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Abstract
We give a detailed proof of the homological Arnold conjecture for nondegener-
ate periodic Hamiltonians on general closed symplectic manifolds M via a direct
Piunikhin–Salamon–Schwarz morphism. Our constructions are based on a coherent
polyfold description for moduli spaces of pseudoholomorphic curves in a family of
symplectic manifolds degenerating from CP

1 × M to C
+ × M and C

− × M , as
developed by Fish–Hofer–Wysocki–Zehnder as part of the Symplectic Field The-
ory package. To make the paper self-contained we include all polyfold assumptions,
describe the coherent perturbation iteration in detail, and prove an abstract regulariza-
tion theorem for moduli spaces with evaluation maps relative to a countable collection
of submanifolds. The 2011 sketch of this proof was joint work with Peter Albers, Joel
Fish.

Mathematics Subject Classification 53D (Primary); 37J · 46 · 58 (Secondary)

1 Introduction

Let (M, ω) be a closed symplectic manifold and H : S1 × M → R a periodic
Hamiltonian function. It induces a time-dependent Hamiltonian vector field XH :
S1×M → TM given byω(XH (t, x), ·) = dH(t, ·). We denote the set of contractible
periodic orbits by

P(H) := {γ : S1 → M
∣∣ γ̇ (t) = XH (t, γ (t)) and γ is contractible

}
(1)

and note that periodic orbits can be identified with the fixed points of the time 2π flow
φ2π
H : M → M of XH . (Here we choose the convention S1 = R/2πZ, i.e. period

2π , for ease of notation later on.) We call this Hamiltonian system nondegenerate if
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φ2π
H ×idM is transverse to the diagonal and hence cuts out the fixed points transversely.

In particular, this guarantees a finite set of periodic orbits. Arnold [1] conjectured in
the 1960s that the minimal number of critical points of aMorse function on M is also a
lower bound for the number of periodic orbits of a nondegenerate Hamiltonian system
as above. In this strict form, the Arnold conjecture has been confirmed for Riemann
surfaces [7] and tori [6]. A weaker form is accessible by Floer theory, introduced by
Floer [17,18] in the 1980s. It constructs a chain complex generated byP(H) that can be
comparedwith theMorse complex generated by the critical points of aMorse function.
When Floer homology is well-defined, it is usually independent of the Hamiltonian,
and on a compact symplectic manifold can in fact be identified with Morse homology,
which is also independent of theMorse function and computes the singular homology.
Using this approach, the following nondegenerate homological form of the Arnold
conjecture was first proven by Floer [16,19] in the absence of pseudoholomorphic
spheres.

Theorem 1.1 Let (M, ω) be a closed symplectic manifold and H : S1 × M → R a
nondegenerate periodic Hamiltonian function. Then

#P(H) ≥
dim M∑

i=0
dim Hi (M;Q).

Floer’s proof was later extended to general closed symplectic manifolds [20,21,
25,29], and in the presence of pseudoholomorphic spheres of negative Chern number
requires abstract regularizations of the moduli spaces of Floer trajectories since per-
turbations of the geometric structures may not yield regular moduli spaces; see e.g.
[27]. Further generalizations and alternative proofs have been published in the mean-
time, using a variety of regularization methods. The purpose of this note is to provide
a general and maximally accessible Proof of Theorem 1.1—using an abstract per-
turbation scheme provided by the polyfold theory of Hofer–Wysocki–Zehnder [22],
following an approach by Piunikhin–Salamon–Schwarz [30] based on [32], and build-
ing on polyfold descriptions of Gromov–Witten moduli spaces [23] as well as their
degenerations in Symplectic Field Theory [8,15].

Remark 1.2 Since the polyfold descriptions of SFT moduli spaces [12–15] are not
completely published, we formulate them as Assumptions 4.3, 5.5, 6.3. While these
descriptions of four kinds of moduli spaces and their relations involve a lot of struc-
tures (bundles, sections, evaluation maps, and compatible immersions from Cartesian
products to boundaries), they will be familiar from classical descriptions of moduli
spaces of pseudoholomorphic curves. Our assumptions in polyfold theoretic terms
formalize the well known fact that the moduli spaces have local descriptions in terms
of Fredholm sections and gluing theorems, which polyfold theory interprets as global
smooth structure within an appropriately generalized differential geometry. Indeed,
transition maps between the natural infinite dimensional local models fail to be classi-
cally differentiable for only two reasonswhich polyfold theory resolves as explained in
e.g. [9, §2] and [23, §2.1]: Actions of reparameterization groups satisfy the new notion
of scale-smoothness for maps between Banach spaces. Neighbourhoods of maps with
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broken or nodal domains are given local polyfold models as the image of a retraction
(modulo a finite group action in the case of isotropy), which becomes scale-smooth
after adjusting the smooth structure near nodal curves in Deligne–Mumford spaces.
With this understood, there is little doubt in the existence of polyfold descriptions for
moduli spaces. The much more audacious claim of polyfold theory is the existence
of an abstract perturbation scheme for moduli spaces that are described as zero set of
a scale-smooth section over a polyfold. However, this claim is fully substantiated in
[22]. So the goal of this paper is to demonstrate the use of this abstract perturbation
scheme once polyfold descriptions for the basic building blocks of moduli spaces are
given.

Wemoreover chose this structure to give an example of how rigorous and transparent
proofs can be written at a time when parts of their foundation are unpublished or in
question.

To describe our proof, let CF = ⊕γ∈P(H)�〈 γ 〉 be the Floer chain group of the
Hamiltonian H with coefficients in the Novikov field � (see Sect. 2). Let (CM, d) be
the Morse complex with coefficients in � associated to a Morse function f : M →
R and a suitable metric on M (see Sect. 3). Then we will prove the following in
Lemma 4.9, Definition 5.8, and Lemmas 6.4, 6.5, 6.6.

Theorem 1.3 There exist �-linear maps PSS : CM → CF, SSP : CF → CM,
ι : CM → CM, and h : CM → CM such that the following holds.

(i) ι is a chain map, that is ι ◦ d = d ◦ ι.
(ii) ι is a �-module isomorphism.
(iii) h is a chain homotopy between SSP ◦ PSS and ι, that is ι − SSP ◦ PSS =

d ◦ h + h ◦ d.
Here we view the Floer chain group CF as a vector space over �—not as a chain

complex, and in particular do not consider a Floer differential. Thus we are neither
constructing a Floer homology for H , nor identifying it with the Morse homology of
f . However, the algebraic structures in Theorem 1.3 suffice to deduce the homological
Arnold conjecture for the Hamiltonian H as follows.

Proof of Theorem 1.1 Denote the sumof theBetti numbers k :=∑dim M
i=0 dim Hi (M;Q).

Let (CMQ, dQ) be the Morse complex over Q as defined in Sect. 3. Then by the iso-
morphism of singular and Morse homology there exist c1, . . . , ck ∈ CMQ that are
cycles, dQci = 0, and linearly independent in the Morse homology over Q. Since
the Morse differential d : CM → CM is given by �-linear extension of dQ from
CMQ ⊂ CM the chains c1, . . . , ck ∈ CM are also cycles dci = dQci = 0 and lin-
early independent in the Morse homology over �. By Theorem 1.3 (i),(ii), ι induces
an isomorphism H ι : HM → HM on homology. This in particular implies that
[ι(c1)], . . . , [ι(ck)] ∈ HM are also linearly independent in homology, that is for any
λ1, . . . , λk ∈ � we have

k∑

i=1
λi · ι(ci ) ∈ im d 
⇒ λ1 = . . . = λk = 0. (2)
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We now show that PSS(c1), . . . , PSS(ck) ∈ CF are �-linearly independent,
proving #P(H) ≥ k since the elements of P(H) generate CF by definition. This
proves the theorem.

Let λ1, . . . , λk ∈ � be a tuple such that

k∑

i=0
λi · PSS(ci ) = 0.

Then we deduce from Theorem 1.3 (iii) that

∑k

i=0 λi · ι(ci ) =
∑k

i=0 λi ·
(
SSP

(
PSS(ci )

)+ dh(ci )+ h(dci )
)

= SSP
(∑k

i=0 λi · PSS(ci )
)
+
∑k

i=0 λi · dh(ci ) = d
(∑k

i=0 λi · h(ci )
)
,

which implies λ1 = · · · = λk = 0 by (2). �

This algebraically minimalistic approach of deducing the homological Arnold

conjecture from the existence of maps PSS and SSP whose composition is chain
homotopic to an isomorphism on the Morse complex was developed in 2011 discus-
sions of the second author, Peter Albers, and Joel Fish withMohammed Abouzaid and
Thomas Kragh. These were prompted by our observation that proofs of “Floer homol-
ogy equals Morse homology” require equivariant transversality which is generally
obstructed—even for equivariant sections of finite rank bundles. Thus our goal was a
proof using the least amount of geometric insights or new abstract tools. Beyond this
we expect the [30]-approach to yield an isomorphismbetween Floer andMorse homol-
ogy, and spectral invariants [33] on all closed symplectic manifolds, using refinements
of polyfold theory described in Remark 1.4.

To maximize accessibility we begin with reviews of the pertinent facts on the
Novikov field, Sect. 2, and Morse trajectories, Sect. 3. The Proof of Theorem 1.3
then proceeds by constructing the PSS and SSP maps in Sect. 4 from curves in
C
±×M , constructing the isomorphism ι and chain homotopy h in Sect. 5 from curves

inCP
1×M and its degeneration intoC

−×M andC
+×M , and proving their algebraic

relations in Sect. 6 by constructing coherent perturbations. We give a detailed account
of these iterative constructions in the Proofs of Lemma 6.4 and 6.6.While these results
should be contained in [15], neck-stretching is not addressed in [12], and it seemed
timely to give the proof in a case whose structure is vastly simplified by the absence of
trivial cylinders comparedwith [12, §3.5]. To strike a balance between technical details
and maximal accessibility, we have clearly labeled all such technical work. Readers
willing to view polyfold theory as a black box can save 20 pages by skipping these
parts. For readers new to polyfold theory we provide in Appendix A a summary of
all notions and facts that are necessary for the present application. Here we moreover
establish in Theorem A.9 a relative perturbation result that should be of independent
interest: It allows one to bring moduli spaces with an evaluation map into general
position to a countable collection of submanifolds. We combine this result with [10]
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to construct polyfold descriptions of the [30] moduli spaces as fiber products of SFT
moduli spaces with the Morse trajectory spaces constructed in [38].

Remark 1.4 (i) There are essentially two approaches to the general Arnold conjecture
as stated in Theorem 1.1. The first—developed by [19] and used verbatim in [20,
21,25,29]—is to establish the independence of Floer homology from the Hamiltonian
function, and to identify theFloer complex for aC2-small S1-invariantHamiltonian H :
M → R with the Morse complex for H . This requires S1-equivariant transversality to
argue that isolated Floer trajectories must be S1-invariant, hence Morse trajectories.
A conceptually transparent construction of equivariant and transverse perturbations—
under transversality assumptions at the fixed point set which are met in this setting—
can be found in [39], assuming a polyfold description of Floer trajectories.
(ii) The second approach to Theorem 1.1 by [30] is to construct a direct isomorphism
between the Floer homology of the given Hamiltonian and the Morse homology for
some unrelated Morse function. Two chain maps PSS : CM → CF , SSP : CF →
CM between the Morse and Floer complexes are constructed from moduli spaces
of once punctured perturbed holomorphic spheres with one marking evaluating to the
unstable resp. stablemanifold of aMorse critical point, andwith the givenHamiltonian
perturbation of the Cauchy–Riemann operator on a cylindrical neighbourhood of the
puncture. Then gluing and degeneration arguments are used to argue that both PSS ◦
SSP and SSP ◦PSS are chain homotopic to the identity, and hence SSP is the inverse
of PSS on homology. However, sphere bubbling can obstruct these arguments: In the
first chain homotopy it creates an ambiguity in the choice of nodal gluing when the
intermediateMorse trajectory shrinks to zero length. (We expect to be able to avoid this
by arguing that “index 1 solutions generically avoid codimension 2 strata”—another
classical fact in differential geometry that should generalize to polyfold theory.) The
second chain homotopy is as claimed in Theorem 1.3 (iii) but with ι = id, which
requires arguing that the only isolated holomorphic spheres with two marked points
evaluating to an unstable and stable manifold are constant. This again requires S1-
equivariant transversality (which we expect to be able to achieve with the techniques
in [39]).
(iii) Theorem 1.3 is proven by following the [30]-approach as above but avoiding the
use of new polyfold technology such as equivariant or strata-avoiding perturbations.
In particular, ι is the map that results from counting holomorphic spheres that intersect
an unstable and stable manifold; its invertibility is deduced from an “upper triangular”
argument.
(iv) The techniques in this paper—combining existing perturbation technology with
the polyfold descriptions of SFT moduli spaces—would also allow one to define the
Floer differential, prove d2 = 0, establish independence of Floer homology from
the Hamiltonian (and other geometric data), and prove that PSS and SSP are chain
maps. Then the chain homotopy between SSP ◦ PSS and the isomorphism ι implies
that PSS is injective and SSP surjective on homology. However, proving that PSS
and SSP are isomorphisms on homology, or directly identifying the Floer complex
of a small S1-invariant Hamiltonian with its Morse complex, requires the techniques
discussed in (ii).
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Moreover, a proof of independence of Floer homology from the choice of abstract
perturbation would require a study of the algebraic consequences of self-gluing Floer
trajectories in expected dimension −1 during a homotopy of perturbations, as devel-
oped in the A∞-setting in [24].

2 The Novikov field

We use the following Novikov field � associated to the symplectic manifold (M, ω).
Let H2(M) denote integral homology and consider the map ω : H2(M) → R given
by the pairing ω(A) := 〈ω, A〉 for A ∈ H2(M). The image of this pairing is a finitely
generated additive subgroup of the real numbers denoted

	 := imω = ω(H2(M)) ⊂ R.

The Novikov field � is the set of formal sums

λ =
∑

r∈	

λr T
r ,

where T is a formal variable, with rational coefficients λr ∈ Q which satisfy the
finiteness condition

∀c ∈ R #{r ∈ 	 | λr �= 0, r ≤ c} < ∞.

The multiplication is given by

λ · μ =
(
∑

r∈	

λr T
r

)

·
(
∑

s∈	

μsT
s

)

:=
∑

t∈	

(
∑

r+s=t
λrμs

)

T t .

This defines a field � by [21, Thm.4.1] and the discussion preceding the theorem
in [21, §4], the key being that 	 is a finitely generated subgroup of R.

We will moreover make use of the following generalization of the invertibility of
triangular matrices with nonzero diagonal entries.

Lemma 2.1 Let M = (λi j )1≤i, j≤
 ∈ �
×
 be a square matrix with entries λi j ∈ �

in the Novikov field. Suppose that λi j =∑r∈	,r≥0 λ
i j
r T r with λ

i j
0 = 0 for i �= j and

λi i0 �= 0. Then M is invertible.

Proof Since � is a field, invertibility of M is equivalent to det(M) �= 0. Write
det(M) =∑r∈	 μr T r ∈ � for some μr ∈ Q. It suffices to show that μ0 �= 0.

We proceed by induction on the size of the matrix M . In the 
 = 1 base case, when
M is a 1×1 matrix M = [λ11], we have det(M) = λ11 =∑r∈	 μr T r with μr = λ11r
so μ0 = λ110 �= 0.

Now suppose that M is size 
 × 
 for some 
 > 1 and inductively assume that,
for any size (
 − 1) × (
 − 1) matrix N satisfying the hypotheses of the lemma,
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we have det(N ) = ∑
r∈	 μN

r T r with μN
0 �= 0. For 1 ≤ j ≤ 
, let C1 j denote the

matrix obtained by deleting the first row and j-th column of M . Then N := C11 is an
(
− 1)× (
− 1) matrix that satisfies the hypotheses of the lemma, and the cofactor
expansion of the determinant yields

det(M) = λ11 det(N ) +

∑

j=2
(−1)1+ jλ1 j det(C1 j ).

By hypothesis, all entries of M are of the form λi j = ∑
r≥0 λ

i j
r T r . Since the

determinants det(N ) and det(C1 j ) are polynomials of those entries, they are of the
same form—with zero coefficients for T r with r < 0. Since we moreover have
λ
1 j
0 = 0 for j ≥ 2 by hypothesis, it follows that the constant term (i.e. the coef-

ficient on T 0) of λ1 j det(C1 j ) is 0. Hence the constant term of det(M) =∑μr T r is
μ0 = λ110 ·μN

0 , where μN
0 �= 0 by induction and λ110 �= 0 by hypothesis. This implies

det(M) = μ0 + . . . �= 0 and thus finishes the proof. �


3 TheMorse complex and half-infinite Morse trajectories

This section reviews the construction of theMorse complex aswell as the compactified
spaces of half-infinite Morse trajectories which will appear in all our moduli spaces.

3.1 EuclideanMorse–Smale pairs

The Morse complex can be constructed for any Morse–Smale pair of function and
metric on a closed smooth manifold M (and more general spaces). However, we will
also work with half-infinite Morse trajectories, and to obtain natural manifold with
boundary and corner structures on these, we will restrict ourselves to the following
special setting.

Definition 3.1 A Euclidean Morse–Smale pair on a closed manifold M is a pair
( f , g) consisting of a smooth function f ∈ C∞(M, R) and a Riemannian metric g on
M satisfying a normal form and transversality condition as follows.

(i) For every critical point p ∈ Crit( f ) of index |p| ∈ N0 there exists a local chart φ
to a neighbourhood of 0 ∈ R

n such that

φ∗ f (x1, . . . , xn) = f (p)− 1
2 (x

2
1 + . . .+ x2|p|)+ 1

2 (x
2|p|+1 + . . .+ x2n ),

φ∗g = dx1 ⊗ dx1 + . . .+ dxn ⊗ dxn .

(ii) For every pair of critical points p, q ∈ Crit( f ) the intersection of unstable and
stable manifolds is transverse, W−

p � W+
q .

Remark 3.2 EuclideanMorse–Smale pairs exist on every closed manifold, and for any
given Morse function. Indeed, given any Morse function f and metric g, there are



11 Page 8 of 73 B. Filippenko, K. Wehrheim

arbitrarily C0-small perturbations g′ of g in any neighborhood of the critical points of
f such that ( f , g′) satisfies Definition 3.1(i); see e.g. [3, Prp.1]. Furthermore, any L2-
generic perturbation g′′ of g′ on annuli around the critical points yields a pair ( f , g′′)
that additionally satisfies Definition 3.1(ii) and hence is a Euclidean Morse–Smale
pair; see e.g. [3, Prp.2] or [31, Prp.2.24].

3.2 TheMorse complex

For distinct critical points p− �= p+ ∈ Crit( f ) the space of unbroken Morse trajecto-
ries (which are necessarily nonconstant) is

M(p−, p+) := {τ : R → M
∣∣ τ̇ = −∇ f (τ ), lim

s→±∞ τ(s) = p±
}
/R

∼= (W−
p− ∩W+

p+
)
/R ∼= W−

p− ∩W+
p+ ∩ f −1(c). (3)

It is canonically identifiedwith the intersection of unstable and stablemanifoldmodulo
the R-action given by the flow of −∇ f , or their intersection with a level set for any
regular value c ∈ ( f (p+), f (p−)). Both formulations equip itwith a canonical smooth
structure of dimension |p−|− |p+|− 1, see e.g. [31, §2.4.1]. Moreover, any choice of
orientation of the unstable manifolds W−

p for all p ∈ Crit( f ) induces orientations on
the trajectory spaces M(p−, p+) by e.g. [36, §3.4]. Then the Morse chain complex
of ( f , g) is obtained by counting (with signs induced by the orientations) the zero
dimensional spaces of unbroken trajectories,

CMQ :=
⊕

p∈Crit( f )
Q〈 p 〉, dQ 〈 p− 〉 :=

∑

|p+|=|p−|−1
#M(p−, p+) 〈 p+ 〉.

(4)
It computes the singular homology of M ; see e.g. [31, §4.3]. More precisely, the
Morse complex is graded CMQ = ⊕

i=0,...,dim M Ci M by Morse indices CiM =⊕
|p|=i Q〈 p 〉, and with di := dQ|Ci M we have Hi (M;Q) ∼= ker di/im di+1.
The PSS and SSP morphisms will be constructed on the Morse complex with

coefficients in the Novikov field � from Sect. 2,

CM = CM� := CMQ ⊗� =
⊕

p∈Crit( f )
�〈 p 〉, (5)

with differential d = d� the�-linear extension of dQ (defined as above on generators).
This complex is naturally graded with differential of degree 1,

C∗M =
dim M⊕

i=0
CiM, CiM =

⊕

|p|=i
�〈 p 〉, d : CiM → Ci−1M . (6)
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3.3 Compactified spaces of Morse trajectories

Our construction of moduli spaces will also make use of the following spaces of
half-infinite unbroken Morse trajectories for p± ∈ Crit( f )

M(M, p+) := {
τ : [0,∞) → M

∣∣ τ̇ = −∇ f (τ ), lim
s→∞ τ(s) = p+

}
,

M(p−, M) := {
τ : (−∞, 0] → M

∣∣ τ̇ = −∇ f (τ ), lim
s→−∞ τ(s) = p−

}
.

These will be equipped with smooth structures of dimension dimM(M, p+) =
dim M − |p+| resp. dimM(p−, M) = |p−| by the evaluation maps

ev :M(M, p+) → M, τ �→ τ(0), ev :M(p−, M) → M, τ �→ τ(0),

which identify the trajectory spaceswith the unstable and stablemanifoldsM(M, p+)
∼= W+

p+ resp. M(p−, M) ∼= W−
p− . Note that these spaces contain constant trajecto-

ries at a critical point, {τ ≡ p+} ∈ M(M, p+) and {τ ≡ p−} ∈ M(p−, M). To
compactify these trajectory spaces in a manner compatible with Morse theory, we
cannot simply take the closure of the unstable or stable manifoldW±

p± ⊂ M , but must
add broken trajectories involving the bi-infinite Morse trajectories. The bi-infinite tra-
jectories from (3) which appear in such a compactification are always nonconstant,
i.e. between distinct critical points p− �= p+. So, unlike constant half-infinite length
trajectories, our constructions will not involve constant bi-infinite trajectories, and we
simplify subsequent notation by settingM(p, p) := ∅ for all p ∈ Crit( f ). With that
we first introduce spaces of k-fold broken half- or bi-infinite Morse trajectories for
k ∈ N0 and p± ∈ Crit( f ),

M(M, p+)k :=
⋃

p1,...,pk∈Crit( f )
M(M, p1)×M(p1, p2) . . .×M(pk, p+),

M(p−, M)k :=
⋃

p1,...,pk∈Crit( f )
M(p−, p1)×M(p1, p2) . . .×M(pk, M),

M(p−, p+)k :=
⋃

p1,...,pk∈Crit( f )
M(p−, p1)×M(p1, p2) . . .×M(pk, p+). (7)

Now the compactifications of the spaces of half- or bi-infinite Morse trajectories are
given by

M(M, p+) :=
⋃

k∈N0

M(M, p+)k , M(p−, M) :=
⋃

k∈N0

M(p−, M)k ,M(p−, p+) :=
⋃

k∈N0

M(p−, p+)k ,

with topology given by the Hausdorff distance between the images of the broken or
unbroken trajectories. Compactness of these spaces is proven analogously to the bi-
infinite Morse trajectory spaces in e.g. [3, Prp.3], using [38, Lemma 3.5]. Moreover,
[38, Lemma 3.3] shows that the evaluation maps extend continuously to

ev : M(M, p+) → M,
(
τ0, [τ1], . . . , [τk]) �→ τ0(0),
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ev : M(p−, M) → M,
([τ0], . . . , [τk−1], τk) �→ τk(0). (8)

Smooth structures on these spaces are obtained by the following variation of a folk
theorem, which is proven in [38], using techniques similar to those of [3] for the
bi-infinite trajectory spaces.

Theorem 3.3 Let ( f , g) be a Euclidean Morse–Smale pair and p± ∈ Crit( f ). Then
M(M, p+),M(p−, M), andM(p−, p+) are compact, separable metric spaces and
carry the structure of a smooth manifold with corners of dimension dimM(M, p+) =
dim M − |p+|, dimM(p−, M) = |p−|, and dimM(p−, p+) = |p−| − |p+| − 1.
Their k-th boundary stratum is ∂kM(. . .) =M(. . .)k . Moreover, the evaluation maps
(8) are smooth.

For reference, we recall the definition of a manifold with (boundary and) corners
and its strata.

Definition 3.4 A smooth manifold with corners of dimension n ∈ N0 is a second
countable Hausdorff space M together with a maximal atlas of charts φι : M ⊃ Uι →
Vι ⊂ [0,∞)n (i.e. homeomorphisms between open sets such that ∪ιUι = M) whose
transition maps are smooth.

For k = 0, . . . , n the k-th boundary stratum ∂kM is the set of all x ∈ M such that
for some (and hence every) chart the point φι(x) ∈ [0,∞)n has k components equal
to 0.

Remark 3.5 (i) To orient the Morse trajectory spaces in Theorem 3.3 we fix a choice
of orientation on each unstable manifold W−

p
∼= M(p, M) for p ∈ Crit( f ),

and orient W+
p
∼= M(M, p) such that TpM = TpW− ⊕ TpW+ induces the

orientation on M given by the symplectic form. This also induces orientations
on M(p−, p+) = W−

p− ∩ W+
p+/R that are coherent (by e.g. [36, §3.4]) in the

sense that the top strata of the oriented boundaries of the compactified Morse tra-
jectory spaces are products ∂1M(·, ·) = ⋃q∈Crit( f ) o(·, q, ·)M(·, q) ×M(q, ·)
with universal signs o(·, q, ·) = ±1. We compute the relevant cases: For
M(M, q) ×M(q, p+) ↪→ ∂1M(M, p+) with dimM(q, p+) = 0 the sign is
o(M, q, p+) = (−1)|p+|+1. Indeed, a point in M(q, p+) is positively oriented if
TW−

q
∼= 〈−∇ f 〉 ×NW+

p+ . Here we identify Np+W
+
p+
∼= Tp+W

−
p+ , and the outer

normal direction is represented by ∇ f , so that the sign arises from

TW−
p+ × TW+

p+
∼= TW−

q × TW+
q
∼= 〈−∇ f 〉 × TW−

p+ × TW+
q

∼= TW−
p+ × 〈 (−1)1+|p+|∇ f 〉 × TW+

q × TM(q, p+).

Similarly, forM(p−, q)×M(q, M) ↪→ ∂1M(p−, M) with dimM(p−, q) = 0
the sign is o(p−, q, M) = +1 since −∇ f is an outer normal and TW−

p−
∼=

〈−∇ f 〉 × TW−
q when TM(p−, q) = +{0}.
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(ii) For computational purposes in Sect. 6.3 we determine the fiber products of the
compactified Morse trajectory spaces of critical points p−, p+ ∈ Crit( f ) with the
same Morse index |p−| = |p+|,
M(p−, M)ev×evM(M, p+) = {(τ−, τ+) ∈M(p−, M)×M(M, p+)

∣∣ ev(τ−) = ev(τ+)
}

=
{

∅ p− �= p+,

(τ− ≡ p−, τ+ ≡ p+); p− = p+.

To verify this recall that the compactifications M(p−, M) and M(M, p+) are
constructed in (7) via broken flow lines involving bi-infinite Morse trajectories in
M(pi , pi+1), which are (defined to be) nonempty only for |pi | > |pi+1|. So we
have M(p−, p1) × . . . ×M(pk, M) ⊂ M(p−, M) only for |pk | < |p−| and
M(M, p1)× . . .×M(pk, p+) ⊂M(M, p+) only for |p1| > |p+|, and thus the
image of the evaluation maps are contained in unions of unstable/stable manifolds

ev(M(p−, M)) ⊂ W−
p− ∪

⋃

|q−|<|p−|
W−

q− , ev(M(M, p+)) ⊂ W+
p+ ∪

⋃

|q+|>|p+|
W+

q+ .

Since the intersectionsW−
q− ∩W+

q+ are transverse by the Morse–Smale condition,
they can be nonempty only for |q−|+dim M−|q+| ≥ dim M . So this intersection
is empty whenever |q+| > |q−|. Thus for |q−| < |p−| = |p+| < |q+| in the above
imageswe have empty intersectionsW−

q−∩W+
q+ = ∅ aswell asW−

q−∩W+
p+ = ∅ and

W−
p− ∩W+

q+ = ∅. This proves ev(M(p−, M)) ∩ ev(M(M, p+)) = W−
p− ∩W+

p+ ,
and for p− �= p+ this intersection is empty by transversality in (3). Lastly, for
p± = p we haveW−

p ∩W+
p = {p} since gradient flows do not allow for nontrivial

self-connecting trajectories. This proves M(p, M)ev×evM(M, p) = {(p, p)}.

4 The PSS and SSPmaps

In this section we construct the PSS and SSP morphisms in Theorem 1.3 between
Morse andFloer complexes.As in the introduction,wefixa closed symplecticmanifold
(M, ω) and a smooth function H : S1 × M → R. This induces a time-dependent
Hamiltonian vector field XH : S1 → 	(TM), which we assume to be nondegenerate.
Thus it has a finite set of contractible periodic orbits, denoted by P(H) as in (1). We
moreover pick a Morse function f : M → R and denote its—again finite—set of
critical points by Crit( f ). Then we will work with the Floer and Morse complexes
over the Novikov field from Sect. 2,

CF = ⊕γ∈P(H)�〈 γ 〉, CM = ⊕p∈Crit( f )�〈 p 〉,

and construct the �-linear maps PSS : CM → CF , SSP : CF → CM from
moduli spaces which we introduce in Sect. 4.1. We provide these moduli spaces with
a compactification and polyfold description in Sect. 4.2, and in Sect. 4.3 rigorously
construct the PSS/SSPmap by using polyfold perturbations to obtain well defined (but
still choice dependent) counts of compactified-and-perturbed moduli spaces.
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4.1 The Piunikhin–Salamon–Schwarzmoduli spaces

To construct the moduli spaces, we need to make further choices as follows.

