
Selecta Mathematica (2022) 28:14
https://doi.org/10.1007/s00029-021-00731-5

SelectaMathematica
New Series

Fitting ideals of p-ramified Iwasawamodules over totally
real fields

Cornelius Greither1 · Takenori Kataoka2 ·Masato Kurihara2

Accepted: 21 October 2021 / Published online: 7 December 2021
© The Author(s) 2021

Abstract
We completely calculate the Fitting ideal of the classical p-ramified Iwasawa module
for any abelian extension K/k of totally real fields, using the shifted Fitting ideals
recently developed by the second author. This generalizes former results where we
had to assume that only p-adic places may ramify in K/k. One of the important
ingredients is the computation of some complexes in appropriate derived categories.
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Introduction

One of the most important themes in Iwasawa theory is to study the relationship
between p-adic analytic objects and p-adic algebraic objects, usually formulated as
“main conjectures,” in which the algebraic objects are described by characteristic
ideals of suitable arithmetic modules. However, more recent research has given us
a better understanding of closer relationships between analytic and algebraic objects
beyond characteristic ideals. For example, such relationship can be described by using
Fitting ideals.

In certain cases, using the p-adic L-functions corresponding to the arithmetic
objects, we can describe the Fitting ideals of certain arithmetic modules, which give
more information than the characteristic ideals. But in those cases it has always been
necessary to use modified versions of the relevant Iwasawa modules instead of the
modules themselves; see for example, [3,11], etc.

In this paper we study a much more difficult and subtle object, the Fitting ideals
of non-modified classical Iwasawa modules. We prove that they can be described by
the analytic objects and certain ideals constructed from simple objects. We think it is
remarkable that the Fitting ideals of classical Iwasawa modules can be also described
by some variants of p-adic L-functions.

In order to explain this in slightly more detail, we introduce the notation we will
use in this paper. Throughout this paper, we fix an odd prime number p. We consider
a finite abelian extension K/k of totally real number fields and the cyclotomic Zp-
extension K∞ of K . Let Sp be the set of p-adic places of k. For any algebraic extension
F/k, let Sram(F/k) be the set of finite places of k which are ramified in F . For any
finite set S of primes of k, let XK∞,S be the S-ramified Iwasawa module, which is by
definition the Galois group of the maximal pro-p-abelian extension of K∞ unramified
outside S. Recall that XK∞,S is a module over the Iwasawa algebra R = Zp[[G]],
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where G = Gal(K∞/k) is the profinite Galois group in this setting. We simply write
XS for XK∞,S when no confusion arises.

The main theme in this paper is to compute FittR(XSp ), the Fitting ideal of the
Iwasawa module XSp . The module XSp has been important in Iwasawa theory and
is related to class groups as follows. Let Aω

K (μp∞ ) be the Teichmüller character com-

ponent of the inductive limit AK (μp∞ ) of the p-parts of the ideal class groups (full
class groups) of K (μpn ) (for the definition of the character component, see Sect. 1.4).
Then, assuming that K/k is a p-extension, we have the Kummer duality between XSp
and Aω

K (μp∞ ):

XSp = XK∞,Sp � Hom(Aω
K (μp∞ ), μp∞) = (Aω

K (μp∞ ))
∨(1).

Here, (−)∨ denotes the Pontryagin dual of a module and (1) denotes the Tate twist.
The Fitting ideals of (the duals of) the minus components of class groups are studied in
[7,16], etc. Moreover, after the authors finished writing the first version of this paper,
Dasgupta and Kakde [5] unconditionally proved a description of the Fitting ideals
of (the duals of) the minus components of T -modified class groups. However, our
objects of study in this paper are much more subtle, roughly because we do not allow
T -modifications. See Sect. 1.5 for more discussion on this issue. We finally remark
here that the Kummer duality plays practically no role in the proof of themain theorem
in this paper.

In the papers [8,9] by the first and the third author, and in the paper [10] with Tokio,
we determined FittR(XS) when S contains Sram(K∞/k) = Sram(K/k) ∪ Sp. There-
fore, FittR(XSp ) was determined in [8–10] under the assumption that Sram(K/k) ⊂
Sp, that is, K/k is unramified outside p. But the assumption Sram(K/k) ⊂ Sp, is a
pretty severe constraint. In the present paper we completely remove the assumption
Sram(K/k) ⊂ Sp, and determine FittR(XSp ) for any finite abelian extension K/k of
totally real fields. Thus we are mainly concerned with the case Sram(K∞/k) � Sp.

The main result of this paper is the following.

