [10].)

We orient each boundary component of S by requiring that when following the
orientation, the surface lies to the left. We call this the induced orientation of the
boundary component.

If M is non-projective, then γτA(M) = τ(γ ), where τ(γ ) is obtained from γ by
rotating the points a = γ (0) and b = γ (1) of γ to the next marked point on their
respective boundary component, following the induced orientation.

Dually, if M is non-injective, then γ
τ−1
A (M)

= τ−1(γ ), where τ−1(γ ) is obtained
from γ by rotating a and b to the next marked points on their respective boundary
component, following the opposite induced orientation.

The proof of these statements uses the combinatorial descriptions of τA(M) and
τ−1
A (M) given in [11] and [56].
For more details we refer to [10, Section 3].

10.8 Three types of intersections

Let (S, M) be an unpuncturedmarked surface.We fix a triangulation T of (S, M). Now
let γ1, γ2 ∈ A(S, M) ∪ L(S, M). Then the intersections of γ̃1 and γ̃2 can be divided
into three different types: Type I (resp. I I ) are displayed on the left (resp. right) in
Fig. 7. Up to symmetry there are 6 different kinds of Type III intersections, which
are pictured in the left hand column of Fig. 8. (Note that the definition of intersection
types depend here on our fixed triangulation T .)

10.9 Proof of Theorem 1.7

Throughout, we fix a triangulation T of (S, M). Let A = AT .
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Lemma 10.5 Let M = M(B, λ, q) ∈ mod(A) be a band module with q ≥ 2. Then
Int(γM , γM ) �= 0.

Proof Since q ≥ 2, we have γM = γ q for some primitive loop γ . It follows that
Int(γM , γM ) �= 0. �
Lemma 10.6 Let S−

i be a negative simple decorated A-module, and let M be an
indecomposable decorated A-module. Then the following are equivalent:

(i) Int(γS−
i
, γM) = 0;

(ii) EA(S−
i ,M) = EA(M,S−

i ) = 0.

Proof Suppose that M = S−
j is also negative simple. Then the equivalence of (i)

and (ii) follows directly from the definitions. Next, assume that M = (M, 0). Let
d = (d1, . . . , dn) = dim(M). Then di = 0 if and only if the simple A-module Si is
not a composition factor of M if and only if (i) holds. By the definition of EA(−,−),
condition (ii) holds if and only if di = 0. This finishes the proof. �

In view of Lemma 10.6, we can now restrict to indecomposable A-modules and
curves in A(S, M) \ T ◦.

Recall that the notions of ρ-blocks and of the associated restriction maps πi were
defined in Sect. 4.

Lemma 10.7 Let M and N be indecomposable A-modules such that γ̃M and γ̃N have
a Type I or Type II intersection as shown in Fig. 7. Then

HomA(M, τA(N )) �= 0.

Proof Assume we are in Type I: Let Ai be the ρ-block of A containing the arrow
2 → 1. Then πi (M) = S1 and πi (N ) = S2. By Lemma 8.4 we get Ext1A(N , M) �= 0,
which implies

HomA(M, τA(N )) �= 0.

Next, assume we are in Type II: Let Ai be the ρ-block of A containing the arrow
1 → 2. Thus Ai also contains the arrows 2 → 3 and 3 → 1. We get πi (M) = P2 and
πi (N ) = S1. By Lemma 8.6 this implies

HomA(M, τA(N )) �= 0.

�
Lemma 10.8 Let A1, . . . , At be the ρ-blocks of A. Let M and N be indecomposable
A-modules. Then the following are equivalent:

(i) γ̃M and γ̃N have an intersection of type I or I I .
(ii) For some 1 ≤ i ≤ t , πi (M ⊕ N ) is not τ -rigid.

Proof This is a direct consequence of Propositions 6.7 and 6.8. �
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Fig. 8 Type III intersections and 2-sided standard homomorphisms

Lemma 10.9 Let M and N be indecomposable A-modules. Then the following are
equivalent:

(i) γ̃M and γ̃N have a Type I I I intersection, as shown in the left column of Fig. 8
with γ̃M green and γ̃N red.

(ii) There exists a 2-sided standard homomorphism in HomA(M, N ).