• Let J be an ω-compatible almost complex structure on M .
Then the Cauchy–Riemann operator on maps u : � → M parametrized by a
Riemann surface � with complex structure j is ∂ J u := 1

2

(
du + J (u) ◦ du ◦ j

) ∈
�0,1(�, u∗TM).

• Let g be a metric on M such that ( f , g) is a Euclidean Morse–Smale pair as in
Definition 3.1. It exists by Remark 3.2.

• Let β : [0,∞) → [0, 1] be a smooth cutoff function with β|[0,1] ≡ 0, β ′ ≥ 0, and
β|[e,∞) ≡ 1.
Then we define the anti-holomorphic vector-field-valued 1-form YH ∈ �0,1(C,

	(TM)) in polar coordinates

YH (reiθ , x) := 1
2β(r)

(
J XH (θ, x) r−1dr + XH (θ, x) dθ

)
.

In the notation of [26, §8.1], we have YH = −(XHβ )0,1 given by the anti-
holomorphic part of the 1-formwith values inHamiltonian vector fields XHβ which
arises from the 1-form with values in smooth functions Hβ ∈ �1(C, C∞(M))

given by Hβ(reiθ ) = β(r)H(θ, ·)dθ .
The vector-field-valued 1-form YH encodes the Floer equation on both the pos-
itive cylindrical end {z ∈ C | |z| ≥ e} ∼= [1,∞) × S1 and the negative end
{|z| ≥ e} ∼= (−∞,−1] × S1 (where β ≡ 1) as follows: The reparametriza-
tion v(s, t) := u(e±(s+i t)) of a map u : C → M satisfies the Floer equation
(∂s + J∂t )v(s, t) = J XH (t, v(s, t)) iff ∂ J u(z) = YH (z, u(z)).

• For each γ ∈ P(H), fix a smooth disk uγ : D2 → M with uγ |∂D2(eit ) = γ (t).
We denote the oriented complex plane by C

+ := (C, i) = C, and denote its
reversed complex structure and orientation byC

− := (C,−i). Then for u : C
± →

M with limR→∞ u(Re±i t ) = γ (t), denote by u#uγ : CP
1 → M the continuous

map given by gluing u to u±γ (where the± denotes the orientation of D2). By abuse

of language, we will call A := [u#uγ ] = (u#uγ )∗[CP
1] ∈ H2(M) the homology

class represented by u. Moreover, we denote by ũγ : D2 → D2×M the graph of
uγ . Then the graph ũ : C → C×M, z �→ (z, u(z)) glues with ũ±γ to a continuous

map representing [̃u#ũγ ] = Ã := [CP
1] + A ∈ H2(CP

1×M), or more precisely
Ã = [CP

1] × [pt] + [pt] × A. Now the condition [v#ũγ ] = Ã makes sense for
other maps v : C → C × M with the same asymptotic behaviour, and we say v

represents Ã. In fact, we will suppress the notation Ã and label spaces with A—as
this specifies the topological type of v.

Given such choices, the (choice-dependent) morphisms PSS : CM → CF and
SSP : CF → CM will be constructed from the following moduli spaces for critical
points p ∈ Crit( f ), periodic orbits γ ∈ P(H), and A ∈ H2(M)

M(p, γ ; A) := {u : C
+ → M

∣∣ u(0) ∈ W−
p , ∂ J u = YH (u), lim

R→∞
u(Reit ) = γ (t), [u#uγ ] = A

}
,

M(γ, p; A) := {u : C
− → M

∣∣ u(0) ∈ W+
p , ∂ J u = YH (u), lim

R→∞
u(Re−i t ) = γ (t), [u#uγ ] = A

}
.
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Each of these moduli spaces can be described as the zero set of a Fredholm section
∂ J −YH : B± → E±. Here the Banach manifoldsB± are given by a weighted Sobolev
closure of the set of smoothmapsu : C

± → M representing the homology class Awith
point constraint u(0) ∈ W∓

p and satisfying a decay condition limR→∞ u(Re±i t ) =
γ (t), but not necessarily satisfying the perturbed Cauchy–Riemann equation ∂ J u =
YH (u). Then ∂ J − YH is a Fredholm section of index

I (p, γ ; A) = CZ(γ )+ 2c1(A)− dim M
2 + |p|,

I (γ, p; A) = −CZ(γ )+ 2c1(A)+ dim M
2 − |p|, (9)

where CZ(γ ) is the Conley–Zehnder index with respect to a trivialization of u∗γTM
as in e.g. [32], c1(A) is the first Chern class of (T M, J ) paired with A, and |p| is the
Morse index of p ∈ Crit( f ).

If the moduli spaces were compact oriented manifolds, then we could define PSS
(and analogously SSP) by a signed count of the index 0 solutions,

PSS〈 p 〉 :=
∑

γ,A

#M(p, γ ; A) · T ω(A)〈 γ 〉,

where the sum is over γ ∈ P(H) and A ∈ H2(M) with I (p, γ ; A) = 0. In many
cases—if sphere bubbles of negative Chern number can be excluded—this compact-
ness and regularity can be achieved by a geometric perturbation of the equation, e.g.
in the choice of almost complex structure. In general, obtaining well defined “counts”
of the moduli spaces requires an abstract regularization scheme. We will use poly-
fold theory to replace “#M(p, γ ; A)” by a count of 0-dimensional perturbed moduli
spaces. In the presence of sphere bubbles with nontrivial isotropy, the perturbations
will be multi-valued, yielding rational counts.

Remark 4.1 Compactness, or rather Gromov-compactifications, of the moduli spaces
M(p, γ ; A) and M(γ, p; A) will result from energy estimates [26, Remark 8.1.7]
for solutions of ∂ J u = YH (u),

E(u) := 1

2

∫

C

|du + XHβ (u)| ≤
∫

C

u∗ω + ‖RHβ‖ ≤ ω([u#uγ ])+ K . (10)

Here the curvature RHβ dvolC = dHβ + 1
2Hβ ∧ Hβ = β ′ H dr ∧ dθ has finite Hofer

norm

‖RHβ ‖ =
∫

C
(max RHβ −max RHβ ) =

∫ ∞

0

∫

S1
|β ′(r)|(maxx∈M H(θ, x)−minx∈M H(θ, x)) dθ dr

since β ′ has compact support in [1, e]. Since moreover P(H) is a finite set, we obtain
the above estimate with a finite constant K := ‖RHβ‖ + maxγ∈P(H)

∫
D2 u∗γ ω. Thus

the energy of the perturbed pseudoholomorphic maps in each of our moduli spaces
will be bounded since we fix [u#uγ ] = A.
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NowSFT-compactness [2] asserts that for anyC > 0 the set of solutions of bounded
energy {u : C → M | ∂ J u = YH (u), limR→∞ u(Re±i t ) = γ (t), E(u) ≤ C} is
compact up to breaking and bubbling. This compactness will be stated rigorously in
polyfold terms in Assumption 5.5 (ii).

4.2 Polyfold description of moduli spaces

We will obtain a polyfold description for the moduli spaces in Sect. 4.1 by a fiber
product construction motivated by the natural identifications

M(p, γ ; A) ∼=M(p, M)ev×evM−(γ ; A),

M(γ, p; A) ∼=M+(γ ; A)ev×evM(M, p). (11)

This couples the half-infinite Morse trajectory spaces from Sect. 3.3 with a space of
perturbed pseudoholomorphic maps

M±(γ ; A) := {u : C
± → M

∣∣ ∂ J u = YH (u), lim
R→∞

u(Re±i t ) = γ (t), [u#uγ ] = A
}
,

(12)

via the evaluation maps (8) and

ev :M±(γ ; A) → M, u �→ u(0). (13)

More precisely, the general approach to obtaining counts or more general invariants
from moduli spaces such as (11) is to replace them by compact manifolds—or more
general ‘regularizations’ which still carry ‘virtual fundamental classes’). Polyfold
theory offers a universal regularization approach after requiring a compactification
M(. . .) ⊂ M(. . .) of the moduli space and a description of the compact moduli
space M(. . .) = σ−1(0) as zero set of a sc-Fredholm section σ : B(. . .) → E(. . .)

of a strong polyfold bundle. For an introduction to the language [22] used here see
Appendix §A.

The Morse trajectory spaces are compactified and given a smooth structure in
Theorem 3.3. The Gromov compactification and perturbation theory for (12) will be
achieved by identifying theses spaces with moduli spaces that appear in Symplectic
Field Theory (SFT) as introduced in [8], compactified in [2,4], and given a polyfold
description in [15]. Here we identify u : C → M with the map to its graph ũ : C →
C × M, z �→ (z, u(z)) as in [26, §8.1] to obtain a homeomorphism (in appropriate
topologies) M±(γ ; A) ∼= M̃±

SFT(γ̃ ; A)/Aut(C±) to an SFT moduli space for the
symplectic cobordism1

C
± × M between ∅ and S1 × M . Here S1 × M is equipped

with the stable Hamiltonian structure (±dt, ω+dHt∧dt)whose Reeb field±∂t+XHt

has simply coveredReeb orbits2 given by the graphs γ̃ : t �→ (±t, γ (t))of the periodic

1 For definitions of these notions see [4, §2]. ForC×M the positive symplectization end isR
+×S1×M →

C × M, (r , θ, x) �→ (er+iθ , x). After reversing orientation on C there is an analogous negative end
R
− × S1 × M ↪→ C

− × M .
2 Here we have implicitly chosen asymptotic markers that fix a parametrization of each Reeb orbit.
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orbits γ ∈ P(H). Moreover, Aut(C±) is the action of biholomorphisms φ : C → C

by reparametrization v �→ v ◦ φ on the SFT space for an almost complex structure
J̃±H on C

± × M induced by J , XH , and j = ±i on C
±,

M̃±
SFT(γ̃ ; A) := {v : C

± → C
± × M

∣∣ ∂ J̃±H
v = 0, v(Re±i t ) ∼ γ̃R(t), [v#ũγ ] = [CP

1] + A
}
.

More precisely, the asymptotic requirement is dC×M
(
v(Re±i(t+t0)), γ̃R(t)

) → 0 for
some t0 ∈ S1 as R → ∞ for the graphs γ̃R(t) = (Re±i t , γ (t)) of the orbit γ

parametrized by S1 ∼= {|z| = R} ⊂ C
±.

To express the evaluation (13) in SFT terms note that a holomorphicmap in the given
homology class intersects the holomorphic submanifold {0}×M in a unique point3, so
we can fix the point 0 ∈ C

± in the domain where this intersection occurs and rewrite
the moduli space M±(γ ; A) ∼= {v ∈ M̃±

SFT(γ̃ ; A)
∣∣ v(0) ∈ {0} × M

}
/Aut(C±, 0)

with a slicing condition and quotient by the biholomorphisms which fix 0 ∈ C
±. Thus

we rewrite (11) into the fiber products over C
± × M

M(p, γ ; A) ∼= M(p, M) {0}×ev×ev+ M+
SFT(γ ; A),

M(γ, p; A) ∼= M−
SFT(γ ; A) ev−×{0}×ev M(M, p) (14)

using evaluation maps on the SFT moduli space with one marked point

ev± : M±
SFT(γ ; A) := M̃±

SFT(γ̃ ; A)/
Aut(C±, 0) → C

± × M, [v] �→ v(0).

(15)

Now we will obtain a polyfold description of the PSS/SSP moduli spaces (14) by
the slicing construction of [10] applied to polyfold descriptions of the SFT-moduli
spacesM±

SFT(γ̃ ; A) (compactified as space of pseudoholomorphic buildings with one
marked point). This result is outlined in [12], but to enable a self-contained proof of
our results, we formulate it as assumption, where we use

C± := C
± ∪ S1 ∼= {z ∈ C

± | |z| ≤ 1}

as target factor for a simplified evaluation map, as explained in the following remark.

Remark 4.2 Note that the compactified moduli space M±
SFT(γ ; A) – in view of the

noncompact target C
± × M—contains broken curves v : � = C

± 
 R× S1 
 . . . 

R × S1 → � × M . We do not need a precise description of this compactification
(beyond the fact that it exists and is cut out by a sc-Fredholm section), but it affects the
formulation of the evaluation maps [v, z0] �→ v(z0) for a marked point z0 ∈ � that v
mightmap to a cylinder factorR×S1×M ⊂ �×M .Wewill simplify the resulting sc∞

3 For solutions inM̃±
SFT(γ̃ ; A) this follows from prC± ◦v : C

± → C
± being an entire functionwith a pole

of order 1 at infinity (prescribed by the asymptotics). For J̃±H -holomorphic curves in the compactification,
it follows from positivity of intersections, see e.g. [5, Prop.7.1].
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evaluation with varying target—being developed in [15]—to a continuous evaluation
map ev± :M±

SFT(γ ; A) → C± into the compactified target C±.
For that purpose we topologize C± ∼= {|z| ≤ 1} as a disk via a diffeomorphism

C
± → {|z| < 1}, reiθ �→ f (r)eiθ induced by a diffeomorphism f : [0,∞) → [0, 1)

that is the identity near 0, and its extension to a homeomorphism C± → {|z| ≤ 1}
via S1 = R/2πZ

→ {|z| = 1}, θ �→ e±iθ . Then for any marked point z0 ∈ R× S1 on

a cylinder we project the evaluation v(z0) ∈ R × S1 × M to S1 × M = ∂ C± × M
by forgetting the R-factor. The resulting simplified evaluation map will be unchanged
and thus still sc∞ when restricted to the open subset (ev±)−1(C±×M) of the ambient
polyfold—as stated in (iii) below. This open subset inherits a scale-smooth structure,
and still contains some broken curves—just not those onwhich themarked point leaves
themain component. This suffices for our purposes since the fiber product construction
uses the evaluation map only in an open set of curves [v, z0] with v(z0) ≈ 0 ∈ C

±.

In Assumption 4.3, Remark 4.4, and Lemma 4.5we introduce some of the polyfolds
under construction in [15] and their expected properties. To describe these objects we
introduce a significant amount of notation. A summary of the types of curves in each
polyfold and subsets thereof is displayed in Table 1 for the reader’s convenience.

Assumption 4.3 There is a collection of oriented sc-Fredholm sections of strong
polyfold bundles σSFT : B±SFT(γ ; A) → E±SFT(γ ; A) and continuous maps
ev± : B±SFT(γ ; A) → C± × M , indexed by γ ∈ P(H) and A ∈ H2(M), with the
following properties.

(i) The sections have Fredholm index ind(σSFT) = CZ(γ )+ 2c1(A)+ dim M
2 + 2 on

B+SFT(γ ; A), resp. ind(σSFT) = −CZ(γ )+ 2c1(A)+ dim M
2 + 2 on B+SFT(γ ; A).

(ii) Each zero set M±
SFT(γ ; A) := σ−1SFT(0) is compact, and given any C ∈ R there

are only finitely many A ∈ H2(M) with ω(A) ≤ C and nonempty zero set
σ−1SFT(0) ∩ B±SFT(γ ; A) �= ∅.

(iii) The sections σSFT have tame sc-Fredholm representatives in the sense of [10,
Def.5.4], and the evaluation maps ev± restrict on the open subsets B±,C

SFT (γ ; A) :=
(ev±)−1(C± × M) ⊂ B±SFT(γ ; A) to sc∞ maps ev± : B±,C

SFT (γ ; A) → C
± × M ,

which are σSFT-compatibly submersive in the sense of Definition A.4. Finally, this
open subset contains the interior, ∂0B±SFT(γ ; A) ⊂ B±,C

SFT (γ ; A).

Remark 4.4 (i) The polyfolds, bundles, and sections in Assumption 4.3 are con-
structed for a closely analogous situation (considering curves in R × Q, with
e.g. Q = S1 × M) in [12, §3], so – while not needed for our proof—we state the
following properties for intuition:
Equivalence classes under reparametrization of Aut(C±, 0) of smooth maps
v : C

± → C
± × M that satisfy v(Re±i t ) = (

Re±i t , γ (t)
)
for sufficiently

large R > 1 and represent the class [v#ũγ ] = [CP
1] + A form a dense subset

B±dense(γ ; A) ⊂ B±SFT(γ ; A) contained in the interior. On this subset, the section is
σSFT([v]) = [(v, ∂ J̃±H

v)] and ev±([v]) is evaluation as in (15). The intersection of
σ−1SFT(0) with this dense subset is contained in the moduli spaceM±

SFT(γ ; A) from
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Table 1 Summary of the polyfolds and their subsets introduced in this section

Notation Description Definition

B±dense(γ ; A) Elements are equivalence classes under reparameterization
by Aut(C±, 0) of smooth maps v : C

± → C
± × M that

satisfy v(Re±i t ) = (Re±i t , γ (t)
)
for sufficiently large

R > 1 and represent the class [v#ũγ ] = [CP
1] + A

Remark 4.4

B±SFT(γ ; A) A polyfold with dense subset B±dense(γ ; A), which contains

the SFT-compactification M±
SFT(γ ; A) of the moduli

space in (15)

Assumption 4.3,
Remark 4.4

B±,C
SFT (γ ; A) The open subset of B±SFT(γ ; A) containing the curves

whose evaluation at a marked point lands in C
± × M

rather than in a broken off cylinder R× S1 × M ; see
Remark 4.2

Assumption 4.3(iii)

B̃+(p, γ ; A) Elements are pairs of a half-infinite broken Morse trajectory
starting from the critical point p and a curve in

B+,C
SFT (γ ; A), whose evaluation agrees with the end point

of the Morse trajectory

(16)

B̃−(γ, p; A) Elements are pairs of a half-infinite broken Morse trajectory

ending at the critical point p and a curve in B−,C
SFT (γ ; A),

whose evaluation agrees with the starting point of the
Morse trajectory

(16)

B+(p, γ ; A) Open subset of B̃+(p, γ ; A)1 containingM(p, γ ; A) over
which the section σ+

(p,γ ;A)
is sc-Fredholm (possibly

smaller than B̃+(p, γ ; A)1 due to shrinking in [10,
Cor.7.3])

Lemma 4.5

B−(γ, p; A) Open subset of B̃−(γ, p; A)1 containing M(γ, p; A) over
which the section σ−

(p,γ ;A)
is sc-Fredholm

Lemma 4.5

(15). The full moduli spaceM±
SFT(γ ; A) is obtained by enlarging B±dense(γ ; A) to

include equivalence classes with supt∈S1 dC×M
(
v(Re±i t ), (Re±i t , γ (t))

)→ 0 as
R → ∞. However, only classes with specific exponential decay of this quantity
and related derivatives are contained in B±SFT(γ ; A).

(ii) The sc-smooth structure, sc-Fredholm property, and compactness is stated in [12,
Thm.3.4]. The proof of polyfold and bundle structure outlined in [12, §7–11]
extends the construction of Gromov–Witten polyfolds in [23] by local models
for punctures and neck-stretching from [14, §3], using the implanting method
in [13, §3,§5]. These constructions automatically satisfy the tameness assumed
in (iii). The nonlinear Fredholm property needs to be proven globally—in close
analogy to [23]. The Fredholm index stated in (i) is computed in a local chart,
where the linearized section coincides with a restriction of the classical linearized
Cauchy–Riemann operator to a local slice to the reparametrization action. The
compactness properties follow from SFT-compactness of the moduli spaces [2]
since the topology on the polyfolds given in [12, §3.4] generalizes the notion of
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SFT-convergence. Orientations are constructed in [12, §15]. Sc-smoothness of the
evaluation maps is proven analogously to [23, Thm.1.8], and their submersion
property in (iii), which is used to construct fiber products in Lemma 4.5, is proven
as in [10, Ex.5.1].

(iii) We also expect the existence of a direct polyfold description of the moduli space
(12) in terms of a collection of sc-Fredholm sections σ : B±(γ ; A) → E±(γ ; A)

with the same indices, and submersive sc∞ maps ev± : B±(γ ; A) → M with the
following simplified properties.
The smooth maps u : C → M which equal u(Re±i t ) = γ (t) for sufficiently
large R > 1 and represent the class A form a dense subset of B±(γ ; A) that is
contained in the interior. On this subset, the section is σ(u) = ∂ J u − YH (u),
and the evaluation is ev±(u) = u(0). The intersection of σ−1(0) with this dense
subset is contained in the moduli space M±(γ ; A) from (12). The full moduli
space M±(γ ; A) is obtained by enlarging the dense subset to include maps with
supt∈S1 dM

(
u(Re±i t ), γ (t)

) → 0 as R → ∞. However, only maps with spe-
cific exponential decay of this quantity and related derivatives are contained in
B±(γ ; A).
While such a construction should follow from the same construction principles
as in [12], there is presently no writeup beyond [37], which proves the Fredholm
property in a model case. Alternatively, one could abstractly obtain this construc-
tion from restricting the setup in Assumption 4.3 to subsets consisting of maps of
the form v(z) = (z, u(z)). Thus there would be no harm in using this property as
intuitive guide for following our work with the abstract setup.

Given one or another polyfold description of the naturally identified moduli spaces
(12) or (15) and corresponding evaluationmaps, wewill now extend the identifications
(11) or (14) to a fiber product construction of polyfolds which will contain these
PSS/SSP moduli spaces. For p ∈ Crit( f ), γ ∈ P(H), and A ∈ H2(M) we define the
topological spaces

B̃+(p, γ ; A) := {(τ , v) ∈M(p, M)× B+SFT(γ ; A)
∣∣ (0, ev(τ )) = ev+(v)

}

= {(τ , v) ∈M(p, M)× B+,C
SFT (γ ; A)

∣∣ (0, ev(τ )) = ev+(v)
}
,

B̃−(γ, p; A) := {(v, τ ) ∈ B−SFT(γ ; A)×M(M, p)
∣∣ (0, ev(τ )) = ev−(v)

}

= {(v, τ ) ∈ B−,C
SFT (γ ; A)×M(M, p)

∣∣ (0, ev(τ )) = ev−(v)
}
. (16)

We will use [10] to equip these spaces with natural polyfold structures and show that
the pullbacks of the sections σSFT by the projections to B±SFT(γ ; A) yield sc-Fredholm
sections whose zero sets are compactifications of the PSS/SSP moduli spaces. This
will require a shift in levels which is of technical nature as each m-level Bm ⊂ B
contains the dense “smooth level” B∞ ⊂ Bm , which itself contains the moduli space
M = σ−1(0) ⊂ B∞; see Remark A.3.

Lemma 4.5 For any p ∈ Crit( f ), γ ∈ P(H), and A ∈ H2(M) there exist open subsets
B+(p, γ ; A) ⊂ B̃+(p, γ ; A)1 and B−(γ, p; A) ⊂ B̃−(γ, p; A)1 which contain the
smooth levels B̃±(. . . ; A)∞ of the fiber products (16) and inherit natural polyfold
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structures. The smooth level of their interior is4

∂0B+(p, γ ; A)∞ = M(p, M) {0}×ev×ev+ ∂0B+,C
SFT (γ ; A)∞,

∂0B−(γ, p; A)∞ = ∂0B−,C
SFT (γ ; A)∞ ev−×{0}×ev M(M, p).

Moreover, pullback of the sc-Fredholm sections of strong polyfold bundles σ±SFT :
B±SFT(γ ; A) → E±SFT(γ ; A) under the projection B±(. . . ; A) → B±SFT(. . . ; A)

induces sc-Fredholm sections of strong polyfold bundles σ+
(γ,p;A)

: B+(γ, p; A) →
E+(γ, p; A) resp. σ−

(p,γ ;A)
: B−(p, γ ; A) → E−(p, γ ; A) of index I (p, γ ; A) resp.

I (γ, p; A) given in (9). Their zero sets contain5 the moduli spaces from Sect. 4.1,

σ+
(p,γ ;A)

−1(0) = M(p, M) {0}×ev×ev+ σ+SFT
−1

(0) ⊃ M(p, γ ; A),

σ−
(γ,p;A)

−1(0) = σ−SFT
−1

(0) ev−×{0}×ev M(M, p) ⊃ M(γ, p; A).

Finally, each zero set σ±
(...;A)

−1(0) is compact, and given any p ∈ Crit( f ), γ ∈ P(H),
and C ∈ R, there are only finitely many A ∈ H2(M) with ω(A) ≤ C and nonempty
zero set σ±

(...;A)
−1(0) �= ∅.

Proof We will follow [10, Cor.7.3] to construct the PSS polyfold, bundle, and sc-
Fredholm section σ+p,γ ;A in detail, and note that the construction of the SSP section

σ−
γ,p;A is analogous.

Consider an ep-groupoid representative X = (X ,X) of the polyfold B+SFT(γ ; A)

with source and target maps denoted s, t : X → X together with a strong bundle
P : W → X over the M-polyfold X and a structure map μ : Xs×PW → X
such that the pair (P, μ) is a strong bundle over X representing the polyfold bundle
E+SFT(γ ; A) → B+SFT(γ ; A). In addition, consider a sc-Fredholm section functor SSFT :
X → W of (P, μ) that represents σ+SFT. The ep-groupoidX and the bundle (P, μ) are
tame, since they represent a tame polyfold and a tame bundle, respectively. Moreover,
SSFT is a tame sc-Fredholm section in the sense of [10,Def.5.4] byAssumption 4.3(iii).

We view the Morse moduli spaceM(p, M) as the object space of an ep-groupoid
with morphism space another copy ofM(p, M) and with unit map a diffeomorphism;
that is, the only morphisms are the identity morphisms. The unique rank-0 bundle
over M(p, M) is a strong bundle in the ep-groupoid sense, and the zero section of
this bundle is a tame sc-Fredholm section functor. Next, note that B̃+(p, γ ; A) ⊂{
(τ , v) ∈M(p, M)× |X | | ev+(v) ∈ {0} × M

} ⊂M(p, M)× |X ev| is represented
within the open subset X ev := (ev+)−1(C × M) ⊂ X and the corresponding full
ep-subgroupoid X ev of X , which represent the open subset B+,C

SFT (γ, A) ⊂ |X |, and
by Assumption 4.3(iii) the restricted evaluation ev+ : X ev → C × M is sc∞ and
SSFT-compatibly submersive (see Definition A.4). Denote by ev0 : M(p, M) →
4 Here we can only make statements about the smooth level because we do not know what points of other
levels are included in the fiber products. This is sufficient for applications as the zero set of any sc-Fredholm
section (and its admissible perturbations) is contained in the smooth level.
5 As in Remark 4.4, this identification is stated for intuition and will ultimately not be used in our proofs.
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C×M, τ �→ (0, ev(τ )) the product of the trivialmap to0 ∈ C and theMorse evaluation
map.Weclaim that the productmapev0×ev+ :M(p, M)×X ev → (C×M)×(C×M)

is SSFT-compatibly transverse to the diagonal� ⊂ (C×M)×(C×M). Indeed, given
(τ , v) ∈ (ev0 × ev+)−1(�) let L ⊂ TR

v X ev be a sc-complement of the kernel of the
linearization of ev+ at some v ∈ X ev∞ that satisfies the conditions for SSFT -compatible
submersivity in Definition A.4 w.r.t. a coordinate change ψev on a chart of X ev. Then
the subspace {0} × L ⊂ TR

τ M(p, M) × TR
v X ev satisfies the conditions for SSFT-

compatible transversality of ev0 × ev+ with � at (τ , v) w.r.t. the product change of
coordinates id × ψev in a product chart on the Cartesian product M(p, M) × X ev.
(See [10, Lem.7.1, 7.2] for a discussion of the sc-Fredholm property on Cartesian
products.)

Next, note thatM(p, x)ev0×ev+X
ev∞ represents the smooth level of the fiber product

topological space B̃+(p, γ ; A). So [10, Cor.7.3] yields an open neighbourhood X ′ ⊂
M(p, M)ev0×ev+X

ev
1 containing the smooth levelM(p, x)ev0×ev+X

ev∞ such that the
full subcategory X ′ := (X ′,X′) of M(p, M) × X ev

1 is a tame ep-groupoid and the
pullbacks of (P, μ) and SSFT to X ′ are a tame bundle and tame sc-Fredholm section.
Here we used the fact that the smooth level M(p, x)∞ = M(p, x) of any finite
dimensional manifold is the manifold itself; see Remark A.3.

The tame ep-groupoid X ′ yields the claimed polyfold B+(p, γ ; A) := |X ′|, and
similarly the pullbacks of (P, μ) and SSFT through the projection X ′ → X1 define
the claimed bundle and sc-Fredholm section σ+

(p,γ ;A)
: B+(p, γ ; A) → E+(p, γ ; A).

The identification of the interior ∂0B+(p, γ ; A)∞ follows from the degeneracy index
formula dX ′(x1, x2) = dM(p,M)

(x1)+ dX (x2) in [10, Cor.7.3] and the interior of the

Morse trajectory spaces ∂0M(p, M) =M(p, M) from Theorem 3.3.
The index formula in [10,Cor.7.3] yields ind(σ+

(p,γ ;A)
) = ind(σSFT)+|p|−dim(C×

M) = I (p, γ ; A) since dimM(p, M) = |p| and ind(σSFT) = CZ(γ ) + 2c1(A) +
1
2 dim M + 2.

