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Abstract

We give a detailed proof of the homological Arnold conjecture for nondegener-
ate periodic Hamiltonians on general closed symplectic manifolds M via a direct
Piunikhin—-Salamon—Schwarz morphism. Our constructions are based on a coherent
polyfold description for moduli spaces of pseudoholomorphic curves in a family of
symplectic manifolds degenerating from CP' x M to C* x M and C~ x M, as
developed by Fish—Hofer—Wysocki—Zehnder as part of the Symplectic Field The-
ory package. To make the paper self-contained we include all polyfold assumptions,
describe the coherent perturbation iteration in detail, and prove an abstract regulariza-
tion theorem for moduli spaces with evaluation maps relative to a countable collection
of submanifolds. The 2011 sketch of this proof was joint work with Peter Albers, Joel
Fish.

Mathematics Subject Classification 53D (Primary); 37J - 46 - 58 (Secondary)

1 Introduction

Let (M, w) be a closed symplectic manifold and H : S' x M — R a periodic
Hamiltonian function. It induces a time-dependent Hamiltonian vector field Xy :
S'x M — TM givenby w(Xp(t, x), -) = dH (t, -). We denote the set of contractible
periodic orbits by

P(H) =]y :S" - M|y(@t) = Xu(t, y(t)) and y is contractible} (1
and note that periodic orbits can be identified with the fixed points of the time 27 flow

¢i,” : M — M of Xy. (Here we choose the convention S! = R/2nZ, i.e. period
27, for ease of notation later on.) We call this Hamiltonian system nondegenerate if
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qﬁ%{” X id py is transverse to the diagonal and hence cuts out the fixed points transversely.
In particular, this guarantees a finite set of periodic orbits. Arnold [1] conjectured in
the 1960s that the minimal number of critical points of a Morse function on M is also a
lower bound for the number of periodic orbits of a nondegenerate Hamiltonian system
as above. In this strict form, the Arnold conjecture has been confirmed for Riemann
surfaces [7] and tori [6]. A weaker form is accessible by Floer theory, introduced by
Floer [17,18] in the 1980s. It constructs a chain complex generated by P (H ) that can be
compared with the Morse complex generated by the critical points of a Morse function.
When Floer homology is well-defined, it is usually independent of the Hamiltonian,
and on a compact symplectic manifold can in fact be identified with Morse homology,
which is also independent of the Morse function and computes the singular homology.
Using this approach, the following nondegenerate homological form of the Arnold
conjecture was first proven by Floer [16,19] in the absence of pseudoholomorphic
spheres.

Theorem 1.1 Let (M, w) be a closed symplectic manifold and H : S' x M — R a
nondegenerate periodic Hamiltonian function. Then

dim M
#P(H) = Y dim H;(M; Q).
i=0

Floer’s proof was later extended to general closed symplectic manifolds [20,21,
25,29], and in the presence of pseudoholomorphic spheres of negative Chern number
requires abstract regularizations of the moduli spaces of Floer trajectories since per-
turbations of the geometric structures may not yield regular moduli spaces; see e.g.
[27]. Further generalizations and alternative proofs have been published in the mean-
time, using a variety of regularization methods. The purpose of this note is to provide
a general and maximally accessible Proof of Theorem 1.1—using an abstract per-
turbation scheme provided by the polyfold theory of Hofer—Wysocki—Zehnder [22],
following an approach by Piunikhin—Salamon—Schwarz [30] based on [32], and build-
ing on polyfold descriptions of Gromov—Witten moduli spaces [23] as well as their
degenerations in Symplectic Field Theory [8,15].

Remark 1.2 Since the polyfold descriptions of SFT moduli spaces [12-15] are not
completely published, we formulate them as Assumptions 4.3, 5.5, 6.3. While these
descriptions of four kinds of moduli spaces and their relations involve a lot of struc-
tures (bundles, sections, evaluation maps, and compatible immersions from Cartesian
products to boundaries), they will be familiar from classical descriptions of moduli
spaces of pseudoholomorphic curves. Our assumptions in polyfold theoretic terms
formalize the well known fact that the moduli spaces have local descriptions in terms
of Fredholm sections and gluing theorems, which polyfold theory interprets as global
smooth structure within an appropriately generalized differential geometry. Indeed,
transition maps between the natural infinite dimensional local models fail to be classi-
cally differentiable for only two reasons which polyfold theory resolves as explained in
e.g.[9, §2] and [23, §2.1]: Actions of reparameterization groups satisfy the new notion
of scale-smoothness for maps between Banach spaces. Neighbourhoods of maps with
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broken or nodal domains are given local polyfold models as the image of a retraction
(modulo a finite group action in the case of isotropy), which becomes scale-smooth
after adjusting the smooth structure near nodal curves in Deligne-Mumford spaces.
With this understood, there is little doubt in the existence of polyfold descriptions for
moduli spaces. The much more audacious claim of polyfold theory is the existence
of an abstract perturbation scheme for moduli spaces that are described as zero set of
a scale-smooth section over a polyfold. However, this claim is fully substantiated in
[22]. So the goal of this paper is to demonstrate the use of this abstract perturbation
scheme once polyfold descriptions for the basic building blocks of moduli spaces are
given.

We moreover chose this structure to give an example of how rigorous and transparent
proofs can be written at a time when parts of their foundation are unpublished or in
question.

To describe our proof, let CF = &, cpu)A{y ) be the Floer chain group of the
Hamiltonian H with coefficients in the Novikov field A (see Sect. 2). Let (CM, d) be
the Morse complex with coefficients in A associated to a Morse function f : M —
R and a suitable metric on M (see Sect. 3). Then we will prove the following in
Lemma 4.9, Definition 5.8, and Lemmas 6.4, 6.5, 6.6.

Theorem 1.3 There exist A-linear maps PSS : CM — CF, SSP : CF — CM,
t:CM — CM, and h : CM — CM such that the following holds.

(i) vis a chain map, thatistod =do
(ii) tis a A-module isomorphism.
(iii) h is a chain homotopy between SSP o PSS and i, that is t — SSP o PSS =
doh+hod.

Here we view the Floer chain group C F as a vector space over A—not as a chain
complex, and in particular do not consider a Floer differential. Thus we are neither
constructing a Floer homology for H, nor identifying it with the Morse homology of
f . However, the algebraic structures in Theorem 1.3 suffice to deduce the homological
Arnold conjecture for the Hamiltonian H as follows.

Proof of Theorem 1.1 Denote the sum of the Betti numbers k := Z?‘zn(l)M dim H; (M; Q).
Let (CMg, dg) be the Morse complex over QQ as defined in Sect. 3. Then by the iso-
morphism of singular and Morse homology there exist ¢y, ..., cx € CMg that are
cycles, dge; = 0, and linearly independent in the Morse homology over Q. Since
the Morse differential d : CM — CM is given by A-linear extension of dg from
CMg C CM the chains ¢y, ..., cx € CM are also cycles dc; = dge; = 0 and lin-
early independent in the Morse homology over A. By Theorem 1.3 (i),(ii), ¢ induces
an isomorphism H: : HM — HM on homology. This in particular implies that
[t(c1)], ..., [t(ck)] € HM are also linearly independent in homology, that is for any
A, ..., A € A we have

k
D hicte) € imd = A=..=xn=0. )

i=1
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We now show that PSS(cy),..., PSS(ck) € CF are A-linearly independent,
proving #P(H) > k since the elements of P(H) generate C F by definition. This
proves the theorem.

Let A1, ..., Ax € A be a tuple such that

k
> hi- PSS(e;) =0.

i=0

Then we deduce from Theorem 1.3 (iii) that

Zi;o 2i - (SSP(PSS(cn)) +dh(c;) + h(dep))
SSP(Zf:O Ai - PSS(Ci)) + Zf:o Ai - dher) = d<zf=o . 'h(ci)>’

which implies A; = - -- = A = 0 by (2). O

Zf:o Ai - ulei)

This algebraically minimalistic approach of deducing the homological Arnold
conjecture from the existence of maps PSS and SSP whose composition is chain
homotopic to an isomorphism on the Morse complex was developed in 2011 discus-
sions of the second author, Peter Albers, and Joel Fish with Mohammed Abouzaid and
Thomas Kragh. These were prompted by our observation that proofs of “Floer homol-
ogy equals Morse homology” require equivariant transversality which is generally
obstructed—even for equivariant sections of finite rank bundles. Thus our goal was a
proof using the least amount of geometric insights or new abstract tools. Beyond this
we expect the [30]-approach to yield an isomorphism between Floer and Morse homol-
ogy, and spectral invariants [33] on all closed symplectic manifolds, using refinements
of polyfold theory described in Remark 1.4.

To maximize accessibility we begin with reviews of the pertinent facts on the
Novikov field, Sect. 2, and Morse trajectories, Sect. 3. The Proof of Theorem 1.3
then proceeds by constructing the PSS and SSP maps in Sect. 4 from curves in
C* x M, constructing the isomorphism ¢ and chain homotopy % in Sect. 5 from curves
in CP! x M and its degeneration into C~ x M and C* x M, and proving their algebraic
relations in Sect. 6 by constructing coherent perturbations. We give a detailed account
of these iterative constructions in the Proofs of Lemma 6.4 and 6.6. While these results
should be contained in [15], neck-stretching is not addressed in [12], and it seemed
timely to give the proof in a case whose structure is vastly simplified by the absence of
trivial cylinders compared with [12, §3.5]. To strike a balance between technical details
and maximal accessibility, we have clearly labeled all such technical work. Readers
willing to view polyfold theory as a black box can save 20 pages by skipping these
parts. For readers new to polyfold theory we provide in Appendix A a summary of
all notions and facts that are necessary for the present application. Here we moreover
establish in Theorem A.9 a relative perturbation result that should be of independent
interest: It allows one to bring moduli spaces with an evaluation map into general
position to a countable collection of submanifolds. We combine this result with [10]
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to construct polyfold descriptions of the [30] moduli spaces as fiber products of SFT
moduli spaces with the Morse trajectory spaces constructed in [38].

Remark 1.4 (i) There are essentially two approaches to the general Arnold conjecture
as stated in Theorem 1.1. The first—developed by [19] and used verbatim in [20,
21,25,29]—is to establish the independence of Floer homology from the Hamiltonian
function, and to identify the Floer complex for aC?-small S'-invariant Hamiltonian H :
M — R with the Morse complex for H. This requires S'-equivariant transversality to
argue that isolated Floer trajectories must be S'-invariant, hence Morse trajectories.
A conceptually transparent construction of equivariant and transverse perturbations—
under transversality assumptions at the fixed point set which are met in this setting—
can be found in [39], assuming a polyfold description of Floer trajectories.

(i1) The second approach to Theorem 1.1 by [30] is to construct a direct isomorphism
between the Floer homology of the given Hamiltonian and the Morse homology for
some unrelated Morse function. Two chain maps PSS : CM — CF,SSP : CF —
CM between the Morse and Floer complexes are constructed from moduli spaces
of once punctured perturbed holomorphic spheres with one marking evaluating to the
unstable resp. stable manifold of a Morse critical point, and with the given Hamiltonian
perturbation of the Cauchy—Riemann operator on a cylindrical neighbourhood of the
puncture. Then gluing and degeneration arguments are used to argue that both PSS o
SSP and SSPo PSS are chain homotopic to the identity, and hence SS P is the inverse
of PSS on homology. However, sphere bubbling can obstruct these arguments: In the
first chain homotopy it creates an ambiguity in the choice of nodal gluing when the
intermediate Morse trajectory shrinks to zero length. (We expect to be able to avoid this
by arguing that “index 1 solutions generically avoid codimension 2 strata”—another
classical fact in differential geometry that should generalize to polyfold theory.) The
second chain homotopy is as claimed in Theorem 1.3 (iii) but with ¢ = id, which
requires arguing that the only isolated holomorphic spheres with two marked points
evaluating to an unstable and stable manifold are constant. This again requires S'-
equivariant transversality (which we expect to be able to achieve with the techniques
in [39]).

(ii1) Theorem 1.3 is proven by following the [30]-approach as above but avoiding the
use of new polyfold technology such as equivariant or strata-avoiding perturbations.
In particular, ¢ is the map that results from counting holomorphic spheres that intersect
an unstable and stable manifold; its invertibility is deduced from an “upper triangular”
argument.

(iv) The techniques in this paper—combining existing perturbation technology with
the polyfold descriptions of SFT moduli spaces—would also allow one to define the
Floer differential, prove d> = 0, establish independence of Floer homology from
the Hamiltonian (and other geometric data), and prove that PSS and SSP are chain
maps. Then the chain homotopy between SSP o PSS and the isomorphism ¢ implies
that PSS is injective and SSP surjective on homology. However, proving that PSS
and SSP are isomorphisms on homology, or directly identifying the Floer complex
of a small S'-invariant Hamiltonian with its Morse complex, requires the techniques
discussed in (ii).
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Moreover, a proof of independence of Floer homology from the choice of abstract
perturbation would require a study of the algebraic consequences of self-gluing Floer
trajectories in expected dimension —1 during a homotopy of perturbations, as devel-
oped in the A;-setting in [24].

2 The Novikov field

We use the following Novikov field A associated to the symplectic manifold (M, ).
Let H>(M) denote integral homology and consider the map w : Hy(M) — R given
by the pairing w(A) := (w, A) for A € H»(M). The image of this pairing is a finitely
generated additive subgroup of the real numbers denoted

I' := imw = w(H,(M)) C R.

The Novikov field A is the set of formal sums

A= ZA,T’,

rel

where T is a formal variable, with rational coefficients 1, € @Q which satisfy the
finiteness condition

VeeR #{rel | A #0,r <c} <o0.

The multiplication is given by

Ao = (Zx,T’) : (ZMSTS> = Z(Z A,MS) T

rel’ sel’ tell \r+s=t

This defines a field A by [21, Thm.4.1] and the discussion preceding the theorem
in [21, §4], the key being that I is a finitely generated subgroup of R.

We will moreover make use of the following generalization of the invertibility of
triangular matrices with nonzero diagonal entries.

Lemma 2.1 Let M = ()\.ij)lfi‘jiﬁ e A be a square matrix with entries A € A
in the Novikov field. Suppose that A/ =y oM T" with &j = 0fori # j and
)Lf)i # 0. Then M is invertible.

rel,r>

Proof Since A is a field, invertibility of M is equivalent to det(M) # 0. Write
det(M) =), T € A for some 1, € Q. It suffices to show that o % 0.

We proceed by induction on the size of the matrix M. In the £ = 1 base case, when
Misal x 1 matrix M = [A!'1], we have det(M) = AWM= Y rer T with p, = )»}1
SO o = k(l)l # 0.

Now suppose that M is size £ x £ for some £ > 1 and inductively assume that,
for any size ({ — 1) x (£ — 1) matrix N satisfying the hypotheses of the lemma,
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we have det(N) = Y, . uNT" with u) # 0. For 1 < j < ¢, let Cy; denote the
matrix obtained by deleting the first row and j-th column of M. Then N := Cj; is an
(€ — 1) x (£ — 1) matrix that satisfies the hypotheses of the lemma, and the cofactor
expansion of the determinant yields

4
det(M) = A det(N) + Y (=)'l det(Cy).
j=2

By hypothesis, all entries of M are of the form A = Y _A/T". Since the
determinants det(N) and det(Cy;) are polynomials of those entries, they are of the
same form—with zero coefficients for 7" with r < 0. Since we moreover have
g Y = 0 for Jj = 2 by hypothesis, it follows that the constant term (i.e. the coef-
ﬁ01ent on 79 of kll det(Cy;) is 0. Hence the constant term of det(M) = )" u,T" is
no = A(l)l . uf)v, where ,uév # 0 by induction and A(l)l # 0 by hypothesis. This implies
det(M) = o + ... # 0 and thus finishes the proof. ]

3 The Morse complex and half-infinite Morse trajectories

This section reviews the construction of the Morse complex as well as the compactified
spaces of half-infinite Morse trajectories which will appear in all our moduli spaces.

3.1 Euclidean Morse-Smale pairs

The Morse complex can be constructed for any Morse—Smale pair of function and
metric on a closed smooth manifold M (and more general spaces). However, we will
also work with half-infinite Morse trajectories, and to obtain natural manifold with
boundary and corner structures on these, we will restrict ourselves to the following
special setting.

Definition 3.1 A Euclidean Morse-Smale pair on a closed manifold M is a pair
(f, g) consisting of a smooth function f € C*°(M, R) and a Riemannian metric g on
M satisfying a normal form and transversality condition as follows.

(i) For every critical point p € Crit(f) of index |p| € Ny there exists a local chart ¢
to a neighbourhood of 0 € R” such that

G f 1) = f(P) = 3T X))+ gy + e+ x),
¢*g = dx; @dx; +...+dx, @ dx,.

(i1) For every pair of critical points p, g € Crit(f) the intersection of unstable and
stable manifolds is transverse, Wp_ M W; .

Remark 3.2 Euclidean Morse—Smale pairs exist on every closed manifold, and for any
given Morse function. Indeed, given any Morse function f and metric g, there are
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arbitrarily C%-small perturbations g’ of g in any neighborhood of the critical points of
f such that (f, g) satisfies Definition 3.1(i); see e.g. [3, Prp.1]. Furthermore, any L2-
generic perturbation g” of g’ on annuli around the critical points yields a pair (f, g”)
that additionally satisfies Definition 3.1(ii) and hence is a Euclidean Morse—Smale
pair; see e.g. [3, Prp.2] or [31, Prp.2.24].

3.2 The Morse complex

For distinct critical points p_ # py € Crit(f) the space of unbroken Morse trajecto-
ries (which are necessarily nonconstant) is

M(p— pr)i={t:R> M|t =-Vf(0), lim 7(s) = p+}/R

=W, nWi)/R =W, nWS nfle. 3)

Itis canonically identified with the intersection of unstable and stable manifold modulo
the R-action given by the flow of —V f, or their intersection with a level set for any
regularvaluec € (f(p+), f(p-)).Bothformulations equip it with a canonical smooth
structure of dimension |p_| — | p+| — 1, see e.g. [31, §2.4.1]. Moreover, any choice of
orientation of the unstable manifolds W, for all p € Crit(f) induces orientations on
the trajectory spaces M(p_, p+) by e.g. [36, §3.4]. Then the Morse chain complex
of (f, g) is obtained by counting (with signs induced by the orientations) the zero
dimensional spaces of unbroken trajectories,

CMg:= P Qp), do(p-):= )  #M(@p-,ps) (ps).
peCrit(f) [p+I=lp-1-1 @

It computes the singular homology of M; see e.g. [31, §4.3]. More precisely, the
Morse complex is graded CMg = @,_g__gimm CiM by Morse indices C;M =
@|p\=i Q( p), and with d; := dglc,m we have H;(M; Q) = kerd; /im d; 4.

The PSS and SSP morphisms will be constructed on the Morse complex with
coefficients in the Novikov field A from Sect. 2,

CM = CMy :== CMg® A = EB A{p), 5)
peCrit(f)

with differential d = d the A-linear extension of dgy (defined as above on generators).
This complex is naturally graded with differential of degree 1,

dim M
oM = @ am. cM=P Ap). d:CGM—CaM. (6
i=0 Ipl=i
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3.3 Compactified spaces of Morse trajectories

Our construction of moduli spaces will also make use of the following spaces of
half-infinite unbroken Morse trajectories for p+ € Crit(f)

MM, py) = {1:10.00) > M| =—Vf(r). lim 7(s) = py }.
M(p—. M) = {1 :(=00,0] > M |7 = —Vf(r),s_l)ir_noot(s) =p_}

These will be equipped with smooth structures of dimension dim M(M, p;) =
dim M — |py| resp. dim M(p_, M) = |p_| by the evaluation maps

ev: MM, py) —> M, t 7(0), ev: M(p_,M) > M, t 7(0),

which identify the trajectory spaces with the unstable and stable manifolds M (M, p)
= W[;"+ resp. M(p—, M) = W,,_. Note that these spaces contain constant trajecto-
ries at a critical point, {t = py} € MM, p4+) and {t = p_} € M(p_, M). To
compactify these trajectory spaces in a manner compatible with Morse theory, we
cannot simply take the closure of the unstable or stable manifold Wpi C M, but must
add broken trajectories involving the bi-infinite Morse trajectories. The bi-infinite tra-
jectories from (3) which appear in such a compactification are always nonconstant,
i.e. between distinct critical points p_ # p.. So, unlike constant half-infinite length
trajectories, our constructions will not involve constant bi-infinite trajectories, and we
simplify subsequent notation by setting M (p, p) := ¢ for all p € Crit(f). With that
we first introduce spaces of k-fold broken half- or bi-infinite Morse trajectories for
k € Ng and p4 € Crit(f),

MM, po= | MM, p))x M(p1,p2) ... x M(px. p1),
P1s-.. prECrit(f)
Mp—.My= | M-, p) x M(p1, p2) ... x M(px, M),

Py prECrit(f)

Mp—pe= | Mo p) x M1, p2) .o x M(prps)- (7)
Pls---s Pk ECrit(f)

Now the compactifications of the spaces of half- or bi-infinite Morse trajectories are
given by

MM, pi) = | MM, poye, Mp-, M) = (] M(p—, My, M(p—, p+) == | M(p-. p+)r,
keNy keNy keNy

with topology given by the Hausdorff distance between the images of the broken or
unbroken trajectories. Compactness of these spaces is proven analogously to the bi-
infinite Morse trajectory spaces in e.g. [3, Prp.3], using [38, Lemma 3.5]. Moreover,
[38, Lemma 3.3] shows that the evaluation maps extend continuously to

ev: MM, py)— M, (0, [tl. ..., [w]) +— 10),
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ev: M(p_,M)— M, ([wl,....[t%-1], %) — % 0). ®)

Smooth structures on these spaces are obtained by the following variation of a folk
theorem, which is proven in [38], using techniques similar to those of [3] for the
bi-infinite trajectory spaces.

Theorem 3.3 Let (f, g) be a Euclidean Morse—Smale pair and p+ € Crit(f). Then
MM, py), M(p—, M), and M(p_, py) are compact, separable metric spaces and
carry the structure of a smooth manifold with corners of dimension diim M(M, py) =
dim M — |py], dim M(p—, M) = |p_|, and dim M(p_, py) = [p-| — [p+| — 1.
Their k-th boundary stratum is (x M(...) = M(...)r. Moreover, the evaluation maps
(8) are smooth.

For reference, we recall the definition of a manifold with (boundary and) corners
and its strata.

Definition 3.4 A smooth manifold with corners of dimension n € Ny is a second
countable Hausdorff space M together with a maximal atlas of charts ¢, : M D U, —
V, C [0, 00)" (i.e. homeomorphisms between open sets such that U, U, = M) whose
transition maps are smooth.

For k = 0, ..., n the k-th boundary stratum d; M is the set of all x € M such that
for some (and hence every) chart the point ¢,(x) € [0, c0)" has k components equal
to 0.

Remark 3.5 (i) To orient the Morse trajectory spaces in Theorem 3.3 we fix a choice
of orientation on each unstable manifold w, = M(p, M) for p € Crit(f),
and orient W[‘,|r = M(M, p) such that T,M = T,W~ @ T[,W+ induces the
orientation on M given by the symplectic form. This also induces orientations
on M(p—, p+) = w, N W;;/R that are coherent (by e.g. [36, §3.4]) in the
sense that the top strata of the oriented boundaries of the compactified Morse tra-
jectory spaces are products 9 M(-, ) = qucm(f) o(-,q, )M, q) x M(q, ")
with universal signs o(-,q,-) = =£l. We compute the relevant cases: For
MM, q) x M(q, py) — 91 M(M, py) with dim M(q, p4+) = O the sign is
o(M,q, py) = (=DIP+1+1 Indeed, a point in M(q, p. ) is positively oriented if
TW, = (-Vf)x NW, . Here we identify N, W =T, W, ,and the outer
normal direction is represented by V f, so that the sign arises from

— + ~ - + ~ — +
TWp+ X TWI,+ = TWq X TWq = (=Vf)x TWp+ X TWq
TW, x ((=D"PIV )y x TW x TM(q, py).

12

Similarly, for M(p_, ¢) x M(q, M) < 8; M(p_, M) with dim M(p_, g) =0

the sign is o(p—, ¢, M) = +1 since —V f is an outer normal and TW, =
(=Vf) xTW, when TM(p—, q) = +{0}.
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(i) For computational purposes in Sect. 6.3 we determine the fiber products of the
compactified Morse trajectory spaces of critical points p_, py € Crit(f) with the
same Morse index |p_| = |p+|,

M(p—, MYeyxee M(M, py) = {(z7,tF) € M(p_, M) x M(M, py) |ev(z™) =ev(zh)}

4 P— # P+
(" =p_,tt=py); p-=ps.

To verify this recall that the compactifications M(p_, M) and M (M, p,) are
constructed in (7) via broken flow lines involving bi-infinite Morse trajectories in
M(pi, pi+1), which are (defined to be) nonempty only for |p;| > |pi+1]|. So we

have M(p_, p1) X ... x M(pr, M) C M(p_, M) only for |p;| < |p_| and

MM, p1) X ...x M(pr, p+) C M(M, py) only for | pi| > | p |, and thus the
image of the evaluation maps are contained in unions of unstable/stable manifolds

evM(p—, M) ¢ W, u | W, ev(MWM,pp) c wiu |J wi.