Proof This follows by a case by case inspection, which is carried out in Figs. 8 and 9.
�



8 Page 64 of 78 C. Geiß et al.

Fig. 9 Non-intersections and 1-sided standard homomorphisms

Lemma 10.10 Let M and N be indecomposable A-modules. If there exists a 2-sided
standard homomorphism in HomA(M, N ), then HomA(M, τA(N )) �= 0.

Proof Assume that M and N are string modules. It follows from [51, Proposition 4.9]
that the existence of a 2-sided standard homomorphism in HomA(M, N ) implies
Ext1A(N , M) �= 0. By Theorem 5.4(i), this yields HomA(M, τA(N )) �= 0.

If N is a band module, then τA(N ) ∼= N , which implies the claim.
Finally, let M be a band module and assume that HomA(M, N ) �= 0. Since

τA(M) ∼= M and inj. dim(M) ≤ 1 (see Lemma 5.5), we get from Theorem 5.4(iii)
that

0 �= HomA(M, N ) ∼= HomA(τ−1
A (M), N ) ∼= Ext1A(N , M).

By Theorem 5.4(i), this implies HomA(M, τA(N )) �= 0. �
For indecomposable A-modules M and N , let radA(M, N ) be the non-invertible

homomorphisms in HomA(M, N ). These form a subspace of HomA(M, N ).

Lemma 10.11 Let M and N be indecomposable A-modules. Then the following hold:
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(i) Let N be a string module. If HomA(M, τA(N )) �= 0, then Int(γ̃M , γ̃N ) �= 0.
(ii) Let N be a band module of quasi-length 1. If radA(M, τA(N )) �= 0, then

Int(γ̃M , γ̃N ) �= 0.

Proof (i) Let N = M(C) be a string module, and let f : M → τA(N ) be a standard
homomorphism. Thus, up to symmetry, f is given by one of the ten pictures in Fig.
8 and 9. The green curves in these pictures stand now for γ̃M and the red curves
for γ̃τA(N ). Now τ−1(γ̃τA(N )) = γ̃N is obtained by a rotation in the direction oppo-
site to the induced orientation. By a straightforward case by case analysis we obtain
Int(γ̃M , γ̃N ) �= 0 in all ten cases.

(ii) Let N be a band module of quasi-length 1. Then τA(N ) ∼= N . Let fh ∈
radA(M, N ) be a standard homomorphism. Since N is a band module, we know that
h is of the form

h = ((D1, E1, F1), (D2, E2, F2))

with l(D2), l(F2) ≥ 1. Thus f is described by one of the six cases in Figs. 8, where
the green curves in these pictures stand for γ̃M and the red curves for γ̃N . (Actually
we are then in 1st, 3rd or 5th case, where we count from top to bottom.) This implies
Int(γ̃M , γ̃N ) �= 0. �
Theorem 10.12 Let M and N be indecomposable A-modules. If M and N are both
band modules, then we assume that M � N. Then the following are equivalent:

(i) Int(γM , γN ) = 0;
(ii) HomA(M, τA(N )) = 0 and HomA(N , τA(M)) = 0.

Proof (ii) �⇒ (i): This follows by combining Lemmas 10.7, 10.9 and 10.10.
(i) �⇒ (ii): Assume that (ii) does not hold. Without loss of generality let

HomA(M, τA(N )) �= 0. If N is a string module, then the result follows from
Lemma 10.11(i). Next, suppose N = M(B, λ, q) is a band module. The periodic
curve γ̃N and also the condition HomA(M, τA(N )) �= 0 are independent of t . So we
can assume that q = 1. By assumption we have M � N . Thus radA(M, τA(N )) �= 0.
Now the result follows from Lemma 10.11(ii). �

The following theorem corresponds to Theorem 1.7.

Theorem 10.13 There is a bijection

ηT : Lam(S, M) → decIrrτ (A),

which is natural in the sense that

ηT (L) = ηT (γ1, 1)m1 ⊕ · · · ⊕ ηT (γt , 1)mt

for each lamination L = (γ,m) with γ = {γ1, . . . , γt } and m(γi ) = mi .
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Proof (a): Let M = M(C) ∈ mod(A) be a string module, and let

ZC := O(M,0) ⊆ decmod(A, (d, 0))

where d := dim(M). By Theorem 10.12 we have Int(γM , γM ) = 0 if and only
if HomA(M, τA(M)) = 0 if and only if ZC is a generically τ -reduced decorated
indecomposable irreducible component containing a dense orbit.