Finally, the zero set σ+
(p,γ ;A)

−1
(0) is the fiber product of the zero sets as claimed, as

these are contained in the smooth level, and the restriction to ev−1({0} × M) already
restricts considerations to the domain X ev from which the fiber product polyfold

is constructed. Moreover, σ+
(p,γ ;A)

−1
(0) is compact as in [10, Cor.7.3], since both

M(p, M) and σ+SFT
−1

(0) are compact and both ev0 and ev+ are continuous. The final
statement then follows from Assumption 4.3(ii). �


4.3 Construction of themorphisms

To construct the �-linear maps PSS and SSP in Theorem 1.3 with relatively compact
notation we index all moduli spaces from Sect. 4.1 by the two sets

I+ := {
α = (p, γ ; A)

∣∣ p ∈ Crit( f ), γ ∈ P(H), A ∈ H2(M)
}
,

I− := {
α = (γ, p; A)

∣∣ p ∈ Crit( f ), γ ∈ P(H), A ∈ H2(M)
}
.
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To simplify notation we then denote I := I− ∪ I+ and drop the superscripts from
the polyfolds B(α) = B±(α). Since Lemma 4.5 provides each moduli space M(α)

for α ∈ I with a compactification and polyfold description M(α) ⊂ σ−1α (0), we
can apply [22, Theorems 18.2,18.3,18.8] to obtain admissible regularizations of the
moduli spaces, and counts of the 0-dimensional perturbed solution spaces [22, §15.4],
in the following sense. Here we denote by Q

+ := Q∩ [0,∞) the groupoid with only
identity morphisms.

Corollary 4.6 (i) For every α ∈ I, choice of neighbourhood of the zero sets σ−1α (0) ⊂
Vα ⊂ B(α), and choice of sc-Fredholm section functor Sα : Xα → Wα repre-
senting σα|Vα

, there exists a pair (Nα,Uα) controlling compactness in the sense
of Definition A.5 with |S−1α (0)| ⊂ |Uα| ⊂ Vα .
For α ∈ I with σ−1α (0) = ∅ we can choose Uα = ∅.

(ii) For every collection (Nα,Uα)α∈I of pairs controlling compactness, there exists a
collection κ = (κα : Wα → Q

+)
α∈I of (Nα,Uα)-admissible sc+-multisections

in the sense of [22, Definitions 13.4,15.5] that are in general position relative to
(Sα)α∈I in the sense that each pair (Sα, κα) is in general position as per [22,
Def.15.6].
Here admissibility in particular implies κα ◦ Sα|Xα�Uα

≡ 0 and thus κα ◦ Sα ≡ 0
when σ−1α (0) = ∅.

(iii) Every collection κ of admissible sc+-multisections in general position from (ii)
induces a collection of compact, tame, branched ep+-groupoids

(
κα ◦ Sα : Xα →

Q
+)

α∈I . In particular, each perturbed zero set

Zκ(α) := ∣∣{x ∈ Xα | κα(Sα(x)) > 0}∣∣ ⊂ |Uα|∞ ⊂ |Xα|∞ ∼= B(α)∞

is compact, contained in the smooth level, and carries the structure of a weighted
branched orbifold of dimension I (α) as in (9). Moreover, the inclusion in |Uα| and
general position of κ implies that for I (α) < 0 or σ−1α (0) = ∅ the perturbed zero
set Zκ(α) = ∅ is empty.

(iv) For α ∈ I with Fredholm index I (α) = 0 and κα : Wα → Q
+ as in (ii) the

perturbed zero set is contained in the interior Zκ(α) ⊂ ∂0B(α)∞ and yields a
well defined count

#Zκ (α) :=
∑

|x |∈Zκ (α)

oσα (x) κα(Sα(x)) ∈ Q.

Here oσα (x) ∈ {±1} is determined by the orientation of σα as in [22, Thm.6.3].
If |Uα| ∩ ∂B(α) = ∅ then this count is independent of the choice of admissible
sc+-multisection κα .

(v) For every α ∈ I with Fredholm index I (α) = 1 and κα : Wα → Q
+ as in (ii)

the boundary of the perturbed zero set is given by its intersection with the first
boundary stratum of the polyfold,

∂Zκ(α) = Zκ(α) ∩ ∂1B(α)∞.
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With orientations oσα |∂B(α)(x) ∈ {±1} induced by the boundary restriction σα|B(α)

this implies

#∂Zκ(α) =
∑

|x |∈∂Zκ (α)

oσα |∂B(α)
(x) κα(Sα(x)) = 0.

Remark 4.7 (i) The statements in (iv) and (v) of Corollary 4.6 require orientations of
the sections σα for α ∈ I. By the fiber product construction in Lemma 4.5 they do
indeed inherit orientations from the orientations of the Morse trajectory spaces in
Remark 3.5, the orientations of σ±SFT given in Assumption 4.3, and an orientation
convention for fiber products.
In practice, we will construct the perturbations κ in Corollary 4.6 by pullback of
perturbations λ = (λ±γ,A)γ∈P,A∈H2(M) of the oriented SFT-sections σ±SFT. Thus it
suffices to specify the orientations of the regularized zero sets, which is implicit
in their identification with transverse fiber products of oriented spaces over the
oriented manifold M ,

Zκ (p, γ ; A) = M(p, M) ev0×ev+ Zλ(γ ; A),

Zκ (γ, p; A) = Zλ(γ ; A) ev−×ev0 M(M, p).

Orientations of the boundary restrictions in (v) are then induced by the orientations
of Zκ(α), via oriented isomorphisms of the tangent spaces Rν(z)× Tz∂Zκ(α) ∼=
Tz Zκ(α), where ν(z) ∈ Tz Zκ(α) is an exterior normal vector at z ∈ ∂Zκ(α).

(ii) Note that the counts in part (iv) of this Corollary may well depend on the choice of
the multi-valued perturbations κα—unless the ambient polyfold has no boundary,
∂B(α) = ∅. Indeed, although the moduli spaceM(α) is expected to have dimen-
sion 0, it may not be cut out transversely from the ambient polyfold B(α), and
moreover it may not be compact. Assumption 4.3 provides an inclusion in a com-
pact set M(α) ⊂ σ−1α (0), and the perturbation theory for sc-Fredholm sections
of strong bundles then associates to σ−1α (0) a perturbed zero set Zκ(α) ⊂ B(α)

with weight function κα ◦ Sα : Zκ(α) → Q∩ (0,∞). This process generally adds
points on the boundary σ−1α (0)�M(α) ⊂ B(α)�∂0B(α), which may or may not
persist under variations of the perturbation κα .

The following construction of morphisms will depend on the choices of pertur-
bations and orientation convention (see the previous remark) as well as geometric
data fixed in Sect. 4.1, and possibly the choice of polyfold construction in Assump-
tion 4.3 and ep-groupoid representation in Remark A.2. The algebraic properties in
Theorem 1.3 will be achieved in Sect. 6—for any given choice of geometric data—by
particular choices of ep-groupoids and perturbations κ±, and an overall sign adjust-
ment.

Definition 4.8 Given collections κ± = (κ±α )α∈I± of admissible sc+-multisections in
general position as in Corollary 4.6, we define the maps PSSκ+ : CM → CF and
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SSPκ− : CF → CM to be the �-linear extension of

PSSκ+〈 p 〉 :=
∑

γ,A
I (p,γ ;A)=0

#Zκ+(p, γ ; A) · T ω(A)〈 γ 〉,

SSPκ−〈 γ 〉 :=
∑

p,A
I (γ,p;A)=0

#Zκ−(γ, p; A) · T ω(A)〈 p 〉.

Lemma 4.9 The maps PSSκ+ : CM → CF and SSPκ− : CF → CM in Defini-
tion 4.8 are well defined, i.e. the coefficients take values in the Novikov field � defined
in Sect. 2.

Proof To prove that PSSκ+ is well definedwe need to check finiteness of the following
set for any p ∈ Crit( f ), γ ∈ P(H), and c ∈ R,

{
r ∈ ω(H2(M)) ∩ (−∞, c]

∣∣∣
∑

A∈H2(M)
ω(A)=r

#Zκ+(p, γ ; A) �= 0
}
.

Here ω : H2(M) → R is given by pairing with the symplectic form on M , and recall
from Lemma 4.5 that there are only finitely many homology classes A ∈ H2(M) with
ω(A) ≤ c and σ−1α (0) �= ∅. On the other hand, the perturbations κ+ were chosen in
Corollary 4.6 (iii),(iv) so that #Zκ+(. . . ; A) = 0 whenever σ−1α (0) = ∅. Thus there
are in fact only finitely many A ∈ H2(M) with ω(A) ≤ c and #Zκ+(. . . ; A) �= 0,
which proves the required finiteness. The proof for SSPκ− is analogous. �


5 The chain homotopymaps

In this section we construct�-linear maps ι : CM → CM and h : CM → CM on the
Morse complex over the Novikov field � given in (5), which appear in Theorem 1.3.
For that purpose we again fix a choice of geometric data as in Sect. 4.1 to construct
moduli spaces in Sects. 5.1 and 5.2. We equip these with polyfold descriptions in
Sect. 5.3, and define the maps ι, h for admissible regular choices of perturbations in
Definitions 5.8. To obtain the algebraic properties claimed in Theorem 1.3 (i)–(iii) we
will then construct particular “coherent” choices of perturbations in Sect. 6.

5.1 Moduli spaces for the isomorphism �

We will construct ι : CM → CM from the following moduli spaces for critical
points p−, p+ ∈ Crit( f ), A ∈ H2(M), using the almost complex structure J and the
unstable/stable manifolds (see Sect. 3.3) of the Morse–Smale pair ( f , g) chosen in
Sect. 4.1,

Mι(p−, p+; A) := {u : CP
1 → M

∣∣ u([1 : 0]) ∈ W−
p− , u([0 : 1]) ∈ W+

p+ , ∂ J u = 0, [u] = A
}
.

(17)
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Note that a cylinder acts on this moduli space by reparametrization with biholomor-
phisms of CP

1 that fix the two points [1 : 0], [0 : 1]. However, we do not quotient out
this symmetry so describe these moduli spaces as the zero set of a Fredholm section
over a Sobolev closure of the set of smooth maps u : CP

1 → M in the homology
class [u] = A satisfying the point constraints u([1 : 0]) ∈ W−

p− and u([0 : 1]) ∈ W+
p+ .

This determines the Fredholm index as

I ι(p−, p+; A) = 2c1(A)+ |p−| − |p+|. (18)

As inSect. 4.2wewill obtain a compactification andpolyfold description of thismoduli
space by identifying it with a fiber product of Morse trajectory spaces and a space of
pseudoholomorphic curves, in this case the space of parametrized J -holomorphic
spheres with evaluation maps for z0 ∈ CP

1,

evz0 : M(A) := {u : CP
1 → M

∣∣ ∂ J u = 0, [u] = A
} → M, u �→ u(z0).

With this we can describe the moduli space (17) as fiber product with the half-infinite
Morse trajectory spaces from Sect. 3.3, using z+0 := [1 : 0] and z−0 := [0 : 1]

Mι(p−, p+; A) ∼= M(p−, M) ev×ev
z+0

M(A) ev
z−0
×ev M(M, p+). (19)

Note here that we are not working with a Gromov–Witten moduli space, as we do
not quotient by Aut(CP

1). This is due to the chain homotopy in Theorem 1.3 (iii),
which will result from identifying a compactification of M(A) with a boundary of
the neck-stretching moduli space MSFT(A) in (26) that appears in Symplectic Field
Theory [8]. For that purpose we identify a solution u : CP

1 → M with the map to its
graph ũ : CP

1 → CP
1 × M, z �→ (z, u(z)) as in [26, §8.1]. This yields is a bijection

(and homeomorphism in appropriate topologies)

M(A) ∼= M̃GW([CP
1] + A) := {v : CP

1 → CP
1 × M

∣∣ ∂ J̃v = 0, [v] = [CP
1] + A

}

Aut(CP
1)

between the Cauchy–Riemann solution space for M and the Gromov–Witten moduli
space forCP

1×M in class [CP
1]+A for the split almost complex structure J̃ := i× J

on CP
1 × M . To transfer the evaluation maps at z+0 = [1 : 0] and z−0 = [0 : 1] we

keep track of these as (unique) marked points mapping to {z±0 } × M and thus replace
(19) by a fiber product over CP

1 × M ,

Mι(p−, p+; A) ∼= M(p−, M) {z+0 }×ev×ev+ MGW(A) ev−×{z−0 }×ev M(M, p+).

(20)
This uses the evaluation maps from a Gromov–Witten moduli space with two marked
points,

ev± : MGW(A) := M̃GW([CP
1] + A)

/

Aut(CP
1, z−0 , z+0 )

→ CP
1 × M,

[v] �→ v(z±0 ), (21)
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where Aut(CP
1, z−0 , z+0 ) denotes the set of biholomorphisms φ : CP

1 → CP
1 which

fix φ(z±0 ) = z±0 . The polyfold setup in [23, Theorems 1.7,1.10,1.11] for Gromov–
Witten moduli spaces now provides a strong polyfold bundle EGW(A) → BGW(A),
and oriented sc-Fredholm section σGW : BGW(A) → EGW(A) that cuts out a compact-
ificationMGW(A) = σ−1GW(0) ofMGW(A). Here a dense subset of the base polyfold
BGW(A) consists of Aut(CP

1, z−0 , z+0 )-orbits of smooth maps v : CP
1 → CP

1 × M
in the homology class [v] = [CP

1] + A, which implicitly carries the two marked
points z±0 ∈ CP

1. Nodal curves in MGW(A) then explicitly come with the data
of two marked points on their domain. On the dense subset the section is given by
σGW([v]) = [(v, ∂ J̃v)]. The setup in [23, Theorem 1.8] moreover provides sc∞ eval-
uation maps ev± : BGW(A) → CP

1 × M at the marked points, which on the dense
subset are given by ev±([v]) = v(z±0 ).

Thus we have given each factor in the fiber product (20) a compactification6 that is
either a manifold with corners given by the compactified Morse trajectory spaces in
Theorem 3.3, or the compact zero setMGW(A) = σ−1GW(0) of a sc-Fredholm section.
In Sect. 5.3 we will combine the polyfold description of the Gromov-compactification
of (21) with an abstract construction of fiber products in polyfold theory [10] to
obtain compactifications and polyfold descriptions of the moduli spaces. Then the
construction of ι : CM → CM proceeds as in Sect. 4.3. The algebraic properties of ι

in Theorem 1.3 (i) and (ii) will follow from the boundary stratifications of the Morse
trajectory spacesM(p−, M) andM(M, p+) since the ambient polyfoldBGW(A) has
no boundary. However, this requires specific “coherent” choices of perturbations in
Sect. 6.

Remark 5.1 Gromov-compactifications of the moduli spaces Mι(p−, p+; A) will
result from the energy identity [26, Lemma 2.2.1] for solutions of ∂ J u = 0,

E(u) := 1

2

∫

C

|du|2 =
∫

CP1
u∗ω = ω([u]). (22)

This fixes the energy of solutions on each solution space M(A), and Gromov com-
pactness asserts that {u : CP

1 → M | ∂ J u = 0, E(u) ≤ C} is compact up to bubbling
for any C > 0.

Another consequence of (22) is that forω(A) ≤ 0 we have no solutionsM(A) = ∅
except for A = 0 ∈ H2(M) when the solution space is the space of constant maps

M(0) = {u ≡ x | x ∈ M} # M,

which is compact and cut out transversely.
Translated to graphs in CP

1 × M with two marked points, this meansMGW(0) #
CP

1 × CP
1 × M by adding two marked points in the domain. That is, (z−, z+, x) ∈

CP
1×CP

1×M corresponds to the (equivalence class of) graphs ũx : z �→ (z, x)with
two marked points z−, z+ ∈ CP

1. For z− �= z+ this tuple can be reparametrized to
the fixed marked points z−0 , z+0 ∈ CP

1 and then represents an Aut(CP
1, z−0 , z+0 )-orbit.

6 The term ’compactification’ applied to spaces of pseudoholomorphic curves is always to be understood
as Gromov-compactification, as MGW(A) ⊂MGW(A) may not be dense.
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For z− = z+ the tuple (z−, z+, x) corresponds to a stable map inMGW(0), given by
the graph ũx with a node at z− = z+ attached to a constant sphere with two distinct
marked points. This will be stated in polyfold terms in Assumption 5.5 (ii).

5.2 Moduli spaces for the chain homotopy h

To construct the moduli spaces from which we will obtain h : CM → CM , we
again use the almost complex structure J and Morse–Smale pair ( f , g) chosen in
Sect. 4.1. In addition, we fixed an anti-holomorphic vector-field-valued 1-form YH ∈
�0,1(C, 	(TM)) that arises from the fixed Hamiltonian function H : S1 × M → R

and a choice of smooth cutoff function β : [0,∞) → [0, 1] with β|[0,1] ≡ 0, β ′ ≥ 0,
and β|[e,∞) ≡ 1. Gluing this 1-form to another copy of YH over C

− with neck
length R > 0 in exponential coordinates yields the anti-holomorphic vector-field-
valued 1-form Y R

H ∈ �0,1(CP
1, 	(TM)) that vanishes near [1 : 0], [0 : 1] and on

CP
1
�{[1 : 0], [0 : 1]} = {[1 : reiθ ] | (r , θ) ∈ (0,∞)× S1} is given by

Y R
H ([1 : reiθ ], x) := 1

2βR(r)
(
J XH (θ, x) r−1dr + XH (θ, x) dθ

)
.

Here βR(r) := β(re
R
2 )β(r−1e R

2 ) is a smooth cutoff function βR : (0,∞) → [0, 1]
that is identical to 1 on [e1− R

2 , e
R
2 −1] and identical to 0 on (0, e− R

2 )∪ (e
R
2 ,∞). Now

perturbing the Cauchy–Riemann operator on CP
1 by Y R

H yields the following moduli
spaces for critical points p−, p+ ∈ Crit( f ), A ∈ H2(M), and R ∈ [0,∞),

MR(p−, p+; A) := {u : CP
1 → M

∣∣ u([1 : 0]) ∈ W−
p− , u([0 : 1]) ∈ W+

p+ , ∂ J u = Y R
H (u), [u] = A

}
,

and we will construct h from their union

M(p−, p+; A) :=
⊔

R∈[0,∞)

MR(p−, p+; A). (23)

Remark 5.2 Each vector-field-valued 1-form Y R
H = −(XHR

β
)0,1 is in the notation

of [26, §8.1] induced from the 1-form with values in smooth functions HR
β ∈

�1(CP
1, C∞(M)) given by HR

β (reiθ ) = βR(r)H(θ, ·)dθ . It is constructed so that
it has the following properties:

(i) For R = 0 we have Y 0
H ≡ 0 so that the moduli space M0(p−, p+; A) =

Mι(p−, p+; A) is the same moduli space (17) from which ι will be constructed.
(ii) The restriction of any solution u ∈ MR(p−, p+; A) to the middle portion {[1 :

z] ∈ CP
1 | e1− R

2 < |z| < e
R
2 −1} ∼= (1− R

2 , R
2 −1)×S1 satisfies the Floer equation

∂sv + J∂tv = J XH (t, v) after reparametrization v(s, t) := u([1 : es+i t ]).
(iii) The shifts u−(z) := u([1 : e− R

2 z]) and u+(z) := u([e R
2 z : 1]) = u([1 : e R

2 z−1])
of any solution u ∈ MR(p−, p+; A), restricted to {z ∈ C | |z| < eR−1}, satisfy
∂ J u± = YH (u±) as in the PSS/SSP moduli spaces in Sect. 4.1.
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The moduli space M(p−, p+; A) is the zero set of a Fredholm section over a
Banach manifold [0,∞) × B, where B is the same Sobolev closure as in Sect. 5.1
of the set of smooth maps u : CP

1 → M in the homology class [u] = A satisfying
the point constraints u([1 : 0]) ∈ W−

p− and u([0 : 1]) ∈ W+
p+ . Restricted to {0} × B

this is the Fredholm section that cuts out Mι(p−, p+; A) in (17) with J̃ 0H = J̃ . This
determines the Fredholm index as

I (p−, p+; A) := I ι(p−, p+; A)+ 1 = 2c1(A)+ |p−| − |p+| + 1. (24)

Towards a compactification and polyfold description of these moduli spaces we
again—as in Sects. 4.2, 5.1, [26, §8.1]—identify a solution u : CP

1 → M with
the map to its graph. Moreover, we again fix marked points z+0 = [1 : 0], z−0 = [0 : 1]
to implement evaluation maps to express the conditions u(z∓0 ) ∈ W±

p± . This yields
a homeomorphism (in appropriate topologies) between the moduli space (23) and
the fiber product over CP

1 × M with the half-infinite Morse trajectory spaces from
Sect. 3.3,

M(p−, p+; A) ∼= M(p−, M) {z+0 }×ev×ev+ MSFT(A) ev−×{z−0 }×ev M(M, p+).

(25)
Compared with (20) this replaces the Gromov–Witten moduli space in (21) with a
family of moduli spaces for almost complex structures J̃ R

H on CP
1 × M arising from

Y R
H for R ∈ [0,∞),

MSFT(A)

:=
⊔

R∈[0,∞)

{
v : CP

1 → CP
1 × M

∣∣ ∂ J̃ R
H
v = 0, [v] = [CP

1] + A
}/
Aut(CP

1, z−0 , z+0 )
.

(26)

Here, again, we implicitly include the two marked points z±0 ∈ CP
1. Then, for R →

∞, the degeneration of the PDE ∂ J̃ R
H
v = 0 is the “neck stretching”7 considered more

generally in Symplectic Field Theory [8]. The evaluation maps from (21) directly
generalize to

ev± : MSFT(A) → CP
1 × M, [v] �→ v(z±0 ). (27)

Now, as inSect. 5.1, each factor in thefiber product (25) has natural compactifications—
either the compactifiedMorse trajectory spaces fromTheorem 3.3, or the compact zero
setMSFT(A) = σ−1SFT(0) of a sc-Fredholm section that we will introduce in Sect. 5.3.
Combined with the construction of fiber products in polyfold theory [10] this will
yield compactifications and polyfold descriptions of the moduli spaces (23), and the
construction of h : CM → CM then again proceeds as in Sect. 4.3. Establishing the

7 Strictly speaking, R ∈ [0, 2] parametrizes a family of Gromov–Witten moduli spaces for varying almost
complex structure. At R = 2, the manifold S1 × M with its stable Hamiltonian structure (see Sect. 4.2)
embeds as a stable hypersurface in CP

1 × M . Then R ∈ [2,∞) parametrizes the SFT neck-stretching.
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algebraic properties in Theorem 1.3 relating h with ι and SSP ◦ PSS will moreover
require an in-depth discussion of the boundary stratification of the polyfold domains
BSFT(A) of these sections, and “coherent” choices of perturbations in Sect. 6.

Remark 5.3 Gromov-compactifications of the moduli spaces M(p−, p+; A) will
result from energy estimates [26, Remark 8.1.7] for solutions of ∂ J u = Y R

H (u),

ER(u) := 1

2

∫

CP1
|du+ XHR

β
(u)| ≤

∫

CP1
u∗ω+‖RHR

β
‖ = ω([u])+ 2‖H(θ, ·)‖.

(28)
Here RHR

β
dvolCP1 = dHR

β + 1
2H

R
β ∧ HR

β = β ′R H dr ∧ dθ has uniformly bounded

Hofer norm

‖RHR
β
‖ =

∫

CP1
(max RHR

β
−max RHR

β
) =

∫ ∞

0

∫

S1
|β ′R(r)|‖H(θ, ·)‖ dθ dr

= 2‖H(θ, ·)‖,

where‖H(θ, ·)‖ := maxx∈M H(θ, x)−minx∈M H(θ, x) andβR ∈ C∞((0,∞), [0, 1])
is constant except

βR |[e− R
2 ,e1−

R
2 ] : r �→ β(re

R
2 ) with d

dr βR ≥ 0

and
∫ e1−

R
2

e−
R
2

∣∣ d
dr βR

∣∣ dr = β(e)− β(1) = 1,

βR |[e R
2 −1,e

R
2 ] : r �→ β(r−1e

R
2 ) with d

dr βR ≤ 0

and
∫ e

R
2

e
R
2 −1
∣∣ d
dr βR

∣∣ dr = −(β(1)− β(e)
) = 1.

This proves (28), and thus establishes energy bounds on the perturbed pseudo-
holomorphic maps in each of our moduli spaces, where we fix [u] = A. Now
SFT-compactness [2] asserts that for any C > 0 the set of solutions of bounded
energy

⊔
R∈[0,∞){u : CP

1 → M | ∂ J u = Y R
H (u), ER(u) ≤ C} is compact up to

breaking and bubbling. This compactness will be stated rigorously in polyfold terms
in Assumption 5.5 (ii).

5.3 Construction of themorphisms

In this section we construct the �-linear maps ι : CM → CM and h : CM → CM
analogously to Sect. 4.3 by first obtaining compactifications and polyfold descriptions
for themoduli spaces in Sects. 5.1 and 5.2 as in Sect. 4.2. This construction ismotivated
by the fiber product descriptions of themoduli spaces in (20), (25),which coupleMorse
trajectory spaces from Sect. 3.3 with moduli spaces of pseudoholomorphic curves in
CP

1×M via evaluation maps (21), (27). Polyfold descriptions of these moduli spaces
and their properties are stated in the following Assumption 5.5 for reference, with



A polyfold proof of the Arnold conjecture Page 29 of 73 11

proofs in [23] resp. outlined in [12]. A summary of the types of curves in each polyfold
and subsets thereof is displayed in Table 2. Here we formulate the evaluation map in
the context of neck stretching, as explained in the following remark, using a splitting
of the sphere as topological space with smooth structures on the complement of the
equator

CP
1∞ := C+ ∪S1 C− ∼= C

+ 
 S1 
 C
−,

using the topologies and smooth structures on C± = C
± 
 S1 ∼= {z ∈ C

± | |z| ≤ 1}
from Remark 4.2.

Remark 5.4 (i) Recall from Sect. 5.1 that we denote by BGW(A) a Gromov–Witten
polyfold of curves in class [CP

1] + A ∈ H2(CP
1 × M) with 2 marked points. These

are determined by A ∈ H2(M) as we model graphs of maps CP
1 → M , but should

not be confused with a polyfold of curves in M . In particular, BGW(A) never contains
constant maps and hence is well defined for A = 0. The properties of the Gromov–
Witten moduli spaces for ω(A) ≤ 0 are spelled out abstractly in Assumption 5.5(ii)
below; for the geometric meaning see Remark 5.1.
(ii) The SFT polyfolds BSFT(A) will similarly describe curves in class [CP

1] + A in
a neck stretching family of targets (CP

1
R × M)R∈[0,∞] as in [2, §3.4], given by

CP
1
R := D+ 
 ER 
 D−

/

∼R
with ER =

{
[−R, R] × S1 ; R < ∞,

[0,∞)× S1 
 (−∞, 0] × S1 ; R = ∞.

Here we identify the boundaries of the closed unit disks D± = {z ∈ C | |z| ≤ 1} with
the boundary components of the necks ER via

∂D± ∈ eiθ ∼R

{
(±R, e±iθ ); R < ∞
(0±, e±iθ ); R = ∞

}

∈ ∂ER,

where we denote 0+ := 0 ∈ [0,∞) and 0− := 0 ∈ (−∞, 0] so that ∂E∞ =
{0+}× S1 
 {0−}× S1. To describe convergence and evaluation maps we also embed

each CP
1
R ⊂ CP

1∞ = C
+ 
 S1 
 C

− by
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Table 2 Summary of the polyfolds and their subsets introduced in this section

Notation Description Definition

Bdense(A) Elements are equivalence classes under
reparameterization by Aut(CP

1, z−0 , z+0 ) of

smooth maps CP
1 → CP

1 × M in class
[CP

1] + A

Remark 5.6 (i)

BGW(A) A polyfold with dense subset Bdense(A), which
contains the Gromov-compactification MGW(A)

of the moduli space in (21)

Assumption 5.5

BSFT(A) A polyfold with dense subset [0,∞)× Bdense(A),
which contains the SFT-compactification
MSFT(A) of the moduli space in (26)

Assumption 5.5

B+,−
GW/SFT(A) the open subsets of B±GW/SFT(A) containing the

curves whose evaluation at two marked point
lands in C

± × M ; see Remark 5.4

Assumption 5.5 (iv)

B̃ι(p−, p+; A) Elements are triples of two half-infinite broken
Morse trajectories from p− and to p+ and a curve
in BGW(A) whose evaluations at the marked
points agrees with the endpoints of the Morse
trajectories

Before Lemma 5.7

B̃(p−, p+; A) Elements are triples of two half-infinite broken
Morse trajectories from p− and to p+ and a curve
in BSFT(A) whose evaluations at the marked
points agrees with the endpoints of the Morse
trajectories

Before Lemma 5.7

Bι(p−, p+; A) Open subset of B̃ι(p−, p+; A)1 containing
Mι(p−, p+; A) over which σ ι

(p−,p+;A)
is

sc-Fredholm

Lemma 5.7

B(p−, p+; A) Open subset of B̃(p−, p+; A)1 containing
M(p−, p+; A) over which σ(p−,p+;A) is
sc-Fredholm

Lemma 5.7

D+ 
 [−R, 0)× S1
/

∼R
∼= D+ 
 [0,∞)× S1

/

∼∞ =: C
+,

D− 
 (0, R] × S1
/

∼R
∼= D− 
 (−∞, 0] × S1

/

∼∞ =: C
−,

ER ⊃ {0} × S1 ∼= S1 ⊂ CP
1∞.