P+
lg—1<lp-1 |g+1>1p+I

Since the intersections W,~ N W;fF are transverse by the Morse—Smale condition,
they can be nonempty only for |g_|+dim M — |g4| > dim M. So this intersection
is empty whenever |g+| > |g—|. Thus for |[g_| < |p—| = |p+| < |g+| in the above
images we have empty intersections W,~ N th = Vaswellas W~ HW;r = {Jand
W, N W} = 0. This proves ev(M(p_, M)) Nev(M(M, py)) =W, NWj,
and for p_ # p this intersection is empty by transversality in (3). Lastly, for
p+ = pwehave W, N W;“ = {p} since gradient flows do not allow for nontrivial

self-connecting trajectories. This proves M(p, M)eyXewM(M, p) = {(p, p)}.

4 The PSS and SSP maps

In this section we construct the PSS and SSP morphisms in Theorem 1.3 between
Morse and Floer complexes. As in the introduction, we fix a closed symplectic manifold
(M, ) and a smooth function H : S! x M — R. This induces a time-dependent
Hamiltonian vector field X : S! — I'(TM), which we assume to be nondegenerate.
Thus it has a finite set of contractible periodic orbits, denoted by P(H) as in (1). We
moreover pick a Morse function f : M — R and denote its—again finite—set of
critical points by Crit(f). Then we will work with the Floer and Morse complexes
over the Novikov field from Sect. 2,

CF =®,cpmA(y), CM = ®pecrit (/) AP )

and construct the A-linear maps PSS : CM — CF, SSP : CF — CM from
moduli spaces which we introduce in Sect. 4.1. We provide these moduli spaces with
a compactification and polyfold description in Sect. 4.2, and in Sect. 4.3 rigorously
construct the PSS/SSP map by using polyfold perturbations to obtain well defined (but
still choice dependent) counts of compactified-and-perturbed moduli spaces.
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4.1 The Piunikhin-Salamon-Schwarz moduli spaces

To construct the moduli spaces, we need to make further choices as follows.

e Let J be an w-compatible almost complex structure on M.
Then the Cauchy-Riemann operator on maps u : ¥ — M parametrized by a
Riemann surface ¥ with complex structure j is 9 ju 1= %(du +Jw)oduoj ) €
QYI(Z, u*TM).

e Let g be a metric on M such that (f, g) is a Euclidean Morse—Smale pair as in
Definition 3.1. It exists by Remark 3.2.

e Let B : [0, 00) — [0, 1] be a smooth cutoff function with Bjo.; =0, 8’ > 0, and
:3|[e,oo) =L
Then we define the anti-holomorphic vector-field-valued 1-form Yy € Qo1 (C,
['(TM)) in polar coordinates

Yu(re', x) == 1B(r)(JXu @, x)r~'dr + X (0, x) d6).

In the notation of [26, §8.1], we have Yy = —(XHﬁ)O'l given by the anti-
holomorphic part of the 1-form with values in Hamiltonian vector fields X 7, which
arises from the 1-form with values in smooth functions Hg € Ql(C, c>m))
given by Hg(re'?) = B(r)H (8, -)de.

The vector-field-valued 1-form Yy encodes the Floer equation on both the pos-
itive cylindrical end {z € C||z| = e} = [I,00) x S! and the negative end
{lz] = e} = (—o00,—1] x S' (where B = 1) as follows: The reparametriza-
tion v(s, 1) := u(et¢tD) of a map u : C — M satisfies the Floer equation
(s + JO)v(s, 1) = J X (2, v(s, 1)) iff dyu(z) = Yy (z, u(2)).

e For each y € P(H), fix a smooth disk u,, : D? — M with uylyp2(eh) = y ().
We denote the oriented complex plane by C*T := (C,i) = C, and denote its
reversed complex structure and orientation by C™ := (C, —i). Then for u : C* >
M with limg_, oo u(Re™") = y (1), denote by uttu, : CP' — M the continuous
map given by gluing u to uf (where the + denotes the orientation of D?). By abuse
of language, we will call A := [u#u, ] = (u#uy)*[(C]Pl] € Hy(M) the homology
class represented by u. Moreover, we denote by i, : D? — D? x M the graph of
uy. Thenthe graphi : C - Cx M, z — (z, u(z)) glues with ﬁf to a continuous
map representing [u#i, | = A :=[CP'1+ A € Hy(CP! x M), or more precisely
A= [C]P’]] x [pt] + [pt] x A. Now the condition [v#ﬁ},] = A makes sense for
other maps v : C — C x M with the same asymptotic behaviour, and we say v
represents A. In fact, we will suppress the notation A and label spaces with A—as
this specifies the topological type of v.

Given such choices, the (choice-dependent) morphisms PSS : CM — CF and
SSP : CF — CM will be constructed from the following moduli spaces for critical
points p € Crit(f), periodic orbits y € P(H),and A € Hy(M)

M(p,y; A) = {u Ct>M | u(0) € W;, dyu =Yy, Aijglcu(Rei’) =y(@), [u#tu,] = A},

My, p; A):={u:C™ — M |[u(0) € W), 95u =Yy, gl;u(ke*”) =y(@0), [utu,] = A}.
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Each of these moduli spaces can be described as the zero set of a Fredholm section
9y —Yy : B+ — Ex.Here the Banach manifolds By are given by a weighted Sobolev
closure of the set of smoothmaps u : C* — M representing the homology class A with
point constraint #(0) € W;F and satisfying a decay condition limg_ oo (Re™") =
¥ (1), but not necessarily satisfying the perturbed Cauchy—Riemann equation 3 ju =
Yy (u). Then 3; — Yy is a Fredholm section of index

I(p,y: A) = CZ(y) + 2ci(A) — M 4 ||,
Iy, p; A) = —CZ(y) + 2¢1(A) + 41 _p), ©)

where CZ(y) is the Conley—Zehnder index with respect to a trivialization of u]’jTM
asine.g. [32], c1(A) is the first Chern class of (T M, J) paired with A, and |p]| is the
Morse index of p € Crit(f).

If the moduli spaces were compact oriented manifolds, then we could define PSS
(and analogously SSP) by a signed count of the index O solutions,

PSS(p) =) #M(p,y; A)-T*(y),
y,A

where the sum is over y € P(H) and A € Hy(M) with I(p, y; A) = 0. In many
cases—if sphere bubbles of negative Chern number can be excluded—this compact-
ness and regularity can be achieved by a geometric perturbation of the equation, e.g.
in the choice of almost complex structure. In general, obtaining well defined “counts”
of the moduli spaces requires an abstract regularization scheme. We will use poly-
fold theory to replace “# M (p, y; A)” by a count of 0-dimensional perturbed moduli
spaces. In the presence of sphere bubbles with nontrivial isotropy, the perturbations
will be multi-valued, yielding rational counts.

Remark 4.1 Compactness, or rather Gromov-compactifications, of the moduli spaces
M(p,y; A) and M(y, p; A) will result from energy estimates [26, Remark 8.1.7]
for solutions of d ju = Yy (u),

1
E(u) = §/¢;|du+XHﬂ(u)| < /Cu*a)—i-llRngH < o(lu#tu,]) + K. (10)

Here the curvature Ry, dvolc = dHp + %ng A Hg = ' H dr A d# has finite Hofer
norm

o0
IRy | = / (max Ry, — max Rpz,) = / / B Ol max.cu H, x) — min,ey H, x)) 0 dr
C 0 S

since 8" has compact support in [1, e]. Since moreover P(H) is a finite set, we obtain
the above estimate with a finite constant K := || Rp || + max, ep(n) / D2 u;ja) Thus
the energy of the perturbed pseudoholomorphic maps in each of our moduli spaces
will be bounded since we fix [u#u, ] = A.
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Now SFT-compactness [2] asserts that for any C > 0 the set of solutions of bounded
energy {u : C — M |d;u = Yyu),limg o u(Ret™) = y(1), Emw) < C}is
compact up to breaking and bubbling. This compactness will be stated rigorously in
polyfold terms in Assumption 5.5 (ii).

4.2 Polyfold description of moduli spaces

We will obtain a polyfold description for the moduli spaces in Sect. 4.1 by a fiber
product construction motivated by the natural identifications

M(p,y; A) = M(p, M)eyXeyM™ (y; A),
My, p; A) = MT(y; A)evxeyM(M, p). (11)

This couples the half-infinite Morse trajectory spaces from Sect. 3.3 with a space of
perturbed pseudoholomorphic maps

ME(y; A) = {u: Ct>Mm | 0yu =Yg, ]gim u(Re*y = y (1), [u#u,] = A},
(12)

via the evaluation maps (8) and
ev: ME(y: A) > M, u> u(0). (13)

More precisely, the general approach to obtaining counts or more general invariants
from moduli spaces such as (11) is to replace them by compact manifolds—or more
general ‘regularizations’ which still carry ‘virtual fundamental classes’). Polyfold
theory offers a universal regularization approach after requiring a compactification
M(.) C ./V(. ..) of the moduli space and a description of the compact moduli
space M(...) = o~ 10) as zero set of a sc-Fredholm section o : B(...) — &(...)
of a strong polyfold bundle. For an introduction to the language [22] used here see
Appendix §A.

The Morse trajectory spaces are compactified and given a smooth structure in
Theorem 3.3. The Gromov compactification and perturbation theory for (12) will be
achieved by identifying theses spaces with moduli spaces that appear in Symplectic
Field Theory (SFT) as introduced in [8], compactified in [2,4], and given a polyfold
description in [15]. Here we identify u : C — M with the map to its graph &7 : C —
Cx M,z + (z,u(z)) as in’l26, §8.1] to obtain a homeomorphism (in appropriate
topologies) M*(y; A) = Msipr(? : A)/Aut(C*) to an SFT moduli space for the
symplectic cobordism! C* x M between @ and S' x M. Here S! x M is equipped
with the stable Hamiltonian structure (£d¢, w-+d H; Adt) whose Reeb field £9; + X g,
has simply covered Reeb orbits> given by the graphs 7 : 1 > (=£t, y(r)) of the periodic

1 For definitions of these notjons see [4, §2]. For C x M the positive symplectization end is Rt xS xM —
CxM,(r,0,x) — (e"+’9, x). After reversing orientation on C there is an analogous negative end
R xS xM<— C xM.

2 Here we have implicitly chosen asymptotic markers that fix a parametrization of each Reeb orbit.
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orbits y € P(H). Moreover, Aut(C¥) is the action of biholomorphisms ¢ : C — C
by reparametrization v — v o ¢ on the SFT space for an almost complex structure
on C* x M induced by J, Xg,and j = £i on C*,

MELF: A) = p;ciacixMwiu_Ovmﬁ%~mﬂnwmﬂ [CP'] + A}.

More precisely, the asymptotic requirement is dg p (v(Re™ 1)), g (1)) — 0 for
some fo € S' as R — oo for the graphs Pz(t) = (Re™, y(r)) of the orbit y
parametrized by S! = {|z| = R} c C*.

To express the evaluation (13) in SFT terms note that a holomorphic map in the given
homology class intersects the holomorphic submanifold {0} x M in a unique point?, so
we can fix the point 0 € C* in the domain where this intersection occurs and rewrite
the moduli space M*(y; A) = {v € MG (75 A) | v(0) € {0} x M}/Aut(C*, 0)
with a slicing condition and quotient by the biholomorphisms which fix 0 € C*. Thus
we rewrite (11) into the fiber products over Ctx M

M(p,y; A) = M(p, M) (0yxev Xev+ MgFT()C A),
My, p; A) = MS_FT(V; A) ov- X {0} xev M(M, p) (14)

using evaluation maps on the SFT moduli space with one marked point

MSFT(J/,

SFT(V A) - )/Aut((ci,()) - C* x M, [v] = v(0).

15)

Now we will obtain a polyfold description of the PSS/SSP moduli spaces (14) by
the slicing construction of [10] applied to polyfold descriptions of the SFT-moduli
spaces Mgtm(? ; A) (compactified as space of pseudoholomorphic buildings with one
marked point). This result is outlined in [12], but to enable a self-contained proof of
our results, we formulate it as assumption, where we use

CE = Ctus) = (zeCHzI<1)
as target factor for a simplified evaluation map, as explained in the following remark.

Remark 4.2 Note that the compactified moduli space M;EFT(J/; A) —in view of the
noncompact target C* x M—contains broken curves v : ¥ = C* UR x S' ... U
R x S — ¥ x M. We do not need a precise description of this compactification
(beyond the fact that it exists and is cut out by a sc-Fredholm section), but it affects the
formulation of the evaluation maps [v, zo] +— v(zp) for a marked point zg € ¥ that v
might map to a cylinder factor Rx S' x M C = x M. We will simplify the resulting sc>

3 For solutions in Mg:FT (¥ A) this follows from prga+ ov : Cct > c* being an entire function with a pole

of order 1 at infinity (prescribed by the asymptotics). For f; -holomorphic curves in the compactification,
it follows from positivity of intersections, see e.g. [5, Prop.7.1].
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evaluatlon w1th varying target—being developed in [15]—to a continuous evaluation
map evs MSFT(J/ A) — C¥ into the compactified target CE.

For that purpose we topologize C* = {lz] < 1} as a disk via a diffeomorphism
C* = {|z] < 1}, re? — f(r)e'? induced by a diffeomorphism f : [0, 00) — [0, 1)
that is the identity near 0, and its extension to a homeomorphism C* — {|z| < 1}
via S! = R/znz — {|z] = 1}, 0 — ¢*? Then for any marked point zo € R x S! on
a cylinder we project the evaluation v(zo) € R x S x M to §' x M = ICEx M
by forgetting the R-factor. The resulting simplified evaluation map will be unchanged
and thus still sc® when restricted to the open subset (&vt) 1 (C* x M) of the ambient
polyfold—as stated in (iii) below. This open subset inherits a scale-smooth structure,
and still contains some broken curves—just not those on which the marked point leaves
the main component. This suffices for our purposes since the fiber product construction
uses the evaluation map only in an open set of curves [v, zg] with v(z9) ~ 0 € C*.

In Assumption 4.3, Remark 4.4, and Lemma 4.5 we introduce some of the polyfolds
under construction in [15] and their expected properties. To describe these objects we
introduce a significant amount of notation. A summary of the types of curves in each
polyfold and subsets thereof is displayed in Table 1 for the reader’s convenience.

Assumption 4.3 There is a collection of oriented sc-Fredholm sections of strong
polyfold bundles ospr : BSiFT(y;A) — Sgﬁ:T(y; A) and continuous maps
& : Bap(y; A) — CF x M, indexed by y € P(H) and A € Hy(M), with the
following properties.

(i) The sections have Fredholm index ind(ospr) = CZ(y) 4+ 2c1(A) + dimTM +2on
B;FT()/; A), resp. ind(ospr) = —CZ(y) 4+ 2c1(A) + dimTM +2on BngT(W A).

(ii) Each zero set MZEFT()/; A) = Gs_FlT (0) is compact, and given any C € R there
are only ﬁn1tely many A € Hy(M) with w(A) < C and nonempty zero set
JSFT(O) N BSFT()/; A) £ .

(iii) The sections ospr have tame sc-Fredholm representatives in the sense of [10,
Def.5.4], and the evaluation maps &V restrict on the open subsets Bg}g (y; A) =
@) H(C* x M) C Bggp(y; A) to sc® maps ev® : SFT(y A) - C* x M,
which are ogpr- compatlbly submersive in the sense of Definition A.4. Finally, this
open subset contains the interior, 8OBSFT()/ A) C BSFT (y; A).

Remark 4.4 (i) The polyfolds, bundles, and sections in Assumption 4.3 are con-
structed for a closely analogous situation (considering curves in R x Q, with
eg 0= st x M) in [12, §3], so — while not needed for our proof—we state the
following properties for intuition:

Equivalence classes under reparametrization of Aut(C*t,0) of smooth maps
v : Ct — C* x M that satisfy v(Re™") = (Rei”, y(t)) for sufficiently
large R > 1 and represent the class [v#uy] [(CIFJ 1+ A form a dense subset

dense(y A) C BSFT()/ A) contained in the interior. On this subset, the section is
O'SFT([U]) = [(v, aji v)] andev ([v]) is evaluation as in (15). The intersection of

O’SFT (0) with this dense subset is contained in the moduli space M?FT()/; A) from
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Table 1 Summary of the polyfolds and their subsets introduced in this section

Notation Description Definition

Bj:ens (Vi A) Elements are equivalence classes under reparameterization Remark 4.4

by Aut(C*, 0) of smooth maps v : C* — C* x M that
satisfy v(ReT!!) = (Rei”, ¥ (1)) for sufficiently large
R > 1 and represent the class [v#i) ] = [CP!1+ A

Bgtpr(y; A) A polyfold with dense subset Béteme(y; A), which contains Assumption 4.3,

the SFT-compactification Mgpr(y; A) of the moduli Remark 4.4

space in (15)

Bg:F’f%(y; A) The open subset of Bg:FT(y; A) containing the curves Assumption 4.3(iii)

whose evaluation at a marked point lands in CExMm
rather than in a broken off cylinder R x Sl x m ; see
Remark 4.2

Bt (p,y; A) Elements are pairs of a half-infinite broken Morse trajectory (16)

starting from the critical point p and a curve in
B;Fg (y; A), Wl’IIOSC evaluation agrees with the end point
of the Morse trajectory

B~ (y, p; A) Elements are pairs of a half-infinite broken Morse trajectory (16)

ending at the critical point p and a curve in Bqul; (y; A),
whose evaluation agrees with the starting point of the
Morse trajectory

Bt (p,y; A) Open subset of B (p, y: A)| containing M(p, y: A) over Lemma 4.5

which the section Tpy:a) 1S sc-Fredholm (possibly

smaller than BT (p, y; A)1 due to shrinking in [10,

Cor.7.3])
B~ (y, p; A) Open subset of BL()/, p; A)1 containing M (y, p; A) over Lemma 4.5
which the section o, is sc-Fredholm

(p,v;A)

(i)

(15). The full moduli space M:StFT(y; A) is obtained by enlarging Bjtense(y; A) to
include equivalence classes with sup, g1 d@xM(v(Reii’), (Re*', y(t))) — Oas
R — 00. However; only classes with specific exponential decay of this quantity
and related derivatives are contained in BéEFT(y; A).

The sc-smooth structure, sc-Fredholm property, and compactness is stated in [12,
Thm.3.4]. The proof of polyfold and bundle structure outlined in [12, §7-11]
extends the construction of Gromov—Witten polyfolds in [23] by local models
for punctures and neck-stretching from [14, §3], using the implanting method
in [13, §3,85]. These constructions automatically satisfy the tameness assumed
in (iii). The nonlinear Fredholm property needs to be proven globally—in close
analogy to [23]. The Fredholm index stated in (i) is computed in a local chart,
where the linearized section coincides with a restriction of the classical linearized
Cauchy—Riemann operator to a local slice to the reparametrization action. The
compactness properties follow from SFT-compactness of the moduli spaces [2]
since the topology on the polyfolds given in [12, §3.4] generalizes the notion of
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SFT-convergence. Orientations are constructed in [12, §15]. Sc-smoothness of the
evaluation maps is proven analogously to [23, Thm.1.8], and their submersion
property in (iii), which is used to construct fiber products in Lemma 4.5, is proven
asin [10, Ex.5.1].

(iii) We also expect the existence of a direct polyfold description of the moduli space
(12) in terms of a collection of sc-Fredholm sections o : BX(y; A) — E*(y; A)
with the same indices, and submersive sc®™ maps ev® : B¥(y; A) — M with the
following simplified properties.

The smooth maps u : C — M which equal u(Re™") = y(t) for sufficiently
large R > 1 and represent the class A form a dense subset of B (y; A) that is
contained in the interior. On this subset, the section is o(u) = dyu — Yy (u),
and the evaluation is ev*(u) = u(0). The intersection of o ~'(0) with this dense
subset is contained in the moduli space M*(y; A) from (12). The full moduli
space M*(y; A) is obtained by enlarging the dense subset to include maps with
sup;cst dm (u(Reii’), y(t)) — 0 as R — oo. However, only maps with spe-
cific exponential decay of this quantity and related derivatives are contained in
B(y: A).

While such a construction should follow from the same construction principles
as in [12], there is presently no writeup beyond [37], which proves the Fredholm
property in a model case. Alternatively, one could abstractly obtain this construc-
tion from restricting the setup in Assumption 4.3 to subsets consisting of maps of
the form v(z) = (z, u(z)). Thus there would be no harm in using this property as
intuitive guide for following our work with the abstract setup.

Given one or another polyfold description of the naturally identified moduli spaces
(12) or (15) and corresponding evaluation maps, we will now extend the identifications
(11) or (14) to a fiber product construction of polyfolds which will contain these
PSS/SSP moduli spaces. For p € Crit(f), y € P(H), and A € H>(M) we define the
topological spaces

B (p,y; A) == {(z,v) € M(p, M) x Bép(v: A) | (0, ev(z)) = v (v)}
= {(z.v) € M(p. M) x Bir (1 A)| (0. ev(D) = ev' ()},

B~ (v, p; A) = {(v, 1) € Bspr(y: A) x M(M, p) | (0,ev(r)) =& (v)}
={w e BSFT()/ A) x M(M, p) |0, ev(z)) =ev™ (0)}. (16)

We will use [10] to equip these spaces with natural polyfold structures and show that
the pullbacks of the sections ospr by the projections to Bg}r(y; A) yield sc-Fredholm
sections whose zero sets are compactifications of the PSS/SSP moduli spaces. This
will require a shift in levels which is of technical nature as each m-level B,, C B
contains the dense “smooth level” By, C B,,, which itself contains the moduli space

M = 671(0) C Bso; see Remark A.3.

Lemma4.5 Forany p € Crit(f), y € P(H), and A € Hy(M) there exist open subsets
BT (p,y; A) C~B+(p, v; A1 and B~ (y, p; A) C B~ (y, p; A)1 which contain the
smooth levels BE(...; A)so of the fiber products (16) and inherit natural polyfold
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structures. The smooth level of their interior is*

3OB+(P, V; Ao M(p, M) (0)xev Xev+ 808;155([:()/; Ao,
B, p; Ao = 30Bgpr (7 Aoo ev- X (0)xev M(M, p).

Moreover, pullback of the sc-Fredholm sections of strong polyfold bundles osﬂ;T :
Bar(vi A) — Esip(ys A) under the projection BX(...; A) — Bar(...; A)
induces sc-Fredholm sections of strong polyfold bundles aa; pid) BT (y, p; A) —

ET(y, p; A) resp. O’(;’y;A) B (p,y; A) = E(p,v; A) of index I (p, y; A) resp.
I(y, p; A) given in (9). Their zero sets contain’ the moduli spaces from Sect. 4.1,

_ - -1
o oa (0 = M(p, M) (0)xevXert Oger (0) D M(p,y; A),

_ _ - -1 -
Spay (O = oger (0) & X(0)xev M(M, p) D My, p; A).

Finally, each zero set cr(f,A)*l (0) is compact, and given any p € Crit(f), y € P(H),
and C € R, there are only finitely many A € Hy(M) with w(A) < C and nonempty
zero set a(i A)_l(O) # (.

vy

Proof We will follow [10, Cor.7.3] to construct the PSS polyfold, bundle, and sc-
Fredholm section 0;},‘ 4 in detail, and note that the construction of the SSP section

Oj;p;A is analogous.

Consider an ep-groupoid representative X = (X, X) of the polyfold B;FT(;/; A)
with source and target maps denoted s, : X — X together with a strong bundle
P : W — X over the M-polyfold X and a structure map u : XgxpW — X
such that the pair (P, w) is a strong bundle over A" representing the polyfold bundle
ES+FT (y; A) —> B;FT (y; A).Inaddition, consider a sc-Fredholm section functor Sspr :
X — W of (P, ) that represents O'S+FT. The ep-groupoid X and the bundle (P, w) are
tame, since they represent a tame polyfold and a tame bundle, respectively. Moreover,
Ssrr is a tame sc-Fredholm section in the sense of [ 10, Def.5.4] by Assumption 4.3(iii).

We view the Morse moduli space M(p, M) as the object space of an ep-groupoid
with morphism space another copy of M(p, M) and with unit map a diffeomorphism;
that is, the only morphisms are the identity morphisms. The unique rank-0 bundle
over M(p, M) is a strong bundle in the ep-groupoid sense, and the zero section of
this bundle is a tame sc-Fredholm section functor. Next, note that B* (p,y; A C
{(Lg) e M(p, M) x |X||evt(v) € {0} x M} C M(p, M) x |X®| is represented
within the open subset X®¥ := (&v1)~!(C x M) C X and the corresponding full
ep-subgroupoid X'®¥ of X, which represent the open subset B;# (y,A) C |X]|, and
by Assumption 4.3(iii) the restricted evaluation ev’™ : X® — C x M is sc® and
Sspr-compatibly submersive (see Definition A.4). Denote by evg : M(p, M) —

4 Here we can only make statements about the smooth level because we do not know what points of other
levels are included in the fiber products. This is sufficient for applications as the zero set of any sc-Fredholm
section (and its admissible perturbations) is contained in the smooth level.