(b): Next, let M = M(B, λ, q) ∈ mod(A) be a band module, and let

ZB,q :=
⋃

λ∈K ∗
O(M(B,λ,q),0) ⊆ decmod(A, (d, 0))

where d := dim(M). If q ≥ 2, then Int(γM , γM ) �= 0. Furthermore,

ZB,q ⊂ ZB,1 ⊕ · · · ⊕ ZB,1

where ZB,1⊕· · ·⊕ZB,1 consists of all decoratedmodules in decmod(A, (d, 0))which
are isomorphic to (M(B, λ1, 1), 0)⊕· · ·⊕ (M(B, λq , 1), 0) for some (λ1, . . . , λq) ∈
(K ∗)q .

Thus, we assume that t = 1 and set ZB := ZB,1. Let N = M(B, μ, 1) for some
μ ∈ K ∗ withμ �= λ. Note that γM = γN . ByTheorem10.12we have Int(γM , γN ) = 0
if and only if HomA(M, N ) = 0 if and only if ZB is a generically τ -reduced decorated
indecomposable irreducible component not containing a dense orbit. Note here that
τA(M) ∼= M and τA(N ) ∼= N and that the condition HomA(M, N ) = 0 is equivalent
to the condition EndA(M) ∼= K .

(c): The considerations in (a) and (b) show that there is a bijection between the
set of indecomposable components in Irrτ (A) and the set of laminations of the form
L = ({γ1},m) with m(γ1) = 1 and γ1 /∈ T ◦.

(d): Now the Theorem follows from Lemma 10.6 (which takes care of the negative
simple decorated modules) and Theorem 10.12 combined with the Decomposition
Theorem 9.2. �

10.10 Shear coordinates and g-vectors

Let A = AT as above. As mentioned before, a result by W. Thurston (see [26, Theo-
rem 12.3]) says that there is a bijection sT : Lam(S, M) → Z

n sending a lamination
to its shear coordinate. We briefly and informally recall the construction of sT .

First, consider an arc

γ = (a, τ j1 , . . . , τ jm , b) ∈ A(S, M).

Then

τ 1/2(γ ) = (a′, τ j11 , . . . , τ j1ta , τ j1 , . . . , τ jm , τ jm1 , . . . , τ jmtb
, b′),
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where a′, b′ ∈ ∂S \ M, and (τ j11, . . . , τ j1ta ) and (τ jm1 , . . . , τ jmtb
) are possibly empty

sequences of curves in T ◦ which are incident with a and b, respectively. Let τa′ and
τb′ the boundary segments, which contain a′ and b′, respectively.

For each 1 ≤ k ≤ m, we look at the triple (τ ′, τ jk , τ ′′), where τ ′ and τ ′′ are the left
and right neighbour, respectively, of τ jk in the sequence

(τa′, τ j11 , . . . , τ j1ta , τ j1 , . . . , τ jm , τ jm1 , . . . , τ jmtb
, τb′).

Then we are in one of the four cases displayed in Fig. 10, where the red line is a
segment of the curve τ 1/2(γ ) and the dotted arrows indicate possible arrows of A.
(There is an arrow on the left if and only if τ ′ �= τa′ , and there is an arrow on the right
if and only if τ ′′ �= τb′ .)

Next, consider a simple loop

γ = (a, τ j1 , . . . , τ jm , τ j1 , a) ∈ L(S, M).

For each 1 ≤ k ≤ m, we look at the triple

(τ ′, τ jk , τ ′′) :=

⎧

⎪

⎨

⎪

⎩

(τ jk−1 , τ jk , τ jk+1) if 2 ≤ k ≤ m − 1,

(τ jm , τ j1 , τ j2) if k = 1,

(τ jm−1 , τ jm , τ j1) if k = m.

In both cases (i.e. γ ∈ A(S, M) and γ ∈ L(S, M)), the shear coordinate of γ (with
respect to T ) is defined as sT (γ ) := (s1, . . . , sn), where

si :=
m

∑

k=1

δ jk ,iδk

for 1 ≤ i ≤ n. Here δ jk ,i denotes the Kronecker delta and

δk :=

⎧

⎪

⎨

⎪

⎩

1 if (τ ′, τ jk , τ ′′) looks as in case (1) of Figure 10,
−1 if we are in case (2),

0 if we are in cases (3) or (4).