Theorem 0.1 Let S be a finite set of finite places of k such that S ⊃ Sp ∪ Sram(K/k)
and S 	= Sp. Put S′ = S \ Sp 	= ∅. Then we have

FittR(XSp ) = Fitt[1]R (Z0
S′) θmod

S .

The definitions of theR-module Z0
S′ , of the element θmod

S , and of Fitt[1]R will be given
in Sect. 1. We introduce in this paper an integral element θmod

S ∈ R, which is a kind of
(modified) equivariant Iwasawa power series. This is an integral Stickelberger element,
but different from the so-called “T -modified Stickelberger elements” which appear in
the theory of the Stark conjecture. The shifted Fitting ideal Fitt[1]R was introduced by
the second author in [13]. It is defined by using a certain type of resolutions and the
syzygies produced by them. The main point of the theorem is that all quantities on the
right hand side are computable in principle.

Using the above-mentioned work of Dasgupta-Kakde [5], Johnston and Nickel
proved in [12] the abelian equivariant main conjecture unconditionally, more precisely
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without assuming the condition μ = 0 (under μ = 0, the abelian equivariant main
conjecture was known to be true, for example, by the work [19] of Ritter and Weiss).
We use the result of Johnston and Nickel in Theorem 3.11 to prove our Theorem 0.1
above. Even if we do not use the theorem by Johnston and Nickel, we can prove our
main theorem under the assumption of μ = 0. In that case, the only place where we
use μ = 0 is Theorem 3.11.

The crucial point in this study is the case when Gal(K/k) is a p-group. In fact, the
ringR = Zp[[G]] is semi-local, and decomposed into direct product of local rings. Let
G = G(p′) × G(p) be the decomposition of G such that G(p′) is a finite group of order
prime to p and G(p) is a pro-p group. Then each local component of R corresponds
to an equivalence class of characters of G(p′) (see Sect. 1.4), and accordingly the
statement of Theorem 0.1 can be decomposed. On the one hand, the trivial character
component is the most difficult, and the statement is equivalent to that for the pro-p

extension (K∞)G
(p′)

/kwithGalois groupG(p). (In fact, the trivial character component
corresponds to the the Teichmüller character component by Kummer duality.) On the
other hand, the non-trivial character components are easier to handle; for example,
those components of Fitt[1]R (Z0

S′) can be computed easily (see Corollary 1.10). In that
sense the case that Gal(K/k) is a p-group is essential. However, the proof of Theorem
0.1 does not involve an explicit reduction to that case.

The proof of ourmain result occupies Sects. 2 and 3; indeed the proof splits naturally
into an algebraic part and an arithmetic part. The former constructs a certain complex
CS via an exact triangle, whose other two terms come from complexes that arise in
global and localGalois cohomology respectively. This produces a short exact sequence

0 → XSp → H1(CS) → Z0
S′ → 0,

as in Proposition 2.11. Since the middle term turns out to be cohomologically trivial,
this already gives a formula for FittR(XSp ) in terms of Fitt[1]R (Z0

S′): these twoquantities
differ by a principal factor governed by the complexCS . In the second part of the proof,
this factor is then identified with the (equivariant, modified) p-adic L-function θmod

S .
In Sect. 2.4, we also discuss the natural question under what circumstances

FittR(XSp ) is principal. The rough answer is: very rarely (see Proposition 2.14).
In Sect. 4 wewill present several attempts to make our determination of FittR(XSp )

really explicit. The module Z0
S′ that occurs in the main result appears to be fairly

explicit, but a closer look quickly shows that (unless the extension K/k is very small
in a way) an honestly explicit description of its first shifted Fitting ideal is not obvious
at all, and in fact turns out to be pretty hard in general. We present a general method
to attack the problem, and show that it produces in some nice cases a truly explicit
result, that is, a concrete list of generators for Fitt[1](Z0

S′).

In the final Sect. 5 we compute Fitt[1]R (Z0
S′) explicitly to determine the Fitting ideal

of XSp in the case that K/k is cyclic and satisfies some mild conditions (see Theorems
5.1 and 5.4). Especially, these results give generalizations of the main result in [15]
by the third author where only the case that K/k is of degree p was treated. We think
that this new look at the third author’s previous result is a good way to use our main
result and to test the techniques of Sect. 4.