5 As in Remark 4.4, this identification is stated for intuition and will ultimately not be used in our proofs.
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CxM, z +— (0, ev(z)) the product of the trivial map to 0 € C and the Morse evaluation
map. We claim that the product map evg xev™ : M(p, M)xX® — (CxM)x(CxM)
is Sspr-compatibly transverse to the diagonal A C (C x M) x (C x M). Indeed, given
(z,v) € (evp x evhH)~I(A)let L C Tf X be a sc-complement of the kernel of the
linearization of ev* atsome v € X v that satisfies the conditions for Ssr7-compatible
submersivity in Definition A.4 w.r.t. a coordinate change ¢ on a chart of X®. Then
the subspace {0} x L C Tf/V(p, M) x T,’erV satisfies the conditions for Sspr-
compatible transversality of evg x evt with A at (z, v) w.r.t. the product change of
coordinates id x ¥ in a product chart on the Cartesian product M(p, M) x X°.
(See [10, Lem.7.1, 7.2] for a discussion of the sc-Fredholm property on Cartesian
products.)

Next, note that M (p, X)evy X eyt X 5o represents the smooth level of the fiber product
topological space Bt (p,y; A). So[10, Cor.7.3] yields an open neighbourhood X’ C
M(p, M Jevo Xey+ X' containing the smooth level M(p, X)evp Xevt X o such that the
full subcategory X’ := (X', X') of M(p, M) x X% is a tame ep-groupoid and the
pullbacks of (P, u) and Sspy to X’ are a tame bundle and tame sc-Fredholm section.
Here we used the fact that the smooth level M(p, x)oo = M(p, x) of any finite
dimensional manifold is the manifold itself; see Remark A.3.

The tame ep-groupoid X" yields the claimed polyfold Bt (p, y; A) := |X’|, and
similarly the pullbacks of (P, w) and Sspr through the projection X’ — X define
the claimed bundle and sc-Fredholm section U(J;)’V;A) BT (p,y; A) — ET(p,y; A).
The identification of the interior dgB (p, ¥; A)co follows from the degeneracy index
formula d v/ (x1, xp) = dﬂ(p,M) (x1) + dx(x2) in [10, Cor.7.3] and the interior of the

Morse trajectory spaces dp M (p, M) = M(p, M) from Theorem 3.3.

The index formulain[10, Cor.7.3] yields ind(a(; y.A)) = ind(osfr)+| p|—dim(C x
M) = I(p,y; A) since dim M(p, M) = |p| and ind(ospr) = CZ(y) + 2¢1(A) +
TdimM +2.

Finally, the zero set o(; v A)_l (0) is the fiber product of the zero sets as claimed, as

these are contained in the smooth level, and the restriction to ev ! ({0} x M) already
restricts considerations to the domain X¢ from which the fiber product polyfold

. -1 . . .
is constructed. Moreover, o(; Vi A) (0) is compact as in [10, Cor.7.3], since both

ﬂ( p, M) and USJ%T_I (0) are compact and both evg and ev ' are continuous. The final
statement then follows from Assumption 4.3(ii). O

4.3 Construction of the morphisms

To construct the A-linear maps PSS and SSP in Theorem 1.3 with relatively compact
notation we index all moduli spaces from Sect. 4.1 by the two sets

I = {a=(p,y: A) | p € Crit(f), y € P(H), A € Hy(M)}.
I = {a=(y.p; A)| p € Crit(f),y € P(H), A € Hy(M)}.
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To simplify notation we then denote Z := Z~ U Z* and drop the superscripts from
the polyfolds B(«) = B*(«). Since Lemma 4.5 provides each moduli space M (o)
for « € Z with a compactification and polyfold description M(«) C o, 1(0), we
can apply [22, Theorems 18.2,18.3,18.8] to obtain admissible regularizations of the
moduli spaces, and counts of the O-dimensional perturbed solution spaces [22, §15.4],
in the following sense. Here we denote by QT := Q N[0, co) the groupoid with only
identity morphisms.

Corollary 4.6 (i) Foreverya € I, choice of neighbourhood of the zero sets o, 10)
Ve C B(a), and choice of sc-Fredholm section functor S, : Xy — W, repre-
senting oyly),, there exists a pair (Ny, Uy) controlling compactness in the sense
of Definition A.5 with |S(;1(0)| C |Uy| C Vy.

For a € T with O’O[_I(O) = @) we can choose Uy = 1.

(ii) For every collection (N, Uy)qeT Of pairs controlling compactness, there exists a
collection k = (Ka Wy — Q+)aEI of (Ng, Uy)-admissible sc™-multisections
in the sense of [22, Definitions 13.4,15.5] that are in general position relative to
(Se)aez in the sense that each pair (Sy, ko) is in general position as per [22,
Def.15.6].

Here admissibility in particular implies ko o Syl x,~14, = 0 and thus kg 0 S¢ =0
when o ' (0) = 0.

(iii) Every collection k of admissible sc™-multisections in general position from (ii)
induces a collection of compact, tame, branched ep™-groupoids (Ka oSy Xy =
Q"')a o7 In particular, each perturbed zero set

Zw) = [{x € Xo |ka(Sa(x)) > 0} C Usloo C |Xaloo = Bl@)oo

is compact, contained in the smooth level, and carries the structure of a weighted
branched orbifold of dimension I () as in (9). Moreover; the inclusion in Uy | and
general position of k implies that for I (a) < 0 or oy 1(0) = @ the perturbed zero
set Z%(a) = 0 is empty.

(iv) For o € T with Fredholm index I(a) = 0 and ko : Wy — QV as in (ii) the
perturbed zero set is contained in the interior Z*(a) C dgB(a)oo and yields a
well defined count

#Z50) = ) 06,(0) ka(Su(x) € Q.

|x|eZ¥(a)

Here o4, (x) € {£1} is determined by the orientation of oy as in [22, Thm.6.3].
If Uy| N 0B(a) = @ then this count is independent of the choice of admissible
scT-multisection k.

(v) For every a € T with Fredholm index I(a) = 1 and ko : Wy — Q7 as in (ii)
the boundary of the perturbed zero set is given by its intersection with the first
boundary stratum of the polyfold,

0Z%a) = Z%a) N 91B(a)oso-
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With orientations o, |, 3()(X) € {Z1}induced by the boundary restriction oy |5(«)
this implies

HIZE@) = D Ooylype () Ka(Sa(x)) = 0.
|x|€0Z& ()

Remark 4.7 (i) The statements in (iv) and (v) of Corollary 4.6 require orientations of

(ii)

the sections o, for o € 7. By the fiber product construction in Lemma 4.5 they do
indeed inherit orientations from the orientations of the Morse trajectory spaces in
Remark 3.5, the orientations of US:tFT given in Assumption 4.3, and an orientation
convention for fiber products.

In practice, we will construct the perturbations x in Corollary 4.6 by pullback of
perturbations A = (A; A)yeP,AcH, (M) Of the oriented SFT-sections UsiFT- Thus it
suffices to specify the orientations of the regularized zero sets, which is implicit
in their identification with transverse fiber products of oriented spaces over the
oriented manifold M,

Z5p, i A) = M(p, M) evyXev+t Z2(y; A),
Z5(y, p; A) = ZE(y; A) e Xevy M(M, p).

Orientations of the boundary restrictions in (v) are then induced by the orientations
of Z%(«), via oriented isomorphisms of the tangent spaces Rv(z) x T,0Z%(«a) =
T,Z%(), where v(z) € T,Z%(«) is an exterior normal vector at z € 0 Z%(«x).
Note that the counts in part (iv) of this Corollary may well depend on the choice of
the multi-valued perturbations «x,—unless the ambient polyfold has no boundary,
dB(a) = . Indeed, although the moduli space M («) is expected to have dimen-
sion 0, it may not be cut out transversely from the ambient polyfold B(«), and
moreover it may not be compact. Assumption 4.3 provides an inclusion in a com-
pact set M(«) C o, 1(0), and the perturbation theory for sc-Fredholm sections
of strong bundles then associates to o L) a perturbed zero set Z(«) C B(w)
with weight function ky 0 Sy @ Z€(a) — QN (0, 00). This process generally adds
points on the boundary o, L)~ M(a) C B(ar)~80B(er), which may or may not
persist under variations of the perturbation .

The following construction of morphisms will depend on the choices of pertur-

bations and orientation convention (see the previous remark) as well as geometric
data fixed in Sect. 4.1, and possibly the choice of polyfold construction in Assump-
tion 4.3 and ep-groupoid representation in Remark A.2. The algebraic properties in
Theorem 1.3 will be achieved in Sect. 6—for any given choice of geometric data—by
particular choices of ep-groupoids and perturbations k*, and an overall sign adjust-
ment.

Definition 4.8 Given collections k= = (Kai)aez'i of admissible sc*-multisections in
general position as in Corollary 4.6, we define the maps PSS+ : CM — CF and
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S§SP-:CF — CMto be the A-linear extension of

PSS (p) =y #Z (p.yi A) - T*P(y),
Y,A
I(p,y:A)=0
SSP—(y) =) #Z° (y.p: A)-T*Y(p).

P.A
I(y.p;A)=0

Lemma 4.9 The maps PSS+ : CM — CF and SSP.~ : CF — CM in Defini-
tion 4.8 are well defined, i.e. the coefficients take values in the Novikov field A defined
in Sect. 2.

Proof To prove that PSS+ is well defined we need to check finiteness of the following
set for any p € Crit(f), y € P(H),and c € R,

[r € w(Hy(M)) N (=00, ] ‘ S #2 (pyiA) £ 0}.

A€Hy (M)

w(A)=r
Here w : H>(M) — R is given by pairing with the symplectic form on M, and recall
from Lemma 4.5 that there are only finitely many homology classes A € Hy(M) with
w(A) <cando, 1(0) # ¢. On the other hand, the perturbations k™ were chosen in
Corollary 4.6 (iii),(iv) so that #ze" (...; A) = 0 whenever 0, 1(0) = ¢. Thus there
are in fact only finitely many A € H>(M) with w(A) < ¢ and #Z£+(. .. A) #0,
which proves the required finiteness. The proof for SS§ P~ is analogous. O

5 The chain homotopy maps

In this section we construct A-linear mapst : CM — CM andh : CM — CM onthe
Morse complex over the Novikov field A given in (5), which appear in Theorem 1.3.
For that purpose we again fix a choice of geometric data as in Sect. 4.1 to construct
moduli spaces in Sects. 5.1 and 5.2. We equip these with polyfold descriptions in
Sect. 5.3, and define the maps ¢, i for admissible regular choices of perturbations in
Definitions 5.8. To obtain the algebraic properties claimed in Theorem 1.3 (i)—(iii) we
will then construct particular “coherent” choices of perturbations in Sect. 6.

5.1 Moduli spaces for the isomorphism ¢

We will construct ¢ : CM — CM from the following moduli spaces for critical
points p_, p4 € Crit(f), A € Hy(M), using the almost complex structure J and the
unstable/stable manifolds (see Sect. 3.3) of the Morse—Smale pair (f, g) chosen in
Sect. 4.1,

M (p_.pr: A= {u:CP' > M |u([1:0]) e W, , u([0:1]) € W, , 8,u =0, [u] = A}.
(17)
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Note that a cylinder acts on this moduli space by reparametrization with biholomor-
phisms of CP! that fix the two points [1 : 0], [0 : 1]. However, we do not quotient out
this symmetry so describe these moduli spaces as the zero set of a Fredholm section
over a Sobolev closure of the set of smooth maps u : CP' — M in the homology
class [u] = A satisfying the point constraints u([1 : 0]) € Wpi andu([0:1]) e W}
This determines the Fredholm index as

I'(p—, s A) = 2¢1(A) + |p—| — Ip4l. (18)

Asin Sect. 4.2 we will obtain a compactification and polyfold description of this moduli
space by identifying it with a fiber product of Morse trajectory spaces and a space of
pseudoholomorphic curves, in this case the space of parametrized J-holomorphic
spheres with evaluation maps for zg € CP!,

evy t M(A) == {u:CP' - M|3u=0,[ul=A} - M, uw> u(z).

With this we can describe the moduli space (17) as fiber product with the half-infinite
Morse trajectory spaces from Sect. 3.3, using zg :=[1:0]and z;, :=1[0:1]

M (p_, P A) = M(p_, M) oy Xevzar M(A) evza Xey M(M, py). (19)

Note here that we are not working with a Gromov—Witten moduli space, as we do
not quotient by Aut(CP'). This is due to the chain homotopy in Theorem 1.3 (iii),
which will result from identifying a compactification of M(A) with a boundary of
the neck-stretching moduli space Mgspr(A) in (26) that appears in Symplectic Field
Theory [8]. For that purpose we identify a solution u : CP! — M with the map to its
graph i : CP' — CP' x M, z — (2, u(z)) as in [26, §8.1]. This yields is a bijection
(and homeomorphism in appropriate topologies)

Mow(ICP'1+ A) := {v: CP' — CP' x M | 370 =0, [v] = [CP'] + A}

A) =
M(A) Aut(CPh

between the Cauchy—Riemann solution space for M and the Gromov-Witten moduli
space for CP! x M in class [CP' ]+ A for the split almost complex structure Ti=ixJ
on CP' x M. To transfer the evaluation maps at Zo =11: O] and z, = [0 : 1] we
keep track of these as (unique) marked points mapping to {zo } x M and thus replace
(19) by a fiber product over CP! x M,

MM, py).

(20)
This uses the evaluation maps from a Gromov—Witten moduli space with two marked
points,

M (p_, pr: A) = M(p_, M) {Z(J)r}xevxeer Macw(A) ey~ X{za}xev

vl 1
evi  Mgw(A) = Mow ((CPT] + A)/Aut((C]P’l +y — CP' x M,

120 %0

] — v(z). 21
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where Aut((CIP’l, Zq s Z(J{ ) denotes the set of biholomorphisms ¢ : CP! — CP! which
fix ¢(z3) = zg. The polyfold setup in [23, Theorems 1.7,1.10,1.11] for Gromov—
Witten moduli spaces now provides a strong polyfold bundle Egw(A) — Bgw(A),
and oriented sc-Fredholm section ogw : Bgw(A) — Egw (A) that cuts out a compact-
ification Mgw (A) = G_\;»’ (0) of Mgw (A). Here a dense subset of the base polyfold
Bgw (A) consists of Aut(CP!, Zq 5 zar )-orbits of smooth maps v : CP' - CP!' x M
in the homology class [v] = [CP'] + A, which implicitly carries the two marked
points z(jf € CP'. Nodal curves in Mgw(A) then explicitly come with the data
of two marked points on their domain. On the dense subset the section is given by
ogw ([v]) = [(v, 5;1})]. The setup in [23, Theorem 1.8] moreover provides sc* eval-
uation maps ev® : Bgw(A) — CP' x M at the marked points, which on the dense
subset are given by evE([v]) = v(za—L).

Thus we have given each factor in the fiber product (20) a compactification® that is
either a manifold with corners given by the compactified Morse trajectory spaces in
Theorem 3.3, or the compact zero set MGW (A) = 65\}\, (0) of a sc-Fredholm section.
In Sect. 5.3 we will combine the polyfold description of the Gromov-compactification
of (21) with an abstract construction of fiber products in polyfold theory [10] to
obtain compactifications and polyfold descriptions of the moduli spaces. Then the
construction of t : CM — CM proceeds as in Sect. 4.3. The algebraic properties of ¢
in Theorem 1.3 (i) and (ii) will follow from the boundary stratifications of the Morse
trajectory spaces M(p—, M)and M(M, p+) since the ambient polyfold Bgw (A) has
no boundary. However, this requires specific “coherent” choices of perturbations in
Sect. 6.

Remark 5.1 Gromov-compactifications of the moduli spaces M'(p—, p4; A) will
result from the energy identity [26, Lemma 2.2.1] for solutions of 9 ju = 0,

E() = %fcmmz = f@pl wo = w(ul). (22)

This fixes the energy of solutions on each solution space M(A), and Gromov com-
pactness asserts that {u : CP' > M |9;u =0, E(u) < C}is compact up to bubbling
for any C > 0.

Another consequence of (22) is that for w (A) < 0 we have no solutions M(A) = ¢
except for A = 0 € Hp(M) when the solution space is the space of constant maps

M@O) = {u=x|xeM} ~ M,

which is compact and cut out transversely.

Translated to graphs in CP! x M with two marked points, this means Mgw (0) ~
CP' x CP! x M by adding two marked points in the domain. That is, (7, z", x) €
CP' x CP' x M corresponds to the (equivalence class of) graphs iy : z > (z, x) with
two marked points z~, zT € CP!. For z= # z this tuple can be reparametrized to
the fixed marked points z,, , z(‘)" € CP' and then represents an Aut(CP', 20 zg )-orbit.

6 The term ’compactification’ applied to spaces of pseudoholomorphic curves is always to be understood
as Gromov-compactification, as Mgw (A) C Mgw (A) may not be dense.



11 Page 26 of 73 B. Filippenko, K. Wehrheim

For z~ = z* the tuple (z~, zT, x) corresponds to a stable map in Mgw (0), given by
the graph i, with a node at z~ = z™ attached to a constant sphere with two distinct
marked points. This will be stated in polyfold terms in Assumption 5.5 (ii).

5.2 Moduli spaces for the chain homotopy 7

To construct the moduli spaces from which we will obtain 2 : CM — CM, we
again use the almost complex structure J and Morse—Smale pair (f, g) chosen in
Sect. 4.1. In addition, we fixed an anti-holomorphic vector-field-valued 1-form Yy €
Q%1(C, I'(TM)) that arises from the fixed Hamiltonian function H : S! x M — R
and a choice of smooth cutoff function g : [0, o0) — [0, 1] with B|p,1] =0, B >0,
and Blie,oc) = 1. Gluing this 1-form to another copy of Yz over C~ with neck
length R > 0 in exponential coordinates yields the anti-holomorphic vector-field-
valued 1-form YE e Q%!(CP!, I'(TM)) that vanishes near [1 : 0],[0 : 1] and on
CP'\{[1:01,[0: 11} = {[1 : re?1] (r, 6) € (0, c0) x S'} is given by

YR :re],x) := 1Br()(JX (0, x)r~"dr + Xy (6, x) db).

Here Br(r) := ,B(reg)ﬂ(r_leg) is a smooth cutoff function g : (0, co) — [0, 1]
that is identical to 1 on [el_g, eg_l] and identical to 0 on (0, e‘g) U (eg, 00). Now
perturbing the Cauchy—Riemann operator on CP! by ¥ 5 yields the following moduli
spaces for critical points p_, p4 € Crit(f), A € Hy(M), and R € [0, 00),

Mg(p—. pyi A) = {u:CP' - M |u((1:0) e W, , u([0: 1) € W, 9u =Yg @), [u]l = A},

and we will construct 4 from their union

Mp—.pr: A= | | Mr(p_.pi; A). (23)
Re[0,00)
Remark 5.2 Each vector-field-valued 1-form Y HR = —(X H§)0,1 is in the notation

of [26, §8.1] induced from the 1-form with values in smooth functions Hé2 €
QL(CP!, ¢ (M)) given by H/f(reia) = Br(r)H (O, -)d6. It is constructed so that
it has the following properties:

(i) For R = 0 we have Yg = 0 so that the moduli space My(p—, p4; A) =
M (p_, p+; A) is the same moduli space (17) from which ¢ will be constructed.

(ii) The restriction of any solution u € Mg(p—, p+; A) to the middle portion {[1 :

z] € CP! |el_§ < z| < e§—l} = (1—%, %—1) x §! satisfies the Floer equation

dsv 4+ Jdv = J Xy (1, v) after reparametrization v(s, ) := u([1 : e*T']).

(iii) The shifts u_(z) := u([1 : e~ 2z]) and u4 (2) == u([e>z : 1]) = u([1 : e2z])
of any solution u € Mgz (p_, py; A), restricted to {z € C||z| < e®~1}, satisfy
9 uy = Yy (uy) as in the PSS/SSP moduli spaces in Sect. 4.1.
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The moduli space M(p_, p4; A) is the zero set of a Fredholm section over a
Banach manifold [0, co0) x B, where B is the same Sobolev closure as in Sect. 5.1
of the set of smooth maps u : CP! — M in the homology class [u] = A satisfying
the point constraints u([1 : 0]) € Wp__ and u([0 : 1]) € W;;. Restricted to {0} x B
this is the Fredholm section that cuts out M‘(p_, p+; A) in (17) with JO = 7J. This
determines the Fredholm index as

I(p—, p+; A) == I'(p—, p+; A)+1 = 2¢c1(A) + |p—| — |p4+| + L. (24)

Towards a compactification and polyfold description of these moduli spaces we
again—as in Sects. 4.2, 5.1, [26, §8.1]—identify a solution u : CP' — M with
the map to its graph. Moreover, we again fix marked points z(‘)" =[1:0],z5 =[0:1]
to implement evaluation maps to express the conditions u(zf) € W;Ei. This yields
a homeomorphism (in appropriate topologies) between the moduli space (23) and
the fiber product over CP! x M with the half-infinite Morse trajectory spaces from
Sect. 3.3,
M(p—, p+;A) = M(p—, M) 4y ey Xevt MSFT(A) ey~ MM, py).
(25)
Compared with (20) this replaces the Gromov—Witten moduli space in (21) with a
family of moduli spaces for almost complex structures T 5 on CP' x M arising from
YR for R € [0, 00),

X{za}xev

Mspr(A)
L] {v:CP! — CP' x M | 3750 = 0. [v] = [CP'] + A]

Re[0,00)

/Aut((C]P’l,za, )

(26)

Here, again, we implicitly include the two marked points zgt € CP'. Then, for R —
o0, the degeneration of the PDE 9 RV = 0 is the “neck stretching”” considered more
generally in Symplectic Field Theory [8]. The evaluation maps from (21) directly
generalize to

evt : Msrr(A) — CP'x M,  [v] — v(zg). 27)

Now, asin Sect. 5.1, each factor in the fiber product (25) has natural compactifications—
either the compactified Morse trajectory spaces from Theorem 3.3, or the compact zero
set Mspr(A) = O'S_F}F (0) of a sc-Fredholm section that we will introduce in Sect. 5.3.
Combined with the construction of fiber products in polyfold theory [10] this will
yield compactifications and polyfold descriptions of the moduli spaces (23), and the
construction of 4 : CM — CM then again proceeds as in Sect. 4.3. Establishing the

7 Strictly speaking, R € [0, 2] parametrizes a family of Gromov—Witten moduli spaces for varying almost
complex structure. At R = 2, the manifold S 1« M with its stable Hamiltonian structure (see Sect. 4.2)
embeds as a stable hypersurface in CP! x M. Then R € [2, 00) parametrizes the SFT neck-stretching.
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algebraic properties in Theorem 1.3 relating 4 with ¢ and SSP o PSS will moreover
require an in-depth discussion of the boundary stratification of the polyfold domains
Bsrr(A) of these sections, and “coherent” choices of perturbations in Sect. 6.

Remark 5.3 Gromov-compactifications of the moduli spaces M(p—, p4; A) will
result from energy estimates [26, Remark 8.1.7] for solutions of 9 ju = YII; (u),

1
ERu) = 5/ ldu+ X pr(u)| < / wo+||Ryrll = o(ul)+2]H@, ).
CP! B CP! b
(28)
Here R dvolgpr = dHf + %Hée A HE = B H dr A d6 has uniformly bounded
Hofer norm

o
IRgrll :/ (max Ryr —max Ryr) = / / BRI H@©, )| do dr
B Ccp! B B 0 N
=2|H@, ),

where [|[H (0, -)|| := maxyem H (6, x)—minyey H (0, x)and Br € C*((0, 00), [0, 1])
is constant except

R .
ﬁR|[67§ gk e B(re?) with Lpr >0

1-R

e 2
and [ [dBel ar = o) p) = 1.

1 R .
BRI 5 5 T O le?)y with Lpr <0

[SEY

and/§_l |4 Br|dr = —(B(1) — B(e)) = 1.

This proves (28), and thus establishes energy bounds on the perturbed pseudo-
holomorphic maps in each of our moduli spaces, where we fix [u] = A. Now
SFT-compactness [2] asserts that for any C > O the set of solutions of bounded
energy |_|Re[0’oo){u : CP!' - M|3u = Y};(u), Er(u) < C} is compact up to
breaking and bubbling. This compactness will be stated rigorously in polyfold terms
in Assumption 5.5 (ii).