Finally, let L = (γ,m) be a lamination. Then

sT (L) :=
∑

γi∈γ

m(γi )sT (γi ).

Recall that by Plamondon [47, Theorem1.2], there is a bijection gT : decIrr(A)τ →
Z
n sending a generically τ -reduced decorated component to its g-vector.
The proof of the following result is a bit tedious but straightforward. It follows

essentially the ideas from Labardini-Fragoso [39, Theorem 10.0.5]. Note that [39]
deals with a dual situation and only considers curves. The case of loops is however
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Fig. 10 Computing shear coordinates

easier than the curve case and uses the same arguments. Note also that [39] uses a
different (but equivalent) definition of g-vectors.

Proposition 10.14 With A = AT as above, the diagram

Lam(S, M)

ηT

sT
Z
n

decIrrτ (A)
gT

Z
n

commutes.

11 Bangle functions and generic Caldero-Chapoton functions

Wewill assume throughout that our surfacewithmarkedpoints (S, M) is connected and
has no punctures. We fix a triangulation T with internal edges T ◦ = (τ1, τ2, . . . , τn).

11.1 Strings and bands

Recall from Sect. 10.4 that we identify each curve γ ∈ A(S, M) \ T ◦ with a certain
sequence (a, τ j1 , . . . , τ jm , b), where a, b ∈ M and the τ ji are the sequence of arcs
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of T ◦ which are crossed by γ in a minimal way, up to homotopy. Denote by �i the
triangle of T , which contains the arcs τ ji and τ ji+1 , and which contains the segment
[γ (ti ), γ (ti+1)] of γ for 1 ≤ i ≤ m−1. This sequence can be coded into a (decorated)
quiver QT

γ of type Am with vertices {1, 2, . . . ,m}. Now, in �i there exists an unique
arrow ai of the quiver QT (see Sect. 10.5), which goes either from τ ji to τ ji+1 , or from
τ ji+1 to τ ji . In the first case we draw an arrow with label ai from i to i + 1. In the
second case, we draw an arrow with the same label from i + 1 to i . We call QT

γ the
string of γ with respect to the triangulation T .

Analogously, we associate with a loop γ = (a, τ j1 , . . . , τ jm , τ j1 , a) ∈ L(S, M) a
quiver of type ˜Am−1 with vertices {1, 2, . . . ,m}. The only difference is that now we
have an additional triangle �m , which contains the edges τ jm , τ j1 , and the segment
[γ (tm), γ (t1)] of γ . In this case �m determines the direction of the arrow between am
between 1 and m. We call in this case QT

γ the band of γ with respect to T .

11.2 MSW-functions

In this section we will use the conventions and definitions from [45, Section 3] without
further reference.

Musiker, Schiffler and Williams [45] assign to each homotopy class γ ∈ A(S, M)

(resp. γ ∈ L(S, M)) a snake graph (resp. band graph) G = GT ,γ . We assume that in
each tile G1,G2, . . .Gl of G, the diagonal goes from SE to NW, and we always think
that G is drawn from SW to NE.

Remark 11.1 The graph G comes with a distinguished good resp. perfect matching
P− which consists of the external edges of G which are either vertical and belong to
a negatively oriented tile, or are horizontal and belong to a positively oriented tile.
On the other hand, the tile G j and the position of its two neighbours record how γ

crosses the quadrilateral surrounding τ ji in the neighbourhood of γ (ti ). With these
two observations it is an easy exercise to show that

x(P−)

cross(T , γ )
= x sT (γ ), (11.1)

where sT (γ ) is the shear coordinate vector (see Sect. 10.10) of γ with respect to T .

Remark 11.2 FollowingDerksen-Weyman-Zelevinsky [22, p. 60] each skew-symmetric
matrix B ∈ Z

n×n corresponds to a 2-acyclic quiver Q(B) with vertices {1, 2, . . . , n}
and bi j arrows from j to i whenever bi j > 0.

In [45, Definition 2.19] the (skew-symmetric) signed adjacency matrix BT ∈ Z
n×n

of a triangulation T of (S, M) is introduced. With these conventions in place we have
QT = Q(−BT ) for our quiver QT from Sect. 10.5. The (coefficient-free) cluster
algebra A(BT ) associated with BT is just A(S,M). Let A•(BT ) be the corresponding
cluster algebra with principal coefficients.