For R = 0 this is to be understood asCP
1
0 = D+
D−/

∂D+∼∂D− with D±�∂D± ∼= C
±,

and for all R < ∞ we view the resulting homeomorphism CP
1
R
∼= CP

1∞ ∼= CP
1

as identifying the standard marked points CP
1 $ z+0 = [1 : 0] ∼= 0 ∈ C

+ and
CP

1 $ z−0 = [0 : 1] ∼= 0 ∈ C
−. When these embeddings are done via linear

shifts [−R,−1) ∼= [0, R − 1) and (1, R] ∼= (1− R, 0] extended by a smooth family
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of diffeomorphisms [−1, 0) ∼= [R − 1,∞) and (0, 1] ∼= (−∞, 1 − R], then the
pullback of the almost complex structures J̃ R

H on CP
1
R × M converges for R → ∞

in C∞loc
(
(CP

1∞�S1) × M
)
to the almost complex structures J̃+H , J̃−H on C

+ × M 

C
− × M = CP

1∞ × M ⊂ CP
1∞ × M , which are used in the construction of the

PSS and SSP moduli spaces in Sect. 4.2. Moreover, this allows us to extend the

evaluation maps from (27) to continuous maps ev± : MSFT(A) → CP
1∞ × M on

the compactified SFT moduli space. At R = ∞ this involves pseudoholomorphic
buildings in C

+ × M 
 R × S1 × M . . . 
 R × S1 × M 
 C
− × M , and for

any marked point with evaluation into a cylinder R× S1 × M we project the result to

S1 × M ⊂ CP
1∞ × M by forgetting the R-component.

Finally, this formulation with CP
1∞ = C+ ∪S1 C− will allow us to compare the

evaluation at R = ∞ with the product of the evaluations ev± : M±
SFT(γ ; A) →

C± × M constructed in Remark 4.2. While this will be stated rigorously only in
Assumption 6.3 (iii)(c), note here that we should expect three top boundary strata of
an ambient polyfold at R = ∞, corresponding to the distribution of marked points
on the curves in C

+ × M 
 C
− × M . For the fiber product construction, only the

boundary components with one marked point in each factor are relevant—in fact only
those with marked points near z+0 ∼= 0 ∈ C

+ and z−0 ∼= 0 ∈ C
−. Thus we will

work with the open subset (ev+)−1(C+ × M) ∩ (ev−)−1(C− × M) where the two
evaluations for any R ∈ [0,∞] are constrained to take values in the open sets given

by C
± ⊂ CP

1∞.

Assumption 5.5 There is a collection of oriented sc-Fredholm sections of strong poly-
fold bundles σGW : BGW(A) → EGW(A) and σSFT : BSFT(A) → ESFT(A) indexed
by A ∈ H2(M), sc∞ maps ev± : BGW(A) → CP

1 × M , and continuous maps

ev± : BSFT(A) → CP
1∞ × M with the properties:

(i) The sections have Fredholm indices ind(σGW) = 2c1(A)+dim M+4 onBGW(A)

resp. ind(σSFT) = 2c1(A)+ dim M + 5 on BSFT(A).
(ii) Each zero set MGW(A) := σ−1GW(0) and MSFT(A) := σ−1SFT(0) is compact, and

given any C ∈ R there are only finitely many A ∈ H2(M) with nonempty zero
set MGW(A) �= ∅ resp. MSFT(A) �= ∅. Moreover, for ω(A) ≤ 0 we have
MGW(A) = ∅ except for A = 0 ∈ H2(M) when σGW|BGW(0) � 0 is in general
position with zero set MGW(0) # CP

1 × CP
1 × M identified by

BGW(0) ⊃ σ−1GW(0) = MGW(0)
ev+×ev−−→ {

(z+, x, z−, x)
∣∣ z−, z+ ∈ CP

1, x ∈ M
}
.

(iii) The polyfolds BGW(A) have no boundary, ∂BGW(A) = ∅. For BSFT(A) there
is a natural inclusion [0,∞) × BGW(A) ⊂ BSFT(A) that covers the interior
∂0BSFT(A) = (0,∞)×BGW(A) and identifies the boundary ∂BSFT(A) to consist
of the disjoint sets {0}×BGW(A) and limR→∞{R}×BGW(A) of BSFT(A). More-
over, this inclusion identifies the section σGW and evaluation maps ev± with the
restricted section σSFT|{0}×BGW(A) and evaluations ev

±|{0}×BGW(A). (A description
of the relevant R = ∞parts of the boundary ∂BSFT(A) is given inAssumption 6.3.)
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(iv) The sections σGW and σSFT have tame sc-Fredholm representatives in the sense of
[10, Def.5.4]. The product of evaluation maps ev+ × ev− : BGW(A) → CP

1 ×
M ×CP

1 × M is σGW-compatibly submersive in the sense of Definition A.4. On
the open subset

B+,−
SFT (A) := (ev+)−1(C+ × M) ∩ (ev−)−1(C− × M) ⊂ BSFT(A)

the evaluation maps ev± : BSFT(A) → CP
1∞ × M restrict to a σSFT-compatibly

submersive map

ev+ × ev− : B+,−
SFT (A) → C

+ × M × C
− × M . (29)

On this domain intersected with {0} ×BGW(A) ⊂ ∂1BSFT(A), this map coincides
with the Gromov–Witten evaluations ev+ × ev− viewed as maps

ev+ × ev− : B+,−
GW (A) → C

+ × M × C
− × M,

where we identify C
+ 
 C

− = CP
1
�S1 and restrict to the domain

{0} × B+,−
GW (A) := ({0} × BGW(A)

) ∩ B+,−
SFT (A) = {0} × ((ev+)−1(C+ × M) ∩ (ev−)−1(C− × M)

)
.

Remark 5.6 (i) While not needed for our proof, we state the following properties for
intuition:
The Aut(CP

1, z−0 , z+0 )-orbits of smooth maps v : CP
1 → CP

1 × M which repre-
sent the class [CP

1]+A form a dense subsetBdense(A) ⊂ BGW(A).On this subset,
the section is given by σGW([v]) = [(v, ∂ J̃v)]. Moreover, [0,∞) × Bdense(A) ⊂
BSFT(A) is a dense subset that intersects the boundary ∂BSFT(A) exactly in
{0}×Bdense(A), and on which the section is given by σSFT(R, [v]) = [(v, ∂ J̃ R

H
v)].

On these dense subsets, ev±([v]) resp. ev±(R, [v]) is the evaluation as in (27).
The intersection of the zero sets with the dense subsets σ−1GW(0) ∩ Bdense(A) ∼=
MGW(A) and σ−1SFT(0)∩[0,∞)×Bdense(A) ∼=MSFT(A) are naturally identified
with the Gromov–Witten moduli space (21) and SFT moduli space in (26).

(ii) The polyfold description σGW : BGW(A) → EGW(A) is developed for the homol-
ogy classes [CP

1] + A ∈ H2(CP
1 × M) in [23], with the submersion property

shown in [10, Ex.5.1]. The properties for ω(A) ≤ 0 in Assumption 5.5 (ii) follow
from the fact that nonconstant pseudoholomorphic curves have positive symplec-
tic area, and linear Cauchy–Riemann operators on trivial bundles (arising from
linearization at constant maps) are surjective. The construction of σSFT starts by
recognizing that the family of almost complex manifolds in Remark 5.4 (ii) for
R < ∞ is equivalent to a degeneration of the almost complex structure onCP

1×M
along the equator S1 ⊂ CP

1. This can be described by an R-dependent bundle
and section over [0,∞)× BGW(A). The construction for R →∞ then proceeds
analogous to [12, §3], with buildings consisting of a top and bottom floor curve in
C
± × M and intermediate floors given by curves in R× S1 × M . Thus Assump-

tion 5.5 (iii) and the compatibility with BGW(A) in (iv) hold by construction. The
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polyfold and bundle structure are again obtained as in [12] by extending the con-
structions in [23] with local models for punctures and neck-stretching from [14,
§3], using the implanting method in [13, §3,§5]. The remaining properties are
proven as outlined in Remark 4.4 (ii).

Given any such polyfold descriptions of the moduli spaces of pseudoholomorphic
curves, we now extend the fiber product descriptions of the moduli spaces

M(ι)(p−, p+; A) ∼= M(p−, M) {z+0 }×ev×ev+MGW/SFT(A)ev−×{z−0 }×ev M(M, p+)

in Sects. 5.1 and 5.2 to obtain ambient polyfolds which contain compactifications of
themoduli spaces. Towards this we define for each p−, p+ ∈ Crit( f ) and A ∈ H2(M)

the topological spaces

B̃ι(p−, p+; A)

:= {
(τ−, v, τ+) ∈M(p−, M)× BGW(A) ×M(M, p+)

∣∣ (z±0 , ev(τ±)) = ev±(v)
}

=
{
(τ−, v, τ+) ∈M(p−, M)× B+,−

GW (A) ×M(M, p+)
∣∣ (0, ev(τ±)) = ev±(v)

}
,

B̃(p−, p+; A)

:= {
(τ−, w, τ+) ∈M(p−, M)× BSFT(A)×M(M, p+)

∣∣ (z±0 , ev(τ±)) = ev±(w)
}

=
{
(τ−, w, τ+) ∈M(p−, M)× B+,−

SFT (A)×M(M, p+)
∣∣ (0, ev(τ±)) = ev±(w)

}
,

where the last equality stems from the identification at the end of Remark 5.4 (ii).
Then the abstract fiber product constructions in [10] will be used as in Lemma 4.5 to
obtain the following polyfold description for compactifications of the moduli spaces
in Sects. 5.1 and 5.2.

Lemma 5.7 Given any p−, p+ ∈ Crit( f ) and A ∈ H2(M), there exist open sub-
sets Bι(p−, p+; A) ⊂ B̃ι(p−, p+; A)1 and B(p−, p+; A) ⊂ B̃(p−, p+; A)1 which
contain the smooth levels B̃(ι)(p−, p+; A)∞ of the fiber products and inherit natural
polyfold structures with smooth level of the interior

∂0Bι(p−, p+; A)∞ = M(p−, M) {z+0 }×ev×ev+ B+,−
GW (A)∞ ev−×{z−0 }×ev M(M, p+),

∂0B(p−, p+; A)∞ = M(p−, M) {z+0 }×ev×ev+ ∂0B+,−
SFT (A)∞ ev−×{z−0 }×ev M(M, p+),

and a scale-smooth inclusion

φι : Bι(p−, p+; A) ↪→ B(p−, p+; A), (τ−, v, τ+) �→ (τ−, 0, v, τ+).

Moreover, pullback of the sections and bundles σGW/SFT : BGW/SFT(A) →
EGW/SFT(A) under the projection B(p−, p+; A) → BGW/SFT(A) induces sc-
Fredholm sections of strong polyfold bundles σ(p−,p+;A) : B(p−, p+; A) →
E(p−, p+; A) of index I (p−, p+; A) as in (24) and σ ι

(p−,p+;A)
: Bι(p−, p+; A) →

E ι(p−, p+; A) of index I ι(p−, p+; A) = I (p−, p+; A) − 1 as in (18). Further,
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these are related via the inclusion φι by natural orientation preserving identification
σ ι

(p−,p+;A)
∼= φ∗ι σ(p−,p+;A).

The zero sets of these sc-Fredholm sections contain8 the moduli spaces from
Sects. 5.1 and 5.2,

σ ι
(p−,p+;A)

−1
(0) = M(p−, M) {z+0 }×ev×ev+ σ−1GW(0) ev−×{z−0 }×ev M(M, p+) ⊃ M(p−, p+; A),

σ(p−,p+;A)
−1(0) = M(p−, M) {z+0 }×ev×ev+ σ−1SFT(0) ev−×{z−0 }×ev M(M, p+) ⊃ Mι(p−, p+; A).

Finally, each zero set σ
(ι)
(p−,p+;A)

−1(0) is compact, and given any p± ∈ Crit( f ) and
C ∈ R, there are only finitely many A ∈ H2(M) with ω(A) ≤ C and nonempty zero
set σ (ι)

(p−,p+;A)
−1(0) �= ∅.

Proof The inclusion φι is sc∞ since the map BGW(A) ↪→ BSFT(A), v �→ (0, v) is
a sc∞ inclusion by Assumption 5.5 (iii). Apart from further relations involving φι,
the proof is directly analogous to the fiber product construction in Lemma 4.5, using
Assumption 5.5—in particular the sc∞ and σSFT-compatibly submersive evaluation
map (29) on the open subset B+,−

SFT (A) ⊂ BSFT(A). This yields polyfold structures on
open sets Bι(p−, p+; A) ⊂ B̃ι(p−, p+; A)1 and B(p−, p+; A) ⊂ B̃(p−, p+; A)1 as
well as the pullback sc-Fredholm sections σ(p−,p+;A) = pr∗SFTσSFT and σ ι

(p−,p+;A)
=

pr∗GWσGW under the projections prGW/SFT : B(ι)(p−, p+; A) → BGW/SFT(A).
Here we have prGW = prSFT ◦ φι, so the bundle E ι(p−, p+; A) = pr∗GWEGW(A)

and section σ ι
(p−,p+;A)

= pr∗GWσGW are naturally identified with the pullback
bundle φ∗ι E(p−, p+; A) = pr∗GWESFT(A)|{0}×BGW(A) and section φ∗ι σ(p−,p+;A) =
pr∗GWσSFT|{0}×BGW(A) using Assumption 5.5 (iii). Finally, the index of the induced
section σ(p−,p+;A), and similarly of σ ι

(p−,p+;A)
, is computed by [10, Cor.7.3] as

ind(σ(p−,p+;A)) = ind(σSFT)+ dimM(p−, M)+ dimM(M, p+)− 2 dim(CP
1 × M)

= 2c1(A)+ dim M + 5+ |p−| + dim M − |p+| − 4− 2 dim M

= 2c1(A)+ |p−| − |p+| + 1 = I (p−, p+; A).

�

Given this compactification and polyfold description of the moduli spacesM(α) ⊂

σ−1α (0) and Mι(α) ⊂ σ ι
α
−1(0) for all tuples in the indexing set

I := {
α = (p−, p+; A)

∣∣ p−, p+ ∈ Crit( f ), A ∈ H2(M)
}
,

we can again apply [22, Theorems 18.2,18.3,18.8] to the sc-Fredholm sections σα

and σ ι
α and obtain Corollary 4.6 verbatim for these collections of moduli spaces. In

Sect. 6 we will moreover make use of the fact that σ ι
α = φ∗ι σα arises from restriction

of σα , so admissible perturbations of σα pull back to admissible perturbations of σ ι
α .

For now, we choose perturbations independently and thus as in Definition 4.8 obtain
perturbation-dependent, and not yet algebraically related, �-linear maps.

8 As in Remark 4.4, this identification is stated for intuition and will ultimately not be used in our proofs.
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Definition 5.8 Given admissible sc+-multisections κ = (κ(p−,p+;A))p±∈Crit( f ),A∈H2

in general position to (σ(p−,p+;A)) and κι = (κι
(p−,p+;A)

)p±∈Crit( f ),A∈H2 in general
position to (σ ι

(p−,p+;A)
) as in Corollary 4.6, we define the maps hκ : CM → CM and

ικι : CM → CM to be the �-linear extensions of

hκ 〈 p− 〉 :=
∑

p+,A
I (p−,p+;A)=0

#Zκ (p−, p+; A) · T ω(A)〈 p+ 〉,

ικι〈 p− 〉 :=
∑

p+,A
I ι(p−,p+;A)=0

#Zκι

(p−, p+; A) · T ω(A)〈 p+ 〉.

The proof that the coefficients of these maps lie in the Novikov field � is verbatim
the same as Lemma 4.9, based on the compactness properties in Lemma 5.7.

Remark 5.9 The determination inCorollary 4.6 of #Zκ (p−, p+; A), #Zκι
(p−, p+; A)

∈ Q that is used in Definition 5.8 requires an orientation of the sections σ(p−,p+;A) and
σ ι

(p−,p+;A)
. As in Remark 4.7 this is determined via the fiber product construction in

Lemma 5.7 from the orientations of the Morse trajectory spaces in Remark 3.5 (i) and
the orientations of σGW, σSFT given in Assumption 5.5. In practice, we will construct
the perturbations κ, κι by pullback of perturbations λ = (λA)A∈H2(M) of the SFT-
sections σSFT and their restriction λι to {0} × BGW(A) ⊂ ∂BSFT(A). So we can
specify the orientations of the regularized zero sets by expressing them as transverse
fiber products of oriented spaces over CP

1 × M or C
± × M ,

Zκι

(p−, p+; A) = M(p−, M) ev+0
×ev+ Zλι

(A) ev−×ev−0
M(M, p+),

= M(p−, M) ev+0
×ev+

(
Zλι

(A) ∩ B+,−
GW (A)

)
ev−×ev−0

M(M, p+),

Zκ(p−, p+; A) = M(p−, M) ev+0
×ev+

(
Zλ(A) ∩ B+,−

SFT (A)
)
ev−×ev−0

M(M, p+),

using ev± : BGW(A) → CP
1×M resp. ev± : B+,−

GW/SFT(A) → C
±×M and theMorse

evaluations ev±0 : M(. . .) → CP
1 × M, τ �→ (z±0 , ev(τ )) resp. ev±0 : M(. . .) →

C
± × M, τ �→ (0, ev(τ )).

6 Algebraic relations via coherent perturbations

In this section we prove parts (i)–(iii) of Theorem 1.3, that is the algebraic properties
which relate the maps PSS : CM → CF , SSP : CF → CM constructed in Sect. 4,
and the maps ι : CM → CM , h : CM → CM constructed in Sect. 5. More precisely,
we will make so-called “coherent” choices of perturbations in Sect. 6.2, Sect. 6.3, and
Sect. 6.4 which guarantee that (i) ι is a chain map, (ii) ι is a �-module isomorphism,
and (iii) h is a chain homotopy between the composition SSP ◦ PSS and ι.
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6.1 Coherent polyfold descriptions of moduli spaces

The general approach to obtaining not just counts as discussed in Sect. 4.2 but well-
defined algebraic structures from moduli spaces of pseudoholomorphic curves is to
replace them by compact manifolds with boundary and corners (or generalizations
thereof which still carry ‘relative virtual fundamental classes’) in such a manner that
their boundary strata are given by Cartesian products of each other. In the context of
polyfold theory, this requires a description of the compactifiedmoduli spacesM(α) =
σ−1α (0) as zero sets of a “coherent collection” of sc-Fredholm sections

(
σα : B(α) →

E(α)
)
α∈I of strong polyfold bundles. Here “coherence” indicates a well organized

identification of the boundaries ∂B(α) with unions of Cartesian products of other
polyfolds in the collection I, which is compatible with the bundles and sections.

As a first example, the moduli spacesMι(p−, p+; A) in Sect. 5.1 which yield the
map ι : CM → CM are given polyfold descriptions σ ι

(p−,p+;A)
: Bι(p−, p+; A) →

φ∗ι E(p−, p+; A) in Lemma 5.7 that arise as fiber products with polyfolds BGW(A)

without boundary. Thus their coherence properties stated below follow from properties
of the fiber product in [10] and the boundary stratification of the Morse trajectory
spaces in Theorem 3.3. We state this result to illustrate the notion of coherence. The
full technical statement —on the level of ep-groupoids and including compatibility
with bundles and sections—can be found in the second bullet point of Lemma 6.4.

Lemma 6.1 For any p± ∈ Crit( f ) and A ∈ H2(M) the smooth level of the first bound-
ary stratum of the fiber product Bι(p−, p+; A) in Lemma 5.7 is naturally identified
with

∂1Bι(p−, p+; A)∞ ∼=
⋃

q∈Crit( f )
M(p−, q)× ∂0Bι(q, p+; A)∞ 


⋃

q∈Crit( f )
∂0Bι(p−, q; A)∞ ×M(q, p+).

Proof By the fiber product construction [10, Cor.7.3] ofBι(p−, p+; A) in Lemma 5.7,
the degeneracy index satisfies dBι(p−,p+;A)(τ

−, v, τ+) =
dM(p−,M)

(τ−)+dBGW(A)(v)+dM(M,p+)
(τ+), and the smooth level isBι(p−, p+; A)∞

= M(p−, M) {z−0 }×ev×ev− B+,−
GW (A)∞ ev+×{z+0 }×ev M(M, p+). The polyfold

BGW(A) and its open subsetB+,−
GW (A) are boundaryless byAssumption 5.5 (iii), which

means dBGW(A) = dB+,−
GW (A)

≡ 0. Hence we have dBι(p−,p+;A)(τ
−, v, τ+) = 1 if and

only if τ− ∈ ∂1M(p−, M) and τ+ ∈ ∂0M(M, p+) or the other way around. These
two cases are disjoint but analogous, so it remains to show that the first case consists
of points in the union

⋃
q∈Crit( f ) M(p−, q) × ∂0Bι(q, p+; A)∞. For that purpose

recall the identification ∂1M(p−, M) = ⋃q∈Crit( f ) M(p−, q) ×M(q, M) in The-
orem 3.3, which is compatible with the evaluation ev : M(p−, q) ×M(q, M) →
M, (τ1, τ2) �→ ev(τ2) by construction, and thus

∂1M(p−, M) {z−0 }×ev×ev− B+,−
GW (A)∞ ev+×{z+0 }×ev ∂0M(M, p+)

=
( ⋃

q∈Crit( f )
M(p−, q)×M(q, M)

)
{z−0 }×ev×ev− B+,−

GW (A)∞ ev+×{z+0 }×ev M(M, p+)
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=
⋃

q∈Crit( f )
M(p−, q)×

(
M(q, M) {z−0 }×ev×ev− B+,−

GW (A)∞ ev+×{z+0 }×ev M(M, p+)
)

=
⋃

q∈Crit( f )
M(p−, q)× ∂0Bι(q, p+; A)∞

Here we also used the identification of the interior smooth level in Lemma 5.7. �

Next, the polyfold description in Lemma 5.7 for the moduli spacesM(p−, p+; A)

in Sect. 5.2, which yield the map h : CM → CM , are obtained as fiber products of
the Morse trajectory spaces with polyfold descriptions σSFT : BSFT(A) → ESFT(A)

of SFT moduli spaces given in [15]. We will state as assumption only those parts of
their coherence properties that are relevant to our argument in Sect. 6.4 for the chain
homotopy ι−SSP◦PSS = d◦h+h◦d. Here the contributions to d◦h+h◦d will arise
from boundary strata of the Morse trajectory spaces, whereas ι− SSP ◦ PSS arises
from the following identification of the boundary of the polyfold B+,−

SFT (A), which is
given as open subset of BSFT(A) in Assumption 5.5 (iv). 9

Remark 6.2 In the followingwewill use theword “face” loosely for Cartesian products
of polyfolds such as F = B+SFT(γ ; A+) × B−SFT(γ ; A−) and their immersions into
the boundary of another polyfold such as ∂B+,−

SFT (A). We also refer to the image of
the immersion F ↪→ ∂B+,−

SFT (A) as a face of B+,−
SFT (A). Compared with the formal

definition of faces in [22, Definitions 2.21,11.1,16.13], ours are disjoint unions of
faces. They describe the interaction between the moduli spaces - roughly speaking:

(i) The R →∞ boundary parts of BSFT(A) in which the marked points separate are
covered by immersions of products of the PSS and SSP polyfolds. This structure
arises from generalizing the SFT compactification in [2] to buildings of not nec-
essarily holomorphic maps. The parts of the boundary described here are given by
buildings whose top and bottom floors are given by maps to C

± × M and inter-
mediate floors given by maps to R × S1 × M . The immersions then arise from
stacking a building in B+SFT(γ ; A+) (with top floor in C×M) on top of a building
in B−SFT(γ ; A−) (with bottom floor in C

− × M). Here a lack of injectivity arises
at buildings with middle floors in R × S1 × M from ambiguity in splitting such
building into two parts.

(ii) The immersions restrict to a disjoint cover of the top boundary stratum ofB+,−
SFT (A)

by embeddings. This restriction is given by the buildings with a single floor—
guaranteeing injectivity by avoiding the ambiguous middle floors in R× S1×M .

(iii) The immersions are compatible—simply by construction—with the evaluation
maps, bundles, and sections for the boundary components at R = ∞, and the
boundary BGW(A) at R = 0.

Assumption 6.3 The collection of oriented sc-Fredholm sections of strong polyfold
bundles σ±SFT : B±SFT(γ ; A) → E±SFT(γ ; A), σGW : BGW(A) → EGW(A), σSFT :
9 See also the end of Remark 5.4 (ii) for the motivation of B+,−

SFT (A) as open subset that intersects the
boundary strata limR→∞{R} × BGW(A) ⊂ ∂BSFT(A) in the buildings which have one marked point in
each of the components mapping to C

± × M , and no marked points mapping to intermediate cylinders
R× S1 × M .
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BSFT(A) → ESFT(A) for γ ∈ P(H) and A ∈ H2(M) together with the evaluation
maps ev± : B±SFT(γ ; A) → C±×M , ev± : BGW(A) → CP

1×M , ev± : BSFT(A) →
CP

1∞×M , and their sc∞ restrictions on open subsets, ev± : B±,C
SFT (γ ; A) → C

±×M ,
ev± : B+,−

GW/SFT(A) → C
±×M fromAssumptions 4.3, 5.5 has the following coherence

properties.

(i) For each γ ∈ P(H) and A−, A+ ∈ H2(M) such that A− + A+ = A, there is a
sc∞ immersion

lγ,A± : B+SFT(γ ; A+)× B−SFT(γ ; A−) → ∂BSFT(A)

whose restriction to the interior ∂0B+SFT(γ ; A+)×∂0B−SFT(γ ; A−) ⊂ B+,C
SFT (γ ; A+)×

B−,C
SFT (γ ; A−) is an embedding into the boundary of the open subset B+,−

SFT (A) ⊂
BSFT(A). They map into the limit set limR→∞{R} × BGW(A) from Assump-
tion 5.5(iii), so cover most of the boundary10

∂BSFT(A) ⊃ {0}×BGW(A) 

⋃

γ∈P(H)

A−+A+=A

lγ,A±
(
B+SFT(γ ; A+)×B−SFT(γ ; A−)

)
.

(ii) The union of the images lγ,A±
(
B+,C
SFT (γ ; A+) × B−,C

SFT (γ ; A−)
) ⊂ ∂B+,−

SFT (A) for
all admissible choices of γ, A± is the intersection ofB+,−

SFT (A)with limR→∞{R}×
BGW(A) ⊂ ∂BSFT(A), i.e.

∂B+,−
SFT (A) = {0} × B+,−

GW (A) 
 ∂ R=∞B+,−
SFT (A),

where ∂ R=∞B+,−
SFT (A) =

⋃

γ∈P(H)

A−+A+=A

lγ,A±
(
B+,C
SFT (γ ; A+)× B−,C

SFT (γ ; A−)
)
.

When restricted to the interiors, this yields a disjoint cover of the top boundary
stratum,

∂1B+,−
SFT (A) = {0} × B+,−

GW (A) 

⊔

γ∈P(H)A−+A+=A

lγ,A±
(
∂0B+SFT(γ ; A+)∂0B−SFT(γ ; A−)

)
.

(iii) The immersions lγ,A± are compatible with the evaluation maps, bundles, and
sections—as required for the construction [15] of coherent perturbations for SFT,
that is:

(a) The boundary restriction of the evaluationmaps ev±|{0}×BGW(A)⊂∂BSFT(A) coin-

cides with the Gromov–Witten evaluation maps ev± : BGW(A) → CP
1∞, and

the same holds for their sc∞ restriction ev+ × ev−|{0}×B+,−
GW (A)⊂∂B+,−

SFT (A)
=

ev+ × ev− : B+,−
GW (A) → C

+ × M × C
− × M with values in C

± ⊂ CP
1∞ =

10 The extra boundary faces ofBSFT(A) arise from both marked points mapping to the same component in
the R →∞ neck stretching limit. These will not be relevant to our construction of coherent perturbations.
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C
+ 
 S1 
 C

−. The restriction of ev± : BSFT(A) → CP
1∞ to each boundary

face im lγ,A± ⊂ ∂BSFT(A) takes values in C± ⊂ CP
1∞, and its pullback under

lγ,A± coincides with ev± : B±SFT(γ ; A±) → C± × M . Moreover, pullback of
the restricted sc∞ evaluations ev+ × ev− : B+,−

SFT (A) → C
+ × M ×C

− × M

under lγ,A± coincides with ev+ × ev− : B+,C
SFT (γ ; A+) × B−,C

SFT (γ ; A−) →
C
+ × M × C

− × M .
(b) The restriction of σSFT to F = {0}×BGW(A) ⊂ ∂BSFT(A) equals to σGW via

a natural identification ESFT(A)|F ∼= EGW(A). This identification reverses the
orientation of sections.

(c) The restriction of σSFT to each face F = B+SFT(γ ; A+) × B−SFT(γ ; A−) ⊂
∂BSFT(A) is related by pullback to σ+SFT × σ−SFT = σSFT ◦ lγ,A± via a natural
identification l∗γ,A±ESFT(A) ∼= E+SFT(γ ; A+) × E−SFT(γ ; A−). This identifica-
tion preserves the orientation of sections.

6.2 Coherent perturbations for chainmap identity

In this section we prove Theorem 1.3 (i), that is we construct ικι in Definition 5.8 as
a chain map on the Morse complex (5) with differential d : CM → CM given by
(4). This requires the following construction of the perturbations κι that is coherent
in the sense that it is compatible with the boundary identifications of the polyfolds
Bι(p−, p+; A) in Lemma 6.1. Here we will indicate smooth levels by adding ∞ as
superscript—denoting e.g. X ι,∞

p−,p+;A as the smooth level of an ep-groupoid represent-
ing Bι(p−, p+; A)∞.