5.3 Construction of the morphisms

In this section we construct the A-linear maps¢: CM — CM andh : CM — CM
analogously to Sect. 4.3 by first obtaining compactifications and polyfold descriptions
for the moduli spaces in Sects. 5.1 and 5.2 as in Sect. 4.2. This construction is motivated
by the fiber product descriptions of the moduli spaces in (20), (25), which couple Morse
trajectory spaces from Sect. 3.3 with moduli spaces of pseudoholomorphic curves in
CP' x M via evaluation maps (21), (27). Polyfold descriptions of these moduli spaces
and their properties are stated in the following Assumption 5.5 for reference, with
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proofs in [23] resp. outlined in [12]. A summary of the types of curves in each polyfold
and subsets thereof is displayed in Table 2. Here we formulate the evaluation map in
the context of neck stretching, as explained in the following remark, using a splitting
of the sphere as topological space with smooth structures on the complement of the
equator

CPL, = CtuUa C- = Cctus'ucC,

using the topologies and smooth structures on CT = C* 1 §! = {7 € CF | |z| < 1}
from Remark 4.2.

Remark 5.4 (i) Recall from Sect. 5.1 that we denote by Bgw (A) a Gromov—Witten
polyfold of curves in class [CP'] + A € Hy(CP' x M) with 2 marked points. These
are determined by A € Hp(M) as we model graphs of maps CP! — M, but should
not be confused with a polyfold of curves in M. In particular, Bgw (A) never contains
constant maps and hence is well defined for A = 0. The properties of the Gromov—
Witten moduli spaces for w(A) < 0 are spelled out abstractly in Assumption 5.5(ii)
below; for the geometric meaning see Remark 5.1.

(i1) The SFT polyfolds Bspr(A) will similarly describe curves in class [CP'] + A in
a neck stretching family of targets ((CIP’}e X M) Rel0,00] as in [2, §3.4], given by

CPy = DU ERUD- / with Eg— | "R RIxS! PR < o0,
~R [0, 00) x S L (—00,0] x S! : R = o0.

Here we identify the boundaries of the closed unit disks D1+ = {z € C||z] < 1} with
the boundary components of the necks Eg via

(£R, e*?); R < o0

) € JER,
(04, e*?); R =00 .

0D+ € et? ~R

where we denote 04 := 0 € [0,00) and 0_ := 0 € (—00,0] so that 0E5 =
{04} x ST L{0_} x S!. To describe convergence and evaluation maps we also embed

each CP, c CPl, =C*TuS'uC by
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Table2 Summary of the polyfolds and their subsets introduced in this section

Notation Description Definition

Bense (A) Elements are equivalence classes under Remark 5.6 (i)
reparameterization by Aut((CIP’] 120 » 28' ) of
smooth maps CP! — CP! x M in class
[CP'1+ A

Bgow (A) A polyfold with dense subset Bgense (A), which Assumption 5.5
contains the Gromov-compactification Mgw (A)
of the moduli space in (21)

Bsrr(A) A polyfold with dense subset [0, 00) X Bgenge (4), Assumption 5.5
which contains the SFT-compactification
Mspr(A) of the moduli space in (26)

Bg\}v_/SFr(A) the open subsets of B(:}EW/SFT(A) containing the Assumption 5.5 (iv)
curves whose evaluation at two marked point
lands in C* x M, see Remark 5.4

B (p—, p+; A) Elements are triples of two half-infinite broken Before Lemma 5.7
Morse trajectories from p_ and to p4 and a curve
in Bgw (A) whose evaluations at the marked
points agrees with the endpoints of the Morse
trajectories

B (p—, p+; A) Elements are triples of two half-infinite broken Before Lemma 5.7
Morse trajectories from p_ and to p4 and a curve
in Bspr(A) whose evaluations at the marked
points agrees with the endpoints of the Morse

trajectories

B'(p—, p+; A) Open subset of B'(p_, p+; A)| containing Lemma 5.7
M (p—, p+; A) over which J(‘pﬁer;A) is
sc-Fredholm

B(p—, p+; A) Open subset of B(p—, p+; A)| containing Lemma 5.7

M(p—, p+; A) over which O(p_.pr:A) 1S
sc-Fredholm

D+|_|[—R,0)><Sl/ ~ D+|_|[0,oo)><S'/ _. ct
~R ~oo : ’

D_|_|(0,R]><Sl/ ~ D_u(—oo,O]xS'/ _. -
~R NOO_. ’

Er D {0} xS' = s' cCPL.

For R = 0 this is to be understood as (C]P’(l) = D+uD*/3D+~3D7 with D4~9dD4 = C*,

and for all R < oo we view the resulting homeomorphism CPl, = (CIPCLO ~ CP!
as identifying the standard marked points CP! > zar =[1:0=0¢€C"and
CP! > 7z = [0 : 1] = 0 € C. When these embeddings are done via linear
shifts [—R, —1) = [0, R — 1) and (1, R] = (1 — R, 0] extended by a smooth family



A polyfold proof of the Arnold conjecture Page310f73 11

of diffeomorphisms [—1,0) = [R — 1, oo) and (0, 1] £ (—o0,1 — R], then the
pullback of the almost complex structures J TR on (CIP’1 x M converges for R — oo

in C° (((CIP’(LO\S ) X M) to the almost complex structures JH , JH onCtx M u

loc
C~ x M = CPL, x M c CPL, x M, which are used in the construction of the
PSS and SSP moduli spaces in Sect. 4.2. Moreover, this allows us to extend the

evaluation maps from (27) to continuous maps vt Mspr(4) - (C]P’(l)o X M on
the compactified SFT moduli space. At R = oo this involves pseudoholomorphic
buildingsin(C“‘ xM URxS'xM... U RxS' xM u C x M, and for
any marked point with evaluation into a cylinder R x §' x M we project the result to
St'x M c (C]P’éo X M by forgetting the R-component.

Finally, this formulation with CPL, = C*+ Ug C~ will allow us to compare the
evaluation at R = oo with the product of the evaluations ev® : ﬂ;tFT(y; A) —
C* x M constructed in Remark 4.2. While this will be stated rigorously only in
Assumption 6.3 (iii)(c), note here that we should expect three top boundary strata of
an ambient polyfold at R = oo, corresponding to the distribution of marked points
on the curves in Ct x M 1 C~ x M. For the fiber product construction, only the
boundary components with one marked point in each factor are relevant—in fact only
those with marked points near Zo =Z0eCtandz, =0 € C . Thus we will
work with the open subset (&vT) 1 (Ct x M) N (&v")~'(C~ x M) where the two
evaluations for any R € [0, oo] are constrained to take values in the open sets given

by C* c CPL,.

Assumption 5.5 There is a collection of oriented sc-Fredholm sections of strong poly-
fold bundles ogw : Bow(A4) — Egw(A) and osgr : Bspr(A) — Espr(A) indexed
by A € Hy(M), sc® maps vt Bow(A) — CP! x M, and continuous maps
vt Bser(A) — (C]P’}X, X M with the properties:

(i) The sections have Fredholm indices ind(ogw) = 2¢1(A) +dim M +4 on Bgw (A)
resp. ind(ospr) = 2¢1(A) + d1m M + 5 on BSFT(A)

(i) Each zero set Mgw(A) = O’GW (0) and Mspr(A) = oSFT(O) is compact, and
given any C € R there are only finitely many A € H»(M) with nonempty zero
set Mgw(A) # ¢ resp. Mspr(A) # @. Moreover, for w(A) < 0 we have
Mow(A) = 0 except for A = 0 € Hy(M) when oGgw|Bgy ) M O is in general
position with zero set Mgw (0) ~ CP! x CP! x M identified by

CV XCV

Bew(0) D 66\,1\,(0) = Mgw(0) {(z*,x,zf,x) |z7,zJr eCP!,x e M}.

(iii) The polyfolds Bgw (A) have no boundary, dBgw(A) = @. For Bspr(A) there
is a natural inclusion [0, 00) x Bgw(A) C Bspr(A) that covers the interior
d0Bsrr(A) = (0, 00) x Bgw(A) and identifies the boundary d3spr(A) to consist
of the disjoint sets {0} x Bgw (A) and limg_, oo{ R} x Bgw (A) of Bspr(A). More-
over, this inclusion identifies the section ogw and evaluation maps &v* with the
restricted section oSFT |0y x Bgw (4) and evaluations vt {0} Bgw (A)- (A description
of therelevant R = oo parts of the boundary d Bspr (A) is given in Assumption 6.3.)
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(iv)

The sections ogw and ospr have tame sc-Fredholm representatives in the sense of
[10, Def.5.4]. The product of evaluation maps ev" x v~ : Bgw(A4) — CP! x
M x CP' x M is ogw-compatibly submersive in the sense of Definition A.4. On
the open subset

Bl (4) = @O (€T x Myn @) 7H(C x M) C Bsrr(A)
the evaluation maps vt Bspr(A) — (C]P’éo X M restrict to a ospr-compatibly
submersive map

evh xev™ @ Bgr(A) — CTx M xC™ x M. (29)

On this domain intersected with {0} x Bgw (A) C 91Bspr(A), this map coincides
with the Gromov—Witten evaluations v x &V~ viewed as maps

evih xev™ 1 Bl (A) = CTx M xC™ x M,
where we identify C* LU C~ = CP'~\.S! and restrict to the domain

{0} x By (4) := ({0} x Baw(A)) N Bipr (4) = {0} x (@H ™ HCT x M)yn @)~ 1(C™ x M)).

Remark 5.6 (i) While not needed for our proof, we state the following properties for

(ii)

intuition:

The Aut(CP!, 79 zar)—orbits of smooth maps v : CP! — CP' x M which repre-
sent the class [(CIF’I] + A form a dense subset Bgense (A) C Bgw (A). On this subset,
the section is given by ogw ([v]) = [(v, 5J~v)]. Moreover, [0, 00) X Bgense (A) C
Bsrr(A) is a dense subset that intersects the boundary 9Bsgr(A) exactly in
{0} x Byense (A), and on which the section is given by ospr(R, [v]) = [(v, 5;5 v)].

On these dense subsets, &= ([v]) resp. &= (R, [v]) is the evaluation as in (27).
The intersection of the zero sets with the dense subsets aavl\, (0) N Bense (A) =
Mgw (A) and Us_FlT (0)N[0, 00) X Bgense (A) = Mspr(A) are naturally identified
with the Gromov—Witten moduli space (21) and SFT moduli space in (26).

The polyfold description ogw : Bogw(A) — Egw (A) is developed for the homol-
ogy classes [(CIPI] + A e Hz((C}P>1 x M) in [23], with the submersion property
shown in [10, Ex.5.1]. The properties for w(A) < 0 in Assumption 5.5 (ii) follow
from the fact that nonconstant pseudoholomorphic curves have positive symplec-
tic area, and linear Cauchy—Riemann operators on trivial bundles (arising from
linearization at constant maps) are surjective. The construction of ogpr starts by
recognizing that the family of almost complex manifolds in Remark 5.4 (ii) for
R < ocoisequivalent to a degeneration of the almost complex structure on CP! x M
along the equator ' c CP'. This can be described by an R-dependent bundle
and section over [0, 00) X Bgw (A). The construction for R — oo then proceeds
analogous to [12, §3], with buildings consisting of a top and bottom floor curve in
C* x M and intermediate floors given by curves in R x S! x M. Thus Assump-
tion 5.5 (iii) and the compatibility with Bgw (A) in (iv) hold by construction. The
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polyfold and bundle structure are again obtained as in [12] by extending the con-
structions in [23] with local models for punctures and neck-stretching from [14,
§3], using the implanting method in [13, §3,§5]. The remaining properties are
proven as outlined in Remark 4.4 (ii).

Given any such polyfold descriptions of the moduli spaces of pseudoholomorphic
curves, we now extend the fiber product descriptions of the moduli spaces

MO (P pi A) = Mo, M) (4o X et MOW/SFT (Aev- X (1o ey MM )

in Sects. 5.1 and 5.2 to obtain ambient polyfolds which contain compactifications of
the moduli spaces. Towards this we define for each p_, p4 € Crit(f)and A € Hy(M)
the topological spaces

B(p-. p+: A)
= {(r_,v.7,) € M(p_, M) x Bow(A) x M(M, p) | (5. ev(rL)) = v (v) |
= {@ v 1) e M(p-. M) x By (4) x MM, pi) |0, ev(z,) = ev¥ () |,
B(p_, pi; A)
= {(z_.w.1,) e M(p_. M) x Bser(A) x M(M, py) | (z5.ev(zy)) =& (w)}
= [@_, w.1,) € M(p—, M) x B (A) x MM, py) | (0,ev(zy)) = evi@] ,

where the last equality stems from the identification at the end of Remark 5.4 (ii).
Then the abstract fiber product constructions in [10] will be used as in Lemma 4.5 to
obtain the following polyfold description for compactifications of the moduli spaces
in Sects. 5.1 and 5.2.

Lemma 5.7 Given any p—, py+ € Crit(f) and A € Hy(M), there exist open sub-
sets B'(p—, p+: A) C B'(p—, p+: A)1 and B(p—, py+: A) C B(p—, p+: A)1 which
contain the smooth levels BY ( P—, P+; A)oo Of the fiber products and inherit natural
polyfold structures with smooth level of the interior

BB (p— P13 Moo = M(p—. M) () ey Xevt By (D)oo ev= X (1o ey MM, po),
BB(p—, P13 Moo = M(p—. M) () cey Xevt 808t (Ao ev- X () ey MM ).

0

and a scale-smooth inclusion

¢ : B(p_.py:A) — B(p_.ps:A), (_,v.t,) — (z_.0,v,7,).

Moreover, pullback of the sections and bundles ogw/srr : Bow/srr(A) —
Eaw/skr(A) under the projection B(p_, py; A) — Bgw/srr(A) induces sc-
Fredholm sections of strong polyfold bundles o(,_ p,.A) : B(p—, pi; A) —
E(p—, p+; A) of index 1(p—, p+; A) as in (24) and U(Lp,,p+;A) BY(p—, py; A) —
E'p—, p+; A) of index I'(p—, p+; A) = I(p—, p+; A) — 1 as in (18). Further,
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these are related via the inclusion ¢, by natural orientation preserving identification
L ~ *
G(p_,p+;A) = d)t O(p_.py:4)-
The zero sets of these sc-Fredholm sections contain
Sects. 5.1 and 5.2,

8 the moduli spaces from

o piny (O = M(poy M) 5oy Xt 0w O) &= X (= ey MM, p1) D M(p-, pa; A),
M(p M) arxev evt USFT(O) ev™ }xev M(M P+) > M ([7 s P+ A)

0(1)~P+:A)_1(0)

Finally, each zero set o((p) A —1(0) is compact, and given any p+ € Crit(f) and

C € R, there are onlyﬁnztely many A € Hy(M) with w(A) < C and nonempty zero
set o “10)£0

(p—-p+:4) :
Proof The inclusion ¢, is sc® since the map Bgw(A) < Bspr(A), v — (0, v) is
a sc® inclusion by Assumption 5.5 (iii). Apart from further relations involving ¢,,
the proof is directly analogous to the fiber product construction in Lemma 4.5, using
Assumption 5.5—in particular the s¢® and ogpr-compatibly submersive evaluation
map (29) on the open subset BSFT (A) C Bspr(A). This yields polyfold structures on

open sets B'(p_, p4: A) C B'(p—. p4: A)1 and B(p_ p+,A>cz’S’<p pi Aras

well as the pullback sc-Fredholm sections o(_, p,;4) = prSFTagFT and o( popid) =

prwoGw under the projections prayw spr BY(p_, p1; A) — Bow/srr(A).
Here we have prgw = prggr © @i, so the bundle £'(p—, p1; A) = priwEow(A)
and section 0'(‘1YL piid) = prgwocw are naturally identified with the pullback
bundle ¢ E(p—, p1; A) = prwEsrT(A)lj0yxBaw(4) and section ¢fo(,_ p,..a) =
PTEWGSFTHO}X Bgw(A) using Assumption 5.5 (iii). Finally, the index of the induced
section o(,_ p,:4), and similarly of (T(L[L piiA) is computed by [10, Cor.7.3] as
ind(0(p_,p,:4)) = ind(ospr) + dim M(p_, M) + dim M(M, py) — 2dim(CP' x M)

2c1(A) +dimM 45+ [p_| +dim M — |py| —4 —2dim M

= 2c1(A) + |p—| — Ipl +1 = I(p—. pss A).

O

Given this compactification and polyfold description of the moduli spaces M («) C
o, 1(0) and M‘(a) C ao‘l_l (0) for all tuples in the indexing set

T = {a=(p—, p+: A) | p—. p+ € Crit(f), A € Hy(M)},

we can again apply [22, Theorems 18.2,18.3,18.8] to the sc-Fredholm sections oy
and o/, and obtain Corollary 4.6 verbatim for these collections of moduli spaces. In
Sect. 6 we will moreover make use of the fact that o, = ¢, o arises from restriction
of oy, so admissible perturbations of o, pull back to admissible perturbations of o,,.
For now, we choose perturbations independently and thus as in Definition 4.8 obtain
perturbation-dependent, and not yet algebraically related, A-linear maps.

8 As in Remark 4.4, this identification is stated for intuition and will ultimately not be used in our proofs.
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Definition 5.8 Given admissible sc™-multisections k = (K(p_, py:A)) paeCrit(f),AcHa

in g:e.neral position to (o(p_,p,:4)) and k' = (K(‘p e A))pieCrit(f),AeHz in general

pos1t10n to (a( b piiA) ) as in Corollary 4.6, we define the maps i, : CM — CM and
:CM — CM to be the A-linear extensions of

he(p-)i= Y #Z5(p—, ps; A) - TN py),
P+, A
I(p—.p41A)=0
Wlp)i= Y #Z5(p.pyi A)-T"D(py).

P+,A
1'(p—.p4:A)=0

The proof that the coefficients of these maps lie in the Novikov field A is verbatim
the same as Lemma 4.9, based on the compactness properties in Lemma 5.7.

Remark 5.9 The determination in Corollary 4.6 of #Z5(p_, p.; A), #Z5 (p_, p1: A)
€ Qthat s used in Definition 5.8 requires an orientation of the sections o(,__p..4) and
o(‘ oA As in Remark 4.7 this is determined via the fiber product construction in
Lemma 5.7 from the orientations of the Morse trajectory spaces in Remark 3.5 (i) and
the orientations of ogw, ospr given in Assumption 5.5. In practice, we will construct
the perturbations «, k' by pullback of perturbations A = (Aa)acH,m) of the SFT-
sections ospr and their restriction A' to {0} x Bgw(A) C 0Bspr(A). So we can
specify the orientations of the regularized zero sets by expressing them as transverse
fiber products of oriented spaces over CP' x M or C* x M,

Z5(po pii A) = M(po, M) oy Xegt 22 (A) g Xy MM, py).
= M(p-. M) oy Xevt (Z2(A) N By (A)) - Xy MM, py),

Z5(p-, p+i A) = M(p—. M) ot Xevt (Z2(A) N Bggr (A)) evfxeva MM, ps).

eV,

using vt BGW(A) — CP! x M resp. ev™ : Bg{,;/SFT(A) — C* x M and the Morse

evaluations eV0 M(..) > CP!' x M, T (zo,ev(r)) resp. evo M(.) —>
Ctx M,z (0,ev(1)).

6 Algebraic relations via coherent perturbations

In this section we prove parts (i)—(iii) of Theorem 1.3, that is the algebraic properties
which relate the maps PSS : CM — CF,SSP : CF — CM constructed in Sect. 4,
andthemapst: CM — CM,h : CM — CM constructed in Sect. 5. More precisely,
we will make so-called “coherent” choices of perturbations in Sect. 6.2, Sect. 6.3, and
Sect. 6.4 which guarantee that (i) ¢ is a chain map, (ii) ¢ is a A-module isomorphism,
and (iii) A is a chain homotopy between the composition SSP o PSS and ¢.
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6.1 Coherent polyfold descriptions of moduli spaces

The general approach to obtaining not just counts as discussed in Sect. 4.2 but well-
defined algebraic structures from moduli spaces of pseudoholomorphic curves is to
replace them by compact manifolds with boundary and corners (or generalizations
thereof which still carry ‘relative virtual fundamental classes’) in such a manner that
their boundary strata are given by Cartesian products of each other. In the context of
polyfold theory, this requires a description of the compactified moduli spaces M («) =
oy 1 (0) as zero sets of a “coherent collection” of sc-Fredholm sections (cra : B(a) —
& (O‘))aez of strong polyfold bundles. Here “coherence” indicates a well organized
identification of the boundaries d5(«) with unions of Cartesian products of other
polyfolds in the collection Z, which is compatible with the bundles and sections.
As a first example, the moduli spaces M‘(p_, p4+; A) in Sect. 5.1 which yield the
mapt: CM — CM are given polyfold descriptions a(p A s BY(p—, p+; A) —
*E(p—, p+; A) in Lemma 5.7 that arise as fiber products with polyfolds Bgw (A)
without boundary. Thus their coherence properties stated below follow from properties
of the fiber product in [10] and the boundary stratification of the Morse trajectory
spaces in Theorem 3.3. We state this result to illustrate the notion of coherence. The
full technical statement —on the level of ep-groupoids and including compatibility
with bundles and sections—can be found in the second bullet point of Lemma 6.4.

Lemma 6.1 Forany p+ € Crit(f) and A € Hy(M) the smooth level of the first bound-
ary stratum of the fiber product B'(p—, p+; A) in Lemma 5.7 is naturally identified
with

B (p-.pri o = | M) x80B'(q. pr: Ao U | 308 (p-. g1 Ao x M(g. ps).
q€eCrit(f) q€eCrit(f)

Proof By the fiber product construction [10, Cor.7.3] of B*(p—, p4+; A) inLemma 5.7,
the degeneracy index satisfies dpe(p_,po: /(T 7,0, ™) =
dM(p M)(r )+dBGW(A)(_)+dM(M oy )(‘L' ), andthesmoothlevellsB‘(p D+ A)OO

= M- M) (= )erXev- Bl (Moo et ¥ (cixes MM, py). The polyfold
Bgw (A) and its open subset B w (A) are boundaryless by Assumption 5.5 (iii), which
means dp;y (A) ;ngw ) = 0 Hence \Ehave dBi(p_.p.:a) (T 7,0, ) = 1ifand
onlyif T~ € 9\ M(p_, M) and t+ € dgpM (M, p.) or the other way around. These
two cases are disjoint but analogous, so it remains to show that the first case consists
of points in the union qucm(f) M(p—,q) x dB'(q, p+; A)o. For that purpose
recall the identification & M(p—, M) = U, ccriry M(P—» ) x M(g, M) in The-
orem 3.3, which is compatible with the evaluation ev : M(p_, q) x M(q, M) —
M, (11, 7o) — ev(12) by construction, and thus

NM(P—s M) () ev Xev- By (Do evt X4 xey 00M(M, py)

U Mo @) x M@ M) e X B (oo vt X gt ey MO, pi)
qeCrit(f)
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= U M) x (M@ M) (e Xer BEw Aoo evs X e MM, 1))

q€Crit(f)
= J M@_.9) xdBq ps: Ao
q€Crit(f)
Here we also used the identification of the interior smooth level in Lemma 5.7. O

Next, the polyfold description in Lemma 5.7 for the moduli spaces M(p_, p+; A)
in Sect. 5.2, which yield the map 7 : CM — CM, are obtained as fiber products of
the Morse trajectory spaces with polyfold descriptions ospr : Bspr(A) — Espr(A)
of SFT moduli spaces given in [15]. We will state as assumption only those parts of
their coherence properties that are relevant to our argument in Sect. 6.4 for the chain
homotopy t—SSPo PSS = doh+hod. Here the contributions todoh +hod will arise
from boundary strata of the Morse trajectory spaces, whereas t — SSP o PSS arises
from the following identification of the boundary of the polyfold B;}T_ (A), which is
given as open subset of Bspr(A) in Assumption 5.5 (iv). ?

Remark 6.2 1In the following we will use the word “face” loosely for Cartesian products
of polyfolds such as F = B;Fr(y; Ay) x Bgpr(y; A-) and their immersions into
the boundary of another polyfold such as 88;15; (A). We also refer to the image of
the immersion F <> 86;}{ (A) as a face of B;Ff (A). Compared with the formal
definition of faces in [22, Definitions 2.21,11.1,16.13], ours are disjoint unions of
faces. They describe the interaction between the moduli spaces - roughly speaking:

(i) The R — oo boundary parts of Bspr(A) in which the marked points separate are
covered by immersions of products of the PSS and SSP polyfolds. This structure
arises from generalizing the SFT compactification in [2] to buildings of not nec-
essarily holomorphic maps. The parts of the boundary described here are given by
buildings whose top and bottom floors are given by maps to C* x M and inter-
mediate floors given by maps to R x S! x M. The immersions then arise from
stacking a building in BngT(V? A ) (with top floor in C x M) on top of a building
in Bgpp(y; A-) (with bottom floor in C™ x M). Here a lack of injectivity arises
at buildings with middle floors in R x S! x M from ambiguity in splitting such
building into two parts.

(i) The immersions restrict to a disjoint cover of the top boundary stratum of Bg_ﬁT_ (A)
by embeddings. This restriction is given by the buildings with a single floor—
guaranteeing injectivity by avoiding the ambiguous middle floors in R x S! x M.

(iii)) The immersions are compatible—simply by construction—with the evaluation
maps, bundles, and sections for the boundary components at R = oo, and the
boundary Bgw (A) at R = 0.