Fitting ideals of p-ramified Iwasawa modules over totally… Page 5 of 48 14

Remark 0.2 Large parts of this paper, as they are written now, make an essential use
of homological algebra. More precisely speaking, we need the theory of complexes
including the cone construction, and some theory of derived categories. We would
like to mention here that in the earliest stages of this manuscript we used different
and more elementary methods. Actually, as far as the proof of the main result is
concerned, one might call those other methods old-fashioned, since they mimicked
and partially repeated ingenious arguments of Tate [21], which are over fifty years
old. It is interesting to note that already in those old arguments one can perceive some
central ideas of homological algebra like the use of Ext groups, but the theory of
complexes was not used in the way we know it today. Anyway, it may be reassuring
to know that alternative arguments exist, but we think that using the framework of
Galois cohomology and complexes leads to shorter arguments and to a better logical
structure, so this is what the reader will actually see in the body of this paper.

1 Ingredients for themain result

Our main result in this paper is Theorem 0.1 in the Introduction. In this section we
define the R-module Z0

S′ , the element θmod
S ∈ R, and Fitt[1]R which appeared in the

statement of Theorem 0.1, and also give detailed explanation of several statements
mentioned in the Introduction.

We recall some important notation from the Introduction.
Let p be an odd prime number, K/k a finite abelian extension of totally real fields,

and K∞ the cyclotomic Zp-extension of K . Put G = Gal(K∞/k) and R = Zp[[G]].
We denote by Sp the set of p-adic primes of k, and by Sram(K/k) the set of primes of
k which are ramified in K/k. Let XSp = XK∞,Sp be the Sp-ramified Iwasawa module
for K∞.

1.1 Definition of Z0S′

As inTheorem0.1, let S be afinite set of finite places of k such that S ⊃ Sp∪Sram(K/k)
and S 	= Sp. Put S′ = S \ Sp 	= ∅.

For each finite place v of k outside p, let Gv be the decomposition subgroup of G
at v. Then Gv is an open subgroup of G. Put

Zv = Zp[G/Gv],

which is regarded as anR-module; note that it is a finitely generated free Zp-module.
Moreover, put

ZS′ =
⊕

v∈S′
Zv.
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Finally, define anR-module Z0
S′ by the exact sequence

0 → Z0
S′ → ZS′ → Zp → 0, (1.1)

where the map ZS′ → Zp is defined to be the augmentation map on each summand
Zv . Note that this map is onto for the precise reason that we assume S′ to be nonempty.

1.2 Definition of�mod
S

Again let S be a finite set of finite places of k such that S ⊃ Sp ∪ Sram(K/k), but we
do not assume S 	= Sp in this subsection.

Definition 1.1 Let v be a finite place of k outside p. We denote by N (v) the cardinality
of the residue field of k at v. Let Tv ⊂ Gv be the inertia group, which is finite. Let
σv ∈ G/Tv be the N (v)-th power Frobenius automorphism.

Definition 1.2 For a finite character ψ : G = Gal(K∞/k) → C
×, we have the S-

imprimitive L-function

LS(s, ψ) =
∏

v /∈S

(
1 − ψ(σv)

N (v)s

)−1

,

where v runs over the finite places of k that are not in S. This infinite product converges
on the half plane
(s) > 1 and LS(ψ, s) has a meromorphic continuation to the whole
plane C.

We fix embeddingsQ ↪→ Qp andQ ↪→ C. Then each finite characterψ : G → C
×

can be regarded to have values in Qp
×
. Thus ψ induces a continuous Zp-algebra

homomorphism R = Zp[[G]] → Qp, which we again denote by ψ .
Let

κcyc : Gal(k(μp∞)/k) ↪→ Z
×
p

denote the cyclotomic character, and

ω : Gal(k(μp)/k) ↪→ Z
×
p

denote the Teichmüller character. The Zp-algebra homomorphisms induced by them
are also written by the same letters.

The S-truncated p-adic L-functions θS are defined via interpolation properties, as
follows.

Definition 1.3 Let θS = θS,K∞/k ∈ Frac(R)× be the element characterized by

(κn
cycψ)(θS) = LS(1 − n, ψω−n)
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for each finite character ψ of G and positive integers n. The existence of θS follows
fromDeligne-Ribet [6]. Moreover, it is known that θS is a pseudo-measure in the sense
of Serre [20], that is, we have AnnR(Zp)θS ⊂ R.

We will define a modification θmod
S of θS below. We denote by NTv

=∑σ∈Tv
σ the

norm element of the inertia group Tv in a group ring, and put ev = NTv
/#Tv , which

we regard as an element of Frac(R). We take a lift σ̃v ∈ G of σ ∈ G/Tv and consider
σ̃vev , which is independent of the choice of σ̃v . We simply write σvev for σ̃vev .