Lemma 6.4 There is a choice of (κι
α)α∈I in Corollary 4.6 for I = {(p−, p+; A) | p± ∈

Crit( f ), A ∈ H2(M)} that is coherent w.r.t. the identifications in Lemma 6.1 in the
following sense.

• Each κι
α : W ι

α → Q
+ for α ∈ I is an admissible sc+-multisection of a strong

bundle Pα :W ι
α → X ι

α that is in general position to a sc-Fredholm section functor
Sι
α : X ι

α → W ι
α which represents σ ι

α|Vα
on an open neighbourhood Vα ⊂ Bι(α)

of the zero set σ−1α (0).
• The identification of top boundary strata in Lemma 6.1 holds for the representing
ep-groupoids,

∂1X ι,∞
p−,p+;A

∼=
⋃

q∈Crit( f ) M(p−, q)× ∂0X ι,∞
q,p+;A 


⋃

q∈Crit( f ) ∂0X ι,∞
p−,q;A ×M(q, p+),

and the oriented section functors Sι
α : X ι

α → W ι
α are compatible with

these identifications in the sense that the restriction of Sι
p−,p+;A to any face

F∞
(p−,q−),α′ := M(p−, q−) × ∂0X ι,∞

α′ ⊂ ∂1X ι,∞
p−,p+;A resp. F∞

α′,(q+,p+)
:=

∂0X ι,∞
α′ × M(q+, p+) ⊂ ∂1X ι,∞

p−,p+;A for another α′ ∈ I coincides on the
smooth level with the pullback Sι

α|F∞ = pr∗F Sι
α′ |F∞ of Sι

α′ via the projection
prF : F = F(p−,q−),α′ := M(p−, q−) × ∂0X ι

α′ → X ι
α′ resp. prF : F =

Fα′,(q+,p+) := ∂0X ι
α′ ×M(q+, p+) → X ι

α′ .
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• Each restriction κι
α|P−1α (F∞)

to a face F∞ = F∞
(p−,q−),α′ resp. F∞ = F∞

α′,(q+,p+)

is given by pullback κι
α|P−1α (F∞)

= κι
α′ ◦ pr∗F via the identification P−1α (F∞) ∼=

pr∗FW ι
α′ |∂0X ι,∞

α′
and natural map pr∗F : pr∗FW ι

α′ →W ι
α′ .

For any such choice of κι = (κι
α)α∈I , the resulting map ικι : CM → CM in Defi-

nition 5.8 satisfies ικι ◦ d + d ◦ ικι = 0. By setting ι〈 p 〉 := (−1)|p|ικι〈 p 〉 we then
obtain a chain map ι : C∗M → C∗M, that is ι ◦ d = d ◦ ι.

Proof We will first assume the claimed coherence and discuss the algebraic conse-
quences up to signs, then construct the coherent data, and finally use this construction
to compute the orientations.

Construction of chain map: Assuming ικι ◦ d + d ◦ ικι = 0, recall that d decreases
the degree on the Morse complex (6) by 1. Thus ι : C∗M → C∗M defined as above
satisfies for any q ∈ Crit( f )

(ι ◦ d − d ◦ ι)〈 q 〉 = (−1)|q|−1ικι (d〈 q 〉)− d((−1)|q|ικι 〈 q 〉) = (−1)|q|−1(ικι ◦ d + d ◦ ικι
)〈 q 〉 = 0.

By �-linearity this proves ι ◦ d = d ◦ ι on C∗M .

Proof of identity: To prove ικι ◦ d+ d ◦ ικι = 0 note that both ικι and d are �-linear,
so the claimed identity is equivalent to the collection of identities (ικι ◦d)〈 p− 〉+ (d ◦
ικι )〈 p− 〉 = 0 for all generators p− ∈ Crit( f ). That is we wish to verify

∑

q,p+,A
I ι(q,p+;A)=0
|q|=|p−|−1

#M(p−, q) · #Zκι

(q, p+; A) · T ω(A)〈 p+ 〉

+
∑

q,p+,A
I ι(p−,q;A)=0
|p+|=|q|−1

#Zκι

(p−, q; A) · #M(q, p+) · T ω(A)〈 p+ 〉 = 0.

Here, by the index formula (18), both sides can be written as sums over p+ ∈ Crit( f )
and A ∈ H2(M) for which I ι(p−, p+; A) = 1. Then it suffices to prove for any such
pair α = (p−, p+; A) with I ι(α) = 1

∑

|q|=|p−|−1
#M(p−, q) · #Zκι

(q, p+; A)

+
∑

|q|=|p+|+1
#Zκι

(p−, q; A) · #M(q, p+) = 0. (30)

This identity will follow by applying Corollary 4.6 (v) to the sc+-multisection κα :
W ι

α → Q
+. Its perturbed zero set is a weighted branched 1-dimensional orbifold

Zκι
(α), whose boundary is given by the intersection with the smooth level11 of the

top boundary stratum ∂1Bι(α) ∩ Vα = |∂1X ι
α|. By coherence (and with orientations

discussed below) this boundary is

11 Here and in the following we suppress indications of the smooth level, as the perturbed zero sets
automatically lie in the smooth level; see Remark A.3.
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∂Zκι

(α) = Zκι

(α) ∩ |∂1X ι
α|

=
⋃

q∈Crit( f )
Zκι

(α) ∩ (M(p−, q)× |∂0X ι
q,p+;A|

)



⋃

q∈Crit( f )
Zκι

(α) ∩ (|∂0X ι
p−,q;A| ×M(q, p+)

)

=
⋃

q∈Crit( f )
M(p−, q)× (Zκι

(q, p+; A) ∩ |∂0X ι
q,p+;A|

)



⋃

q∈Crit( f )

(
Zκι

(p−, q; A) ∩ |∂0X ι
p−,q;A|

)×M(q, p+),

=
⋃

|q|=|p−|−1
M(p−, q)× Zκι

(q, p+; A)



⋃

|q|=|p+|+1
Zκι

(p−, q; A)×M(q, p+).

Here the first summand of the third identification on the level of object spaces,

{
([τ ], x) ∈M(p−, q)× ∂0Xq,p+;A ⊂ ∂1Xα

∣∣ κα(Sι
α([τ ], x)) > 0

}

∼= {([τ ], x) ∈M(p−, q)× ∂0Xq,p+;A
∣∣ κq,p+;A(Sι

q,p+;A(x)) > 0
}

=M(p−, q)× {x ∈ ∂0Xq,p+;A
∣∣ κq,p+;A(Sι

q,p+;A(x)) > 0
}
,

follows if we assume coherence of sections andmultisections on the facesF(p−,q),α′ ⊂
∂1X ι

α ,

κα(Sι
α([τ ], x)) = κα(Sι

q,p+;A(x)) = κq,p+;A(Sι
q,p+;A(x)).

The second summand is identified similarly by assuming coherence on the faces
Fα′,(q−,p+) ⊂ ∂1X ι

α .
Finally, the fourth identification in ∂Zκι

(α) for α = (p−, p+; A) with I ι(α) = 1
follows from index and regularity considerations as follows. Corollary 4.6 (iii),(iv)
guarantees that the perturbed solution spaces Zκι

(α′) are nonempty only for Fredholm
index I ι(α′) ≥ 0, and for I ι(α′) = 0 are contained in the interior, Zκι

(α′) ⊂ ∂0B(α′).
TheMorse trajectory spacesM(p−, q) resp.M(q, p+) are nonempty only for |p−|−
|q| ≥ 1 resp. |q|−|p+| ≥ 1, so the perturbed solution spaces in the Cartesian products
have Fredholm index (18)

I ι(q, p+; A) = 2c1(A)+ |q| − |p+| = I ι(p−, p+; A)+ |q| − |p−| = 1+ |q| − |p−| ≤ 0,

and analogously I ι(p−, q; A) = I ι(p−, p+; A) + |p+| − |q| ≤ 0. By the above
regularity of the perturbed solution spaces this implies that the unions on the left hand
side of the fourth identification are over |q| = |p−|−1 resp. |q| = |p+|+1 as in (30),
and for these critical points we have the inclusions Zκι

(q, p+; A) ⊂ ∂0B(q, p+; A)

and Zκι
(p−, q; A) ⊂ ∂0B(p−, q; A) that verify the equality.
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This finishes the identification of the boundary ∂Zκι
(α). Now Corollary 4.6 (v)

asserts that the sum of weights over this boundary is zero—when counted with signs
that are induced by the orientation of Zκι

(α). So in order to prove the identity (30)
we need to compare the boundary orientation of ∂Zκι

(α) with the orientations on the
faces. We will compute the relevant signs in (31) below, after first making coherent
choices of representatives Sι

α : X ι
α →W ι

α of the oriented sectionsσ ι
α , and constructing

coherent sc+-multisections κι
α :W ι

α → Q
+ for α ∈ I.

Coherent ep-groupoids, sections, and perturbations: Recall that the fiber prod-
uct construction in Lemma 5.7 defines each bundle W ι

α = pr∗αWGW
A for α =

(p−, p+; A) ∈ I as the pullbackof a strongbundleWGW
A → X GW

A under a projection of
ep-groupoids—with abbreviated notation ev±0 := {z±0 }×ev :M(. . .) → CP

1×M—

pr p−,p+;A : X ι
p−,p+;A = M(p−, M) ev−0

×ev− X GW
A ev+×ev+0 M(M, p+)−→X GW

A .

Moreover, the section Sι
α = SGW

A ◦ prα is induced by the section SGW
A : X GW

A →WGW
A

which cuts out the Gromov–Wittenmoduli spaceMGW(A) = |(SGW
A )−1(0)|. Then the

identification of the top boundary stratum proceeds exactly as the Proof of Lemma 6.1.
Coherence of the bundles and sections follows from coherence of the projections
prα : X ι

α → X GW
A in the sense that prα|F∞ = prα′ ◦ prF for all smooth levels of

faces F ⊃ F∞ ⊂ ∂1X ι
α and their projections prF : F = F(p−,q−),α′ → X ι

α′ resp.
prF : F = Fα′,(q−,p+) → X ι

α′ . For example, the face F = F(p−,q−),(q−,p+;A) with
F∞ ⊂ ∂1X ι

p−,p+;A identifies

([τ ], (τ−, [v], τ+)
) ∈ F∞

(p−,q−),(q−,p+;A) = M(p−, q−)× ∂0X ι,∞
q−,p+;A

= M(p−, q−)×M(q−, M) ev−0
×ev− X GW,∞

A ev+×ev+0
M(M, p+)

with
(
([τ ], τ−), [v], τ+

) ∈ M(p−, M)1 ev−0
×ev− X GW,∞

A ev+×ev+0
M(M, p+) ⊂ ∂1X ι,∞

p−,p+;A,

and pr p−,p+;A
(
([τ ], τ−), [v], τ+

) = [v] ∈ X GW
A coincides with (prq−,p+;A ◦

prF )
([τ ], (τ−, [v], τ+)

) = prq−,p+;A(τ−, [v], τ+) = [v] ∈ X GW
A . Now any choice

of sc+-multisections (λGW
A : WGW

A → Q
+)A∈H2(M) induces a coherent collection of

sc+-multisections
(
κι
α := λGW

A ◦ pr∗α : pr∗αWGW
A → Q

+)
α∈I by composition with

the natural maps pr∗α : pr∗αWGW
A → WGW

A covering prα : X ι
α → X GW

A . Indeed,
prα|F = prα′ ◦ prF lifts to pr∗α|P−1α (F∞)

= pr∗
α′ ◦ pr∗F so that

κι
α|P−1α (F∞)

= λGW
A ◦ pr∗α|P−1α (F∞)

= λGW
A ◦ pr∗α′ ◦ pr∗F = κι

α′ ◦ pr∗F .

Construction of admissible Gromov–Witten perturbations: It remains to choose
the sc+-multisections (λGW

A : WGW
A → Q

+)A∈H2(M) so that the induced coherent
collection κι = (

λGW
A ◦ pr∗α

)
α∈I is admissible and in general position. To do so,

for each A ∈ H2(M) we apply Theorem A.9 to the sc-Fredholm section functor
SGW
A : X GW

A → WGW
A , the sc∞ submersion ev− × ev+ : X GW

A → CP
1 × M ×

CP
1 × M , and the collection of Cartesian products of stable and unstable manifolds

{z−0 } ×W−
p− × {z+0 } ×W+

p+ for all pairs of critical points p−, p+ ∈ Crit( f ).
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After fixing a pair controlling compactness (NA,UA) for each A ∈ H2(M), Theo-
rem A.9 yields (NA,UA)-admissible sc+-multisections λGW

A :WGW
A → Q

+ in general
position to SGW

A for each A ∈ H2(M). Moreover, they can be chosen such that restric-

tion of evaluations to the perturbed zero set ev−×ev+ : ZλGWA → CP
1×M×CP

1×M
is transverse to all of the products of unstable and stable submanifolds {z−0 } ×
W−

p− × {z+0 } × W+
p+ for p−, p+ ∈ Crit( f ). Note that these embedded submanifolds

cover the images of all evaluation maps on the compactified Morse trajectory spaces
ev−0 ×ev+0 :M(p−, M)×M(M, p+) → CP

1×M×CP
1×M , by construction of the

evaluations ev : M(. . .) → M in (8), which determine ev±0 (τ ) = (z±0 , ev(τ )). Thus

we obtain transverse fiber products M(p−, M) ev−0
×ev− Z

λGWA ev+×ev+0
M(M, p+)

for every α ∈ I. This translates into the pullbacks κι
α = λGW

A ◦ pr∗α being in general
position to the pullback sections Sι

α for α ∈ I. Moreover, κι
α is admissible with respect

to a pullback of (NA,UA), so the perturbed zero set is a compact weighted branched
orbifold for each α = (p−, p+; A),

“
∣∣(Sι

α + κι
α)−1(0)

∣∣” = Zκι

(α) = M(p−, M) ev−0
×ev− Z

λGWA ev+×ev+0
M(M, p+).

This finishes the construction of coherent perturbations.
Computation of orientations: To prove the identity (30) it remains to compute
the effect of the orientations in Remark 5.9 on the algebraic identity in Corol-
lary 4.6 (v) that arises from the boundary ∂Zκι

(α) of the 1-dimensional weighted
branched orbifolds arising from regularization of the moduli spaces with index
I ι(α) = I ι(p−, p+; A) = 1. Here ZλGWA is of even dimension and has no bound-
ary since the Gromov–Witten polyfolds in Assumption 5.5 have no boundary, and
the index of σGW is even. For the Morse trajectory spaces, the boundary strata are
determined in Theorem 3.3, with relevant orientations computed in Remark 3.5. Thus
for I ι(α) = |p−| − |p+| + 2c1(A) = 1 we can compute orientations – at the level of
well defined finite dimensional tangent spaces at a solution; in whose neighbourhood
the evaluation maps are guaranteed to be scale-smooth—

∂Zκι

(α) = ∂1M(p−, M) ev×ev ZλGWA ev×ev ∂0M(M, p+)


 (−1)dimM(p−,M) ∂0M(p−, M) ev×ev ZλGWA ev×ev ∂1M(M, p+)

= (
⊔

q∈Crit f
M(p−, q)×M(q, M)

)
ev×ev ZλGWA ev×ev M(M, p+)


 (−1)|p−|+|p+|+1M(p−, M) ev×ev ZλGWA ev×ev
( ⊔

q∈Crit f
M(M, q)×M(q, p+)

)

=
⊔

q∈Crit f
M(p−, q)× Zκι

(q, p+; A) 

⊔

q∈Crit f
Zκι

(p−, q; A)×M(q, p+). (31)

Here the signs in the first equality arise from the ambient Cartesian product ∂(M− ×
Z × M+) ⊂ (−1)dim(M−×Z)M− × Z × M+; in the second equality we used
Remark 3.5; and in the final equality we use |p−|+|p+|+1 ≡ I ι(α) = 1 ≡ 0 modulo
2. This finishes the computation of the oriented boundaries ∂Zκι

(α) for I ι(α) = 1
that proves (30) and thus yields a chain map. �
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6.3 Admissible perturbations for isomorphism property

In this section we prove Theorem 1.3 (ii), i.e. construct ι = (−1)∗ικι : C∗M →
C∗M in Definition 5.8 and Lemma 6.4 as a �-module isomorphism on the chain
complex CM = CM� over the Novikov field as in (5). This requires a construction
of the perturbations κι that preserves the properties of the zero sets in Remark 5.1 for
nonpositive symplectic area ω(A) ≤ 0.

Lemma 6.5 The coherent collection of sc+-multisections κι in Lemma 6.4 can be
chosen such that #Zκι

(p−, p+; A) = 0 for A ∈ H2(M)�{0} with ω(A) ≤ 0, or for
A = 0 and p− �= p+, and #Zκι

(p, p; 0) �= 0. As a consequence, ι = (−1)∗ικι :
CM� → CM� is a �-module isomorphism.

Proof The sc+-multisections κι in Lemma 6.4 are obtained from choices of sc+-
multisections (κA : W ι

A → Q
+)A∈H2(M) that are in general position to sc-Fredholm

sections SA : X GW
A → WA which cut out the Gromov–Witten moduli space

MGW(A) = |S−1A (0)|, and such that moreover the evaluation maps restricted to the
perturbed zero sets, ev−×ev+ : Z(κA) → CP

1×M×CP
1×M are transverse to the

unstable and stable manifolds {z−0 } × W−
p− × {z+0 } × W+

p+ ⊂ CP
1 × M × CP

1 × M
for any pair of critical points p−, p+ ∈ Crit( f ).

We will first consider α = (p−, p+; A) ∈ I for nontrivial homology classes
A ∈ H2(M)�{0}with nonpositive symplectic areaω(A) ≤ 0.Recall fromRemark 5.1
that these moduli spaces are empty |S−1A (0)| = ∅, so as in Corollary 4.6 we can choose
empty neighbourhoods∅ = |UA| ⊂ |X GW

A | to control compactness. Then the perturbed
zero set Z(κA) = |{x ∈ XA | κA(SA(x)) > 0}| ⊂ |UA| is forced to be empty, i.e.
κA ◦ SA ≡ 0. This is an allowed choice in Lemma 6.4 since evaluation maps from
an empty set are trivially transverse to any submanifold. This choice induces for any
p± ∈ Crit( f ) in α = (p−, p+; A) an induced sc+-multisection κι

α = κA ◦ pr∗α :
W ι

α → Q
+. Its perturbed zero set is

Zκι
α (α) = ∣∣{(τ−, x, τ+) ∈ Xα

∣∣ κι
α

(
Sι
α(τ−, x, τ+)

)
> 0
}∣∣ = ∅

since the coherence inLemma6.4 impliesκι
α◦Sι

α = κA◦pr∗α◦Sι
α = κA◦SA◦prα ≡ 0, or

more concretely κι
(p−,p+;A)

(
Sι
p−,p+;A(τ−, x, τ+)

) = κA(SA(x)) = 0. Thus we have

ensured vanishing counts #Zκι
(p−, p+; A) = 0 for A ∈ H2(M)�{0} with ω(A) ≤ 0

whenever I ι(p−, p+; A) = 0.
Next we consider A = 0 ∈ H2(M) and recall from Remark 5.1 and Assump-

tion 5.5 (ii) that the Gromov–Witten moduli space MGW(0) = Z(κ0) is already
compact and transversely cut out. Thus the trivial sc+-multisection κ0 : W0 → Q

+,
given by κ0(0x ) = 1 on zero vectors 0x ∈ (W0)x and κ0|(W0)x�{0x } ≡ 0, is an admis-
sible sc+-multisection in general position to S0 : X GW

0 → W0. Recall moreover that
the evaluation maps on the unperturbed zero set are

ev− × ev+ : Z(κ0) # CP
1 × CP

1 × M → CP
1 × M × CP

1 × M, (z−, z+, x) �→ (z−, x, z+, x).

In the CP
1-factors this is submersive so transverse to the fixed points (z−0 , z+0 ) ∈

CP
1 × CP

1. In the M-factors this is the diagonal map, which is transverse to the
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unstable and stable manifolds W−
p− ×W+

p+ ⊂ M × M for any pair p−, p+ ∈ Crit( f )
by the Morse–Smale condition on the metric on M chosen in Sect. 3. Thus the trivial
multisection κ0 is in fact an allowed choice in Lemma 6.4. Now with this choice, the
tuples (p−, p+; 0) ∈ I for which we need to compute

#Zκι

(p−, p+; 0)
= #

∣∣{(τ−, [v], τ+) ∈M(p−, M)× Z(κ0)×M(M, p+)
∣∣ (z±0 , ev(τ±)

) = ev±([v])}∣∣
∼= #

∣∣{(τ−, τ+) ∈M(p−, M)×M(M, p+)
∣∣ ev(τ−) = ev(τ+)

}∣∣

are those with 0 = I ι(p−, p+; 0) = 2c1(0) + |p−| − |p+|, i.e. |p−| = |p+|. These
are the fiber products identified in Remark 3.5 (ii) as either empty or a one point set,

M(p−, M)ev×evM(M, p+) =
{

∅; p− �= p+,

(τ− ≡ p−, τ+ ≡ p+); p− = p+.

Thus we have counts #Zκι
(p−, p+; 0) = 0 for p− �= p+ and #Zκι

(p, p; 0) �= 0 for
each p ∈ Crit( f ).

Finally, we will use these computations of #Zκ(p−, p+; A) for ω(A) ≤ 0 to
prove that the resulting map ι := (−1)∗ικι : CM� → CM� is a �-module
isomorphism. For that purpose we choose an arbitrary total order of the critical
points Crit( f ) = {p1, . . . , p
} and for i, j ∈ {1, . . . , 
} denote the coefficients of
ι(〈p j 〉) = ∑


i=1 λi j 〈pi 〉 by λi j ∈ �. We claim that the (
 × 
)-matrix with entries

λi j =∑r∈	 λ
i j
r T r satisfies the conditions of Lemma 2.1. To check this recall that we

have by construction in Definition 5.8 and change of signs in Lemma 6.4

λ
i j
r =

∑

A∈H2(M),ω(A)=r
I ι(p j ,pi ;A)=0

(−1)|p j | #Zκι

(p j , pi ; A).

For r < 0 we obtain λ
i j
r = 0 since each coefficient #Zκι

(p j , pi ; A) = 0 vanishes for

ω(A) = r < 0. For r = 0 and i �= j we also have λ
i j
0 = 0 since #Zκι

(p j , pi ; A) = 0
also holds for ω(A) = 0 and p j �= pi . Finally, for r = 0 and i = j we use
#Zκι

(p j , pi ; A) = 0 for A �= 0 with ω(A) = 0 to compute λi i0 = #Zκι
(p j , pi ; 0) �=

0. This confirms that Lemma 2.1 applies, and thus ι ∼= (λi j )1≤i, j≤
 is invertible. This
finishes the proof. �


6.4 Coherent perturbations for chain homotopy

In this section we prove Theorem 1.3 (iii) by constructing hκ : CM → CM in Defi-
nition 5.8 as a chain homotopy between SSPκ+ ◦ PSSκ− and ικι from Definitions 4.8,
5.8, with appropriate sign adjustments as in Lemma 6.4. This requires a coherent
construction of perturbations κ, κι, κ−, κ+ over the indexing sets
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I = I ι := {
α = (p−, p+, A)

∣∣ p−, p+ ∈ Crit( f ), A ∈ H2(M)
}
,

I+ := {
α = (p, γ, A)

∣∣ p ∈ Crit( f ), γ ∈ P(H), A ∈ H2(M)
}
,

I− := {
α = (γ, p, A)

∣∣ p ∈ Crit( f ), γ ∈ P(H), A ∈ H2(M)
}
.

Here we will use notation from Lemma A.7 for Cartesian products of multisections.

Lemma 6.6 There is a choice of κ+ = (κ+α )α∈I+ , κ− = (κ−α )α∈I− , κι =
(κι

α)α∈I , κ = (κα)α∈I in Definitions 4.8, 5.8 that is coherent in the following sense.

(i) Each κ ···α :W ···
α → Q

+ for α ∈ I+
I−
I ι
I is an admissible sc+-multisection
of a strong bundle P ···α :W ···

α → X ···
α that is in general position to a sc-Fredholm

section functor S···α : X ···
α →W ···

α which represents σ ···α |V ···α
on an open neighbour-

hood V ···α ⊂ B···(α) of the zero set σ ···α
−1(0). The tuple κι = (κι

α)α∈Iι satisfies the
conclusions of Lemmas 6.4 and 6.5.

(ii) The smooth level of the first boundary stratumofXp−,p+,A for every (p−, p+, A) ∈
I is naturally identified—on the level of object spaces, and compatible with
morphisms—with

∂1X∞
p−,p+,A

∼= ∂0X ι,∞
p−,p+,A 


⋃

γ∈P(H),A=A−+A+
∂0X+,∞

p−,γ,A+ × ∂0X−,∞
γ,p+,A−



⋃

q∈Crit( f )
M(p−, q)× ∂0X∞

q,p+,A



⋃

q∈Crit( f )
∂0X∞

p−,q,A ×M(q, p+), (32)

and the oriented section functors S···α are compatible with these identifications in
the sense that the restriction of Sp−,p+,A to any of these faces F∞ ⊂ ∂1X∞

p−,p+,A
is given by pullback Sp−,p+,A|F∞ = pr∗F SF of another sc-Fredholm section of a
strong bundle over an ep-groupoid SF : XF → WF given by Sq,p+,A, Sp−,q,A,
Sι
p−,p+,A, resp.

SF = S+p−,γ,A+ × S−γ,p+,A− : X+
p−,γ,A+ × X−

γ,p+,A− → W+
p−,γ,A+ ×W−

γ,p+,A−

via the projection prF : F → XF given by the natural maps

M(p−, q)× ∂0Xq,p+,A → Xq,p+,A,

∂0X ι
p−,p+,A → X ι

p−,p+,A,

∂0Xp−,q,A ×M(q, p+) → Xp−,q,A,

∂0X+
p−,γ,A+ × ∂0X−

γ,p+,A− → X+
p−,γ,A+ × X−

γ,p+,A− .
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(iii) Each restriction κα|P−1α (F∞)
for α = (p−, p+, A) ∈ I to one of the faces F∞ ⊂

∂1Xα is given via the identification P−1α (F∞) ∼= pr∗FWF |∂0XF and natural map
pr∗F : pr∗FWF →WF by

κα|P−1α (F∞)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

κq,p+,A ◦ pr∗F for F =M(p−, q)× ∂0Xq,p+,A,

κp−,q,A ◦ pr∗F for F = ∂0Xp−,q,A ×M(q, p+),

κι
p−,p+,A ◦ pr∗F for F = ∂0X ι

p−,p+,A,

(κ+p−,γ,A+ · κ−γ,p+,A−) ◦ pr∗F for F = ∂0X+
p−,γ,A+ × ∂0X−

γ,p+,A− .

For any such choice of κι = (κι
α)α∈I , the resulting maps PSSκ+ , SSPκ− , ικι , hκ

in Definitions 4.8, 5.8 satisfy (−1)|p|ικι〈 p 〉 = (−1)|p|SSPκ−
(
PSSκ+〈 p 〉

) +
hκ(d〈 p 〉) + d(hκ 〈 p 〉), where d is the Morse differential from Sect. 3. By set-
ting ι〈 p 〉 := (−1)|p|ικι〈 p 〉 as in Lemma 6.4, PSS〈 p 〉 := (−1)|p|PSSκ+〈 p 〉,
SSP := SSPκ− , and h := hκ we then obtain a chain homotopy between ι and
SSP ◦ PSS, that is ι− SSP ◦ PSS = d ◦ h + h ◦ d.
Proof This proof is similar to Lemma 6.4, with more complicated combinatorics of
the boundary faces due to the boundary of BSFT described in Assumption 6.3, and
presented in different order: We will first make the coherent constructions and then
deduce the algebraic consequences.
Coherent ep-groupoids and sections: To construct coherent representatives S···α :
X ···

α →W ···
α for α ∈ I+
I−
I ι
I as claimed in (ii) recall that the fiber product con-

struction in Lemma 5.7 defines each bundleWα = pr∗αWSFT
A for α = (p−, p+, A) ∈ I

as the pullback of a strong bundle PA :WSFT
A → X SFT

A under the natural projection of
ep-groupoids

pr p−,p+,A : Xp−,p+,A=M(p−, M) ev+0
×ev+ X SFT

A ev−×ev−0
M(M, p+) −→ X SFT

A .

Here ev±0 : M(. . .) → C
± × M, τ �→ (0, ev(τ )) arise from Morse evaluation (8).