Assumption 6.3 The collection of oriented sc-Fredholm sections of strong polyfold
bundles asﬂ;T : BSiFT(y; A) — é’SiFT(y; A), ogw : Bow(A) — Egw(A), osFr :

9 See also the end of Remark 5.4 (ii) for the motivation of B;F; (A) as open subset that intersects the
boundary strata limg_, 5o {R} X Bgw(A) C dBspr(A) in the buildings which have one marked point in
each of the components mapping to C* x M, and no marked points mapping to intermediate cylinders
Rx S x M.
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Bspr(A) — ESFT(A) for y € P(H) and A € Hy(M) together w1th the evaluation
maps &= : BEr(y; A) — CF x M, & : Bow(A) — CP' x M,&vF : Bspr(A) —
(CIE”l x M, and their sc™ restrictions on open subsets, ev™ SﬁT (y; A) > Ctx M,

B Gw,ser(A) = C*x M from Assumptions 4.3, 5.5 has the following coherence
propertles

(1) Foreach y € P(H) and A_, Ay € Hy(M) such that A_ + A4y = A, there is a
sc® immersion

lya, - B;FT(VQ Ay) x BS_FT()/; A_) — 03Bsrr(A)

whoserestrictionto the interior BOBSFT()/ AL)x 0 Bgpp(v; AL) C BSF$ (y; Ap)x

Bgpr CriA)isan embedding into the boundary of the open subset B pr(A) C
Bsrr(A). They map into the limit set limg—oo{R} X Bgw(A) from Assump—
tion 5.5(iii), so cover most of the boundary10

0Bsrr(A) D {0)xBow(A) U | Lyas(Bdr(v: Ap) x Bgpp(y: AL)).

y€P(H)
A_+Ayp=A

(i) The union of the images l),,Ai( SET (y A}) X BSFT (y; A )) C BBSFT (A) for

all admissible choices of ¢, A is the intersection of BSFT (A) withlimpg_, oo{ R} X
Bow(A) C 9Bspr(A), i.e.

BT (A) = {0} x By (A) U 3%=°Bi(4),
where  3R=°BL.1(A) U Bac(Bir (s Ap) x By (v AD)).

y€P(H)
A_+AL=A

When restricted to the interiors, this yields a disjoint cover of the top boundary
stratum,

01 By (A) = {0} x By (A) U L] LA (30Br (v: A)doBagrp(y: AL)).

yEP(H)A_+AL=A

(iii) The immersions /, 4, are compatible with the evaluation maps, bundles, and
sections—as required for the construction [15] of coherent perturbations for SFT,
that is:

(a) Theboundary restriction of the evaluation maps v {0} Baw (A)CaBsgr(A) COin-

cides with the Gromov—Witten evaluation maps &t Bow(A) — (CIF’1
~ + —
the same holds for their sc® restriction ev’™ x ev™| ()= By (A)CaBLT (4) =

evt xev: B&,;(A) — Ct x M x C~ x M with values in C* ¢ CP. =

10" The extra boundary faces of Bspr(A) arise from both marked points mapping to the same component in
the R — oo neck stretching limit. These will not be relevant to our construction of coherent perturbations.
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C*t u S' U C~. The restriction of &vF : Bspr(A) — (CIP’})O to each boundary
faceim/, 4, C 0Bspr(A) takes values in C* c (CIP%O, and its pullback under
[y, 4, coincides with vt BsiFT(y; Ay) — C* x M. Moreover, pullback of
the restricted sc® evaluations ev’ x ev™ : B;Pl; (A) > CtxMxC xM
under [, 4, coincides with ev™ x ev™ : Bg}g(y; AL) X Bs_}gg(y; A_) —
CtrxMxC xM.

(b) The restriction of ospt to F = {0} x Bgw(A) C dBsrr(A) equals to ogw via
a natural identification Espr(A)| £ = Egw(A). This identification reverses the
orientation of sections.

(c) The restriction of ospr to each face F = B;FT()/; AL) X Bger(y; AZ) C
0Bsrr(A) is related by pullback to GSJ;T X Ogpr = OSFT © [y, A, Via a natural
identification I , Espr(A) = Err (v Ay) x Egpp(ys A-). This identifica-
tion preserves the orientation of sections.

6.2 Coherent perturbations for chain map identity

In this section we prove Theorem 1.3 (i), that is we construct ¢, in Definition 5.8 as
a chain map on the Morse complex (5) with differential d : CM — CM given by
(4). This requires the following construction of the perturbations «* that is coherent
in the sense that it is compatible with the boundary identifications of the polyfolds
B'(p—, p+; A) in Lemma 6.1. Here we will indicate smooth levels by adding oo as
superscript—denoting e.g. X;’OO A a8 the smooth level of an ep-groupoid represent-

. —s P+
ing B'(p—, p+; A)oo-

Lemma 6.4 Thereis a choice of (k.,)aeT in Corollary 4.6 forT = {(p—, p+; A) | p+ €
Crit(f), A € Hy(M)} that is coherent w.r.t. the identifications in Lemma 6.1 in the
following sense.

e Each k., : W, — QT for a € T is an admissible sc*-multisection of a strong
bundle Py : W, — X/, thatis in general position to a sc-Fredholm section functor
Sy @ Xy — W, which represents o]y, on an open neighbourhood V., C B'(x)
of the zero set o L.

o The identification of top boundary strata in Lemma 6.1 holds for the representing
ep-groupoids,

1,00 ~ 1,00 1,00
NX,”, A = quCrit(f) M(p-.q) x doX, 7 4 U qucm(f) X", 4 x M(q. p1).

and the oriented section functors S, : X, — W, are compatible with
these identifications in the sense that the restriction of S;, poia 0 any face

00 — 1,00 1,00 0o —
Fo-qora = M qo) x &= C Oy resp Forg, oy =
SOX;’,OO x M(g4, py) C 31X;’f°p+,A for another o' € T coincides on the
smooth level with the pullback S, |F= = prizS,,|F= of S,, via the projection
prr: F = Fo_goe = Mp-,q-) x X, — X, resp. prp : F =
Fo' (qr.ps) = 00, X M(qy, py) = &,
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T AtT L (O O, (0.9} o0 (&9
e Each restriction /ca|Pt;1(]_-oo) to a face F* = f(p_,q_),a’ resp. F° = }-oz’,(q+,p+)
is given by pullback K&|P071 (Foy = K, © priy via the identification PO[—1 (F®) =

preWelg,xt00 and natural map prz = przWe, — W,

For any such choice of k' = (k})qez, the resulting map v : CM — CM in Defi-
nition 5.8 satisfies . od +d oy« = 0. By setting 1{p) = (—1)|p|L£z (p) we then
obtain a chain map v : C,M — C.M, thatistod =dou

Proof We will first assume the claimed coherence and discuss the algebraic conse-
quences up to signs, then construct the coherent data, and finally use this construction
to compute the orientations.

Construction of chain map: Assuming ¢« od +d o (,« = 0, recall that d decreases
the degree on the Morse complex (6) by 1. Thus ¢ : C.M — C.M defined as above
satisfies for any ¢ € Crit(f)

(tod—don(qg) = (=DM u@d(g)) —d(=D(g) = (D" (L od +d o) (q) = 0.

By A-linearity this proves tod =d ot on C. M.

Proof of identity: To prove ¢« o d +d o ,« = 0 note that both ¢, and d are A-linear,
so the claimed identity is equivalent to the collection of identities (¢t od)( p— )+ (do
te)( p—) = 0 for all generators p_ € Crit(f). That is we wish to verify

D #M(po.q) - #Z5 (q, pri A) - T (py)
q.p+,A
14q,p+:4)=0
lgl=Ip—1-1

+ 3 #Z5 (o qi A) Mg, pe) - TOD (pa) =0,

q.p+,A
1'(p—.,q:A)=0
[P I=lgl-1

Here, by the index formula (18), both sides can be written as sums over p € Crit(f)
and A € H>(M) for which I'(p_, p+; A) = 1. Then it suffices to prove for any such
paira = (p—, p+; A) with I'(@) = 1

Y #M(po.q) - #Z(q, pri A)
lgl=Ip-1-1

+ Y RZE(p—.qi A)#M(q.ps) = 0. (30)
lg|=Ip+|+1

This identity will follow by applying Corollary 4.6 (v) to the sc™-multisection iy :
W, — Q7. Its perturbed zero set is a weighted branched 1-dimensional orbifold
7 (a), whose boundary is given by the intersection with the smooth level'! of the
top boundary stratum 9; B'(«) NV, = |01 X, |. By coherence (and with orientations
discussed below) this boundary is

' Here and in the following we suppress indications of the smooth level, as the perturbed zero sets
automatically lie in the smooth level; see Remark A.3.
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3Z (@) = Z5 () N |91 XL |
= U Z@nMp-. ) x 10X, ,..41)

geCrit(f)
U z=@n(laoX)_ .4l x Mg, p1))
geCrit(f)
= U Me-.9)x (254G pr: H 010X, 40)
q€Crit(f)
v U (25— q: AN 100X, 4l) x Mg, pp),
q€Crit(f)
= U M(p-.q) x Z5(q, p+: A)
lg|=Ip-1—1
v U z50p-. g A) x Mg, py).
lg|=|p+]+1

Here the first summand of the third identification on the level of object spaces,

{1, %) € M(p—.q) x 30Xq,p:a C 1 X | ka(S; (7], 2)) > 0}
={(z].x) € M(p—.@) X 00Xq.p.: [ Kg.py:a(Sq .4 () > O}
= M(p—,q) x {x € 00Xy p.:a| kg py:a(S, ,  A(x)) >0},

follows if we assume coherence of sections and multisections on the faces 7(,_ 4),' C
91X,

Ko (S, (1T 20) = Ka(S) A G)) = Kgpyia(Sh , ().

The second summand is identified similarly by assuming coherence on the faces
Fo(g-.ps) C Ny

Finally, the fourth identification in 9ZX (o) for o = ( p—, p+; A) with I'(a) = 1
follows from index and regularity considerations as follows. Corollary 4.6 (iii),(iv)
guarantees that the perturbed solution spaces ZX («’) are nonempty only for Fredholm
index I'(e’) > 0, and for I*(a’) = 0 are contained in the interior, ZX («’) C dpB(a)).
The Morse trajectory spaces M (p—_, g) resp. M(q, p+) are nonempty only for |p_|—
lg] = 1resp. |q|—|p+| > 1, so the perturbed solution spaces in the Cartesian products
have Fredholm index (18)

I'(q, p+; A) =2c1(A) + lg| — Ip+l = T'(p—, p+; A + gl — lp-I = 1+ |q| — |p-] <0,

and analogously I‘(p_,q; A) = I'(p—, p+; A) + |p+] — |g| < 0. By the above
regularity of the perturbed solution spaces this implies that the unions on the left hand
side of the fourth identification are over |g| = |p_| — 1 resp. |g| = | p+|+ 1 as in (30),
and for these critical points we have the inclusions ZX (g, p4: A) C 80B(q, p4+; A)
and Z&' (p—,q; A) C 3oB(p—, q; A) that verify the equality.
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This finishes the identification of the boundary 9ZX (a). Now Corollary 4.6 (v)
asserts that the sum of weights over this boundary is zero—when counted with signs
that are induced by the orientation of VAS (v). So in order to prove the identity (30)
we need to compare the boundary orientation of dZ () with the orientations on the
faces. We will compute the relevant signs in (31) below, after first making coherent
choices of representatives S;, : X, — W\, of the oriented sections o, and constructing
coherent sct-multisections , : W, — Q% fora € Z.

Coherent ep-groupoids, sections, and perturbations: Recall that the fiber prod-
uct construction in Lemma 5.7 defines each bundle W, = priW3V for a =
(p—, p+; A) € Zasthepullback of astrong bundle W3* — X% under a projection of
ep-groupoids—with abbreviated notation evaE = {z(j)c} xev: M(...) > CP' x M—

Py pysa s X pia = M(p-, M) evg Xev XY & et MM, py)— XV,

Moreover, the section S}, = SV o pr,, is induced by the section SGV : X§V — W3V
which cuts out the Gromov—Witten moduli space Maw(A) = |(Sf“"’)_l (0)]. Then the
identification of the top boundary stratum proceeds exactly as the Proof of Lemma 6.1.
Coherence of the bundles and sections follows from coherence of the projections
pry @ X, — XV in the sense that pr,|F~ = pr, o prg for all smooth levels of
faces 7 D F°° C 91X, and their projections prr : F = F(,_ 4 )a —> &, 1€SP.
prr: F = Fug_.p, — X, For example, the face F = F(,_ 4.).(q_.p,:4) With
F>* C 81X;7’p+;A identifies

(1T (e 01, 7)) € Fo gy piony = Mo, o) x X0,
= M(p-.q-) x M(G=, M) o Xag- X3 gt X e MM, ps)

with
([Tl to), ] 7)) € M(p—, M)y o Xay= X gpe X oy MM ps) © 1%,
and prpﬂp%A(([r],L),[g],ur) = [v] € AFV coincides with (Pry_py:a ©

pre)(lel (v—, [l 7)) = pryp,.a(t—, [v], 73) = [v] € X§V. Now any choice
of sc™-multisections (ASY : WSV — Q) gcp,(m) induces a coherent collection of
sct-multisections (k, := AGY o prk : prEWSY — @+)aeI by composition with
the natural maps prj; : praWSV — WSV covering pr, : X, — X7V. Indeed,

prylF = prys o pr g lifts to pry | p—1 o) = pr}, o prz so that
o
Kol prigrey = A3 0P lpot ) = AQ" 0PIy o pry = Ky 0PIy

Construction of admissible Gromov—Witten perturbations: It remains to choose
the scT-multisections ()»S"W : Wgw - QM AeHy(m) so that the induced coherent
collection k' = (kiw o pr";)aEI is admissible and in general position. To do so,
for each A € Hp(M) we apply Theorem A.9 to the sc-Fredholm section functor
SGV 0 ASY — WSV, the sc™® submersion &V~ x ev @ ASY — CP! x M x
CP' x M, and the collection of Cartesian products of stable and unstable manifolds
{zg} x W, x {zar} X W;{+ for all pairs of critical points p_, p4 € Crit(f).
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After fixing a pair controlling compactness (N4, U4) for each A € Hy(M), Theo-
rem A.9 yields (N4, Uy)-admissible sct-multisections 15V : WV — Q7 in general
position to Sg’w for each A € H>(M). Moreover, they can be chosen such that restric-
tion of evaluations to the perturbed zero setev™ xev ' : 245" = CP'x M xCP!'x M
is transverse to all of the products of unstable and stable submanifolds {z,} x
W, x {zg } x W;,L+ for p_, p+ € Crit(f). Note that these embedded submanifolds
cover the images of all evaluation maps on the compactified Morse trajectory spaces
evy X evg' s M(p—, M) x M(M, py) — CP' x M x CP' x M , by construction of the
evaluations ev : M(...) — M in (8), which determine eV§ (n) = (zg ,ev(t)). Thus
we obtain transverse fiber products M(p_, M) evg X ZkgwaJr Xevd MM, py)
for every o € Z. This translates into the pullbacks «/, = A" o pr}; being in general
position to the pullback sections S}, for o € Z. Moreover, «/, is admissible with respect
to a pullback of (N4, Uy), so the perturbed zero set is a compact weighted branched
orbifold for each @ = (p_, p+; A),

113

(S84 + 1)1 0)

L _ GW N
"= Z5(a) = M(p_, M) eva><WZ*A ot Xevt MM, py).

This finishes the construction of coherent perturbations.

Computation of orientations: To prove the identity (30) it remains to compute
the effect of the orientations in Remark 5.9 on the algebraic identity in Corol-
lary 4.6 (v) that arises from the boundary dZ% (a) of the 1-dimensional weighted
branched orbifolds arising from regularization of the moduli spaces with index
I'(ax) = I'(p—, p+; A) = 1. Here 7*3" is of even dimension and has no bound-
ary since the Gromov—Witten polyfolds in Assumption 5.5 have no boundary, and
the index of ogw is even. For the Morse trajectory spaces, the boundary strata are
determined in Theorem 3.3, with relevant orientations computed in Remark 3.5. Thus
for I'(a) = |p—| — | p+| 4+ 2¢1(A) = 1 we can compute orientations — at the level of
well defined finite dimensional tangent spaces at a solution; in whose neighbourhood
the evaluation maps are guaranteed to be scale-smooth—

t — GW —
IZE (@) = HM(p—, M) evXey Z'8 eyXey oMM, ps)
o - ow -
U (=DImMP=M 30 M(p_, M) eyXey Z' ey xey MM, py)
GW
=( || Mp-.q) x M(g, M)) evxey Z eyxey M(M, py)

qeCritf
(] (—l)melmHlM(P—, M) ey Xey Z)LS‘W ev Xev ( I_l MM, 61) X M(Qs P+))
qeCritf
= L M- x2@. ps: A U || 25—, 4 4) x M(q, p+). 3D
geCrit f geCrit f

Here the signs in the first equality arise from the ambient Cartesian product 9 (M_ x
Z x My) C (=1)ImM-XDAL 7 x My; in the second equality we used
Remark 3.5; and in the final equality we use |p_|+|p+|+1 = I'(¢) = 1 = 0 modulo
2. This finishes the computation of the oriented boundaries dZX () for I'(a) = 1
that proves (30) and thus yields a chain map. O
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6.3 Admissible perturbations for isomorphism property

In this section we prove Theorem 1.3 (ii), i.e. construct ¢t = (=1)* : CeM —
C«M in Definition 5.8 and Lemma 6.4 as a A-module isomorphism on the chain
complex CM = CM, over the Novikov field as in (5). This requires a construction
of the perturbations k* that preserves the properties of the zero sets in Remark 5.1 for
nonpositive symplectic area w(A) < 0.

Lemma 6.5 The coherent collection of sc™-multisections k' in Lemma 6.4 can be
chosen such that #Z< (p—, p+; A) = 0 for A € Hy(M)~{0} with w(A) < 0, or for
A =0and p_ # pi, and #Z5 (p, p; 0) # 0. As a consequence, | = (=D*te -
CMp — CMy is a A-module isomorphism.

Proof The sc™-multisections «‘ in Lemma 6.4 are obtained from choices of sc™-
multisections (k4 : WA — QM ac H> (M) that are in general position to sc-Fredholm
sections S4 XSW — W}, which cut out the Gromov—Witten moduli space
Mgw(A) = |S;1(O)|, and such that moreover the evaluation maps restricted to the
perturbed zero sets, eV X vt Z(ky) — CP! x M x CP' x M are transverse to the
unstable and stable manifolds {z, } x W, x {zar} X W;Zr CCP' x M x CP! x M
for any pair of critical points p_, p4 € Crit(f).

We will first consider « = (p—, p4+; A) € I for nontrivial homology classes
A € Hy(M)~{0} with nonpositive symplectic areaw (A) < 0.Recall from Remark 5.1
that these moduli spaces are empty |S/:l (0)] = ¢, soas in Corollary 4.6 we can choose
empty neighbourhoods ¥ = |U4| C |X'§"| to control compactness. Then the perturbed
zero set Z(ka) = |[{x € Xalka(Sa(x)) > 0} C |U4| is forced to be empty, i.e.
k4 oS4 = 0. This is an allowed choice in Lemma 6.4 since evaluation maps from
an empty set are trivially transverse to any submanifold. This choice induces for any
p+ € Crit(f) in @ = (p_, p+; A) an induced sc*-multisection k), = k4 o prf :
W, — Q. Its perturbed zero set is

Z% (@) = [{(z7,x, 7)€ Xo | k4 (S, (x 7, x,zh) > 0} =0

since the coherence in Lemma 6.4 implies k/ 0S;, = kaopryoS;, = kg0Spopr, = 0,0r
more concretely Kép_)p%A)(S%_’er;A(z_, x,7)) = ka(Sa(x)) = 0. Thus we have
ensured vanishing counts #Z% (p_, p4; A) = 0for A € Hy(M)~{0} with w(A) <0
whenever I'(p_, p+; A) = 0.

Next we consider A = 0 € H>(M) and recall from Remark 5.1 and Assump-
tion 5.5 (ii) that the Gromov—Witten moduli space Mew () = Z(ko) is already
compact and transversely cut out. Thus the trivial sc™-multisection o : Wy — Q7
given by ko(0x) = 1 on zero vectors 0, € (Wp) and kol o), ~f0,} = 0, is an admis-
sible sc*-multisection in general position to Sp : X" — Wj. Recall moreover that
the evaluation maps on the unperturbed zero set are

eV xevh: Z(kg) ~ CP' x CP' x M — CP' x M x CP' x M, @, z5, 0 (7, x 27, x).

In the CP'-factors this is submersive so transverse to the fixed points (zq zg ) €
CP' x CP'. In the M-factors this is the diagonal map, which is transverse to the
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unstable and stable manifolds W " x W;r+ C M x M for any pair p_, p4 € Crit(f)
by the Morse—Smale condition on the metric on M chosen in Sect. 3. Thus the trivial
multisection kg is in fact an allowed choice in Lemma 6.4. Now with this choice, the
tuples (p—, p+; 0) € Z for which we need to compute

#Z (p—. p+:0)
=# |{z". wl. ) € M(p—. M) x Z(ko) x M(M, py) | (z5. ev(z™)) = &v*([w]) }|
=# |{(z7. 1) e M(p—. M) x M(M, py) |ev(z") =ev(zh }|

are those with 0 = I'(p—, p+;0) = 2¢1(0) + |p—| — |p+|, i.e. |p—| = | p+]|. These
are the fiber products identified in Remark 3.5 (ii) as either empty or a one point set,

@; pP— # D+

M(va M)ey XevM(M’ p+) = _ +
(" =p-, " =py); p-=p+.

Thus we have counts #Z% (p_, p,;0) = 0 for p_ # p, and #Z% (p, p; 0) # 0 for
each p e Crit(f).

Finally, we will use these computations of #Z%(p_, p4+; A) for w(A) < 0 to
prove that the resulting map ¢ := (=1)*y« : CMpA — CM,p is a A-module
isomorphism. For that purpose we choose an arbitrary total order of the critical
points Crit(f) = {p1,..., pe} and for i, j € {1, ..., £} denote the coefficients of
W(pj)) = S, A (p;) by A € A. We claim that the (¢ x €)-matrix with entries
AT =" A7) T" satisfies the conditions of Lemma 2.1. To check this recall that we
have by construction in Definition 5.8 and change of signs in Lemma 6.4

A= > (=02 #Z5 (pj, pis A).
AeHy(M),w(A)=r
IY(pj,pi;A)=0

For r < 0 we obtain A,/ = 0 since each coefficient #Z¥ (p;, p;; A) = 0 vanishes for
w(A) =r < 0.Forr =0andi # j we also have Ag = 0 since #Z~ (pj, pi:A) =0
also holds for w(A) = 0 and p; # p;. Finally, for r = 0 and i = j we use
#Z (p;, pi; A) = 0 for A # 0 with w(A) = 0 to compute A} = #Z< (p;, p;; 0) #
0. This confirms that Lemma 2.1 applies, and thus ¢ = (X;;)1<;, j<¢ is invertible. This
finishes the proof. O

6.4 Coherent perturbations for chain homotopy

In this section we prove Theorem 1.3 (iii) by constructing &, : CM — CM in Defi-
nition 5.8 as a chain homotopy between SS P+ o PSS, - and ¢,« from Definitions 4.8,
5.8, with appropriate sign adjustments as in Lemma 6.4. This requires a coherent
construction of perturbations «, k*, k~, k* over the indexing sets
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I=T1":= {a=(p_.pr. A | p-.ps €Crit(f), A € Hy(M)},
It = {a=(p,y. A) | p € Crit(f), y € P(H), A € Hy(M)},
I = {a=(y,p, A) | p €Crit(f), y € P(H), A € Hy(M)}.

Here we will use notation from Lemma A.7 for Cartesian products of multisections.

Lemma6.6 There is a choice of k¥ = (k)aezt k™~ = (K)aez- k' =
(K!)aeT K = (Ka)yeT in Definitions 4.8, 5.8 that is coherent in the following sense.

(i)

(ii)

Eachk, W, — QF fora € TTtuZ~uZ'uZ is an admissible sc* -multisection
of a strong bundle P;" : W, — X, that is in general position to a sc-Fredholm
section functor Sy X" — W, which represents o, |y.- on an open neighbour-
hood V,; C B («) of the zero set U&"*l (0). The tuple k' = (k) qe1 Satisfies the
conclusions of Lemmas 6.4 and 6.5.