Remark 11.3 In [45, Definitions 5.3 and 5.6] the authors associate to their graph G =
GT ,γ a poset structure QG on the set {1, 2, . . . ,m} by describing its Hasse quiver.
We leave it as an exercise that our quiver QT

γ from Sect. 11.1 is opposite to the Hasse
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quiver in [45]. Thus, the poset ideals of QG are precisely the subsets I of vertices of
QT

γ which are closed under predecessors. We call such subsets order coideals of QT
γ .

In [45, Definition 3.4] a Laurent polynomial

XT
γ = 1

cross(T , γ )

∑

P

x(P)y(P) ∈ R := Z[x±
i , yi ]i=1,2,...,n (11.2)

is defined, where the sum runs over the perfect resp. good matchings of G. We agree
that XT

γi
= xi for γi ∈ T ◦ and for L = (ξ,m) ∈ Lam(S, M) one sets

XT
L :=

∏

γ∈ξ

(XT
γ )m(γ ).

The following result is implicit in [45, Sections 5 and 6]:

Lemma 11.4 For each γ ∈ A(S, M) ∪ L(S, M) holds

XT
γ = x sT (γ )

∑

I⊂QT
γ

∏

i∈I
ŷ ji ,

where the summation runs over the order coideals I of QT
γ and

ŷ j := y j ·
n

∏

i=1

x
bi j
i ∈ A•(BT )

for j = 1, 2, . . . , n.

Proof According to [45, Theorem 5.7] the lattice L(G) of good matchings of G is in
natural bijection with the distributive lattice of order coideals of QT

γ . More precisely,
to a good matching corresponds the coideal I (P), which consists of the labels of the
tiles of G which are enclosed by P � P−.

On the other hand, by [45, Proposition 6.2] xγ ∈ R is homogeneous of degree

g(xγ ) = deg

(

x(P−)

cross(T , γ )

)

,

if we agree that deg x j = e j ∈ Z
n and deg y j = −∑n

i=1 bi jei ∈ Z
n .

Thus in view of (11.1) we have to show that

x(P)y(P)

x(P−)
=

∏

i∈I (P)

ŷ ji for all good matchings P of G. (11.3)

In order to show (11.3) we proceed by induction on the Hasse diagram of the distribu-
tive lattice L(G) as in the proof of [45, Theorem 5.1] at the end of [45, Section 5].

�
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11.3 Dual CC-functions andMSW-functions

We introduce the anti principal ice quiver ˜QT , which is obtained from QT by adding
an additional set of frozen vertices {1′, 2′, . . . , n′}, and an additional arrow pi : i ′ → i
for i = 1, 2, . . . , n. The potentialWT mentioned in Sect. 10.5 can be naturally viewed
as a potential for ˜QT and it is not hard to see that (˜QT ,WT ) is a non-degenerate QP
with finite-dimensional Jacobian algebra ˜AT = PC(˜QT ,WT ).

Definition 11.5 ThedualCaldero-Chapoton functionwith respect to ˜AT of a decorated
representation M = (M, V ) of AT is the Laurent polynomial

CC′̃
AT

(M) := xg˜AT
(M)

∑

e∈Nn

χ(GreAT
(M)) · ŷe ∈ R,

where GreAT
(M) is the quiver Grassmannian of factor modules with dimension vector

e of the AT -module M , and χ is the topological Euler characteristic.

Note that for a decorated representation M of AT we have in fact g
˜AT

(M) =
(gAT , 0, . . . , 0). This is so, since for each AT -module M with minimal projective
presentation

P1 → P0 → M → 0,

the same sequence can be taken as a minimal projective presentation of M viewed as
an ˜AT -module, due to the shape of ˜QA.