The ep-groupoid X SFT
A ⊂ X̃ SFT

A is a full subcategory—determined by the open subset
B+,−
SFT (A) = (ev+)−1(C+×M)∩ (ev−)−1(C−×M) ⊂ BSFT(A)—of an ep-groupoid

X̃ SFT
A from Assumption 5.5 that represents BSFT(A) and thus contains the compact-

ified SFT neck stretching moduli space MSFT(A) = |(SSFT
A )−1(0)| as zero set of

a sc-Fredholm section SSFT
A : X̃ SFT

A → W̃SFT
A . We will work with both groupoids:

Multisection perturbations are constructed over X̃ SFT
A since we need a compact zero

set to specify the admissibility that guarantees preservation of compactness under
perturbations—both for SSFT

A and its fiber product restrictions Sα . On the other hand,
|X̃ SFT

A | = BSFT(A) has more complicated boundary than B+,−
SFT (A) – due to the distri-

bution of marked points into building levels—and does not support a sc∞ evaluation
map. Thuswe discuss coherence only over subgroupoidsX SFT

A ⊂ X̃ SFT
A with the bound-

ary stratification ofB+,−
SFT (A), and which support sc∞ functors ev± : X SFT

A → C
±×M

representing the evaluation maps (29). Here we may even use subgroupoids X SFT
A rep-

resenting a smaller open subset (ev+)−1(D+r × M) ∩ (ev−)−1(D−r × M) ⊂ BSFT(A)

of preimages of the disks D
±
r := {z ∈ C

± | |z| < r} ⊂ C
±, which contain the stan-
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dard marked points z±0 ∼= 0 ∈ C
±.12 The polyfold structure on the fiber products

Xα in Lemma 5.7 is independent of the choice of open neighbourhood in BSFT(A)

of the subset satisfying the fiber product condition. After obtaining the subgroupoid
X SFT

A ⊂ X̃ SFT
A from such an open subset, we obtain the bundleWSFT

A = W̃SFT
A |X SFT

A
and

section SSFT
A |X SFT

A
: X SFT

A →WSFT
A by restriction. Finally, each section Sα = SSFT

A ◦prα
is induced by the above projection prα : Xα → X SFT

A ⊂ X̃ SFT
A .

Next, restriction to the boundary faces given in Assumption 6.3 (i) induces repre-
sentatives SGW

A : X̃ GW
A → W̃GW

A resp. S±γ,A± : X̃±
γ,A± → W̃±

γ,A± of the sections σGW :
BGW(A) → EGW(A) resp. σSFT : B±SFT(γ ; A±) → E±SFT(γ ; A±) from Assump-
tion 4.3 resp. 5.5. Moreover, the boundary of the open subset (ev+ × ev−)−1(D+r ×
M × D

−
r × M) for 0 < r ≤ ∞ (with D

±∞ := C
±) yields subgroupoids X GW

A ⊂ X̃ GW
A

representing (ev+ × ev−)−1(D+r × M ×D
−
r × M) ⊂ BGW(A) resp. X±

γ,A± ⊂ X̃±
γ,A±

representing (ev±)−1(D±r × M) ⊂ B±SFT(A), along with restricted sections SGW
A :

X GW
A → WGW

A = W̃GW
A |XGW

A
resp. S±γ,A± : X±

γ,A± → W±
γ,A± = W̃±

γ,A±|X±
γ,A±

.

Then the evaluation maps restrict to sc∞ functors ev± : X GW
A → D

±
r × M resp.

ev± : X±
γ,A → D

±
r ×M , which yield—again independent of r > 0—the fiber product

construction of B±(α) in Lemma 4.5, and of Bι(α) in Lemma 5.7.
Now the identification of the top boundary strata ∂1X∞

p−,p+,A will proceed similar

to the proof of Lemma 6.1 with BGW(A) replaced by B+,−
SFT (A), apart from the fact

that the SFT polyfold has boundary. This boundary is identified in Assumption 6.3 (ii)
as

∂1X SFT
A

∼= X GW
A 


⊔

γ∈P(H)

A−+A+=A

∂0X+
γ,A+ × ∂0X−

γ,A− . (33)

By the fiber product construction [10, Cor.7.3] of B(p−, p+; A) in Lemma 5.7, the
degeneracy index satisfies dB(p−,p+;A)(τ−, u, t+) = dM(p−,M)

(τ−)+ dBSFT(A(u)+
dM(M,p+)

(τ+). Hence we have dB(p−,p+;A)(τ−, u, τ+) = 1 if and only if the degen-
eracy index of exactly one of the three arguments τ−, u, τ+ is 1 and the other two are
0. This identifies |∂1Xp−,p+,A| = ∂1B(p−, p+; A) as in the first line of the displayed
equation below. Then the subsequent identifications result by comparing the resulting
expressions with the interiors in Lemmas 4.5, 5.7. We obtain an identification that
throughout is to be interpreted on the smooth level (as fiber product constructions
drop some non-smooth points)

∂1Xp−,p+,A ∼= ∂0M(p−, M) ev+0
×ev+ ∂1X SFT

A ev−×ev−0
∂0M(M, p+)


 ∂1M(p−, M) ev+0
×ev+ ∂0X SFT

A ev−×ev−0
∂0M(M, p+)


 ∂0M(p−, M) ev+0
×ev+ ∂0X SFT

A ev−×ev−0
∂1M(M, p+)

= M(p−, M) ev+0
×ev+ X GW

A ev−×ev−0
M(M, p+)

12 These disks should not be confused with the closed disks D± in the construction of CP
1
R , as e.g. D

+ ⊂
C
+ ∼= (D+ 
 [−R, 0)× S1)/ ∼R is a precompact subset of the first hemisphere in CP

1
R
∼= C

+ ∪ S1 ∪C
−

for any R ≥ 0.
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⋃

γ∈P(H)

A−+A+=A

M(p−, M) ev+0
×ev+ ∂0X+

γ,A+ × ∂0X−
γ,A− ev−×ev−0

M(M, p+)



⋃

q∈Crit( f )
M(p−, q)×M(q, M) ev+0

×ev+ ∂0X SFT
A ev−×ev−0

∂0M(M, p+)



⋃

q∈Crit( f )
M(p−, M) ev+0

×ev+ ∂0X SFT
A ev−×ev−0

M(M, q)×M(q, p+)

= ∂0X ι
p−,p+,A 


⋃

γ∈P(H)

A−+A+=A

∂0X+
p−,γ,A+ × ∂0X−

γ,p+,A−



⋃

q∈Crit( f )
M(p−, q)× ∂0Xq,p+,A 


⋃

q∈Crit( f )
∂0Xp−,q,A ×M(q, p+).

Herewe also used the identification of evaluationmaps inAssumption 6.3 (iii)(a). Then
compatibility in (ii) of the oriented section functors S···α with the identification of these
(smooth levels of) facesF∞ ⊂ ∂1X∞

p−,p+,A follows from compatibility of pr p−,p+,A :
Xp−,p+,A → X SFT

A with the projections pr±α : X±
α → X±

γ,A± for α ∈ I± used in
Lemma4.5 and prια : X ι

α → X GW
A used in Lemma5.7.More precisely, Sp−,p+,A|F∞ =

pr∗F SF follows from compatibility of the sections in Assumption 6.3 (iii) and

pr p−,p+,A|F∞

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

prιp−,p+,A ◦ prF for F = ∂0X ι
p−,p+,A,

(pr+p−,γ,A− × pr−γ,p+,A+) ◦ prF for F = ∂0X+
p−,γ,A+ × ∂0X−

γ,p+,A− ,

prq,p+,A ◦ prF for F =M(p−, q)× ∂0Xq,p+,A,

pr p−,q,A ◦ prF for F = ∂0Xp−,q,A ×M(q, p+).

Construction of coherent perturbations: Next, we construct admissible sc+-
multisections κ ···α : W ···

α → Q
+ for α ∈ I+ ∪ I− ∪ I ι ∪ I as claimed in (i), i.e.

in general position to the respective sections S···α : X ···
α →: W ···

α , while also coher-
ent as claimed in (iii). The existence of such coherent transverse perturbations will
ultimately be guaranteed by an abstract perturbation theorem for coherent systems of
sc-Fredholm sections. Since the SFT perturbation package [12, §14] has not yet been
described for neck stretching, we give a detailed construction of the perturbations
for our purposes. We proceed as in Lemma 6.4 and construct them all as pullbacks
κ ···α := λ···A ◦ (pr···α )∗ of a collection of sc+-multisections on the SFT resp. Gromov–
Witten polyfold bundles—without Morse trajectories—

λ =
( (

λ+γ,A : W̃+
γ,A → Q

+)
γ∈P(H),A∈H2(M)

(
λGW
A : W̃GW

A → Q
+)

A∈H2(M)
(
λ−γ,A : W̃−

γ,A → Q
+)

γ∈P(H),A∈H2(M)

(
λSFT
A : W̃SFT

A → Q
+)

A∈H2(M)

)

.

For this to induce a coherent collection of sc+-multisections as required in (iii),

(
κ+p,γ,A := λ+γ,A ◦ (pr+p,γ,A)∗

)
(p,γ,A)∈I+ ,

(
κι
p−,p+,A := λGW

A ◦ (prιp−,p+,A)∗
)
(p−,p+,A)∈Iι ,

(
κ−γ,p,A := λ−γ,A ◦ (pr−γ,p,A)∗

)
(γ,p,A)∈I− ,

(
κp−,p+,A := λSFT

A ◦ (pr p−,p+,A)∗
)
(p−,p+,A)∈I ,
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it suffices to pick λ compatible with respect to the faces of the SFT neck stretching
polyfolds X SFT

A in (33). More precisely, using the natural identifications of bundles
from Assumption 6.3 (iii), we will construct λ coherent in the sense that—for some
choice of r > 0 in the construction of |X±

γ,A| = (ev±)−1(D±r × M) ⊂ B±SFT(γ ; A)

and W±
γ,A = W̃±

γ,A|X±
γ,A

—we have

λSFT
A (w) = λGW

A (w) ∀ w ∈ W̃GW
A , (34)

λSFT
A ((lγ,A±)∗(w+, w−)) = λ+γ,A+(w+) · λ−γ,A−(w−) ∀ (w+, w−) ∈W+

γ,A+ ×W−
γ,A− ,

(35)

where lγ,A± is the map defined in Assumption 6.3(i). So to finish this proof it remains
to choose the sc+-multisections λ so that each induced sc+-multisection in the induced
coherent collection for (κ ···α )α∈I+∪I−∪Iι∪I is admissible and in general position, while
also satisfying the coherence requirements (34), (35) and the requirements on κι in the
proofs of Lemma 6.4 and 6.5. The construction of coherent perturbations for the SFT
polyfolds analogously to [12, §14] proceeds by first choosing coherent compactness
controlling data, i.e. pairs (N ,U) of auxiliary norms on all the bundles and saturated
neighbourhoods of the compact zero sets in all the ep-groupoids X̃±

γ,A, X̃ GW
A , X̃ SFT

A
(c.f. Definition A.5), which are compatible with the immersions to boundary faces
in (33). Then it constructs the perturbations λGW

A as in Lemma 6.5 and also λ±γ,A± to
be in general position, admissible w.r.t. the coherent data (2N ,U), and coherent in
the sense that continuous extension of (34)–(35) induces a well defined multisection
λ∂
A : W̃SFT

A |∂X SFT
A

→ Q
+. Here coherence of the perturbations on the intersection of

faces (see Remark 6.2) is required to guarantee existence of scale-smooth extensions
of λ∂

A to multisections λSFT
A : W̃SFT

A → Q
+. Coherence of the compactness controlling

pairs guarantees that the multisection λ∂
A over ∂X SFT

A ⊂ X̃ SFT
A satisfies the auxiliary

norm bounds N (λ∂
A) ≤ 1

2 and support requirements that guarantee compactness for
extensions λSFT

A of λ∂
A with N (λSFT

A ) ≤ 1 and appropriate support requirements. More-
over, we may choose each of the extensions λSFT

A using Theorem A.9 to ensure—as in
Lemma 6.4—that the induced multisections κ ···α are in general position as well. The
latter will automatically be admissible with respect to pullback of the pair control-
ling compactness. In more detail (but without specifying the auxiliary norm bounds)
the inductive construction of perturbations in [15]—simplified to the subset of SFT
moduli spaces considered here—proceeds as follows:
Construction of λGW

A and κι: Since the Gromov–Witten ep-groupoids X̃ GW
A are

boundaryless by Assumption 5.5 (iii), the sc+-multisections λGW
A can be chosen inde-

pendently of all othermultisections. Sowe constructλGW
A as in the proofs of Lemma6.4

and 6.5, to ensure that the conclusions in these lemmas hold, as required by (i). This
prescribes (34) on the boundary face X̃ GW

A ⊂ ∂X̃ SFT
A .

Moreover, recall that λGW
A is obtained by applying Theorem A.9 to the sc-Fredholm

section functors SGW
A , the sc∞ submersion ev+×ev− : X̃ GW

A → CP
1×M×CP

1×M ,
and the collection of Cartesian products of stable and unstable manifolds {z+0 } ×
W−

p− × {z−0 } × W+
p+ . As in the proof of Lemma 6.4 this ensures that the pullbacks

κι = (κι
α = λGW

A ◦ (prια)∗)α∈Iι are in general position. Moreover, these pullbacks
are admissible w.r.t. the pairs controlling compactness on W ι

α → X ι
α that result by



A polyfold proof of the Arnold conjecture Page 51 of 73 11

pullback from the coherent compactness controlling pair on W̃GW
A → X̃ GW

A , which is
constructed in a preliminary step as in [12, §13].

Coherence for λ±
γ,A: The next step is to construct sc

+-multisections λ±γ,A : W̃±
γ,A →

Q
+ over the SFT ep-groupoids X̃±

γ,A of planes with limit orbit γ ∈ P(H) from
Assumption 4.3, which then induce the perturbations κ± for the PSS/SSP moduli
spaces. These constructions are independent of the choice of λGW

A since the corre-
sponding boundary faces of X̃ SFT

A do not intersect by Assumption 6.3 (ii). However,
to enable the subsequent construction of λSFT

A as extension of the boundary val-
ues prescribed in (34) and (35), we need to make sure that each sc+-multisection
(λ+γ,A+ · λ−γ,A−) ◦ (lγ,A±)−1∗ is well defined on the (open subset of) face Fγ,A± :=
lγ,A±(X+

γ,A+ × X−
γ,A−) ⊂ ∂X̃ SFT

A and coincides with the other sc+-multisections

(λ+
γ ′,A′+

· λ−
γ ′,A′−

) ◦ (lγ ′,A′±)−1∗ on their intersection Fγ,A± ∩Fγ ′,A′± . Then this yields a

well defined sc+-multisection on
⋃

Fγ,A± = ∂X SFT
A ⊂ ∂X̃ SFT

A . To describe these
intersections we note that [12] constructs the ep-groupoids X̃±

γ,A± with coherent
boundaries—involving ep-groupoids (X Fl

γ−,γ+,B)γ±∈P(H),B∈H2(M) which contain the

moduli spaces of Floer trajectories between periodic orbits γ±, as well as further
ep-groupoids for Floer trajectories carrying a marked point. We will avoid dealing
with the latter by specifying values r < ∞ when pulling back perturbations from the
ep-groupoids X±

γ,A ⊂ X̃±
γ,A given by |X±

γ,A| = (ev±)−1(D±r × M) ⊂ B±SFT(γ ; A), as
this will prevent the appearance of marked Floer trajectories even in the closure. For
any fixed value 0 < r ≤ ∞, the j-th boundary stratum is given by j Floer trajectories
breaking off,

∂ jX+
γ,A =

⊔

γ 0,...,γ j=γ∈P(H)

A++B1+...+B j=A

∂0X+
γ 0,A+ × ∂0X Fl

γ 0,γ 1,B1
× · · · × ∂0X Fl

γ j−1,γ j ,Bj
,

∂k− jX−
γ,A =

⊔

γ=γ j ,...,γ k∈P(H)

B j+1+...+Bk+A−=A

∂0X Fl
γ j ,γ j+1,Bj+1 × · · · × ∂0X Fl

γ k−1,γ k ,Bk
× ∂0X−

γ k ,A− .

(36)

Now, for example, ∂0X+
γ 0,A+ ×∂0X Fl

γ 0,γ 1,B
×∂0X−

γ 1,A− is both a subset of ∂0X+
γ 0,A+ ×

∂1X−
γ 0,A−+B

⊂ ∂
(
X+

γ 0,A+ × X−
γ 0,A−+B

)
and of ∂1X+

γ 1,A++B
× ∂0X−

γ 1,A− ⊂
∂
(
X+

γ 1,A++B
× X−

γ 1,A−
)
, and the embeddings lγ 0,A0± and λγ 1,A1± for the two split-

tings A+ + (A− + B) = A0+ + A0− = A = A1+ + A1− = (A+ + B) + A− coincide
under this identification. Generally, the boundary of the Floer ep-groupoids is given
by broken trajectories, and this yields a disjoint cover of ∂ R=∞X SFT

A ⊂ ∂X SFT
A ,

∂ R=∞X SFT
A =

⊔

γ 0 ,...,γ k∈P(H)

A++B1+...+Bk+A−=A

lγ ,A±,B
(
∂0X+

γ 0,A+ × ∂0X Fl
γ 0,γ 1,B1

× . . .× ∂0X Fl
γ k−1,γ k ,Bk

× ∂0X−
γ k ,A−

)
,
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in which the embeddings lγ ,A±,B coincide with each of the embeddings l
γ j ,A j

±
for

0 ≤ j ≤ k and A j
+ = A+ +∑i≤ j Bi , A

j
− = A− +∑i> j Bi—when restricted to the

subsets

∂0X+
γ 0,A+ × ∂0X Fl

γ 0,γ 1,B1
× . . .× ∂0X Fl

γ k−1,γ k ,Bk
× ∂0X−

γ k ,A− ⊂ ∂ jX+
γ j ,A j

+
× ∂k− jX−

γ j ,A j
−
.

Now on these subsets we require coherence λ+
γ j ,A j

+
· λ−

γ j ,A j
−
= λ+

γ j ′ ,A j ′
+
· λ−

γ j ′ ,A j ′
−
for

all 0 ≤ j �= j ′ ≤ k, as this is equivalent to (35) being well defined on im lγ ,A±,B =
⋂k

j=0 Fγ j ,A j
±
. This will be achieved by constructing the sc+-multisections (λ±γ,A±) to

have product structure on the boundary – where the bundles Pγ,A : W±
γ,A → X±

γ,A

are restricted to various faces of ∂X±
γ,A—

λ+
γ j ,A j

+

∣∣
P−1

γ j ,A
j
+

(
X+

γ 0,A+
×X Fl

γ 0,γ 1,B1
×...×X Fl

γ j−1,γ j ,B j

) = λ+
γ 0,A+ · λ

Fl
γ 0,γ 1,B1

· . . . · λFl
γ j−1,γ j ,Bj

,

λ−
γ j ,A j

−

∣∣
P−1

γ j ,A
j
−

(
X Fl

γ j ,γ j+1,B j+1
×...×X Fl

γ k−1,γ k ,Bk
×X−

γ k ,A−
)

= λFl
γ j ,γ j+1,Bj+1 · . . . · λ

Fl
γ k−1,γ k ,Bk

· λ−
γ k ,A− , (37)

for a collection of sc+-multisections λFl
γ−,γ+,B : WFl

γ−,γ+,B → Q over the Floer ep-

groupoidsX Fl
γ−,γ+,B . While this guarantees coherence on each overlap of embeddings

im lγ ,A±,B ⊂ F
γ j ,A j

±
∩ F

γ j ′ ,A j ′
±
,

λ+
γ j ,A j

+
· λ−

γ j ,A j
−
= λ+

γ 0,A+ · λ
Fl
γ 0,γ 1,B1

· . . . · λFl
γ k−1,γ k ,Bj

· λ−
γ k ,A− =λ+

γ j ′ ,A j ′
+
· λ−

γ j ′ ,A j ′
−
,

we are now faced with the challenge of satisfying the coherence conditions in (37).
These conditions uniquely determine the boundary restrictions λ±γ,A±

∣∣
P−1γ,A± (∂X±

γ,A± )

via the identification of the boundaries with Cartesian products of interiors in (36).
Thus (36) on Cartesian products involving boundary strata poses coherence conditions
on the choice of λFl

β for β ∈ IFl := P(H)× P(H)× H2(M).

Construction of. λFl
γ−,γ+,B: To achieve the coherence in (37), [15] first constructs the

sc+-multisections (λFl
β )β∈IFl by iteration over themaximal degeneracy kβ := max{k ∈

N0 | (SFl
β )−1(0)∩∂kX Fl

β �= ∅} of unperturbed solutions (which is finite byGromov com-
pactness): We first consider classes β with kβ = −∞. For these, the section SFl

β has
no zeros so is already transverse, so that λFl

β can be chosen as the trivial perturbation.
(The trivial multivalued section functor λ : W → Q

+ is given by λ(0) = 1 and
λ(w �= 0) = 0.) Next, we consider β with kβ = 0. For these, the section SFl

β has all
zeros in the interior, so that λFl

β can be chosen admissible and trivial on the boundary—
by applying Corollary 4.6 (i) with a neighbourhood of the unperturbed zero set in the
interior, |(SFl

β )−1(0)| ⊂ Vβ ⊂ |∂0X Fl
β |. Once the iteration has constructed λFl

β for all
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β with kβ ≤ n for some n ∈ N0, we proceed to consider β = (γ−, γ+, B) ∈ IFl

with kβ = n + 1. For these, the restriction λFl
β |P−1β (∂X Fl

β )
to the boundary ∂X Fl

β =
⋃

γ−=γ 0,γ 1,...,γ k−1,γ k=γ+,B=B1+...+Bk ∂0X Fl
γ 0,γ 1,B1

× . . .×∂0X Fl
γ k−1,γ k ,Bk

is prescribed

by the previous iteration steps λFl
β

∣∣
P−1β (X Fl

γ 0,γ 1,B1
...×X Fl

γ k−1,γ k ,Bk
)
:= λFl

γ 0,γ 1,B1
. . . ·

λFl
γ k−1,γ k ,Bk

on all boundary faces that contain unperturbed solutions in their closure.

Indeed, existence of a solution inX Fl
γ 0,γ 1,B1

× . . .×X Fl
γ k−1,γ k ,Bk

implies kγ i−1,γ i ,Bi ≥ 0
for i = 1, . . . , k, and the Cartesian product of solutions of maximal degeneracy
yields 1+ kγ 0,γ 1,B1 + . . .+ kγ k−1,γ k ,Bk ≤ kβ . Thus these prescriptions are made for
0 ≤ kγ i−1,γ i ,Bi ≤ kβ−1 = n, and on boundary faces with no solutions in their closure
we prescribe the trivial perturbation throughout.

This yields a well defined sc+-multisection λFl
β |P−1β (∂X Fl

β )
by coherence in the prior

iteration steps, so that λFl
β can be constructed by applying the extension result [22,

Thm.15.5] which provides general position and admissibility with respect to a pair
controlling compactness that extends the pair which was chosen on the boundary in
prior iteration steps.

Construction of λ±
γ,A and κ±: With the Floer perturbations in place, [15] next con-

structs the collections of sc+-multisections (λ±γ,A)γ∈P(H),A∈H2(M) to satisfy (37) by

iteration over degeneracy kγ,A := max{k ∈ N0 | (S±γ,A)−1(0) ∩ ∂kX̃±
γ,A �= ∅}. For

kγ,A = −∞ one takes λ±γ,A to be trivial. For kγ,A = 0 one applies Theorem A.9 to the

sc-Fredholm section functor S±γ,A : X̃±
γ,A → W̃±

γ,A, the map ev± : X̃±
γ,A → C± ×M ,

and the collection of stable resp. unstable manifolds {0} × W±
p for all critical points

p ∈ Crit( f ). These satisfy the assumptions as the zero set |(S±γ,A)−1(0)| is compact

and the preimages (ev±)−1({0} × W±
p ) lie within the open subset X±

γ,A ⊂ X̃±
γ,A on

which ev± restricts to a sc∞ submersion ev± : X±
γ,A → C

± × M . We can moreover

prescribe λ±γ,A|P−1γ,A(∂X̃±
γ,A)

to be trivial, since in the absence of solutions the trivial

perturbation is in general position. Then Theorem A.9 provides λ±γ,A that is supported
in the interior and transverse to each submanifold {0} × W±

p in the sense that these
submanifolds are transverse to the evaluation from the perturbed zero set

ev± : ∣∣{x ∈ X±
γ,A | λ±γ,A(S±γ,A(x)) > 0}∣∣ → C

± × M . (38)

Now suppose that admissible λ±
γ ′,A′ in general position have been constructed for

kγ ′,A′ ≤ k ∈ N0, and satisfy both the transversality in (38) and the coherence condi-
tion (37) over the ep-groupoids |X±

γ ′,A′ | = (ev±)−1(D±rk × M) with rk := 2 + 2−k .
Then for kγ,A = k+1 we will construct λ±γ,A to satisfy (37) over (ev±)−1(D±rk+1×M)

by first noting that the previous iteration—and requiring triviality on boundary faces
without solutions—determines a well defined sc+-multisection λ±γ,A|P−1γ,A(∂X±

γ,A)
over

the r = rk boundary ∂X±
γ,A # ⋃

γ ′,A=A±+B ∂0X±
γ ′,A± × X Fl

γ ′,γ,B . For faces (w.r.t.

∂X±
γ,A) with solutions it is given by λ±γ,A

∣∣
P−1γ,A(X±

γ ′,A±×X
Fl
γ ′,γ,B

)
= λ±

γ ′,A± × λFl
γ ′,γ,B
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where kγ,A ≥ 1+ kγ ′,A± + kγ ′,γ,B . This is well defined at (x±, x, x ′) ∈ ∂0X±
γ ′,A± ×

X Fl
γ ′,γ ′′,B′ × X Fl

γ ′′,γ,B−B′ , which appears both as (x±, (x, x ′)) ∈ ∂0X±
γ ′,A± × ∂X Fl

γ ′,γ,B

and ((x±, x), x ′) ∈ ∂X±
γ ′′,A±+B′ × X Fl

γ ′′,γ,B−B′ , by the coherence of the Floer mul-

tisections and the prior iteration: For vectors in the respective fibers (w±, w,w′) ∈
P−1

γ ′,A±(x±)× P−1
γ ′,γ ′′,B′(x)× P−1

γ ′′,γ,B−B′(x
′) we have

λ±
γ ′,A±(w±) · λFl

γ ′,γ,B(w,w′) = λ±
γ ′,A±(w±) · λFl

γ ′,γ ′′,B′(w) · λFl
γ ′′,γ,B−B′(w

′)

= λ±
γ ′′,A±+B′(w

±, w) · λFl
γ ′′,γ,B−B′(w

′).

Moreover, ev± : |{x ∈ ∂X±
γ,A | λ±γ,A(S±γ,A(x)) > 0}| → C

± × M is transverse to
the submanifolds {0} ×W±

p . However, this defines an admissible sc+-multisection in

general position only over the open subset of the boundary ∂X±
γ,A = (ev±)−1(D±rk ×

M) ∩ ∂X̃±
γ,A. We multiply the given data by a scale-smooth cutoff function—

guaranteed by the existence of partitions of unity for the open cover |X̃±
γ,A| =

(ev±)−1(D±rk × M) ∪ (ev±)−1((C±�D
±
r
k+ 1

2

) × M); see Remark A.6—to obtain an

admissible sc+-multisection λ∂
γ,A : W̃±

γ,A|∂X̃±
γ,A

→ Q
+ which coincides with the

prescribed data—thus in general position and with evaluation transverse to each

{0}×W±
p —over the closed subset (ev±)−1(D±rk+1×M)∩∂X̃±

γ,A. Thenλ±γ,A : W̃±
γ,A →

Q
+ is constructed with these given boundary values using Theorem A.9 to achieve

not just general position but also transversality as in (38). By admissibility of the prior
iteration and coherence of the pairs controlling compactness, λ±γ,A can moreover be
chosen admissible.

As required in the coherence discussion, this determines right hand sides of (35)
which agree on overlaps of different immersions lγ,A±(X+

γ,A+ × X−
γ,A−) for r = 2.

Thus it constructs a well defined sc+-multisection on ∂ R=∞X SFT
A =⋃ lγ,A±(X+

γ,A+ ×
X−

γ,A−) ⊂ ∂X̃ SFT
A that is admissible and has evaluations transverse to the submanifolds

{0} ×W−
p− × {0} ×W+

p+ for all pairs p−, p+ ∈ Crit( f ).
Moreover, for α ∈ I± we obtain a pair controlling compactness by pullback of the

coherent pairs constructed as in [12, §13] on the bundles W±
γ,A. Then the pullback

multisections κ± = (κ±α = λ±γ,A ◦ (prια)∗)α∈I± are sc+, admissible w.r.t. the pullback
pair, and in general position by the arguments in the Proof of Lemma 6.4.

Construction of λSFT
A and κ : The above constructions determine the right hand sides in

the coherence requirementsλSFT
A |P−1A (X̃GW

A )
= λGW

A over X̃ GW
A ⊂ X̃ SFT

A in (34), aswell as

λSFT
A |P−1A (Fγ,A± (2)) = (λ+γ,A+ · λ−γ,A−) ◦ (lγ,A±)−1∗ on

⋃
γ∈P(H),A−+A+=A Fγ,A±(2) ⊂

∂X̃ SFT
A in (35), where we denote by Fγ,A±(r) := lγ,A±(X+

γ,A+ × X−
γ,A−) ⊂ ∂X̃ SFT

A

the image of the immersion lγ,A± on the ep-groupoids representing |X±
γ,A±| =

(ev±)−1(D±r ×M) ⊂ B±SFT(γ ; A). By admissibility in the prior steps and existence of
scale-smooth partitions of unity (see Remark A.6) these induce for every A ∈ H2(M)

an admissible sc+-multisection λ∂
A : W̃±

A |∂X̃A
→ Q

+ which coincides with the pre-
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scribed data over X̃ GW
A 
⋃γ,A± Fγ,A±(1) ⊂ ∂X̃ SFT

A . Thus on this closed subset we
have general position and transversality of the evaluation map

ev+ × ev− : ∣∣{x ∈ ∂X SFT
A | λ∂

A(SSFT
A (x)) > 0}∣∣ → C

+ × M × C
− × M (39)

to {0} × W−
p− × {0} × W+

p+ for any pair of critical points p−, p+ ∈ Crit( f ). Then

the admissible sc+-multisection λSFT
A : W̃SFT

A → Q
+ is constructed with these given

boundary values—and auxiliary norm and support prescribed by the coherent pairs
controlling compactness—using Theorem A.9 to achieve general position on all of
X̃ SFT

A and extend transversality of the evaluation ev+× ev− to {0}×W−
p− ×{0}×W+

p+
to the entire perturbed zero set |{x ∈ X SFT

A | λSFT
A (SSFT

A (x)) > 0}|, where |X SFT
A | =

(ev+)−1(D+1 × M) ∩ (ev−)−1(D−1 × M) ⊂ BSFT(A).
As in the Proof of Lemma 6.4, the transversality of the evaluation maps implies

that the pullbacks κ = (κα = λA ◦ (prια)∗)α∈I are in general position. They are also
admissible with respect to the pullback of pairs controlling compactness. This finishes
the construction of the sc+-multisections claimed in (i) with the boundary restrictions
required in (iii).