The smooth level of the first boundary stratum of Xp,_ ., A forevery (p—, py, A) €
T is naturally identified—on the level of object spaces, and compatible with
morphisms—with

00 ~ 1,00 +,00 —,00
N&” poa = DX, 4 U U X,y a4y X 00X, o4
yeP(H),A=A_+A4
v Moo xaxys,
geCrit(f)
v U 80X g4 x Mg, pa), (32)
geCrit(f)

and the oriented section functors S, are compatible with these identifications in
the sense that the restriction of S,,_ ., A to any of these faces F°° C 9 X;’f’p%A
is given by pullback S, p, a|F~ = przSr of another sc-Fredholm section of a
strong bundle over an ep-groupoid S : Xr — Wx given by Sy p, A, Sp_ 4,4,

L
Fe .
Spf,m,A’ esp

+ - + - + -
— X N X — X
SE=S) yar XSy pia X ya, XA pal Wy var Wy pal

via the projection pr  : F — X given by the natural maps

M(p—v Q) X a0‘)(‘11,17_*_,A - Xq,p+,As

L L
X, poa > Xpﬂm,A’
aOpr,q,A X M(CI» p+) - pr,q,A5
+ - + -
X — X .
X,y oa, X00X, poa = X a, XA pal
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(iii) Each restriction Ka|p—1(_7:o<>) fora = (p—, p+, A) € T to one of the faces F*° C
01Xy is given via the identification Py L(F®) = preWrlax, and natural map
priy i preWr — Wi by

Kg.py A OPIE for F=M(p-,q) X 90Xy,p, A,
Kp_,q,A © pr’;_- f()r F = aO-Xp,,q,A X M(Qa er)s
KalpriFe) = )0 s F = o
Kp_.pr.a °PIF Jor F=00X, ,, a
+ - _ + -
(Kp,,y,A+ -KV'M’A?) o pr for F = Z)()?([L’V’A+ X 80Xy'p+’A7.
For any such choice of k' = (k})aez, the resulting maps PSS+, SSPc—, e, hye

in Definitions 4.8, 5.8 satisfy (—DIPly(p) = (=DIPISSP—(PSS+(p)) +
he(d(p)) + d(he(p)), where d is the Morse differential from Sect. 3. By set-
ting ((p) = (=Dl (p) as in Lemma 6.4, PSS{p) := (=DIPIPSS +(p),
SSP = SSP.-, and h := h, we then obtain a chain homotopy between 1 and
SSP o PSS, thatist — SSPo PSS =doh+hod.

Proof This proof is similar to Lemma 6.4, with more complicated combinatorics of
the boundary faces due to the boundary of Bspr described in Assumption 6.3, and
presented in different order: We will first make the coherent constructions and then
deduce the algebraic consequences.

Coherent ep-groupoids and sections: To construct coherent representatives S, :
X, — W, fora € ZtUZ~ UZ'UT as claimed in (ii) recall that the fiber product con-
struction in Lemma 5.7 defines each bundle W, = pry W5 fora = (p—, py, A) € T
as the pullback of a strong bundle P4 : W™ — X3 under the natural projection of
ep-groupoids

prP—»P+,A : XP—,P%A:'/V(p—’ M) eVO*XeVJr X/S\FT ev™ ><eva ./V(M, p+) — XZFT'

Here evg M) > CEx M, 7 > (0,ev(r)) arise from Morse evaluation (8).
The ep-groupoid X5 C X A" is a full subcategory—determined by the open subset
q;;:; (A) = @& (CrxM)N @)1 (C™ x M) C Bspr(A)—of an ep-groupoid
X3 from Assumption 5.5 that represents Bspr(A) and thus contains the compact-
ified SFT neck stretching moduli space Mspr(A) = |(SflFT )~1(0)| as zero set of
a sc-Fredholm section S5 : X T - WjFT. We will work with both groupoids:
Multisection perturbations are constructed over /'FXFT since we need a compact zero
set to specify the admissibility that guarantees preservation of compactness under
perturbations—both for 3" and its fiber product restrictions S,. On the other hand,
|X A"l = Bsrr(A) has more complicated boundary than B;};{ (A) — due to the distri-
bution of marked points into building levels—and does not support a sc> evaluation
map. Thus we discuss coherence only over subgroupoids X3 C X " with the bound-
ary stratification of B;Ig; (A), and which support sc® functors ev® : X§T — C*x M
representing the evaluation maps (29). Here we may even use subgroupoids X3 rep-
resenting a smaller open subset &v) "D} x M) N (&v™) "' (D x M) C Bspr(A)
of preimages of the disks ]Dri = {z € C*||z] < r} ¢ C*, which contain the stan-
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dard marked points za—L = 0 e C*.!2 The polyfold structure on the fiber products
X, in Lemma 5.7 is independent of the choice of open neighbourhood in Bspr(A)
of the subset satisfying the fiber product condition. After obtaining the subgroupoid
X aj YS'T from such an open subset, we obtain the bundle WHT = WSFT | xser and

section S5 XSFT : X5FT — W by restriction. Finally, each section S, = SSFT opr,

is induced by the above projection pr, : Xy — X3 C )? ST,
Next, restriction to the boundary faces given in Assurrglptlon 6.3 (i) induces repre-

sentatives S : XGW — WSW resp. SV ALt X;—LAi — WiA of the sections ogw :

Bow(A) — Egw(A) resp. ospT SFT(V’ AL) — ESFT()/; A_) from Assump-
tion 4.3 resp. 5.5. Moreover, the boundary of the open subset (&v" x &v ™)~ 1(D+
M x Dy x M) for 0 < r < oo (with DE := C*) yields subgroupoids XV XGW

representing @Vt xev )™ 1(]D)Jr x M x D7 x M) C Bow(A) resp. Xi X;Ai

representing (evi)_l(]]])jE x M) C BSFT(A) along with restricted sectlons SGW :
GW GW __ w . + i Y=

APV — WS | xGw Tesp. SyAi X L o Woa, =W, IXMi

Then the evaluation maps restrict to sc> functors ev® : XXW — ID);t X M resp.

evt : X;E 4 D x M, which yield—again independent of r > O0—the fiber product
construction of B («) in Lemma 4.5, and of B'(«) in Lemma 5.7.

Now the identification of the top boundary strata 91X ;’i DA will proceed similar
to the proof of Lemma 6.1 with Bgw(A) replaced by B;Pl; (A), apart from the fact
that the SFT polyfold has boundary. This boundary is identified in Assumption 6.3 (ii)
as

QAT = %Y U |_| XS, X DX, , . (33)
yeP(H)
A_+Ap=A

By the fiber product construction [10, Cor.7.3] of B(p—, p+; A) in Lemma 5.7, the
degeneracy index satisfies dg(,_, p,.4)(T_, u,t,) = dm(p_,M)(L*) + dBgera @) +
dﬂ(M,p+)(£+)' Hence we have dg(,_ p,.4)(T_,u, ) = 1if and only if the degen-
eracy index of exactly one of the three arguments T_, u, 7, is 1 and the other two are
0. This identifies |01 X),_ p, 4l = 01B(p—, p+; A) as in the first line of the displayed
equation below. Then the subsequent identifications result by comparing the resulting
expressions with the interiors in Lemmas 4.5, 5.7. We obtain an identification that
throughout is to be interpreted on the smooth level (as fiber product constructions
drop some non-smooth points)

NXp_ ppa = dM(p_, M) evi Xevt NG e Xevy oMM, py)
U M (p—. M) oy Xevt B0XFT e Xy B0 MM, )
U oM(p_, M) v Xevt XS o Xev: MM, py)
= M(p-. M) oy Xevt X" e Xy MM py)

12 These disks should not be confused with the closed disks D4 in the construction of Ccpl ,ase.g. Dt c
Ct = (D4 U[—R, 0) x §1)/ ~g is a precompact subset of the first hemisphere in (C]P’}z ~ctustuc—
forany R > 0.
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U U M(p-, M) evarXeWr 8O‘X;A+ S 30‘)(,:,47 eV*XeVa MM, py)

yeP(H)
A_+Ap=A
u U M(p,, q) x M(q7 M) eva' Xevt aOX,iFT ev— Xeva aOM(Ma P+)
geCrit(f)
U U Me-M) i Xt 08T - Xepr MM, q) x M(q, )
qeCrit(f)
+ —
=00, .4 U U DX, ya, X0, 4
yeP(H)
A_+Ap=A
u U Mooy xaXpa v | 90X g4 x Mg, py).
geCrit(f) geCrit(f)

Here we also used the identification of evaluation maps in Assumption 6.3 (iii)(a). Then
compatibility in (ii) of the oriented section functors S, with the identification of these

(smooth levels of) faces F*° C 91 X ;i P A follows from compatibility of pr;, piAl
X, .4 — X5 with the projections pri : XF — X;Ai for « € ZF used in
Lemma4.5and pr, : X) — X'J" usedin Lemma5.7. More precisely, S,,_ p, alr~ =
priz Sz follows from compatibility of the sections in Assumption 6.3 (iii) and

prp,,p+,A |.7:°°

Py ps.a OPTF for 7= 00X),_, .a-

= (pr;ﬂy,Af XPr, ,.a,) 0PI for 7= aOXIj:,%M X B0k, 4l
Pry. p..A°CPIE for = M(p-,q) x doXy. p, .4,
Pr,_g.A°PIE for F = 0oX,_q.4 x M(q, py).

Construction of coherent perturbations: Next, we construct admissible sc*-
multisections «," : W, — QF fora € Z+ UZ~ UZ'UZ as claimed in (i), i.e.
in general position to the respective sections S, : &, —: W,", while also coher-
ent as claimed in (iii). The existence of such coherent transverse perturbations will
ultimately be guaranteed by an abstract perturbation theorem for coherent systems of
sc-Fredholm sections. Since the SFT perturbation package [12, §14] has not yet been
described for neck stretching, we give a detailed construction of the perturbations
for our purposes. We proceed as in Lemma 6.4 and construct them all as pullbacks
Kk, = A o (pry)* of a collection of sc™-multisections on the SFT resp. Gromov—
Witten polyfold bundles—without Morse trajectories—

+ ot + GW . yVGW +
_ < ()‘y,A'Wy,A - Q )ye’P(H),AeHz(M) (AWt = Q )AeHQ(M) )

- YA + SFT . YA)SFT +
()‘V,A : Wy,A - Q )yeP(H),AeHz(M) (AA Wy > Q )AeHz(M)

|>

For this to induce a coherent collection of sc™-multisections as required in (iii),

+ 1t + * L . 1GW L *
(Kp,V,A T )‘y,A ° (prp,y,A) )(p,y,A)eI+’ (Kpf,PJr,A =Ap o0 (prpf,m.,A) )(p_,p+,A)eI“

_ - _ . 4 SFT *
(Ky,p,A =, 401, , ) )(y’p’A)ez,, (kp_psa :=2%To Py po.a) )(p,,p+,A)eI’
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it suffices to pick A compatible with respect to the faces of the SFT neck stretching

polyfolds X3 in (33). More precisely, using the natural identifications of bundles
from Assumption 6.3 (iii), we will construct A coherent in the sense that—for some
choice of r >~0 in the construction of |X:A| = (Wﬂﬁ)_l(]]])ﬁE X M) C BéEFT(y; A)
and W;—L 4= W;—L Al Xf,A_We have

AT w) = A5 (w) Ve WY, (34)
W Uya) ™t wD) = a0, @h) A, D) Y@ w)eWw o x W,
(35)

where [,, 4, is the map defined in Assumption 6.3(i). So to finish this proof it remains
to choose the sc™-multisections A so that each induced sc™-multisection in the induced
coherent collection for (k,,") 47 +uz- Uz U7 1S admissible and in general position, while
also satisfying the coherence requirements (34), (35) and the requirements on «* in the
proofs of Lemma 6.4 and 6.5. The construction of coherent perturbations for the SFT
polyfolds analogously to [12, §14] proceeds by first choosing coherent compactness
controlling data, i.e. pairs (N, ) of auxiliary norms on all the bundles and saturated
neighbourhoods of the compact zero sets in all the ep-groupoids X: A X, AT
(c.f. Definition A.5), which are compatible with the immersions to boundary faces
in (33). Then it constructs the perturbations X as in Lemma 6.5 and also A~ AL tO
be in general position, admissible w.r.t. the coherent data 2N, U), and coherent in
the sense that continuous extension of (34)—(35) induces a well defined multisection
)»i W, xSFT > Q™. Here coherence of the perturbations on the intersection of
faces (see Remark 6.2) is required to guarantee existence of scale-smooth extensions
of A9 to multisections A5 : WS — Q. Coherence of the compactness controlling
pairs guarantees that the multisection A% over 9AST C /i; SET satisfies the auxiliary
norm bounds N (A ) < 2 and support requirements that guarantee compactness for
extensions A5 of )»" with N(A%™) < 1 and appropriate support requirements. More-
over, we may choose each of the extensions A% using Theorem A.9 to ensure—as in
Lemma 6.4—that the induced multisections «;,” are in general position as well. The
latter will automatically be admissible with respect to pullback of the pair control-
ling compactness. In more detail (but without specifying the auxiliary norm bounds)
the inductive construction of perturbations in [15]—simplified to the subset of SFT
moduli spaces considered here—proceeds as follows: _
Construction of 1§V and «': Since the Gromov-Witten ep-groupoids X'§¥ are
boundaryless by Assumption 5.5 (iii), the sc™-multisections A" can be chosen inde-
pendently of all other multisections. So we construct A" as in the proofs of Lemma 6.4
and 6.5, to ensure that the conclusions in these lemmas hold, as required by (i). This
prescribes (34) on the boundary face X§% C 9 3™,

Moreover, recall that AG" is obta1ned by applylng Theorem A.9 to the sc-Fredholm
section functors S§, the sc> submersion evt xev : ng — CP'x M xCP!' x M,
and the collection of Cartesian products of stable and unstable manifolds {za' } x
Wp’_ x {zy} X WJr As in the proof of Lemma 6.4 this ensures that the pullbacks
K= (kY = AGW o (pr )*)ae7 are in general position. Moreover, these pullbacks
are admissible Wrt the pairs controlling compactness on W, — X7, that result by
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pullback from the coherent compactness controlling pair on VT/gw — )?X’W, which is
constructed in a preliminary step as in [12, §13].

Coherence for l;f’ 4+ The next step is to construct scT-multisections )\; A W;E 4
QT over the SFT ep-groupoids fyi 4 of planes with limit orbit y € P(H) from
Assumption 4.3, which then induce the perturbations x* for the PSS/SSP moduli
spaces. These constructions are independent of the choice of AGY since the corre-
sponding boundary faces of X ST do not intersect by Assumption 6.3 (ii). However,
to enable the subsequent construction of A% as extension of the boundary val-
ues prescribed in (34) and (35), we need to make sure that each sc™-multisection

(A;AJr “ha)o (ly.a.)y " is well defined on the (open subset of) face Fy 4, :=

lya i(X;r 4, X X, 4) C 8)?2” and coincides with the other sct-multisections
(A;‘,’A,+ . )‘;/,AL) o (ly’,A;E);l on their intersection ), 4, N fV’ﬁA;t' Then this yields a
well defined sc™-multisection on | J Fy a4, = 9XF" C 9X5". To describe these
intersections we note that [12] constructs the ep-groupoids X;—L A, With coherent
boundaries—involving ep-groupoids (X;',’yﬂ B)y:tep( H), BeH,(M) Which contain the
moduli spaces of Floer trajectories between periodic orbits y*, as well as further
ep-groupoids for Floer trajectories carrying a marked point. We will avoid dealing
with the latter by specifying values r < oo when pulling back perturbations from the
ep-groupoids X:A C X:A given by |X:A| = (Wi)_l(]]])ri x M) C BSiFT()/; A), as
this will prevent the appearance of marked Floer trajectories even in the closure. For
any fixed value 0 < r < oo, the j-th boundary stratum is given by j Floer trajectories
breaking off,

+
0,2 4

o X x 9o X X oo X 00X,
|—| 0804, 0eby0.51, 8 0ty =1 yi.B;

YOyl =yeP )
AL +By +..4+Bj =A

s - = Fl . RS Fl -
hjXy, , = |_| B0y i gy X X 00Xkt g X B0,

y=rd .rkePH)
Bjyi+.t+B+A_=A

(36)

+ Fl - ; +
Now, for example, BOXVO,AJr X 30Xy0,y1,3 X aOXyl,Af is both a subset of 80XV0,A+ X

aleoiA_JrB C B(XVO,A+ X Xyo,A_+B) and of alel,A++B x 309\«/},1,/4_ C
B(X;,A++B X X)/_‘,A_)’ and the embeddings lyO,Ag and )\,y|’A:lt for the two split-

tings AL + (A_ + B) = AY + A = A = AL + AL = (A} + B) + A_ coincide
under this identification. Generally, the boundary of the Floer ep-groupoids is given
by broken trajectories, and this yields a disjoint cover of d8=>*x T C AT,

~R= + —
JR=0 AT — |_| lz,Ai,g(aoXyo_M X aoxf'ovylygl X ... X 80X;/:I"*1,y",3k X Boka,Af),

yo ..... yks”F‘(H)
Ap+B+. 4B +A_=A
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in which the embeddings /,, 4, p coincide with each of the embeddings ly Iy for
= - 4

0<j<kand Afr =A;+ Zifj B;, AJ; =A_+ ij B;—when restricted to the
subsets

XY x BT X ... X XY X X, T X T
do Y0 AL do y0.y1. B, do yk=1 yk By do yh A - a] vi O J yi Al

7, AY
Now on these subsets we require coherence 1" JA = k+_, s oA, . for
yi AL Tyl AL yi' ALy Al

all0 < j # j' < k, as this is equivalent to (35) being well defined on im/, 4, p =
ﬂl;zo .7-'}/].‘ Al This will be achieved by constructing the sc-multisections ()\;E’ a,) to
have product structure on the boundary — where the bundles P, 4 : W;E 4 = X]f 4
are restricted to various faces of BX; A

+ ’ . ) . _ )\'+ . )"FIO . . . )\'Fl .
i Al 1Pl + H Fl . - 0,4 vLBr T I=1.yi.B;’
yi A% Pyj,A{F (XVO,A+XX)/O,V1,BI X"'XXy/*I,yJ.B_/) ySAL YRy LBl vImLvlbj
AT
Codlpl (R FI -
yI AL ny',A/, (XV/-VJH-B_,'H X"'X‘ka—l,yk‘gk Xka,A_)
=AY e A e A 37
Vja}’j+l,Bj+1 ykil,y",Bk yk,A,’ ( )
for a collection of sc*-multisections A)F/l, B 5‘, s Q over the Floer ep-

groupoids X;l_ VB While this guarantees coherence on each overlap of embeddings
lle,Ai,Q C }-)/j,Ai m}—y//,Ai’

AT =T Al S S AT =AT L aaT
yial Tyl T oA M0y R .V L V't

we are now faced with the challenge of satisfying the coherence conditions in (37).

... . . .. +
These conditions uniquely determine the boundary restrictions Ay’ As ’ P 0XE, )
via the identification of the boundaries with Cartesian products of interiors in (36).
Thus (36) on Cartesian products involving boundary strata poses coherence conditions

on the choice of AE‘ for 8 € I% := P(H) x P(H) x Hy(M).

Construction of. X;‘_’y+’ B To achieve the coherence in (37), [15] first constructs the
sct-multisections (Ag) pezr! by iteration over the maximal degeneracy kg := max{k €
No | (SE])’1 (0)No X /‘;1 # (0} of unperturbed solutions (which is finite by Gromov com-
pactness): We first consider classes B with kg = —oo. For these, the section Sgl has
no zeros so is already transverse, so that A}E can be chosen as the trivial perturbation.
(The trivial multivalued section functor A : W — Q% is given by A(0) = 1 and
A(w # 0) = 0.) Next, we consider B with kg = 0. For these, the section SE' has all

zeros in the interior, so that A} can be chosen admissible and trivial on the boundary—
by applying Corollary 4.6 (i) with a neighbourhood of the unperturbed zero set in the
interior, |(S/I_Z;l 1) Cc Vg C X §‘|. Once the iteration has constructed )Lfgl for all
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B with kg < n for some n € Ny, we proceed to consider 8 = (y~,y ™, B) € I"
with kg = n + 1. For these, the restriction AFEII Pﬂ—l(a X§‘) to the boundary BXEI =

Fl Fl . .
Uy =y0, 1, yk=l yk=y+ B=B+..+By aoX VLB X...X aokafl,yk,Bk 18 prescrlbed

by the previous iteration steps AL| =AM el
y p P /3|P e 01, X:}Fl’ykin) yO.rLB
Fl

Ay k-1 kg, ON all boundary faces that contain unperturbed solutions in their closure.
Indeed, existence of a solutionin X%, | x X 'A |k
0.y1.B , By

for i = 1,...,k, and the Cartesian product of solutlons of maximal degeneracy
yields 1 + ky()’yl’Bl + ...+ kyi-1 4 . < kg. Thus these prescriptions are made for
0< kyi—l viB = kg —1 = n, and on boundary faces with no solutions in their closure
we prescribe the trivial perturbation throughout.
This yields a well defined sc™-multisection AFﬁll Pl (o F by coherence in the prior

B B

implies ki1 i g >0

iteration steps, so that k‘; can be constructed by applying the extension result [22,
Thm.15.5] which provides general position and admissibility with respect to a pair
controlling compactness that extends the pair which was chosen on the boundary in
prior iteration steps.

Construction of Xf 4 and K *+: With the Floer perturbations in place, [15] next con-
structs the collections of sct-multisections (Ai A)yeP(H), AcHy (M) t0~satisfy (37) by
iteration over degeneracy k, 4 := max{k € Np| (S;A)’](O) N akX)fA # (}. For
ky,a = —oc one takes Ai 4 tobe trivial. Fork,, 4 = 0 one applies Theorem A.9 to the
sc-Fredholm section functor SV 4 X i — Wy 4» the map vt X i — C* x M,
and the collection of stable resp. unstable manifolds {0} x WjE for all critical points
p € Crit(f). These satisfy the assumptions as the zero set |(S; A)_1 )] is c~ompact
and the preimages @510} x W;E) lie within the open subset X}}LA C XyiA on
which & restricts to a sc® submersion ev™ : X)f 4~ C* x M. We can moreover

. + N .. . . . ..
prescribe Ay) Al P L @ XfA) to be trivial, since in the absence of solutions the trivial

perturbation is in general position. Then Theorem A.9 provides )\; 4 that is supported

in the interior and transverse to each submanifold {0} x Wpi in the sense that these
submanifolds are transverse to the evaluation from the perturbed zero set

ev® o |l € A [0 (55 ,(x) > 0} — CF x M. (38)

Now suppose that admissible Af, 4 in general position have been constructed for
ky ar < k € Ny, and satisfy both the transversality in (38) and the coherence condi-
tion (37) over the ep-groupoids |Xi, wl= @) "' DE x M) with ry == 24 27%,
Then for k, 4 = k+ 1 we will construct AT a0 satisfy (37) over (&vh)~ I(Drk+ | X M)

by first noting that the previous 1terat10n—and requiring triviality on boundary faces
without solutions—determines a well defined sc*-multisection A | p—1 (g 3+ | OVEr
y. AP LX)

the r = r; boundary BXiA ~ U ' A=A4+B 80Xj5 AL X Xyl VB For faces (w.r.t.

— Fl
yA|P_A(X xXF oy = )‘y/,Ai )”y v.B

82( + ~4) with solutions it is given by A
"AL "y B
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where k, o > 1 +kyr 4, + k7, p. This is well defined at (x*, x, x) € 8026 T Ay X
X;‘,’y,,’B/ X XF}/ _ p» Which appears both as xF, (x,x)) € BQXV/)A x 8/1’;1 B
and ((x*, x), x’) e BX " At X X;‘,,yyﬁgfg,, by the coherence of the Floer mul-

tisections and the prlor 1terat10n For vectors in the respective fibers (w®, w, w’) €
Pl ) x P ) x P L (x) we have

Was W) AD L pwow) = A5 ) A g w) A g ()

+ FI ’
= )\'y//,Aj:+B/(w s IU) . )\.y//’y’B_B/(w )

Moreover, ev® : |{x € BX A |ky A(Sy 4(x) > 0} — C* x M is transverse to
the submanifolds {0} x W;E. However, this defines an admissible sc™-multisection in
general position only over the open subset of the boundary 8)(; A= (evH)~! (]D)f; X
M) N 82? i . We multiply the given data by a scale-smooth cutoff function
guaranteed by the existence of partitions of unity for the open cover | |
(e&vh)~ I(Di x M) U (&)~ 1(((Ci\ID)fEH%) x M); see Remark A.6—to obtam an

admissible sc*-multisection Af, 4 V~V;—L aly B Q™ which coincides with the
’ ’ Y,

prescribed data—thus in general position and with evaluation transverse to each
{0} x Wi—overthe closed subset (ev®) ™ 1(]]])rk+1 X M)ﬂaX:A. Then )\;A : W;A —
QT is constructed with these given boundary values using Theorem A.9 to achieve
not just general position but also transversality as in (38). By admissibility of the prior
iteration and coherence of the pairs controlling compactness, )tff 4 can moreover be
chosen admissible.

As required in the coherence discussion, this determines right hand sides of (35)
which agree on overlaps of different immersions /, A, (X, 4 + yoa ) forr =2.

Thus it constructs a well defined sc*-multisection on BR—‘X’ X SFT U ly.a L BT
X)Z 4 ) COX j” that is admissible and has evaluations transverse to the submanifolds
{0} x W, x {0} x W[‘,: for all pairs p_, py € Crit(f).