Definition 1.4 We define θmod
S = θmod

S,K∞/k ∈ Frac(R)× by

θmod
S,K∞/k = θS,K∞/k

∏

v∈S′

1 − σvev

1 − σvevN (v)−1 .

By definition θmod
S satisfies the interpolation properties

(κn
cycψ)(θmod

S ) = LS(1 − n, ψω−n)
∏

v

1 − ψ(σv)N (v)n

1 − ψ(σv)N (v)n−1

for ψ and n as in Definition 1.3, where v runs over the elements in S′ such that ψ is
unramified at v.

We will prove later in Sect. 2.1 the following.

Theorem 1.5 Our modified p-adic L-function θmod
S is integral, namely θmod

S ∈ R.

We note that a variant of this element θmod
S was called “Greither’s Stickelberger

element” in [15, Theorem 0.1], and its integrality was proved in [15, Lemma 2.1] for
a special type of extension K/k studied there.

We also note that we do not use Theorem 1.5 in the proof of Theorem 0.1.
Let us first discuss some basic properties of θmod

S .

Lemma 1.6 (1) Let S1 be a finite set which contains S. Then we have

θmod
S1 = θmod

S

∏

v∈S1\S
(1 − σv).

(2) We also have an element θmod
S,M∞/k ∈ Frac(Zp[[Gal(M∞/k)]]) for any interme-

diate field M∞ of K∞/k∞, as in Definition 1.4. Then the image of θmod
S,K∞/k in

Frac(Zp[[Gal(M∞/k)]]) coincides with θmod
S,M∞/k .

Proof (1) We note that v ∈ S1 \ S is unramified in K∞/k because S contains all
ramifying primes. By the definition of θS , we have

θS1 = θS
∏

v∈S1\S
(1 − σvN (v)−1).
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Then by the definition of θmod
S , we obtain

θmod
S1 = θmod

S

∏

v∈S1\S

[
(1 − σvN (v)−1) · 1 − σv

1 − σvN (v)−1

]

= θmod
S

∏

v∈S1\S
(1 − σv).

The claim in (2) follows from the interpolation properties of θmod
S,K∞/k and θmod

S,M∞/k .��

1.3 Shifted Fitting ideals

We review the theory of the second author [13] on Fitting invariants. Let pdR(P) be the
projective dimension of an R-module P . By [13, Theorem 2.6] and [13, Proposition
2.7], we have the following.

Theorem 1.7 Let n be a non-negative integer and X a finitely generated torsion R-
module. Take an n-step resolution 0 → Y → P1 → · · · → Pn → X → 0 of X, in
which all modules are finitely generated torsion over R and such that pdR(Pi ) ≤ 1
for i = 1, . . . , n. If we put

Fitt[n]
R (X) =

(
n∏

i=1

FittR(Pi )
(−1)i

)
FittR(Y ),

then the fractional ideal Fitt[n]
R (X) of R is independent of the choice of the n-step

resolution. In this sense, Fitt[n]
R (X) is well defined.

1.4 Decomposition of group rings

In general, suppose that � is a finite abelian group of order prime to p. Then we have
a decomposition

Zp[�] �
∏

χ

Oχ ,

where χ runs over equivalence classes of p-adic characters of � (two characters
χ1, χ2 are equivalent if and only if σχ1 = χ2 for some σ ∈ Gal(Qp/Qp)), and
Oχ = Zp[Im(χ)] is a Zp[�]-module on which � acts via χ . According to this
decomposition, each Zp[�]-module M can be decomposed as

M =
⊕

χ

Mχ

with Oχ -modules Mχ .
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Now we consider G = Gal(K∞/k). We decompose it into G = G(p′) ×G(p) where
G(p′) is a finite group of order prime to p and G(p) is a pro-p group. Since Zp[[G]] =
Zp[G(p′)][[G(p)]], applying the above decomposition ofZp[�] to� = G(p′), we have

R = Zp[[G]] �
∏

χ

Oχ [[G(p)]].

We also have

R = Zp[[G]] � Zp[[G(p)]] ×
∏

χ 	=1

Oχ [[G(p)]]

where the first component of the right hand side corresponds to the trivial character
χ = 1.

Here we give a description of Fitt[1]R (Zv). Let v be a finite place of k outside p.
Recall (Definition 1.1) that Tv is the inertia group in K∞/k, and σv ∈ G/Tv is the
Frobenius automorphism. Let

νv : Frac(Zp[[G/Tv]]) → Frac(Zp[[G]])

be the map induced by the multiplication by the norm element NTv
=∑σ∈Tv

σ .