Remark 11.6 Obviously, the dual Caldero-Chapoton-function is the same as the usual
Caldero-Chapoton-function for the corresponding dual module, more precisely

CC′̃
AT

(M) = CC
˜Aop
T

(DM) := x
g′

˜A
op
T

(DM) ∑

e∈Nn

χ(Gr
Aop
T

e (DM)) · ŷe ∈ R,

where DM = (DM, DV ) is the C-dual decorated Aop
T -module,

g′
˜Aop
T

(M) = gAop
T

(DM) + dim(DV )

is the classical g-vector, calculated in terms of the minimal injective copresentation

0 → DM → DP0 → DP1, and Gr
Aop
T

e (DM) is the quiver Grassmannian of e-
dimensional Aop

T -submodules of DM .
Thus we have in particular

CC′̃
AT

(M1 ⊕ M2) = CC′̃
AT

(M1)CC
′̃
AT

(M2) (11.4)

for decorated representations M1 and M2.
Moreover the CC(M) for decorated reachable E-rigid AT -modules M are pre-

cisely the cluster monomials for the cluster algebra A•(BT ) ⊂ R with principal
coefficients, see for example [23].
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Remark 11.7 For a curve γ ∈ A(S, M) \ T ◦ letMγ := (Mγ , 0) be the corresponding
decorated AT -module. For a primitive γ ∈ L(S, M) let Mγ := (Mγ,λ, 0) for some
λ ∈ C

∗. Note that Mγ,λ is a band module of quasi-length 1. In these two cases, the
quiver QT

γ is the coefficient quiver of the string module Mγ (resp. of the band module

Mγ,λ). Moreover, the order coideals of QT
γ can be identified with the coordinate

factor modules ofMγ , see also [45, Remark 5.8]. Finally, for γ ∈ T ◦ letMγ be the
associated negative simple decorated AT -module.

Proposition 11.8 For a curve or primitive loop γ ∈ A(S, M) ∪ L(S, M) we have

XT
γ = CC′̃

AT
(Mγ ).

Proof We use Lemma 11.4 to compare both expressions. As a consequence of Propo-
sition 10.14, we get sT (γ ) = gAT (Mγ ) = g

˜AT
(Mγ ). In view of Remark 11.7 our

claim follows now from [36, Theorem 1.2]. �

11.4 Bangle functions are generic

Recall that our set of laminations Lam(S, M) from Sect. 10.3 is the same as the set
of C◦(S, M) of C◦-compatible collection of arcs and simple (= essential) loops in [45,
Def. 3.17].

Recall also that each irreducible component Z ∈ decIrrτ (AT ) we can consider the
map

CC′
Z : Z → R, M 
→ CC′̃

AT
(M)

as a constructible function, which indeed has a finite image. Thus there exists an open
dense subset U ⊆ Z where CC′

Z takes a constant value, say CC′̃
AT

(Z). We define

˜GT := {CC′̃
AT

(Z) | Z ∈ decIrrτ (AT )}

and

˜BT := {XT
L | L ∈ Lam(S, M)}.

With this definition we can state now the main result of this section:

Theorem 11.9 For each lamination L ∈ Lam(S, M) we have

XT
L = CC′̃

AT
(ηT (L)),

where ηT : Lam(S, M) → decIrrτ (AT ) is the bijection from Theorem 10.13. In par-
ticular, we have

˜BT = ˜GT .
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Fig. 11 Triangulation T of (S, M) and loop σ

Proof If an irreducible component Z ∈ decIrr(AT ) decomposes as Z = Z1 ⊕ Z2 then
it follows from (11.4) and the above definition that

CC′̃
AT

(Z) = CC′̃
AT

(Z1) · CC′̃
AT

(Z2).

Let L = (ξ,m) ∈ Lam(S, M) be a lamination,
In Theorem 10.13we assign to (ξ,m) a generically τ -reduced decorated irreducible

component

ηT (γ,m) =
⊕

γ∈ξ

ηT (γ, 1)m(γ ) ∈ decIrrτ (AT ).

Since on the other hand, we have by definition

XT
(γ,m) =

∏

γ∈ξ

(XT
γ )m(γ ),

it is sufficient to prove

XT
γ = CC′

T (ηT (γ ))

for γ an arc or a simple loop. This is trivial if γ ∈ T ◦, thus we have to distinguish
only two cases:

Case 1: γ is an arc which does not belong to T . In this case, the string module Mγ

is τ -rigid and therefore

ηT (γ ) = OMγ
,

compare Theorem 10.13. So our claim follows directly from Proposition 11.8.
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Fig. 12 Quiver QT and signed adjacency matrix BT (MSW-convention)

Fig. 13 Band graph G = GT ,σ with P− (thick edges) and xs(σ )

Fig. 14 Coefficient quiver QT
σ

Case 2: γ is a simple loop. In this case ηT (γ ) is the closure of the union of a the
orbits of a family of modules, namely

ηT (γ ) =
⋃

λ∈C∗
O(Mγ,λ,0).