Moreover, for & € Z* we obtain a pair controlling compactness by pullback of the
coherent pairs constructed as in [12, §13] on the bundles W;E 4- Then the pullback
multisections k*+ = (/cg[t = )\}jf) 4 0 (pre)*)qer= are scT, admissible w.r.t. the pullback
pair, and in general position by the arguments in the Proof of Lemma 6.4.

Construction of A%

and k: The above constructions determine the right hand sides in
the coherence requirements )ti\F T Py (FOW) = A over XV € X5 in (34), as well as

+ - -1
M Fas@y = GyagAya) o Uran)yon UyeP(HxA +ar=aTr.4:(2) C
BXSFT in (35), where we denote by F, 4, (r) = [, A, (XF BYTR X a) C BXSFT

the image of the immersion [, 4, on the ep-groupoids representmg | X

1z Ai'
&)~ ](ID)* x M) C B +r(¥; A). By admissibility in the prior steps and existence of
scale-smooth partitions of unity (see Remark A.6) these induce for every A € H>(M)
an admissible sc*-multisection )t Wi |a P Q™ which coincides with the pre-
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scribed data over XSV L Uy.ay Froac() C dXST. Thus on this closed subset we
have general position and transversality of the evaluation map

evt xevT @ [{x € 03| 2585 (x)) > 0 > C"xMxC™ xM (39

to {0} x W~ x {0} x W[‘,: for any pair of critical points p_, p; € Crit(f). Then
the admissible sc*-multisection 15" : ij — Q7 is constructed with these given
boundary values—and auxiliary norm and support prescribed by the coherent pairs
controlling compactness—using Theorem A.9 to achieve general position on all of
A3 and extend transversality of the evaluation ev™ x ev™ to {0} x W~ x {0} x W
to the entire perturbed zero set [{x € AT [AST(SY"(x)) > 0}, where |3 =
@D x M) N @& )THD] x M) C Bar(A).

As in the Proof of Lemma 6.4, the transversality of the evaluation maps implies
that the pullbacks k = (ko = A4 o (pr,,)*)qez are in general position. They are also
admissible with respect to the pullback of pairs controlling compactness. This finishes
the construction of the sc™-multisections claimed in (i) with the boundary restrictions
required in (iii).

Proof of identity: By A-linearity of all maps involved, it suffices to fix two generators
p—, p+ € Crit(f) of CM and check that (,.( p_) and (SSP,- o PSS, +){p—) +

(—=DlP-Id o h)(p=) + (—1)"’—‘(h£ o d)( p—) have the same coefficient in A on
( p+ ). That is, we claim

AeH> (M)
1Y(p—.p+:A)=0
= 3 HZ (o yi A HZE (y py AL) - TORD T
yeP(H),A_,ALcH)(M)
I(p—.,y:A4)=I(y,p+:A—)=0
+ (=Dl Yo HZ(p-q: A) #M(q. py) - T
qeCrit(f),AcHa (M)
1(p—.q:A)=lq|—|p4|-1=0
+ (=Dl Do HMpo.q) #Z5(q. pi A) - TN,

qeCrit(f),AcHyr (M)
Ip—I~lg|=1=1(g.p+: A)=0

Here the sums on the right hand side are over counts of pairs of moduli spaces of index
0. From Sect. 3 we have M(q, py+) =0 for |g| — |p+| — 1 < 0and M(p_,q) =@
for |[p_| — |g] — 1 < 0, and general position of the sc*-multisections « as in
Corollary 4.6 (iii) implies Z& (...) =@ for I(...) < 0. Thus the right hand side can
be rewritten as sum over pairs of moduli spaces with indices summing to zero, and by
(9), (18), (24) this is moreover equivalent to

0= 1I(p—v;AD)+ Iy, pr;A-) = I'(p—, pr; A-+ Ay)
= I(p-,pt; A+ A — 1,
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0=1I(p_.q;A)+1ql = Ips|l =1 = I(p_, py; A) — 1,
0 = |p-I—1lgl=1+1(q, p+;A) = I(p—, p+; A) — 1.

So all sums can be rewritten with the index condition /(p_, p4+; A) = 1 for A =
A_ 4+ Ay € Hy(M), and since the symplectic area is additive w(A_) + w(Ay) =
w(A_+ A, ), itsuffices to show the following identity foreacha = (p_, p4; A) € Z
with I(p—, p+; A) =1,

L + —
(D725 (p_, pys A) = (=DIPIY " #Z5 (p_, y; AN #ZE (v, pys A
yeP(H)

A_+Ap=A
+ Y H#HZ(p-.q; A) #M(q, p+)

geCrit(f)

+ Y #M(p-,q) #Z5(q, p+; A). (40)
geCrit(f)

This identity will follow from Corollary 4.6 (v) applied to the weighted branched
1-dimensional orbifold Z%(«) that arises from an admissible sc*-multisection g :
W, — Q7. The boundary 8 Z%(«) is given by the intersection with the top bound-
ary stratum 91 B(«) NV, = |01 Xy |, and will be determined here—with orientations
computed in (41) below.

0Z5) = Z(e) N 01 Xg |

= Z%(@) N |3 X, v Y Z5@) N 100X 4, X 90X,

7,I7+:A| ,p+;A_|

y€P(H)
A_+Ay=A
u | Z5@) 0 (Mp-.q) x 130Xy.p,:41)
q<Crit(f)
u Uz n (100X g:al x Mg, p1)
qeCrit(f)
Kt Kt K~
= Z5(p-, py; A) U U Z5 (p—,vs Ay) X Z5 (v, pyi A)

yeP(H),A=A_+A,

u J Moo x 2% pes A u {J Z50-. g5 A) x Mg, py).
qeCrit(f) q€Crit(f)

Here the second identity uses coherence of the ep-groupoid as in (32). The third identity
follows from coherence of sections S, and sc™ multisections k" stated in (ii), (iii),
and the fact from Corollary 4.6 (iv) that perturbed zero sets Z% (a) C |dpX,,"| are
contained in the interior of the polyfolds when the Fredholm index is 0. For the second
summand we moreover use Lemma A.7 which ensures that each restriction k| PN

= X . .
to aface F aOXp,,y;A+ BOX%M;A;C N Xp_ p..A,givenby Ky iy Ky piia s
is in general position to the section Sp_’ vy X S Y priA_ Then its perturbed zero

EL . . . . . . + —_ _
set Z¥ (p—, p+; A) N |F| is contained in the interior (‘)()|/"([LJ/;A+ X Xy’p+;A7| =
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+ p— . . + — .
|80Xp7’y; A, X 80Xy’p+; 4_| as the complement of the pairs of points (x™, x™) with
0 = kp_py;a(Sp_pialx™, x7)

— (et e + - + -
- (Kpf,y;AJr Ky,p+;A7)((Sp7,y;A+ x S%m;Af)(x X ))

_ .t + +\y L - -
_KP—vV§A+(SP—»V§A+(x ) K%p+;A—(Sy,p+;A_(x )

Since a productin QT = QN[0, co) is nonzero exactly when both factors are nonzero,
this identifies the objects of the perturbed zero set of x_ ;4 with the product of
perturbed zero objects for k%,

(T x) e Flop poiaSp_palx™, x7)) > 0}
— [yt + + +
- {x € Xp—,y;AJr |Kp—,y;A+ Sy yia, (¥4) > 0}

x{xmed ik, A (S, 4 (x7)) >0}

And the realization of this set is precisely ze<t (p_,y: AL) x ZE (v, py; A), as
claimed above.

Computation of orientations: To prove the identity (40) it remains to compute the
effect of the orientations in Remark 5.9 on the algebraic identity in Corollary 4.6 (v) that
arises from the boundary 0 Z%(«) of the 1-dimensional weighted branched orbifolds
arising from regularization of the moduli spaces withindex I (o) = I (p—, p4+; A) = 1.
Here Z*A ' is of odd dimension with oriented boundary determined by the orientation
relations in Assumption 6.3 (iii)(b) and (c) as

N .
0z = 20 NaBar(A) = (2 U || 2 x Zheae

yeP(H)
A_+Ay=A

Moreover, the index of oger is (o) = |p—| — |p+| +2¢1(A) + 1 = 1, so we compute
orientations in close analogy to (31)—while also giving an alternative identification
of the boundary components—
075(a) = W M(p—, M) ewxew 2% exew oMM, py)

L (DI ME=ID G R (p, M) ey xew NZA e xew 00 MM, py)

b (DI ME=IDT G R (p M) oy Xey 8073 oo MM, py)

= ( |_| M(p-, q) x M(q, M) ) ev Xey ZA?“FT evXev M(M, py)

geCrit f
SFT
u (_1)\p7|+|p+|M(p77 M) ey Xey z* ev Xev ( I_I MM, q) x M(q, p+) )
qeCritf
+ -
U (_1)‘117' M(p—, M) ey Xev ( I_l Z)LV'A*' X Z)LV'A_ ) evXey M(M, py)

yeP(H).,A=A_+A,
GW
u (_1)‘P7|+1 M(p—, M) ey Xey Z* evXey M(M, py)

= | Moo x2% pe:d) U || Z50-.q: A x Mg, py)
qeCrit f qgeCrit f
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u (=1lP-] L] Z5 (p_.ys Ap) X ZE (v, pyi AD)
YEP(H),A=A_+A,

U (=DIP-H ZE (p_ pys A). (41)

This computation should be understood in a neighbourhood of a solution, so in partic-
ular with scale-smooth evaluation maps to C* x M. Based on this, Corollary 4.6 (v)
implies—as claimed—

0 = he(d(p-)) +dhe{p-)) + (—l)lp—‘SSPE (PSSe+(p-)) — (=D~ (po)
= (hod+doh+SSPoPSS—1)(p_).

m}
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Appendix A. summary of Polyfold theory

This section gives an overview of the main notions of polyfold theory that are used in
this paper. The following language is used to describe settings with trivial isotropy.!3

Remark A.1 (i) An M-polyfold without boundary is analogous to the notion of a
Banach manifold: While the latter are locally homeomorphic to open subsets of
a Banach space, an M-polyfold is locally homeomorphic to the image O = im p
of aretract p : U — U of an open subset U C E of a Banach space E. While p
is generally not classically differentiable, it is required to be scale-smooth (sc*°)
with respect to a scale structure on E, which is indicated by [E.

(i’) An M-polyfold, as defined in [22, Def.2.8], is a paracompact Hausdorff space X
together with an atlas of charts ¢, : U, — O, C [0, c0)* x E! (i.e. homeomor-
phisms between open sets U, C X and sc-retracts O, such that U,U, = X), whose
transition maps are sc-smooth.

For k € Ny the k-th boundary stratum 0; X is the set of all x € X of degeneracy

13 Trivial isotropy would be guaranteed in our settings by an almost complex structure J for which there
are no nonconstant J-holomorphic spheres.
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index d(x) = k given'* by the number of components equal to 0 for the point in
a chart ¢, (x) € [0, 0c0)* x E'. In particular, dp X is the interior of X.

(i) A strong bundle over an M-polyfold X, as defined in [22, Def.2.26], is a sc-
smooth surjection P : W — X with linear structures on each fiber W, = Pl (x)
for x € X, and an equivalence class of compatible strong bundle charts, which in
particular encode a sc-smooth subbundle W > W' — X whose fiber inclusions
W! < W, are compact and dense.

(iii) The notion of sc-Fredholm for a scale smooth section S : X — W of a strong
bundle in [22, Def.3.8] encodes elliptic regularity and a nonlinear contraction
property [22, Def.3.6,3.7]. The latter is a stronger condition than the classical
notion of linearizations being Fredholm operators, and is crucial to ensure an
implicit function theorem; see [11].

A more detailed survey of these trivial isotropy notions can be found in [9]. Then
the generalization to nontrivial isotropy is directly analogous to the notion of smooth
sections of orbi-bundles, in which orbifolds are realizations of étale proper groupoids
[28].

Remark A.2 A sc-Fredholm section o : B — &£ of a strong polyfold bundle as intro-
duced in [22, Def.16.16,16.40] is a map between topological spaces together with an
equivalence class of sc-Fredholm section functors s : X — W of strong bundles
W over ep-groupoids X', whose realization |[s| : |X| — |W| together with home-
omorphisms |X| := Objy/Mory = B and |[W| = £ induces o. To summarize
these notions we use conventions of [22] in denoting object and morphism spaces as
Objy = X and Mory = X. These will be equipped with M-polyfold structures, so
that the k-th boundary stratum of a polyfold B = | X| is given as 9 B = 9 X /X C | X|
for all k € Np.

(1) An ep-groupoid as in [22, Def.7.3] is a groupoid X = (X, X) equipped with M-
polyfold structures on the object and morphism sets such that all structure maps are
local sc-diffeomorphisms and every x € X has a neighbourhood V (x) such that
tos! (cl X(V(x))) — X is proper. As in [22, §7.4] we require that the realization
| X'| is paracompact and thus metrizable.

(i) A strong bundle as in [22, Def.8.4] over the ep-groupoid X is a pair (P, u) of
a strong bundle P : W — X and a strong bundle map p : XgxpW — W so
that P lifts to a functor P : W — X from an ep-groupoid W = (W, W) induced
by (P, w). Then P restricts to a functor W' — X on the full subcategory whose
object space is the sc-smooth subbundle W! ¢ W.

(iii) A sc-Fredholm section functor of the strong bundle P : W — X as in [22,
Def.8.7] is a functor S : X — W that is sc-smooth on object and morphism
spaces, satisfies P o S = idy, and such that S : X — W is sc-Fredholm on the
M-polyfold X.

14" The degeneracy index d(x) € Ny in [22, Def.2.13,Thm.2.3] is a priori independent of the choice
of chart ¢, only for points in a dense subset Xoo C X specified in Remark A.3. With that d(x) :=
max{limsupd(x;) | Xoo 3 x; — x} is well defined for all x € X and can also be computed in any fixed
chart.
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Now a polyfold description of a compact moduli space M is a sc-Fredholm section
o : B — & of a strong polyfold bundle with zero set o ~!(0) = M. The polyfold
descriptions used in this paper are obtained as fiber products of existing polyfolds and
sc-Fredholm sections over them. This requires a technical shift in levels described in
the following remark, and a notion of submersion below.

Remark A.3 Polyfolds carry a level structure Bo, C ... C By C By = B as follows:
For any M-polyfold X, in particular the object space of the ep-groupoid representing
B = |X|, a sequence of dense subsets Xoo C ... C X| C X9 = X is induced by the
scale structures E* = (E!,)en, of the charts, that is X,, = |, ¢L_1((9[ NR* x E}).
Then B,, := X"'/M ory is well defined since morphisms of X—Ilocally represented by
scale-diffeomorphisms—preserve the levels on Objy = X.

The restriction 0|, of a sc-Fredholm section ¢ : B — & is again sc-Fredholm
with values in &,,, and the choice of such a shift in levels is irrelevant for applications
since the zero set o~ (0) C Boo—as well as the perturbed zero set for any admissi-
ble perturbation—is always contained in the so-called “smooth part” that is densely
contained in each level By, C B,,.

For a finite dimensional manifold or orbifold M—such as the Morse trajectory
spaces in Sect. 3.3—viewed as polyfold, the level structure is trivial Moo = ... =
My =My=M.

Definition A.4 [10, Def.5.9] A sc*™ functor f : X — M from an ep-groupoid X =
(X, X) to a finite dimensional manifold M is a submersion if for all x € X the
tangent map Dy f : TRX — T /()M is surjective, where TR X is the reduced tangent
space [22, Def.2.15].

Consider in addition a sc-Fredholm section functor S : X — W. Then the sc™
functor f : X — M is S-compatibly submersive if for all x € X, there exists a
sc-complement L C TRX of ker(D, f) N TR X and a tame sc-Fredholm chart for S at
x [10, Def.5.4] in which the change of coordinates ¢ : O — [0, c0)* X Rk=S % W
that puts S in basic germ form—which by tameness has the form i (v, e) = (v, E(e))
for (v,e) € O C [0, 00)* x E and a linear sc-isomorphism y—moreover satisfies
Y (L) C {0}~ x W, where the chart identifies L C TRX = TRO = {0} x E.

More generally, given a smooth submanifold N C M, the sc* functor f is trans-
verse to N if forall x € f~1(N) N Xoo we have Dy f(TRX) + Ty N = Ty M,
and f is S-compatibly transverse to N if there exists a sc-complement L of
(D £)" 1T £(x)(N)) N TEX satistying the above condition.

The purpose of giving a moduli space a polyfold description is to utilize the pertur-
bation theory for sc-Fredholm sections over polyfolds, which allows to “regularize”
the moduli space by associating to it a well defined cobordism class of weighted
branched orbifolds. (For a technical statement see Corollary 4.6 and the references
therein.) Since the ambient space |X'| is almost never locally compact, this requires
“admissible perturbations” of the section to preserve compactness of the zero set. This
admissibility is determined by the following data introduced in [22, Def.12.2,15.4].

Definition A.5 A saturated open subset / C X" of an ep-groupoid X = (X, X) is
an open subset U C X with 7~ ' (mU)) = U, where 7 : X — |X]| = X/X is the
projection to the realization.
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A pair controlling compactness for a sc-Fredholm section S : X — WV of a strong
bundle P : W — X consists of an auxiliary norm N : W[1] — [0, co) (see [22,
Def.12.2]) and a saturated open subset i/ C X that contains the zero set S~1(0) C U,
such that |{x eU|N(Sx)) < 1}| C |X| has compact closure.

Given such a pair, a section s : X — W is (N, U)-admissible if N (s(x)) < 1 and
supps C U.

The construction of perturbations moreover requires scale-smooth partitions of
unity, which will be guaranteed by the following standing assumptions.

Remark A.6 Throughout this paper we assume that the realizations | X'| of ep-groupoids
are paracompact, and the Banach spaces E in all M-polyfold charts are Hilbert spaces.
This guarantees the existence of scale-smooth partitions of unity by [22, §5.5,§7.5.2].
In order to guarantee the same on every level B, as discussed in Remark A.3, we
moreover assume that each scale structure E = (E,,),eN, consists of Hilbert spaces
E,,. These assumptions hold in applications, such as the ones cited [12,23]. Then
paracompactness and thus existence of scale-smooth partitions of unity on every level
is guaranteed by [22, Prop.7.12].

When discussing coherence of perturbations of a system of sc-Fredholm sections,
the boundaries are described in terms of Cartesian products of polyfolds, bundles, and
sections. So we will make use of Cartesian products of multivalued perturbations as
follows, to obtain multisections over the boundary as summarized in the subsequent
remark.

LemmaA.7 Let Sy : X1 — Wy and S> : Xo — Wh be sc-Fredholm section of strong
bundles P; : W; — X; over ep-groupoids. Then the Cartesian product X1 x X, is
naturally an ep-groupoid and (S1 X S2) : X1 x Xy — Wi x Wh is a sc-Fredholm
section of the strong bundle P x P;.

Moreover, if .; : Wi — Q7 are scT-multisections fori = 1, 2, then there is a well
defined sct-multisection k1 - Ao : Wi x Wr — Q7F given by (A1 - A2) (w1, wr) =
A (wy) - Ao (wo). If, fori = 1, 2, the sections A; are (N;, U;)-admissible for some fixed
pair controlling compactness as in Definition A.5, then L1 - Ay is (max(Ny, N»), U; x
U>)-admissible. Finally, if A; is in general position to S; fori = 1,2 then A1 - Ay is in
general position to S1 x 3.

Proof A detailed treatment of sc-Fredholmness of the product section S; x S can be
found in [10, Lemma 7.2]. The remaining statements follow easily from the definitions
in [22] (as do the statements in the first paragraph).

Recall in particular from [22, Def. 13.4] that a sc™-multisection on a strong
bundle P : W — X is a functor A : W — Q7% that is locally of the form
Aw) = Z{j lw=p;(P(w))} g, represented by sc*-sections p1, ..., pr : V — P~1(V)
(i.e. sc™ sections of W!; see [22, Def.2..27]) and weights qi, - - -, qr € QN[0, co) with
» ;4 = 1. Then for local sections p’j and weights q;. representing A; fori = 1,2,
the multisection A - A; is locally represented by the sections ( pjl., p?,) with weights

q jl qj2,,, and all admissibility and general position arguments are made at the level of

these local sections.
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In particular, the (N;, U;)-admissibility can be phrased as the existence of local
representations by sections with N,-(pfi (x)) < 1 and Z(S;, p;) = {x € V|3t €
[—1,1]: S;(x) = tp?(x)} C U;. Then (max (N1, N2), U1 x Up)-admissibility uses
the observation
(L x) (31 € [=1,1] (S, $)(x1,x2) = 1(pj(x1), pr(x2)} C Z(S1, p)) x
Z(S>, pi/) C Uy x U. O

Remark A.8 Let P : VW — X beastrong bundle over a tame ep-groupoid X' = (X, X).
Then for every x € X there is a chart ¢ : U, — O from a locally uniformizing'>
neighbourhood U, C X of x to a sc-retract O C [0, c0)" x E, with ¢ (x) = 0 lying
in the intersection of the n local faces Fi := ¢~ '({(v, e) € [0, 00)" x E|vx = 0})
which cover the boundary dX N U, = Uzzl Fr.

Now a sct-multisection over the boundary is a functor A? : P~1(3x) — Qt
whose restriction 1| p-1(F,) to each local face is a sc*-multisection of the strong
bundle P~ (Fy) — Fi.Inthe presence of a sc-Fredholm section § : X — W, sucha
scT-multisection is in general position over the boundary if for each intersection of
faces Fx = [ \rex Fr C 9X therestriction of the perturbed multi-section 190S| Fr -
P~Y(Fx) - Q7 has surjective linearizations at all solutions. If, moreover, (N, Uf)
is a pair controlling compactness, then A% is (N, U)-admissible if each restriction
A% p-1(5,) is admissible w.r.t. the pair (N| p-1(z,). U N Fp).

In our applications, as described in Assumption 6.3, the local faces F are images
of open subsets of global face immersions [ : 7 — dX, where each F is a Cartesian
product of two polyfolds, and the restriction to the interior /|5, 7 is an embedding into
the top boundary stratum 91 X'. The bundles over each face are naturally identified with
the pullbacks /%-WV, and then the pushforwards of scT-multisections A : IZW — QT
form a sc*-multisection over the boundary A% : P~!(| JimAx) — Q7 if they agree
on overlaps and self-intersections of the immersions /£, at the boundary d.F of the
faces. In this setting, general position of A? is equivalent to general position of the
multisections A .

The following perturbation theorem allows us to refine the construction of coherent
perturbations in [12] for the SFT moduli spaces such that moreover the evaluation maps
from the perturbed solution sets are transverse to the unstable and stable manifolds in
the symplectic manifold. This is a generalization of the polyfold perturbation theorem
over ep-groupoids and the extension of transverse perturbations from the boundary
[22, Theorems 15.4,15.5] (with norm bound given by & = 1 for simplicity). Another
version of this—with the submanifolds representing cycles whose Gromov—Witten
invariants are then obtained as counts—also appears in [34,35]. We are working under
the assumptions made in this section—e.g. paracompactness—without further men-
tion. The limitation to finitely many submanifolds in the extension result seems to be of
technical nature; we expect that joint work of the first author with Dusa McDuff—on
coherent finite dimensional reductions of polyfold Fredholm sections—will establish
the result for countably many submanifolds.

15 A neighbourhood Uy C X forms a local uniformizer as in [22, Def.7.9] if the morphisms between
points in Uy are given by a local action of the isotropy group G.
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Theorem A.9 Suppose S : X — W isa sc-Fredholm section functor of a strong bundle
P : W — X over a tame ep-groupoid X with compact solution set |S~'(0)| C |X],
and let (N,U) be a pair controlling compactness. Moreover, let e : X — M be a
scO-map to a finite dimensional manifold M which has a sc™ submersive restriction
ely 1V — M on a saturated open set )V C X.

Then, for any countable collection of smooth submanifolds (C; C M)ic; with
eil(Uiel(Ci)) C V, there exists an (N, U)-admissible sc™-multisection ) : W —
QT so that (S, \) is in general position (see [22, Definition 15.6]) and the restriction
el : Z* — M to the perturbed zero set Z* = |{x € X | A\(S(x)) > 0}| is in general
position'® to the submanifolds C; for alli € I.

Moreover, suppose I is finite and 19 : P~1(0X) — Q% for some 0 < a < 1
is an (éN , U)-admissible structurable sc™-multisection in general position over the
boundary such that the restriction e|zy : 7% — M to the perturbed zero set in
the boundary Z? = |{x € X |A%(S(x)) > 0} is in general position'” to the
submanifolds C; for all i € I. Then A above can be chosen with A p-1yxy = 20,

Proof Our proof follows the perturbation procedure of [22, Theorem 15.4], which
proves the special case when there is no condition on a map e : X — M, i.e. when
M = {pt} and C; = {pt}. To obtain the desired transversality of e to the submani-
folds C; € M we will go through the proof and indicate adjustments in three steps:
A local stabilization construction, which adds a finite dimensional parameter space
to cover the cokernels near a point x € S~!(0); a local-to-global argument which
combines the local constructions into a global stabilization which covers the coker-
nels near S~!(0); and a global Sard argument which shows that regular values yield
transverse perturbations. Within these arguments we need to consider restrictions to
any intersection of faces to ensure general position to the boundary, use submersivity
of e to achieve transversality to the C;, and work with multisections due to isotropy.
The statement with prescribed boundary values A? generalizes the extension result
[22, Theorem 15.5], which hinges on the fact that general position over the boundary
persists in an open neighbourhood — something that is generally guaranteed only for
finitely many transversality conditions; see the end of this proof. The first step in any
construction of perturbations is the existence of local stabilizations which cover the
cokernels, as follows.