Proof of identity:By�-linearity of all maps involved, it suffices to fix two generators
p−, p+ ∈ Crit( f ) of CM and check that ικι〈 p− 〉 and (SSPκ− ◦ PSSκ+)〈 p− 〉 +
(−1)|p−|(d ◦ hκ)〈 p− 〉 + (−1)|p−|(hκ ◦ d)〈 p− 〉 have the same coefficient in � on
〈 p+ 〉. That is, we claim

∑

A∈H2(M)
I ι(p−,p+;A)=0

#Zκι

(p−, p+; A) · T ω(A)

=
∑

γ∈P(H),A−,A+∈H2(M)
I (p−,γ ;A+)=I (γ,p+;A−)=0

#Zκ+(p−, γ ; A+) #Zκ−(γ, p+; A−) · T ω(A−)+ω(A+)

+ (−1)|p−|
∑

q∈Crit( f ),A∈H2(M)
I (p−,q;A)=|q|−|p+|−1=0

#Zκ(p−, q; A) #M(q, p+) · T ω(A)

+ (−1)|p−|
∑

q∈Crit( f ),A∈H2(M)
|p−|−|q|−1=I (q,p+;A)=0

#M(p−, q) #Zκ (q, p+; A) · T ω(A).

Here the sums on the right hand side are over counts of pairs of moduli spaces of index
0. From Sect. 3 we have M(q, p+) = ∅ for |q| − |p+| − 1 < 0 and M(p−, q) = ∅
for |p−| − |q| − 1 < 0, and general position of the sc+-multisections κ ··· as in
Corollary 4.6 (iii) implies Zκ ···(. . .) = ∅ for I (. . .) < 0. Thus the right hand side can
be rewritten as sum over pairs of moduli spaces with indices summing to zero, and by
(9), (18), (24) this is moreover equivalent to

0 = I (p−, γ ; A+)+ I (γ, p+; A−) = I ι(p−, p+; A− + A+)

= I (p−, p+; A− + A+)− 1,
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0 = I (p−, q; A)+ |q| − |p+| − 1 = I (p−, p+; A)− 1,

0 = |p−| − |q| − 1+ I (q, p+; A) = I (p−, p+; A)− 1.

So all sums can be rewritten with the index condition I (p−, p+; A) = 1 for A =
A− + A+ ∈ H2(M), and since the symplectic area is additive ω(A−) + ω(A+) =
ω(A−+ A+), it suffices to show the following identity for each α = (p−, p+; A) ∈ I
with I (p−, p+; A) = 1,

(−1)|p−|#Zκι

(p−, p+; A) = (−1)|p−|
∑

γ∈P(H)

A−+A+=A

#Zκ+(p−, γ ; A+) #Zκ−(γ, p+; A−)

+
∑

q∈Crit( f )
#Zκ (p−, q; A) #M(q, p+)

+
∑

q∈Crit( f )
#M(p−, q) #Zκ(q, p+; A). (40)

This identity will follow from Corollary 4.6 (v) applied to the weighted branched
1-dimensional orbifold Zκ(α) that arises from an admissible sc+-multisection κα :
Wα → Q

+. The boundary ∂Zκ(α) is given by the intersection with the top bound-
ary stratum ∂1B(α) ∩ Vα = |∂1Xα|, and will be determined here—with orientations
computed in (41) below.

∂Zκ (α) = Zκ (α) ∩ |∂1Xα |
= Zκ (α) ∩ |∂0X ι

p−,p+;A| 

⋃

γ∈P(H)

A−+A+=A

Zκ (α) ∩ |∂0X+
p−,γ ;A+ × ∂0X−

γ,p+;A− |



⋃

q∈Crit( f )
Zκ (α) ∩ (M(p−, q)× |∂0Xq,p+;A|

)



⋃

q∈Crit( f )
Zκ (α) ∩ (|∂0Xp−,q;A| ×M(q, p+)

)

= Zκι

(p−, p+; A) 

⋃

γ∈P(H),A=A−+A+

Zκ+ (p−, γ ; A+)× Zκ− (γ, p+; A−)



⋃

q∈Crit( f )
M(p−, q)× Zκ (q, p+; A) 


⋃

q∈Crit( f )
Zκ (p−, q; A)×M(q, p+).

Here the second identity uses coherence of the ep-groupoid as in (32). The third identity
follows from coherence of sections S···α and sc+multisections κ ···α stated in (ii), (iii),
and the fact from Corollary 4.6 (iv) that perturbed zero sets Zκ ···(α) ⊂ |∂0X ···

α | are
contained in the interior of the polyfolds when the Fredholm index is 0. For the second
summand we moreover use Lemma A.7 which ensures that each restriction κα|P−1α (F)

to a faceF = ∂0X+
p−,γ ;A+×∂0X−

γ,p+;A− ⊂ ∂1Xp−,p+;A, given by κ+p−,γ ;A+ ·κ−γ,p+;A− ,
is in general position to the section S+p−,γ ;A+ × S−

γ,p+;A− . Then its perturbed zero

set Zκι
(p−, p+; A) ∩ |F | is contained in the interior ∂0|X+

p−,γ ;A+ × X−
γ,p+;A−| =
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|∂0X+
p−,γ ;A+ × ∂0X−

γ,p+;A−| as the complement of the pairs of points (x+, x−) with

0 = κp−,p+;A(Sp−,p+;A(x+, x−))

= (κ+p−,γ ;A+ · κ−γ,p+;A−)
(
(S+p−,γ ;A+ × S−

γ,p+;A−)(x+, x−)
)

= κ+p−,γ ;A+(S+p−,γ ;A+(x+)) · κ−
γ,p+;A−(S−

γ,p+;A−(x−)).

Since a product inQ
+ = Q∩[0,∞) is nonzero exactly when both factors are nonzero,

this identifies the objects of the perturbed zero set of κp−,p+;A with the product of
perturbed zero objects for κ±,

{
(x+, x−) ∈ F

∣∣ κp−,p+;A(Sp−,p+;A(x+, x−)) > 0
}

= {x+ ∈ X+
p−,γ ;A+

∣∣ κ+p−,γ ;A+(S+p−,γ ;A+(x+)) > 0
}

× {x− ∈ X−
γ,p+;A−

∣∣ κ−
γ,p+;A−(S−

γ,p+;A−(x−)) > 0
}
.

And the realization of this set is precisely Zκ+(p−, γ ; A+) × Zκ−(γ, p+; A−), as
claimed above.
Computation of orientations: To prove the identity (40) it remains to compute the
effect of the orientations inRemark5.9 on the algebraic identity inCorollary 4.6 (v) that
arises from the boundary ∂Zκ(α) of the 1-dimensional weighted branched orbifolds
arising from regularization of themoduli spaceswith index I (α) = I (p−, p+; A) = 1.
Here ZλSFTA is of odd dimension with oriented boundary determined by the orientation
relations in Assumption 6.3 (iii)(b) and (c) as

∂1Z
λSFTA = ZλSFTA ∩ ∂1BSFT(A) = (−1)ZλGWA 


⊔

γ∈P(H)

A−+A+=A

Z
λ+γ,A+ × Z

λ−γ,A− .

Moreover, the index of σSFT is I (α) = |p−|− |p+|+ 2c1(A)+ 1 = 1, so we compute
orientations in close analogy to (31)—while also giving an alternative identification
of the boundary components—

∂Zκ (α) = ∂1M(p−, M) ev×ev ZλSFTA ev×ev ∂0M(M, p+)


 (−1)dimM(p−,M) ∂0M(p−, M) ev×ev ∂1Z
λSFTA ev×ev ∂0M(M, p+)


 (−1)dimM(p−,M)+1 ∂0M(p−, M) ev×ev ∂0Z
λSFTA ev×ev ∂1M(M, p+)

= ( ⊔

q∈Crit f
M(p−, q)×M(q, M)

)
ev×ev ZλSFTA ev×ev M(M, p+)


 (−1)|p−|+|p+|M(p−, M) ev×ev ZλSFTA ev×ev
( ⊔

q∈Crit f
M(M, q)×M(q, p+)

)


 (−1)|p−| M(p−, M) ev×ev
( ⊔

γ∈P(H),A=A−+A+
Z

λ+γ,A+ × Z
λ−γ,A−

)
ev×ev M(M, p+)


 (−1)|p−|+1 M(p−, M) ev×ev ZλGWA ev×ev M(M, p+)

=
⊔

q∈Crit f
M(p−, q)× Zκ (q, p+; A) 


⊔

q∈Crit f
Zκ (p−, q; A)×M(q, p+)
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 (−1)|p−|
⊔

γ∈P(H),A=A−+A+
Zκ+ (p−, γ ; A+)× Zκ− (γ, p+; A−)


 (−1)|p−|+1 Zκι

(p−, p+; A). (41)

This computation should be understood in a neighbourhood of a solution, so in partic-
ular with scale-smooth evaluation maps to C

± × M . Based on this, Corollary 4.6 (v)
implies—as claimed—

0 = hκ (d〈 p− 〉)+ d(hκ 〈 p− 〉)+ (−1)|p−|SSPκ−
(
PSSκ+〈 p− 〉

)− (−1)|p−|ικι 〈 p− 〉
= (

h ◦ d + d ◦ h + SSP ◦ PSS − ι
)〈 p− 〉.

�
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Appendix A. summary of Polyfold theory

This section gives an overview of the main notions of polyfold theory that are used in
this paper. The following language is used to describe settings with trivial isotropy.13

Remark A.1 (i) An M-polyfold without boundary is analogous to the notion of a
Banach manifold: While the latter are locally homeomorphic to open subsets of
a Banach space, an M-polyfold is locally homeomorphic to the image O = im ρ

of a retract ρ : U → U of an open subset U ⊂ E of a Banach space E . While ρ

is generally not classically differentiable, it is required to be scale-smooth (sc∞)
with respect to a scale structure on E , which is indicated by E.

(i’) An M-polyfold, as defined in [22, Def.2.8], is a paracompact Hausdorff space X
together with an atlas of charts φι : Uι → Oι ⊂ [0,∞)sι × E

ι (i.e. homeomor-
phisms between open setsUι ⊂ X and sc-retractsOι such that ∪ιUι = X ), whose
transition maps are sc-smooth.
For k ∈ N0 the k-th boundary stratum ∂k X is the set of all x ∈ X of degeneracy

13 Trivial isotropy would be guaranteed in our settings by an almost complex structure J for which there
are no nonconstant J -holomorphic spheres.

http://creativecommons.org/licenses/by/4.0/
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index d(x) = k given14 by the number of components equal to 0 for the point in
a chart φι(x) ∈ [0,∞)sι × E

ι. In particular, ∂0X is the interior of X .
(ii) A strong bundle over an M-polyfold X , as defined in [22, Def.2.26], is a sc-

smooth surjection P : W → X with linear structures on each fiber Wx = P−1(x)
for x ∈ X , and an equivalence class of compatible strong bundle charts, which in
particular encode a sc-smooth subbundle W ⊃ W 1 → X whose fiber inclusions
W 1

x ↪→ Wx are compact and dense.
(iii) The notion of sc-Fredholm for a scale smooth section S : X → W of a strong

bundle in [22, Def.3.8] encodes elliptic regularity and a nonlinear contraction
property [22, Def.3.6,3.7]. The latter is a stronger condition than the classical
notion of linearizations being Fredholm operators, and is crucial to ensure an
implicit function theorem; see [11].

A more detailed survey of these trivial isotropy notions can be found in [9]. Then
the generalization to nontrivial isotropy is directly analogous to the notion of smooth
sections of orbi-bundles, in which orbifolds are realizations of étale proper groupoids
[28].

Remark A.2 A sc-Fredholm section σ : B → E of a strong polyfold bundle as intro-
duced in [22, Def.16.16,16.40] is a map between topological spaces together with an
equivalence class of sc-Fredholm section functors s : X → W of strong bundles
W over ep-groupoids X , whose realization |s| : |X | → |W| together with home-
omorphisms |X | := ObjX /MorX ∼= B and |W| ∼= E induces σ . To summarize
these notions we use conventions of [22] in denoting object and morphism spaces as
ObjX = X and MorX = X. These will be equipped with M-polyfold structures, so
that the k-th boundary stratum of a polyfold B ∼= |X | is given as ∂kB ∼= ∂k X/X ⊂ |X |
for all k ∈ N0.

(i) An ep-groupoid as in [22, Def.7.3] is a groupoid X = (X ,X) equipped with M-
polyfold structures on the object andmorphism sets such that all structuremaps are
local sc-diffeomorphisms and every x ∈ X has a neighbourhood V (x) such that
t : s−1(clX (V (x))

)→ X is proper. As in [22, §7.4] we require that the realization
|X | is paracompact and thus metrizable.

(ii) A strong bundle as in [22, Def.8.4] over the ep-groupoid X is a pair (P, μ) of
a strong bundle P : W → X and a strong bundle map μ : Xs×PW → W so
that P lifts to a functor P :W → X from an ep-groupoidW = (W ,W) induced
by (P, μ). Then P restricts to a functor W1 → X on the full subcategory whose
object space is the sc-smooth subbundle W 1 ⊂ W .

(iii) A sc-Fredholm section functor of the strong bundle P : W → X as in [22,
Def.8.7] is a functor S : X → W that is sc-smooth on object and morphism
spaces, satisfies P ◦ S = idX , and such that S : X → W is sc-Fredholm on the
M-polyfold X .

14 The degeneracy index d(x) ∈ N0 in [22, Def.2.13,Thm.2.3] is a priori independent of the choice
of chart φι only for points in a dense subset X∞ ⊂ X specified in Remark A.3. With that d(x) :=
max{lim sup d(xi ) | X∞ $ xi → x} is well defined for all x ∈ X and can also be computed in any fixed
chart.
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Now a polyfold description of a compact moduli spaceM is a sc-Fredholm section
σ : B → E of a strong polyfold bundle with zero set σ−1(0) ∼= M. The polyfold
descriptions used in this paper are obtained as fiber products of existing polyfolds and
sc-Fredholm sections over them. This requires a technical shift in levels described in
the following remark, and a notion of submersion below.

Remark A.3 Polyfolds carry a level structure B∞ ⊂ . . . ⊂ B1 ⊂ B0 = B as follows:
For any M-polyfold X , in particular the object space of the ep-groupoid representing
B = |X |, a sequence of dense subsets X∞ ⊂ . . . ⊂ X1 ⊂ X0 = X is induced by the
scale structures E

ι = (E ι
m)m∈N0 of the charts, that is Xm =⋃ι φ

−1
ι (Oι ∩R

sι × E ι
m).

Then Bm := Xm /MorX is well defined since morphisms of X—locally represented by
scale-diffeomorphisms—preserve the levels on ObjX = X .

The restriction σ |Bm of a sc-Fredholm section σ : B → E is again sc-Fredholm
with values in Em , and the choice of such a shift in levels is irrelevant for applications
since the zero set σ−1(0) ⊂ B∞—as well as the perturbed zero set for any admissi-
ble perturbation—is always contained in the so-called “smooth part” that is densely
contained in each level B∞ ⊂ Bm .

For a finite dimensional manifold or orbifold M—such as the Morse trajectory
spaces in Sect. 3.3—viewed as polyfold, the level structure is trivial M∞ = . . . =
M1 = M0 = M .

Definition A.4 [10, Def.5.9] A sc∞ functor f : X → M from an ep-groupoid X =
(X ,X) to a finite dimensional manifold M is a submersion if for all x ∈ X∞ the
tangent map Dx f : TR

x X → T f (x)M is surjective, where TR
x X is the reduced tangent

space [22, Def.2.15].
Consider in addition a sc-Fredholm section functor S : X → W . Then the sc∞

functor f : X → M is S-compatibly submersive if for all x ∈ X∞ there exists a
sc-complement L ⊂ TR

x X of ker(Dx f )∩TR
x X and a tame sc-Fredholm chart for S at

x [10, Def.5.4] in which the change of coordinates ψ : O → [0,∞)s × R
k−s ×W

that puts S in basic germ form—which by tameness has the formψ(v, e) = (v, ψ(e))
for (v, e) ∈ O ⊂ [0,∞)s × E and a linear sc-isomorphism ψ—moreover satisfies
ψ(L) ⊂ {0}k−s ×W, where the chart identifies L ⊂ TR

x X ∼= TR
0 O = {0} × E.

More generally, given a smooth submanifold N ⊂ M , the sc∞ functor f is trans-
verse to N if for all x ∈ f −1(N ) ∩ X∞ we have Dx f (TR

x X) + T f (x)N = T f (x)M ,
and f is S-compatibly transverse to N if there exists a sc-complement L of
(Dx f )−1(T f (x)(N )) ∩ TR

x X satisfying the above condition.

The purpose of giving a moduli space a polyfold description is to utilize the pertur-
bation theory for sc-Fredholm sections over polyfolds, which allows to “regularize”
the moduli space by associating to it a well defined cobordism class of weighted
branched orbifolds. (For a technical statement see Corollary 4.6 and the references
therein.) Since the ambient space |X | is almost never locally compact, this requires
“admissible perturbations” of the section to preserve compactness of the zero set. This
admissibility is determined by the following data introduced in [22, Def.12.2,15.4].

Definition A.5 A saturated open subset U ⊂ X of an ep-groupoid X = (X ,X) is
an open subset U ⊂ X with π−1(π(U)) = U , where π : X → |X | = X/X is the
projection to the realization.
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A pair controlling compactness for a sc-Fredholm section S : X →W of a strong
bundle P : W → X consists of an auxiliary norm N : W[1] → [0,∞) (see [22,
Def.12.2]) and a saturated open subset U ⊂ X that contains the zero set S−1(0) ⊂ U ,
such that

∣∣{x ∈ U | N (S(x)) ≤ 1}∣∣ ⊂ |X | has compact closure.
Given such a pair, a section s : X →W is (N,U)-admissible if N (s(x)) ≤ 1 and

supp s ⊂ U .

The construction of perturbations moreover requires scale-smooth partitions of
unity, which will be guaranteed by the following standing assumptions.

Remark A.6 Throughout this paperwe assume that the realizations |X | of ep-groupoids
are paracompact, and the Banach spaces E in all M-polyfold charts are Hilbert spaces.
This guarantees the existence of scale-smooth partitions of unity by [22, §5.5,§7.5.2].
In order to guarantee the same on every level Bm as discussed in Remark A.3, we
moreover assume that each scale structure E = (Em)m∈N0 consists of Hilbert spaces
Em . These assumptions hold in applications, such as the ones cited [12,23]. Then
paracompactness and thus existence of scale-smooth partitions of unity on every level
is guaranteed by [22, Prop.7.12].

When discussing coherence of perturbations of a system of sc-Fredholm sections,
the boundaries are described in terms of Cartesian products of polyfolds, bundles, and
sections. So we will make use of Cartesian products of multivalued perturbations as
follows, to obtain multisections over the boundary as summarized in the subsequent
remark.

Lemma A.7 Let S1 : X1 →W1 and S2 : X2 →W2 be sc-Fredholm section of strong
bundles Pi : Wi → Xi over ep-groupoids. Then the Cartesian product X1 × X2 is
naturally an ep-groupoid and (S1 × S2) : X1 × X2 → W1 ×W2 is a sc-Fredholm
section of the strong bundle P1 × P2.

Moreover, if λi :Wi → Q
+ are sc+-multisections for i = 1, 2, then there is a well

defined sc+-multisection λ1 · λ2 : W1 ×W2 → Q
+ given by (λ1 · λ2)(w1, w2) =

λ1(w1) ·λ2(w2). If, for i = 1, 2, the sections λi are (Ni ,Ui )-admissible for some fixed
pair controlling compactness as in Definition A.5, then λ1 · λ2 is (max(N1, N2),U1×
U2)-admissible. Finally, if λi is in general position to Si for i = 1, 2 then λ1 · λ2 is in
general position to S1 × S2.

Proof A detailed treatment of sc-Fredholmness of the product section S1 × S2 can be
found in [10, Lemma 7.2]. The remaining statements follow easily from the definitions
in [22] (as do the statements in the first paragraph).

Recall in particular from [22, Def. 13.4] that a sc+-multisection on a strong
bundle P : W → X is a functor λ : W → Q

+ that is locally of the form
λ(w) =∑{ j |w=p j (P(w))} q j , represented by sc+-sections p1, . . . , pk : V → P−1(V)

(i.e. sc∞ sections ofW1; see [22, Def.2.27]) andweights q1, . . . , qk ∈ Q∩[0,∞)with∑
j q j = 1. Then for local sections pij and weights qij representing λi for i = 1, 2,

the multisection λ1 · λ2 is locally represented by the sections (p1j , p
2
j ′) with weights

q1j q
2
j ′ , and all admissibility and general position arguments are made at the level of

these local sections.
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In particular, the (Ni ,Ui )-admissibility can be phrased as the existence of local
representations by sections with Ni (pij (x)) ≤ 1 and Z(Si , pij ) := {x ∈ Vi | ∃ t ∈
[−1, 1] : Si (x) = tpij (x)} ⊂ Ui . Then (max(N1, N2),U1 × U2)-admissibility uses
the observation
{(x1, x2) | ∃ t ∈ [−1, 1] : (S1, S2)(x1, x2) = t(p1j (x1), p

2
j ′(x2)} ⊂ Z(S1, p

1
j ) ×

Z(S2, p
2
j ′) ⊂ U1 × U2. �


Remark A.8 Let P :W → X be a strong bundle over a tame ep-groupoidX = (X ,X).
Then for every x ∈ X∞ there is a chart φ : Ux → O from a locally uniformizing15

neighbourhood Ux ⊂ X of x to a sc-retract O ⊂ [0,∞)n × E, with φ(x) = 0 lying
in the intersection of the n local faces Fk := φ−1({(v, e) ∈ [0,∞)n × E | vk = 0})
which cover the boundary ∂X ∩Ux =⋃n

k=1 Fk .
Now a sc+-multisection over the boundary is a functor λ∂ : P−1(∂X ) → Q

+
whose restriction λ∂ |P−1(Fk )

to each local face is a sc+-multisection of the strong
bundle P−1(Fk) → Fk . In the presence of a sc-Fredholm section S : X →W , such a
sc+-multisection is in general position over the boundary if for each intersection of
facesFK :=⋂k∈K Fk ⊂ ∂X the restriction of the perturbed multi-section λ∂ ◦S|FK :
P−1(FK ) → Q

+ has surjective linearizations at all solutions. If, moreover, (N ,U)

is a pair controlling compactness, then λ∂ is (N ,U)-admissible if each restriction
λ∂ |P−1(Fk )

is admissible w.r.t. the pair (N |P−1(Fk )
,U ∩ Fk).

In our applications, as described in Assumption 6.3, the local faces Fk are images
of open subsets of global face immersions lF : F → ∂X , where eachF is a Cartesian
product of two polyfolds, and the restriction to the interior lF |∂0F is an embedding into
the top boundary stratum ∂1X . The bundles over each face are naturally identified with
the pullbacks l∗FW , and then the pushforwards of sc+-multisectionsλF : l∗FW → Q

+
form a sc+-multisection over the boundary λ∂ : P−1(⋃ im λF ) → Q

+ if they agree
on overlaps and self-intersections of the immersions lF , at the boundary ∂F of the
faces. In this setting, general position of λ∂ is equivalent to general position of the
multisections λF .

The following perturbation theorem allows us to refine the construction of coherent
perturbations in [12] for the SFTmoduli spaces such thatmoreover the evaluationmaps
from the perturbed solution sets are transverse to the unstable and stable manifolds in
the symplectic manifold. This is a generalization of the polyfold perturbation theorem
over ep-groupoids and the extension of transverse perturbations from the boundary
[22, Theorems 15.4,15.5] (with norm bound given by h ≡ 1 for simplicity). Another
version of this—with the submanifolds representing cycles whose Gromov–Witten
invariants are then obtained as counts—also appears in [34,35]. We are working under
the assumptions made in this section—e.g. paracompactness—without further men-
tion. The limitation to finitelymany submanifolds in the extension result seems to be of
technical nature; we expect that joint work of the first author with Dusa McDuff—on
coherent finite dimensional reductions of polyfold Fredholm sections—will establish
the result for countably many submanifolds.

15 A neighbourhood Ux ⊂ X forms a local uniformizer as in [22, Def.7.9] if the morphisms between
points in Ux are given by a local action of the isotropy group Gx .
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Theorem A.9 Suppose S : X →W is a sc-Fredholm section functor of a strong bundle
P : W → X over a tame ep-groupoid X with compact solution set |S−1(0)| ⊂ |X |,
and let (N ,U) be a pair controlling compactness. Moreover, let e : X → M be a
sc0-map to a finite dimensional manifold M which has a sc∞ submersive restriction
e|V : V → M on a saturated open set V ⊂ X .

Then, for any countable collection of smooth submanifolds (Ci ⊂ M)i∈I with
e−1
(∪i∈I (Ci )

) ⊂ V , there exists an (N ,U)-admissible sc+-multisection λ : W →
Q
+ so that (S, λ) is in general position (see [22, Definition 15.6]) and the restriction

e|Zλ : Zλ → M to the perturbed zero set Zλ = |{x ∈ X | λ(S(x)) > 0}| is in general
position16 to the submanifolds Ci for all i ∈ I .

Moreover, suppose I is finite and λ∂ : P−1(∂X ) → Q
+ for some 0 < α < 1

is an ( 1
α
N ,U)-admissible structurable sc+-multisection in general position over the

boundary such that the restriction e|Z∂ : Z∂ → M to the perturbed zero set in
the boundary Z∂ := |{x ∈ ∂X | λ∂(S(x)) > 0}| is in general position17 to the
submanifolds Ci for all i ∈ I . Then λ above can be chosen with λ|P−1(∂X ) = λ∂ .

Proof Our proof follows the perturbation procedure of [22, Theorem 15.4], which
proves the special case when there is no condition on a map e : X → M , i.e. when
M = {pt} and Ci = {pt}. To obtain the desired transversality of e to the submani-
folds Ci ⊂ M we will go through the proof and indicate adjustments in three steps:
A local stabilization construction, which adds a finite dimensional parameter space
to cover the cokernels near a point x ∈ S−1(0); a local-to-global argument which
combines the local constructions into a global stabilization which covers the coker-
nels near S−1(0); and a global Sard argument which shows that regular values yield
transverse perturbations. Within these arguments we need to consider restrictions to
any intersection of faces to ensure general position to the boundary, use submersivity
of e to achieve transversality to the Ci , and work with multisections due to isotropy.
The statement with prescribed boundary values λ∂ generalizes the extension result
[22, Theorem 15.5], which hinges on the fact that general position over the boundary
persists in an open neighbourhood – something that is generally guaranteed only for
finitely many transversality conditions; see the end of this proof. The first step in any
construction of perturbations is the existence of local stabilizations which cover the
cokernels, as follows.

Local stabilization constructions: For every zero x ∈ S−1(0) of the unperturbed sc-
Fredholm sectionwe construct a finite dimensional parameter spaceR

l for l = lx ∈ N0
and sc+-multisection

�̃x : R
l ×W → Q

+, (t, w) �→ �x
t (w)

such that �x
0 is the trivial multisection, i.e. �x

0(0) = 1, �x
0(w) = 0 for w ∈Wx�{0}.

This multisection �̃x is viewed as local perturbation near (0, x) of a sc-Fredholm

16 General position toCi requires transversality toCi of each restriction e|Zλ∩FK
to the perturbed solution

setwithin an intersection of local facesFK =⋂k∈K Fk as defined inRemarkA.8, including forF∅ := Zλ.
17 This requires general position of each restriction e|Zλ∩Fk

to a local face Fk ⊂ ∂X as defined in
Remark A.8.
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section functor S̃x of a bundle P̃ x ,

S̃x : R
l × X → R

l ×W P̃ x : R
l ×W → R

l × X
(t, y) �→ (t, S(y)) (t, w) �→ (t, P(w)).