In this case we have again by Proposition 11.8 XT
γ = CC′̃

AT
((Mγ,λ, 0)) for all λ ∈ C

∗,
and we are done. �

By specializing the coefficients to 1, the equality ˜BT = ˜GT from Theorem 11.9
yields

BT = GT .
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(A)

(B)

(C)

Fig. 15 a Good matching P1 and its contribution to XT
σ (b) Good matching P2 and its contribution to XT

σ

c Good matching P3 and its contribution to XT
σ

Thus Theorem 1.8 is proved.
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12 An example

Let (S, M) be the sphere with three disks cut out, and one marked point on each
boundary component. In Fig. 11 we display a triangulation T of (S, M), where the
arcs of T are marked in green, together with a loop σ in (S, M).

It is easy to read off the quiver QT (following our convention) and the signed
adjacency matrix BT (following the convention of [45]). Both are shown in Fig. 12.
Recall that with these convention in place we have QT = Q(−BT ).

Musiker, Williams and Schiffler [45] associate to each loop σ a band graph G =
GT ,σ with respect to a triangulation T . In our example, we obtain the band graph G
displayed in Fig. 13. Note that G hasm = 7 tiles, corresponding to the 7 intersections
of σ with the edges of T . The thick edges of G correspond to the distinguished
good matching P−. Note that the two extremal edges have to be identified along the
corresponding arrows.

Recall from Sect. 11.3 that Musiker, Schiffler and Williams associate to G a Hasse
quiver QG , which is opposite to our coefficient quiver QT

σ of the bandmoduleMσ,λ for
λ ∈ C

∗, see Remarks 11.1 and 11.7. We display the coefficient quiver QT
σ in Fig. 14.

Note that the two encircled vertices have to be identified.
Thus the order coideals of QT

σ (i.e. coordinate factor modules of Mσ,λ) are in
bijection with the good matchings of G. More precisely, the tiles which are enclosed
by the symmetric difference P � P− for a good matching P are identified with a basis
of the corresponding coordinate factor module. Finally we display in Fig. 15, three of
the 27 good matchings of G. In each case the edges of the matching P are highlighted
in orange, whilst the tiles which are enclosed by P � P− are highlighted in yellow.
Moreover, we show in each case the contribution of P to XT

σ .
The relation between perfect matchings and coordinate submodules of string mod-

ules has been also studied in a more general setup by Canakci and Schroll [12].

Acknowledgements The first named author acknowledges partial support from CONACyT grant no.
239255. The second author gratefully acknowledges the support he received from a Cátedra Mar-
cos Moshinsky and the grants CONACyT-238754 and PAPIIT-IN112519. The third author thanks the
Sonderforschungsbereich/Transregio SFB 45 for support. He was also funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - GZ 2047/1,
Projekt-ID 390685813. He thanks the Instituto de Matemátics of the UNAM (Mexico City) for two weeks
of hospitality in September 2019, where part of this work was done. The first and second author thank the
Mathematical Institute of the University of Bonn for two weeks of hospitality in January 2020. We thank
Ryan Kinser for helpful comments on an earlier version of this article. We are indepted to the anonymous
referee for suggesting improvements of the proofs of Proposition 6.3 and Lemma 6.6.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/


Schemes of modules over gentle algebras and laminations… Page 77 of 78 8

References

1. Adachi, T., Iyama, O., Reiten, I.: τ -tilting theory. Compos. Math. 150(3), 415–452 (2014)
2. D. Allegretti, ategorified canonical bases and framed BPS states. Sel. Math. New Ser. 25, 69 (2019).

https://doi.org/10.1007/s00029-019-0518-3
3. C. Amiot, T. Brüstle, Derived equivalences between skew-gentle algebras using orbifolds. Preprint

(2019), 46 pp., arXiv:1912.04367
4. Assem, I., Brüstle, T., Charbonneau-Jodoin, G., Plamondon, P.-G.: Gentle algebras arising from surface

triangulations. Algebra Number Theory 4(2), 201–229 (2010)
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