Local stabilization constructions: For every zero x € S~!(0) of the unperturbed sc-
Fredholm section we construct a finite dimensional parameter space R for/ = I, € Ny
and scT-multisection

AR W QY (fw) > A (w)

such that A is the trivial multisection, i.e. Aj(0) = 1, Aj(w) = 0 for w € W, {0}.
This multisection A* is viewed as local perturbation near (0, x) of a sc-Fredholm

16" General position to C; requires transversality to C; of eachrestrictione| ;1 Fi O the perturbed solution
set within an intersection of local faces Fx = (< g Fk as defined in Remark A.8, including for Fy := Z A,

17" This requires general position of each restriction e| /5 Fi to a local face Fy C 90X as defined in
Remark A.8.
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section functor §* of a bundle 13x,

S R xx >R xw PR xW SR xx
&, y) = (@ 5(%) (t, w) = (t, P(w)).

It is constructed in [22] to be structurable in the sense of [22, Def.13.17], in general
position in the sense that the linearization T(S‘x [\x)(O, X) : TOR’ X Tf X — W, is
surjective'® and admissible in the sense that the domain support of A* is contained in
U and the auxiliary norm is bounded linearly, N (A)(#, y) < c,|t| for some constant
¢x. In case x € VN S~1(0) we refine this construction to require surjectivity of the
restrictions

T s iny 0 Olrrixk, - ToR! x K, — W, (42)

where K, := ker(Dye|pry) C TRX is the kernel of the linearization Dye : TRX —
Tex)M restricted to the reduced tangent space. For that purpose note that e is sc¢™
near x by assumption, so has a well defined linearization, and since its codomain is
finite dimensional, its kernel has finite codimension. Moreoverim D, S C W, has finite
codimension by the sc-Fredholm property of S, and the reduced tangent space Tf X C
T, X has finite codimension by the definition of M-polyfolds with corners. Thus we
can find finitely many vectors w'!, ..., w' € W, which together with D, S(K ) span
W,. These vectors are extended to scT-sections of the form pj t,y)=>1t jwj ),
multiplied with sc® cutoff functions of sufficiently small support, and pulled back by
local isotropy actions to construct the functor A* as in [22, Thm.15.4]. We claim that
this yields the following local properties with respect to the sc¢> functor

&R xV M, (1,y) e(y).

Local stabilization properties: There exists €, > 0 and a locally uniformizing neigh-
borhood Q(x) C X of x whose closure is contained in U, such that

eF : {re R! [f] < €} x Q(x) — QT (t,y) — A;‘(S(y)) = [\x(S“x(t, )

43)
is atame ep™ -subgroupoid, andfor (t, y) € supp ®* = {(t,y) | ®* (¢, y) > 0} C R/ x
X the reduced linearizations ngx’;\X)(t’ V) =T jx) (@, y)|T,R1xT§X are surjective.
Moreover, if x € V then we may choose Q(x) C V such that for all (t, y) € supp ©F
we have surjections19

Di.ye*lny, © Ny = kerT(Rgx’[\x)(t,y) = TenM.

In particular, the realization | supp ®* | is a weighted branched orbifold and e* induces
a submersion | supp ®*| — M in the sense of Definition A.4. Moreover, for all y €

18 This is shorthand for §* + pj having surjective linearization for every section p ; in alocal representation
of A* with §%(0,x) =0 = p; (0, x), and restricted to the reduced tangent space TfX.

19 As before, this is shorthand for surjectivity on each reduced tangent space kerDy; y) (8* +
1’./')|T,Rl xTRX
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S~H0)NU, we have (0, y) € supp O so that the reduced linearizations Tgx A0 ©, y)

and the restriction to their kernel D, y)e* | N, are surjective. These properties persist
Ly

fory € S_I(O) with |y| € |Q(x)].

The structure of supp ©* and surjectivity of linearizations T

(8%,A%)
the local implicit function theorem [22, Theorems 15.2,15.3]. Then the kernels

N,’fy = ker T(S‘x Z\X)(t’ y) represent the reduced tangent spaces at |(¢, y)| to the

weighted branched orbifold |supp ®*|. Surjectivity of D r)e”] NG, holds since

follows from

Do, x)e" is surjective by assumption, and the preimage of any given vector in T, (x) M
can be adjusted by vectors in ker Do x)e* to lie in Ng, . = ker T(I%x Ax)(O, X),
because T(SX, ;\X)(t, Y lkerDgg ,yer 18 surjective by (42). Then &* restricts to a map
| supp ®F| — M that is classically smooth on each (finite dimensional) branch of
supp ©*, and thus surjectivity of D(; y)e*| NF, is an open condition along each branch.
Since supp ®* is locally compact—in particular with finitely many branches near x—
we can then choose €, and Q(x) sufficiently small to guarantee that each D, )e”| NE,
is surjective. This proves submersivitiy in the sense of Definition A.4. '

From local to global stabilization: In this portion of the proof, we proceed almost
verbatim to the corresponding portion of [22, Thm.15.4], with extra considerations to
deduce submersivity of (46). By assumption, |S~!(0)| is compact and |e| : |X| — M
is continuous. Then |S~1(0)| N |e~1(O)] is compact since C := U;er(C;) C M is
closed. We moreover have the identity [S~'(0) N e™1(C)] = [STH0)| N |e~ 1 (O)]
since both sets are saturated. Thus we have an open covering (| Q(x)l)xe S—10)ne=1(C)
by the open subsets chosen above, and can pick finitely many points x,...,x, €
S71(0) N e~1(C) to obtain a finite open cover [S~'(0) Ne~1(C)| € Ui, 1Q ).

Then |S_1(0)|\ Uf:l |Q(x;)| is compact, with open cover by (|Q(x)|)x€5,1(0), SO
we may pick further x, 41, ..., xx € s-1 (0) to obtain the covers
k r
Ish o) < (JIewl, IS0y ne ') ¢ 1wl
i=1 i=1
3 k
570 ¢ 0= (JIQwI) c U. (44)

i=1

For each x = x; we constructed above a family of sc*-multisections (Af" W —
Q*) ,egl - These are summed up, using [22, Def.13.11], to a scT-multisection

ARxW > QF (t=(1... 00, w) > Ar(w) = (A @ @A) (w)

forl := lyy +---+1y,.Hereeach A; : W — QT fort e ]Ri is a structurable sct-
multisection by [22, Prop.13.3]. We view the multisection A as global perturbation of
a sc-Fredholm section functor S of a bundle P,
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S R xX >R xW=W P RxWoR xx
(t,y) = (&, S(y) (1, w) = (&, P(w)),
and claim that e : X — M induces a submersion on its perturbed solution set in the

following sense.
Global stabilization properties: There exists €y > O such that for every 0 < € < €

O:{reRlil<e)xX - QF  (,y) = A(SD) =AGSE ) @3
is a tame ept-subgroupoid with surjective reduced linearizations TX. &, A)(t, y) for

all (t,y) € supp ©. In particular, the realization | supp ©| is a weighted branched
orbifold. Moreover; there is a neighbourhood V' C X of S~10) N e~ 1(C) such that

elappd © SUPPO — M, (1,y) = e(y) (46)

satisfies (Elsupp(;))_1 ) C R x V', and its restriction to supp © N (Rl~ x V) is

classically smooth and submersive as in Definition A.4. y B
Note that the auxiliary norm N on WV pulls back to an auxiliary norm N on W, and

compactness of S is controlled in the sense that for any compact subset K C R’ we
have compactness of

[{(t,x) € K xU|NS@t,x) <1}| = Kx|[{(x eU|NESK) < 1}] € R x|x].

) (47)
Next, the restriction of A to each R x X < R! x X is the local perturbation A%
of §%, since we identify R = {(r1,..., 1) € Rl [t; = 0V, # i} and each Ay is
trivial. In particular, Ag is the trivial multisection, with N(Ag) = 0. Moreover, we
have an estimate N (A;) < c|t| that results from the linear estimates on each Afi . Now
forep < % we can deduce compactness of the stabilized solution set as closed subset
of (47),

Z = |{(t.x) efoX||t| < €0, A(S(x)) > 0} (48)

The next step is to argue that (48) is smooth in a neighbourhood of Z N ({0} x |X|) =
{0} x [S71(0)]. Recall here that O = 7~' (', |Q(x;)]) C X is an open neigh-
bourhood of $~1(0). So for any x € Q we can use the local properties of some A%
with |x| € |Q(x;)| to deduce surjectivity of T (O x). Then the local implicit
function theorems [22, Thms 15.2,15.3, Rmk. 15 2] yield an open nelghbourhood
U@O,x) = {|t] < €.} xUx) C Rl x X of (0, x) for some 0 < €. < e€p, and
hence a saturated nelghbourhood U@, x) = {|f] < €} xm “qum)) c R x X
such that ®|U(0 X = =AoS |U(O x) is a tame branched ep™-subgroupoid of U(0, x). As
a consequence, the orbit space of the support |supp Ol 0 x)| is a weighted branched
orbifold with boundary and corners.

For x € S’](O)\e’l(C) we can moreover choose U(x) N e 1(C) = @, since
le=1(C)| c |&] is closed. For x € S7'(0) Ne™'(C) C V the covering (44)
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guarantees |x| € |Q(x;)| for some 1 < i < r with Qxi) C VY and we choose

U(x) C Q(x;). This guarantees that the restriction of  : RixX — M, (1, y) — e(y)
to U(0, x) is sc®, and surjectivity of Do x)&™ |, ., & (0.x) Implies surjectivity of

(8%, A%y
D(o,x)5|N0,X : No,x — Te(xyM on Ny, := ker T(s A)(0, x). Here Ny, represents the
reduced tangent space at |((~), x)| to the weighted branched orbifold | supp O| 7(0.x) |
Now ¢| supp O (0,x) - SUPP ®|U(0, 0~ M is classically smooth since it is a restriction
of an sc® map to finite dimensions, and we have shown it to be submersive at (0, x).
Hence, by openness of submersivity along each corner stratum, and local compactness

of suppC:)|U(O v C Z it follows that U (0, x) C R’ x V can be chosen sufficiently

small to ensure that | supp BN (0,x) is submersive as in Definition A.4.

Now compactness of [S71(0) Ne~1(C)| and |S~1(0)] again allows us to find finite
covers

K r!
Is7' ol < (JIwel, s o ne o)) ¢ JIwei

i=1 i=1

with x/ € STHO) Ne (C) fori = 1,...,r and U(x)) N e (C) = @ for ¥’ <
i < k’. Then we have € := min{e;,, .. .e;, } > 0, an open cover S71(0) C A :=
1 14

7~ (ULZ) U (D), and the functor {1 € RY [ [1] < e} x A — QF, (1, 3) > Ai(S()
is a tame branched ep™-subgroupoid, since it is the restriction of ® = A o S to an open
subset of UL] U0, x/). Moreover, we claim that for a possibly smaller 0 < € < €

we have y
t,y)e{lt|l<el x X, O, y)>0 = y € A. (49)

By contradiction, consider a sequence R/ >5t, — 0,y, € X with (:)(tn, yn) > 0
but y, € X~.A. Then compactness of (48) guarantees a convergent subsequence
[(tn, yn)| = 1(0, yoo)| € Z, and since Z N {0} x |X] = {0} x ISuPPAo oS = {0} x
|S~1(0)| this contradicts the fact that |y,| € |X|~|.A|, where | A| = U, UG C
|X| is an open nelghbourhood of |S~1(0)|. Thus we have shown (49) and can deduce
that ® =AoS:{te R [t] <€} x X - QT isa tame branched ep™ -subgroupoid
with supp © C R! x A, and thus ]supp ®| CR! XU, 1 1U (x])|is a weighted branched
orbifold with boundary and corners, as claimed.

Moreover, from the properties of élsupp ONd(0.1)) fori =1, ..., r weknow that the

restriction of & to supp © N (R x V') for V' := 7! (Ulr,:1 U(x})) C Vis classically
smooth and submersive. Here we have e~ (C) N A C V' since U (x;) fori > r’ was
chosen disjoint from e~ 1(C), and hence we have

(@lappa) (€ = supp®n (R x e 1(0)) ¢ R x (e7(C)nA) € BRI xV,
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and thus é|supp & supp ©® — M is classically smooth and submersive (in the sense of
Definition A.4) in the open neighborhood supp ® N (]Rl~ x V') of (E| ! (Cy) C

supp © forall i € I.

Global transversality from regular values: As we continue to follow the proof of [22,
Thm.15.4], we replace each application of the Sard theorem by countably many Sard
arguments to obtain general position to the countably many submanifolds C; C M
for i € I. For that purpose we will consider various restrictions of the projection

supp (:))

supp© = {(t, ) € R x Xt <e A(SH) >0} — R’ (t,y) —t.

The global properties of ® imply that every (9, yo) € supp ® has a saturated open
neighborhood U (to, yo) ={t e R ||t —1o] < 8} xm ' (U (o)) € REx X satisfying
the following:

e U(yo) C X admits the natural action of the isotropy group G y,; see [22, Thm.7.1],
satisfies the properness property [22, Def.7.17], and has dy(yp) local faces

.7-"1y°, .. fg;(v , Which contain yo; see [22, Def.2.21, Prop.2.14].

e The branched ept-subgroupoid supp @ N U (19, yo) has a local branching structure

O, y) = A(S() = % |{] ety e M;o,yO} ’

given by finitely many properly embedded submanifolds with boundary and cor-
ners M ]O 0 U, yo0), which intersect any intersection of local faces in a
manifold with boundary and corners.

e Oneach branch M; '0:30 the reduced linearizations Tg ) (t, y) are surjective for all

t,y)eM; .30 and the restriction of &|pp & is @ submersion M| 050 (R % V') —
M in general position to the boundary 1n the sense of Definition A.4. That is,
D(,,y)e|N[’y i Nty — Tey)M is surjective on N,y = kerTf§ A)(t,y) for all

(t.y) € M N (R x V),

There is a countable cover supp(:) C UﬁeZ 0(t,3, vpg) indexed by (18, yg)pez C

supp O, since R x X—and hence its subspace supp ®—is second-countable, and
every open cover of a second-countable space has a countable subcover. Moreover, for
any given 8 € Z there are finitely many choices Fx = {lt —t0] < 8} X (iex .7-',3"3 -
U (18, y,g) of intersections of finitely many local faces K C {1,...,d X(y,g)} with
F@ =U (g, yp). Finally, for each 8 € Z and intersection of faces ]—"K, there are
finitely many smooth manifolds Fx N M jﬁ “# indexed by j € Jg. For each of these

countably many choices, Sard’s theorem asserts that F kN M;ﬂ RN Rf ,(t,y) >t
has an open and dense subset R’3 ; C R/ of regular values. Then, since R/ is a Baire

space, the set of common regular Values Ro:=) BeZ Nk j Ri i C R/ is still dense.
For any 79 € Ry, the sct-multisection Ay, : W — QT is in general position by the
usual linear algebra for each restriction of the linearized operators to intersections of
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faces: Consider (g, xo) € f"K N M;-ﬁ P supp ® and a local section S + pj in the
representation of ® = Ao S with M;.ﬂ M (S+ pj )~1(0). The surjective differential
along this intersection of faces can be written as Dy, , (S + pj )| Fe = D& L, where L
is a bounded operator (arising from differentiating p/ in the direction of R') and D is
the reduced linearization—on the intersection of faces Fg 1= (;cx f,fvﬁ CU(yp) C
X—of the section S + p/(tg, -) that is a part of the representation of Ay o S. Then
regularity of o implies surjectivity of the projection IT : ker(D @ L) — R/, which in
turn is equivalent to surjectivity of D; see e.g. [26, Lemma A.3.6].

Moreover, each A, for [t| < € is (N, U)-admissible, thus any sufficiently small
regular 7o € Ry yields an admissible sc™-multisection A := A, in general position
as in [22, Thm.15.4]. To prove our theorem, we have to moreover choose 7y € R so
that the restriction e|,» : Z* — M to the solution set Z* = | supp A o S| is in general
position to C; C M for all i € I. For that purpose we consider the countably many
projections

FleHnFx oM - R,  (.x)—t (50)

forany i € I, index B € Z of the countable cover, intersection of local faces F,
and smooth branch M;ﬁ’yﬁ C supp en f](tg, vg). Here we have elichHn M;ﬂ’y’g C

(§|Supp (;))_1 (C), so that the restriction e| : Fx N M;‘g Y% _ M is smooth and

~. tﬂ,y‘g
Fx ﬁMj

submersive in a neighborhood of e 1(C)). In particular, it is transverse to C; so that
there is a natural smooth structure on ¢~ (C;) N Fx N M;.’S *# Thus we can apply the
Sard theorem to each (50) to find open and dense subsets Tli(’ ﬂj C R of regular values,

and a dense set of common regular values 7o := (gez [k RZ NN T;(ﬂ] CR.

Note that 7y C Ry, so sufficiently small #y € 7y yield admissible sc™-multisections
A := Ay in general position. Moreover, general position of e| ;. : Z* — M to C; at
x € Z*Ne1(C;) means that the linearizations of el F, nz» map onto TewyM It for

e(x) Ci
each intersection of local faces Fx C U(yg) C X that contains x. Here the tangent
spaces of Fx N Z* at x are given by those of Fx N M;ﬂ’yﬂ N ({tp} x X) for each
branch with (¢, x) € M;.ﬁ P supp O, so we need to ensure surjectivity of Dgy.x)€ :
ker IT — TK(X)M/Te(,\.)C,- on the kernel of the projection IT : T(to,x)(ﬁl( ﬂM;‘g’yﬁ) - R
Here D)€ : Tro0) (Fx N M;ﬁ’yﬂ) — Te(x)M is surjective (since &| . ¢ is submer-
sive), and regularity #g € leﬁj means that we have I1 (D(,ng)é)_l(Te(x)Ci) = Rf, SO
forany ¥ € To(ryM we find (T, X) € T (Fx N M) with Dy (T, X) = ¥
and (T, X') € (D(,O,x)é)’1 (Tex)Ci), so that (0, X — X”) € ker IT proves the required
surjectivity D(s,1)e(0, X — X') =Y — Dy .0)e(T, X') = [Y] € Tew M/ ¢, Thus
this choice of sufficiently small #y € 7y also guarantees general position of e[|, to
each of the countably many submanifolds C;, which finishes the proof of the theorem
when no boundary values are prescribed.
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Regular extension: To prove the last paragraph of the theorem we consider a given
(LN, U)-admissible structurable sc™-multisection A% : P~!(3X) — Q7 that is in
general position over the boundary, and with e|,o : Z? = suppA? o S|yx — M
in general position to finitely many submanifolds C;. Then we will adjust the above
construction of A : YW — Q™ to also satisfy Mp-1x) = 19, by following the proof
of the transversal extension theorem over ep-groupoids [22, Thm.15.5].

Since A7 is supported in U N dX with N (x) < o forall x € 9X we can
find a continuous functor 2 : X — [0, 1) supported in I/ with N(A?)(x) < h(x) <
%N()\a)(x) + % for all x € 3X. Then [22, Thm.14.2] yields a sc™-multisection A’ :
W — QT with Nlp-1gx) = 19, domain supportin/, and N(A’)(x) < h(x) < ”‘T“
for all x € X. This guarantees compactness of | supp A’ o S| C |X| and regularity of
| supp A’oS|N|dX| = | supp A0S |5 |. To obtain regularity in the interior we construct
A = A'@® A, by the above arguments with S~!(0) replaced by S" := supp A’o S C X,
noting that |S’| C |X| is also compact. To achieve general position to the C; we need
further adjustments.

Local constructions relative to boundary values: For interior points x € &’ N dpX’
we construct A* : R! x W — Q7 with domain support in the interior R! x (39X NU)
to cover the cokernels of Tgx i) for the stabilized multisection A’ : Rl x W —

Q7, (t, w) — A’(w). For x € &' N dX we need no stabilization by a R factor (i.e.
take / = 0) due to the general position of A? at x. However, we only obtain general
position to the C;, rather than submersivity in the following claim.

Local properties relative to boundary: For each x € S’ there exists I, € No—with
I, = 0 for x € 8 N dX—and a locally uniformizing neighborhood Q(x) C X of
x whose closure is contained in U, such that for some €, > 0 we have a tame ep™-
subgroupoid ®* : {t € R [t] < €x} x Q(x) — Qt, (¢, y) —~ (A’@Af)(S(y)) with
surjective reduced linearizations, and thus a weighted branched orbifold | supp ®*|.
Moreover, if x € 8’ NV then &* induces a smooth map | supp ®*| — M, which is in
general position to C; for eachi € I.

The structure of ®F is established in [22, Thm.15.5.], and the general position to
each C; for x € dpX follows from submersivity. To achieve general position to the
C; for x € aX, recall that C = U;¢;(C;) C M is closed, so for x ¢ e~ 1(C) we can
choose Q(x) disjoint from e~!(C) so that general position to the C; C C is automatic.
For x € e71(C) C V we have e : supp®* N X = suppA? o S|yx — M in general
position to each C; by assumption on 1?. Moreover, we choose Q(x) C V so that
e: Q(x) Nsupp ® — M is smooth, and thus general position to each C; extends to
aneighbourhood Q; C X of x. Then Q' := ();; Q; is a neighbourhood of x since /
is finite, and we can replace Q(x) by a uniformizing neighbourhood in Q’ to achieve
general position to all C;.

From local to global relative to boundary: This portion of the proof is started by
picking a finite cover |S’| N [dX| = |suppA? o S|yx| = U?=fk3 |Q(x;)| C |X]| by
the above neighbourhoods for x; € S’ N d.X. Next we cover |S’| \ U?:—ka |O(xi)| C

ULI | O (x;)| with neighbourhoods of interior points x; € S’ N dyX whose associated
multisections A% are supported in the interior, dom-supp A% C R N 3y X. Then we
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define A : Rl x W — QF by At, w) := A,(w) = (A @A} @ - & A)(w).
This m~ultisection is constructed so that Ag = A" and A|p-15x) = 22 for any
t € RL. Moreover, the estimate N(A;) < N(A') + c|t] < # + c|t| allows us

to guarantee admissibility N(A;) < 1 by choosing |¢| < 12;6"‘ Then compactness

of Z in (48) follows as above, and its smoothness is established using a covering
1S~10)] c Ui'{:—k;; |U (x])| where |U (x;)| for i < 0 arise from x/ € &' N 39X and
cover a neighbourhood of |0 X'|. Moreover, U (xlf) c R x Q(xi’ ) can be chosen as in
the prior proof of the local properties such that &|suyppe : U(x]) — M is in general
position to C; for each i € . This establishes the following.

Global stabilization properties with fixed boundary values: There exists €y > 0 such

that ® == Ao S : {It| < €} x X — Q7 is a tame ep+-subgroup0i£i with surjective
reduced linearizations for every 0 < € < €q. In particular, | supp ®| is a weighted
branched orbifold. Moreover; there is a neighbourhood V' C X of S “Toyne 1(0)

such that e| supp O—>M satisfies (e| L) c R x V', and its restric-

supp © : supp é))_

tion to supp © N (R! x V') is classically smooth and in general position to each C;.

Global transversality relative to boundary: In this final step we use the fact that A,
is (N, U)-admissible for |¢| < 12_—6“ and choose a common regular value of countably
many projections as before. The only difference to the proof above is that the restriction

of é|g, ¢ to a branch M ;O’y N (R x V') — M is not necessarily submersive but

supp .
still in general position to each of the Cj, that is D¢ yyéln,, : Niy — Te()‘>M/Te()_)Ci
is surjective for each i € I. When considering the projections (50), this suffices to
obtain smooth structures on &~ (C;) N Fx N M;.'S ** for each branch and intersection

of faces .7:'1(. Then general position of e| 7. : Z* > Mto C;atx € Z* Ne1(C)) for
A = A4, with aregular value 1g € R! again requires surjectivity of Dy xy€  ker IT —

Te<x>M/T G On the kernel of the projection IT : T(to,x)(}iK N M;’S’yﬁ) — Ri. To see

that [Y] Tc(X)M/T,_,mC,« is in the image we use the above surjectivity of D, e|n,, .

to find (T, X) € Tgy.0(Fx N M}”ﬂ) with Dy /(T X) € [Y]. Then regularity
of 1y yields (T, X') € (D(,M)é)_l(Te(x)Ci), so that (0, X — X’) € kerII solves
[D(t,x)€(0, X — X')] = [Y — Dy 0e(T,X)] = [Y] € Te(X>A"'/Te(X)Cl_. This finishes
the proof with prescribed boundary values. O
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