It is constructed in [22] to be structurable in the sense of [22, Def.13.17], in general
position in the sense that the linearization T

(S̃x ,�̃x )
(0, x) : T0R

l × TR
x X → Wx is

surjective18 and admissible in the sense that the domain support of �̃x is contained in
U and the auxiliary norm is bounded linearly, N (�)(t, y) ≤ cx |t | for some constant
cx . In case x ∈ V ∩ S−1(0) we refine this construction to require surjectivity of the
restrictions

T
(S̃x ,�̃x )

(0, x)|T0Rl×Kx
: T0R

l × Kx → Wx , (42)

where Kx := ker(Dx e|TR
x X

) ⊂ TR
x X is the kernel of the linearization Dx e : TR

x X →
Te(x)M restricted to the reduced tangent space. For that purpose note that e is sc∞
near x by assumption, so has a well defined linearization, and since its codomain is
finite dimensional, its kernel has finite codimension.Moreover im Dx S ⊂ Wx hasfinite
codimension by the sc-Fredholm property of S, and the reduced tangent space TR

x X ⊂
Tx X has finite codimension by the definition of M-polyfolds with corners. Thus we
can find finitely many vectors w1, . . . , wl ∈ Wx which together with Dx S(Kx ) span
Wx . These vectors are extended to sc+-sections of the form p j (t, y) = ∑ t jw j (y),
multiplied with sc∞ cutoff functions of sufficiently small support, and pulled back by
local isotropy actions to construct the functor �̃x as in [22, Thm.15.4]. We claim that
this yields the following local properties with respect to the sc∞ functor

ẽx : R
l × V → M, (t, y) �→ e(y).

Local stabilization properties: There exists εx > 0 and a locally uniformizing neigh-
borhood Q(x) ⊂ X of x whose closure is contained in U , such that

�x : {t ∈ R
l | |t | < εx } × Q(x) → Q

+, (t, y) �→ �x
t

(
S(y)

) = �̃x (S̃x (t, y))
(43)

is a tame ep+-subgroupoid, and for (t, y) ∈ supp�x = {(t, y) |�x (t, y) > 0} ⊂ R
l×

X the reduced linearizations TR
(S̃x ,�̃x )

(t, y) := T
(S̃x ,�̃x )

(t, y)|TtRl×TR
y X

are surjective.

Moreover, if x ∈ V then we may choose Q(x) ⊂ V such that for all (t, y) ∈ supp�x

we have surjections19

D(t,y)ẽ
x |Nx

t,y
: Nx

t,y := ker TR
(S̃x ,�̃x )

(t, y) → Te(y)M .

In particular, the realization | supp�x | is a weighted branched orbifold and ẽx induces
a submersion | supp�x | → M in the sense of Definition A.4. Moreover, for all y ∈
18 This is shorthand for S̃x+ p j having surjective linearization for every section p j in a local representation

of �̃x with S̃x (0, x) = 0 = p j (0, x), and restricted to the reduced tangent space TR
x X .

19 As before, this is shorthand for surjectivity on each reduced tangent space ker D(t,y)(S̃
x +

p j )|TtRl×TR
y X .
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S−1(0)∩Ux wehave (0, y) ∈ supp�x so that the reduced linearizationsTR
(S̃x ,�̃x )

(0, y)

and the restriction to their kernelD(0,y)ẽx |Nx
0,y

are surjective. These properties persist

for y ∈ S−1(0) with |y| ∈ |Q(x)|.
The structure of supp�x and surjectivity of linearizations TR

(S̃x ,�̃x )
follows from

the local implicit function theorem [22, Theorems 15.2,15.3]. Then the kernels
Nx
t,y = ker TR

(S̃x ,�̃x )
(t, y) represent the reduced tangent spaces at |(t, y)| to the

weighted branched orbifold | supp�x |. Surjectivity of D(0,x)ẽx |Nx
0,x

holds since
D(0,x)ẽx is surjective by assumption, and the preimage of any given vector in Te(x)M
can be adjusted by vectors in ker D(0,x)ẽx to lie in Nx

0,x = ker TR
(S̃x ,�̃x )

(0, x),

because T
(S̃x ,�̃x )

(t, y)|ker D(0,x)ẽx is surjective by (42). Then ẽx restricts to a map
| supp�x | → M that is classically smooth on each (finite dimensional) branch of
supp�x , and thus surjectivity of D(t,y)ẽx |Nx

t,y
is an open condition along each branch.

Since supp�x is locally compact—in particular with finitely many branches near x—
we can then choose εx and Q(x) sufficiently small to guarantee that each D(t,y)ẽx |Nx

t,y
is surjective. This proves submersivitiy in the sense of Definition A.4.

From local to global stabilization: In this portion of the proof, we proceed almost
verbatim to the corresponding portion of [22, Thm.15.4], with extra considerations to
deduce submersivity of (46). By assumption, |S−1(0)| is compact and |e| : |X | → M
is continuous. Then |S−1(0)| ∩ |e−1(C)| is compact since C := ∪i∈I (Ci ) ⊂ M is
closed. We moreover have the identity |S−1(0) ∩ e−1(C)| = |S−1(0)| ∩ |e−1(C)|
since both sets are saturated. Thus we have an open covering

(|Q(x)|)x∈S−1(0)∩e−1(C)
by the open subsets chosen above, and can pick finitely many points x1, . . . , xr ∈
S−1(0) ∩ e−1(C) to obtain a finite open cover |S−1(0) ∩ e−1(C)| ⊂ ⋃r

i=1 |Q(xi )|.
Then |S−1(0)|�⋃r

i=1 |Q(xi )| is compact, with open cover by
(|Q(x)|)x∈S−1(0), so

we may pick further xr+1, . . . , xk ∈ S−1(0) to obtain the covers

|S−1(0)| ⊂
k⋃

i=1
|Q(xi )|, |S−1(0) ∩ e−1(C)| ⊂

r⋃

i=1
|Q(xi )|,

S−1(0) ⊂ Q̃ := π−1
( k⋃

i=1
|Q(xi )|

) ⊂ U . (44)

For each x = xi we constructed above a family of sc+-multisections
(
�

xi
t : W →

Q
+)

t∈R
lxi . These are summed up, using [22, Def.13.11], to a sc+-multisection

�̃ : R
l̃ ×W → Q

+,
(
t = (t1, . . . , tk) , w

) �→ �t (w) := (
�
x1
t1 ⊕ · · · ⊕�

xk
tk

)
(w)

for l̃ := lx1 + · · · + lxk . Here each �t : W → Q
+ for t ∈ R

l̃ is a structurable sc+-
multisection by [22, Prop.13.3]. We view the multisection �̃ as global perturbation of
a sc-Fredholm section functor S̃ of a bundle P̃ ,
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S̃ : R
l̃ × X → R

l̃ ×W =: W̃ P̃ : R
l̃ ×W → R

l̃ × X
(t, y) �→ (t, S(y)) (t, w) �→ (t, P(w)),

and claim that e : X → M induces a submersion on its perturbed solution set in the
following sense.
Global stabilization properties: There exists ε0 > 0 such that for every 0 < ε < ε0

�̃ : {t ∈ R
l̃ | |t | < ε} × X → Q

+, (t, y) �→ �t
(
S(y)

) = �̃(S̃(t, y)) (45)

is a tame ep+-subgroupoid with surjective reduced linearizations TR
(S̃,�̃)

(t, y) for

all (t, y) ∈ supp �̃. In particular, the realization | supp �̃| is a weighted branched
orbifold. Moreover, there is a neighbourhood V ′ ⊂ X of S−1(0) ∩ e−1(C) such that

ẽ|supp �̃ : supp �̃ → M, (t, y) �→ e(y) (46)

satisfies (ẽ|supp �̃)−1(C) ⊂ R
l̃ × V ′, and its restriction to supp �̃ ∩ (Rl̃ × V ′) is

classically smooth and submersive as in Definition A.4.
Note that the auxiliary norm N onW pulls back to an auxiliary norm Ñ on W̃ , and

compactness of S̃ is controlled in the sense that for any compact subset K ⊂ R
l̃ we

have compactness of

∣∣{(t, x) ∈ K ×U | Ñ (S̃(t, x)) ≤ 1}∣∣ = K × ∣∣{(x ∈ U | N (S(x)) ≤ 1}∣∣ ⊂ R
l̃ ×|X |.

(47)
Next, the restriction of �̃ to each R

lxi × X ↪→ R
l̃ × X is the local perturbation �̃xi

of S̃xi , since we identify R
lxi ∼= {(t1, . . . , tk) ∈ R

l̃ | t j = 0 ∀ j �= i} and each �
x j
0 is

trivial. In particular, �0 is the trivial multisection, with N (�0) = 0. Moreover, we
have an estimate N (�t ) ≤ c|t | that results from the linear estimates on each�

xi
t . Now

for ε0 ≤ 1
c we can deduce compactness of the stabilized solution set as closed subset

of (47),

Z̃ := ∣∣{(t, x) ∈ R
l̃ × X

∣∣ |t | ≤ ε0,�t (S(x)) > 0
}∣∣. (48)

The next step is to argue that (48) is smooth in a neighbourhood of Z̃ ∩ ({0}× |X |) =
{0} × |S−1(0)|. Recall here that Q̃ = π−1(

⋃k
i=1 |Q(xi )|) ⊂ X is an open neigh-

bourhood of S−1(0). So for any x ∈ Q̃ we can use the local properties of some �̃xi

with |x | ∈ |Q(xi )| to deduce surjectivity of TR
(S̃,�̃)

(0, x). Then the local implicit

function theorems [22, Thms 15.2,15.3, Rmk.15.2] yield an open neighbourhood
U (0, x) = {|t | < ε′x } × U (x) ⊂ R

l̃ × X of (0, x) for some 0 < ε′x < ε0, and

hence a saturated neighbourhood Ũ (0, x) := {|t | < ε′x } × π−1(|U (x)|) ⊂ R
l̃ × X

such that �̃|Ũ (0,x) = �̃◦ S̃|Ũ (0,x) is a tame branched ep+-subgroupoid of Ũ (0, x). As

a consequence, the orbit space of the support
∣∣supp �̃|Ũ (0,x)

∣∣ is a weighted branched
orbifold with boundary and corners.

For x ∈ S−1(0)�e−1(C) we can moreover choose U (x) ∩ e−1(C) = ∅, since
|e−1(C)| ⊂ |X | is closed. For x ∈ S−1(0) ∩ e−1(C) ⊂ V the covering (44)
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guarantees |x | ∈ |Q(xi )| for some 1 ≤ i ≤ r with Q(xi ) ⊂ V and we choose
U (x) ⊂ Q(xi ). This guarantees that the restriction of ẽ : R

l̃×X → M, (t, y) �→ e(y)
to Ũ (0, x) is sc∞, and surjectivity of D(0,x)ẽxi |ker TR

(S̃xi ,�̃xi )
(0,x) implies surjectivity of

D(0,x)ẽ|N0,x : N0,x → Te(x)M on N0,x := ker TR
(S̃,�̃)

(0, x). Here N0,x represents the

reduced tangent space at |(0, x)| to the weighted branched orbifold | supp �̃|Ũ (0,x)|.
Now ẽ|supp �̃∩Ũ (0,x) : supp �̃|Ũ (0,x) → M is classically smooth since it is a restriction
of an sc∞ map to finite dimensions, and we have shown it to be submersive at (0, x).
Hence, by openness of submersivity along each corner stratum, and local compactness
of supp �̃|Ũ (0,x) ⊂ Z̃ it follows that Ũ (0, x) ⊂ R

l̃ × V can be chosen sufficiently
small to ensure that ẽ|supp �̃∩Ũ (0,x) is submersive as in Definition A.4.

Now compactness of |S−1(0)∩ e−1(C)| and |S−1(0)| again allows us to find finite
covers

|S−1(0)| ⊂
k′⋃

i=1
|U (x ′i )|, |S−1(0) ∩ e−1(C)| ⊂

r ′⋃

i=1
|U (x ′i )|

with x ′i ∈ S−1(0) ∩ e−1(C) for i = 1, . . . , r ′ and U (x ′i ) ∩ e−1(C) = ∅ for r ′ <

i ≤ k′. Then we have ε := min{ε′x ′1, . . . ε
′
x ′
k′
} > 0, an open cover S−1(0) ⊂ A :=

π−1
(⋃k′

i=1 |U (x ′i )|
)
, and the functor {t ∈ R

l̃ | |t | < ε}×A→ Q
+, (t, y) �→ �t (S(y))

is a tame branched ep+-subgroupoid, since it is the restriction of �̃ = �̃◦ S̃ to an open
subset of

⋃k′
i=1 Ũ (0, x ′i ). Moreover, we claim that for a possibly smaller 0 < ε < ε0

we have
(t, y) ∈ {|t | < ε} × X , �̃(t, y) > 0 
⇒ y ∈ A. (49)

By contradiction, consider a sequence R
l̃ $ tn → 0, yn ∈ X with �̃(tn, yn) > 0

but yn ∈ X�A. Then compactness of (48) guarantees a convergent subsequence
|(tn, yn)| → |(0, y∞)| ∈ Z̃ , and since Z̃ ∩ {0} × |X | = {0} × | supp�0 ◦ S| = {0} ×
|S−1(0)| this contradicts the fact that |yn| ∈ |X |�|A|, where |A| = ⋃k′

i=1 |U (x ′i )| ⊂
|X | is an open neighbourhood of |S−1(0)|. Thus we have shown (49) and can deduce
that �̃ = �̃ ◦ S̃ : {t ∈ R

l̃ | |t | < ε} × X → Q
+ is a tame branched ep+-subgroupoid

with supp �̃ ⊂ R
l̃×A, and thus

∣∣supp �̃
∣∣ ⊂ R

l̃×⋃k′
i=1 |U (x ′i )| is aweighted branched

orbifold with boundary and corners, as claimed.
Moreover, from the properties of ẽ|supp �̃∩Ũ (0,x ′i )

for i = 1, . . . , r ′ we know that the

restriction of ẽ to supp �̃ ∩ (Rl̃ × V ′) for V ′ := π−1
(⋃r ′

i=1U (x ′i )
) ⊂ V is classically

smooth and submersive. Here we have e−1(C) ∩A ⊂ V ′ since U (xi ) for i > r ′ was
chosen disjoint from e−1(C), and hence we have

(
ẽ|supp �̃

)−1
(C) = supp �̃ ∩ (Rl̃ × e−1(C)

) ⊂ R
l̃ × (e−1(C) ∩A

) ⊂ R
l̃ × V ′,
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and thus ẽ|supp �̃ : supp �̃ → M is classically smooth and submersive (in the sense of

Definition A.4) in the open neighborhood supp �̃ ∩ (Rl̃ × V ′) of
(
ẽ|supp �̃

)−1
(Ci ) ⊂

supp �̃ for all i ∈ I .
Global transversality fromregular values:Aswe continue to follow the proof of [22,
Thm.15.4], we replace each application of the Sard theorem by countably many Sard
arguments to obtain general position to the countably many submanifolds Ci ⊂ M
for i ∈ I . For that purpose we will consider various restrictions of the projection

supp �̃ = {(t, y) ∈ R
l̃ × X

∣∣ |t | < ε, �t (S(y)) > 0
} → R

l̃ , (t, y) �→ t .

The global properties of �̃ imply that every (t0, y0) ∈ supp �̃ has a saturated open
neighborhood Ũ (t0, y0) = {t ∈ R

l̃ | |t− t0| < δ}×π−1(|U (y0)|) ⊂ R
l̃×X satisfying

the following:

• U (y0) ⊂ X admits the natural action of the isotropy groupGy0 ; see [22, Thm.7.1],
satisfies the properness property [22, Def.7.17], and has dX (y0) local faces
F y0
1 , . . . ,F y0

dX (y0)
which contain y0; see [22, Def.2.21, Prop.2.14].

• The branched ep+-subgroupoid supp �̃∩Ũ (t0, y0) has a local branching structure

�̃(t, y) = �t (S(y)) = 1
|J | ·

∣∣{ j ∈ J | (t, y) ∈ Mt0,y0
j

}∣∣,

given by finitely many properly embedded submanifolds with boundary and cor-
ners Mt0,y0

j ⊂ Ũ (t0, y0), which intersect any intersection of local faces in a
manifold with boundary and corners.

• On each branch Mt0,y0
j , the reduced linearizations TR

(S̃,�̃)
(t, y) are surjective for all

(t, y) ∈ Mt0,y0
j , and the restriction of ẽ|supp �̃ is a submersionMt0,y0

j ∩(Rl̃×V ′) →
M in general position to the boundary in the sense of Definition A.4. That is,
D(t,y)ẽ|Nt,y : Nt,y → Te(y)M is surjective on Nt,y := ker TR

(S̃,�̃)
(t, y) for all

(t, y) ∈ Mt0,y0
j ∩ (Rl̃ × V ′).

There is a countable cover supp �̃ ⊂ ⋃
β∈Z Ũ (tβ, yβ) indexed by (tβ, yβ)β∈Z ⊂

supp �̃, since R
l̃ × X—and hence its subspace supp �̃—is second-countable, and

every open cover of a second-countable space has a countable subcover. Moreover, for
any given β ∈ Z there are finitely many choices F̃K := {|t − t0| < δ}×⋂k∈K F yβ

k ⊂
Ũ (tβ, yβ) of intersections of finitely many local faces K ⊂ {1, . . . , dX (yβ)}, with
F̃∅ := Ũ (tβ, yβ). Finally, for each β ∈ Z and intersection of faces F̃K , there are

finitely many smooth manifolds F̃K ∩ M
tβ ,yβ
j indexed by j ∈ Jβ . For each of these

countably many choices, Sard’s theorem asserts that F̃K ∩ M
tβ ,yβ
j → R

l̃ , (t, y) �→ t

has an open and dense subset Rβ
K , j ⊂ R

l̃ of regular values. Then, since R
l̃ is a Baire

space, the set of common regular valuesR0 :=⋂β∈Z

⋂
K , j R

β
K , j ⊂ R

l̃ is still dense.
For any t0 ∈ R0, the sc+-multisection �t0 : W → Q

+ is in general position by the
usual linear algebra for each restriction of the linearized operators to intersections of
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faces: Consider (t0, x0) ∈ F̃K ∩ M
tβ ,yβ
j ⊂ supp �̃ and a local section S + p j in the

representation of �̃ = �̃◦ S̃ with M
tβ ,yβ
j ⊂ (S+ p j )−1(0). The surjective differential

along this intersection of faces can be written as Dt0,x0(S+ p j )|F̃K
= D⊕L , where L

is a bounded operator (arising from differentiating p j in the direction of R
l̃ ) and D is

the reduced linearization—on the intersection of facesFK :=⋂k∈K F yβ
k ⊂ U (yβ) ⊂

X—of the section S + p j (t0, ·) that is a part of the representation of �t0 ◦ S. Then

regularity of t0 implies surjectivity of the projection � : ker(D⊕ L) → R
l̃ , which in

turn is equivalent to surjectivity of D; see e.g. [26, Lemma A.3.6].
Moreover, each �t for |t | < ε is (N ,U)-admissible, thus any sufficiently small

regular t0 ∈ R0 yields an admissible sc+-multisection λ := �t0 in general position
as in [22, Thm.15.4]. To prove our theorem, we have to moreover choose t0 ∈ R0 so
that the restriction e|Zλ : Zλ → M to the solution set Zλ = | supp λ ◦ S| is in general
position to Ci ⊂ M for all i ∈ I . For that purpose we consider the countably many
projections

ẽ−1(Ci ) ∩ F̃K ∩ M
tβ ,yβ
j → R

l̃ , (t, x) �→ t (50)

for any i ∈ I , index β ∈ Z of the countable cover, intersection of local faces F̃K ,
and smooth branch M

tβ ,yβ
j ⊂ supp �̃∩ Ũ (tβ, yβ). Here we have ẽ−1(Ci )∩M

tβ ,yβ
j ⊂

(ẽ|supp �̃)−1(C), so that the restriction ẽ|F̃K∩Mtβ ,yβ
j

: F̃K ∩M
tβ ,yβ
j → M is smooth and

submersive in a neighborhood of ẽ−1(Ci ). In particular, it is transverse to Ci so that
there is a natural smooth structure on ẽ−1(Ci )∩ F̃K ∩ M

tβ ,yβ
j . Thus we can apply the

Sard theorem to each (50) to find open and dense subsets T i,β
K , j ⊂ R

l̃ of regular values,

and a dense set of common regular values T0 := ⋂β∈Z

⋂
K , j R

β
K , j ∩

⋂
i T

i,β
K , j ⊂ R

l̃ .
Note that T0 ⊂ R0, so sufficiently small t0 ∈ T0 yield admissible sc+-multisections
λ := �t0 in general position. Moreover, general position of e|Zλ : Zλ → M to Ci at
x ∈ Zλ∩ e−1(Ci ) means that the linearizations of e|FK∩Zλ map onto Te(x)M/Te(x)Ci

for
each intersection of local faces FK ⊂ U (yβ) ⊂ X that contains x . Here the tangent

spaces of FK ∩ Zλ at x are given by those of F̃K ∩ M
tβ ,yβ
j ∩ ({t0} × X) for each

branch with (t0, x) ∈ M
tβ ,yβ
j ⊂ supp �̃, so we need to ensure surjectivity of D(t0,x)ẽ :

ker� → Te(x)M/Te(x)Ci
on the kernel of the projection� : T(t0,x)

(
F̃K ∩M

tβ ,yβ
j

)→ R
l̃ .

Here D(t0,x)ẽ : T(t0,x)
(
F̃K ∩M

tβ ,yβ
j

)→ Te(x)M is surjective (since ẽ|supp �̃ is submer-

sive), and regularity t0 ∈ T i,β
K , j means that we have �(D(t0,x)ẽ)

−1(Te(x)Ci ) = R
l̃ , so

for any Y ∈ Te(x)M we find (T , X) ∈ T(t0,x)
(
F̃K ∩ M

tβ ,yβ
j

)
with D(t0,x)ẽ(T , X) = Y

and (T , X ′) ∈ (D(t0,x)ẽ)
−1(Te(x)Ci ), so that (0, X − X ′) ∈ ker� proves the required

surjectivity D(t0,x)ẽ(0, X − X ′) = Y − D(t0,x)ẽ(T , X ′) = [Y ] ∈ Te(x)M/Te(x)Ci
. Thus

this choice of sufficiently small t0 ∈ T0 also guarantees general position of e|Zλ to
each of the countably many submanifolds Ci , which finishes the proof of the theorem
when no boundary values are prescribed.
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Regular extension: To prove the last paragraph of the theorem we consider a given
( 1
α
N ,U)-admissible structurable sc+-multisection λ∂ : P−1(∂X ) → Q

+ that is in
general position over the boundary, and with e|Z∂ : Z∂ = supp λ∂ ◦ S|∂X → M
in general position to finitely many submanifolds Ci . Then we will adjust the above
construction of λ : W → Q

+ to also satisfy λ|P−1(∂X ) = λ∂ , by following the proof
of the transversal extension theorem over ep-groupoids [22, Thm.15.5].

Since λ∂ is supported in U ∩ ∂X with N (λ∂)(x) < α for all x ∈ ∂X we can
find a continuous functor h : X → [0, 1) supported in U with N (λ∂)(x) < h(x) <
1
2N (λ∂)(x) + 1

2 for all x ∈ ∂X . Then [22, Thm.14.2] yields a sc+-multisection �′ :
W → Q

+ with�′|P−1(∂X ) = λ∂ , domain support in U , and N (�′)(x) ≤ h(x) ≤ α+1
2

for all x ∈ X . This guarantees compactness of | supp�′ ◦ S| ⊂ |X | and regularity of
| supp�′◦S|∩|∂X | = | supp λ∂◦S|∂X |. Toobtain regularity in the interiorwe construct
λ = �′⊕�t by the above arguments with S−1(0) replaced by S ′ := supp�′ ◦S ⊂ X ,
noting that |S ′| ⊂ |X | is also compact. To achieve general position to the Ci we need
further adjustments.

Local constructions relative to boundary values: For interior points x ∈ S ′ ∩ ∂0X
we construct �̃x : R

l×W → Q
+ with domain support in the interior R

l× (∂0X ∩U)

to cover the cokernels of TR
(S̃x ,�̃′) for the stabilized multisection �̃′ : R

l ×W →
Q
+, (t, w) �→ �′(w). For x ∈ S ′ ∩ ∂X we need no stabilization by a R

l factor (i.e.
take l = 0) due to the general position of λ∂ at x . However, we only obtain general
position to the Ci , rather than submersivity in the following claim.

Local properties relative to boundary: For each x ∈ S ′ there exists lx ∈ N0—with
lx = 0 for x ∈ S ′ ∩ ∂X—and a locally uniformizing neighborhood Q(x) ⊂ X of
x whose closure is contained in U , such that for some εx > 0 we have a tame ep+-
subgroupoid �x : {t ∈ R

l | |t | < εx }×Q(x) → Q
+, (t, y) �→ (

�′ ⊕�x
t

)
(S(y)) with

surjective reduced linearizations, and thus a weighted branched orbifold | supp�x |.
Moreover, if x ∈ S ′ ∩ V then ẽx induces a smooth map | supp�x | → M , which is in
general position to Ci for each i ∈ I .

The structure of �x is established in [22, Thm.15.5.], and the general position to
each Ci for x ∈ ∂0X follows from submersivity. To achieve general position to the
Ci for x ∈ ∂X , recall that C = ∪i∈I (Ci ) ⊂ M is closed, so for x /∈ e−1(C) we can
choose Q(x) disjoint from e−1(C) so that general position to theCi ⊂ C is automatic.
For x ∈ e−1(C) ⊂ V we have e : supp�x ∩ ∂X = supp λ∂ ◦ S|∂X → M in general
position to each Ci by assumption on λ∂ . Moreover, we choose Q(x) ⊂ V so that
e : Q(x) ∩ supp�x → M is smooth, and thus general position to each Ci extends to
a neighbourhood Qi ⊂ X of x . Then Q′ :=⋂i∈I Qi is a neighbourhood of x since I
is finite, and we can replace Q(x) by a uniformizing neighbourhood in Q′ to achieve
general position to all Ci .

From local to global relative to boundary: This portion of the proof is started by
picking a finite cover |S ′| ∩ |∂X | = | supp λ∂ ◦ S|∂X | =

⋃0
i=−k∂

|Q(xi )| ⊂ |X | by
the above neighbourhoods for xi ∈ S ′ ∩ ∂X . Next we cover |S ′| \⋃0

i=−k∂
|Q(xi )| ⊂⋃k

i=1 |Q(xi )|with neighbourhoods of interior points xi ∈ S ′ ∩ ∂0X whose associated
multisections �xi are supported in the interior, dom-supp�xi ⊂ R

lx ∩ ∂0X . Then we
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define �̃ : R
l̃ ×W → Q

+ by �̃(t, w) := �t (w) := (�′ ⊕ �
x1
t1 ⊕ · · · ⊕ �

xk
tk

)
(w).

This multisection is constructed so that �0 = �′ and �t |P−1(∂X ) = λ∂ for any

t ∈ R
l̃ . Moreover, the estimate N (�t ) ≤ N (�′) + c|t | ≤ 1+α

2 + c|t | allows us
to guarantee admissibility N (�t ) ≤ 1 by choosing |t | ≤ 1−α

2c . Then compactness

of Z̃ in (48) follows as above, and its smoothness is established using a covering
|S−1(0)| ⊂ ⋃k′

i=−k∂
|U (x ′i )| where |U (x ′i )| for i ≤ 0 arise from x ′i ∈ S ′ ∩ ∂X and

cover a neighbourhood of |∂X |. Moreover, U (x ′i ) ⊂ R
l̃ × Q(x ′i ) can be chosen as in

the prior proof of the local properties such that ẽ|supp� : U (x ′i ) → M is in general
position to Ci for each i ∈ I . This establishes the following.

Global stabilization properties with fixed boundary values: There exists ε0 > 0 such

that �̃ := �̃ ◦ S̃ : {|t | < ε} × X → Q
+ is a tame ep+-subgroupoid with surjective

reduced linearizations for every 0 < ε < ε0. In particular, | supp �̃| is a weighted
branched orbifold. Moreover, there is a neighbourhood V ′ ⊂ X of S−1(0) ∩ e−1(C)

such that ẽ|supp �̃ : supp �̃ → M satisfies (ẽ|supp �̃)−1(C) ⊂ R
l̃ × V ′, and its restric-

tion to supp �̃ ∩ (Rl̃ × V ′) is classically smooth and in general position to each Ci .

Global transversality relative to boundary: In this final step we use the fact that �t

is (N ,U)-admissible for |t | ≤ 1−α
2c and choose a common regular value of countably

many projections as before. The only difference to the proof above is that the restriction
of ẽ|supp �̃ to a branch Mt0,y0

j ∩ (Rl̃ × V ′) → M is not necessarily submersive but

still in general position to each of the Ci , that is D(t,y)ẽ|Nt,y : Nt,y → Te(y)M/Te(y)Ci

is surjective for each i ∈ I . When considering the projections (50), this suffices to
obtain smooth structures on ẽ−1(Ci )∩ F̃K ∩ M

tβ ,yβ
j for each branch and intersection

of faces F̃K . Then general position of e|Zλ : Zλ → M to Ci at x ∈ Zλ ∩ e−1(Ci ) for
λ = �t0 with a regular value t0 ∈ R

l again requires surjectivity of D(t0,x)ẽ : ker� →
Te(x)M/Te(x)Ci

on the kernel of the projection � : T(t0,x)
(
F̃K ∩ M

tβ ,yβ
j

)→ R
l̃ . To see

that [Y ] ∈ Te(x)M/Te(x)Ci
is in the image we use the above surjectivity of D(t0,x)ẽ|Nt0,x

to find (T , X) ∈ T(t0,x)
(
F̃K ∩ M

tβ ,yβ
j

)
with D(t0,x)ẽ(T , X) ∈ [Y ]. Then regularity

of t0 yields (T , X ′) ∈ (D(t0,x)ẽ)
−1(Te(x)Ci ), so that (0, X − X ′) ∈ ker� solves

[D(t0,x)ẽ(0, X − X ′)] = [Y − D(t0,x)ẽ(T , X ′)] = [Y ] ∈ Te(x)M/Te(x)Ci
. This finishes

the proof with prescribed boundary values. �
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