Proposition 1.8 For each finite place v of k outside p, we have

Fitt[1]R (Zv) =
(
1, νv

1

σv − 1

)

as fractional ideals of R.

Proof The statement of the lemma can be decomposed according to characters χ of

G(p′). We consider the decomposition Tv = T (p′)
v × T (p)

v where the order of T (p′)
v is

prime to p and T (p)
v is a pro-p group. If χ is non-trivial on T (p′)

v , we have Zχ
v = 0

and χ(νv) = 0, so the equation holds. Therefore, we only have to deal with χ which

is trivial on T (p′)
v . Thus we may assume Tv = T (p)

v from the start.
Assume Tv = T (p)

v . Note that, by local class field theory, Tv is a quotient of the
unit groupO×

kv
, so in particular T (p)

v is a cyclic group. Hence we can take a generator
δv of Tv . Take a lift σ̃v ∈ G of σv ∈ G/Tv . Then Gv is topologically generated by σ̃v

and δv , so we have Zv � R/(σ̃v − 1, δv − 1). Thus we have an exact sequence

R/(σ̃v − 1)
NTv→ R/(σ̃v − 1)

δv−1→ R/(σ̃v − 1) → Zv → 0.

Observe that the cokernel of NTv
here has a presentation (NTv

, σ̃v−1) as anR-module.
Hence we obtain

Fitt[1]R (Zv) = (σ̃v − 1)−1(NTv
, σ̃v − 1) =

(
1, νv

1

σv − 1

)
.

��
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Now we give an explicit description of Fitt[1]R (Z0
S′) for non-trivial character com-

ponents.

Proposition 1.9 For any non-trivial character χ of G(p′), we have

Fitt[1]Rχ ((Z0
S′)χ ) =

∏

v∈S′

(
1, νv

1

σv − 1

)

as fractional ideals of Rχ .

Proof Since χ is non-trivial, we have (Zp)
χ = 0, so (Z0

S′)χ = (ZS′)χ . Then the
assertion follows from Proposition 1.8 immediately. ��

Note that NTv
∈ R goes to 0 in Rχ unless χ is trivial on Tv , that is, χ(v) = 1.

Therefore, only places v ∈ S′ with χ(v) = 1 contribute in the product.
Using Theorem 0.1 and the Proposition 1.9, we get a complete description of the

Fitting ideal of the non-trivial character component of XSp .

Corollary 1.10 For any non-trivial character χ of G(p′), we have

FittR(Xχ
Sp

) =
∏

v∈S′

(
1, νv

1

σv − 1

)
(θmod

S )χ .

1.5 Relation withminus class groups

In this short subsection, we compare our results on XSp with related work on theminus
components of class groups.

As recalled in the Introduction: Assuming that K/k is a p-extension, we have the
Kummer duality between XSp and Aω

K (μp∞ ), the Teichmüller character component

of AK (μp∞ ). Therefore, our results in this paper can be translated into results on
(Aω

K (μp∞ ))
∨.

The Fitting ideals of the minus part (A−
K (μp∞ ))

∨ are known outside the Teichmüller

character component. For example, the method of the first author [7] can be applied
to the Iwasawa theoretic situation without assuming the ETNC, the equivariant Tam-
agawa number conjecture.

The third author made a conjecture in [16] on a complete description of the Fitting
ideal of (AT ,−

K (μpn ))
∨, the dual of the minus component of the T -modified class group

AT
K (μpn ) for certain finite sets T of primes, and proved it assuming the ETNC. Very

recently, Dasgupta and Kakde proved in [5] the Brumer-Stark conjecture, and more
strongly, the above conjecture by the third author unconditionally. From that result,
one can get information on the full class group outside the Teichmüller character
component. However, the Teichmüller character component is a much more subtle
and difficult object than the other components, and is still mysterious even if we know
the Brumer-Stark conjecture. For this reason, the results of [5] do not seem to impact
directly on our main theorems.
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We now explain briefly the difficulty in computing the Fitting ideal of the ω-
component, and the difference from the computation of the T -modified class groups
in Dasgupta and Kakde [5], and in [16] by the third author, etc. In [5] and [16] a
kind of Tate sequences are used to study the T -modified class group AT

K (μpn ). An
important fact is that the class group appears in the final term of some 4 term exact
sequence. In a different terminology, it is well-known that the class group ofOK (μpn ),S

appears in H2 of the étale cohomology complexR�et (SpecOK (μpn ),S, Zp(1)). In the

T -modification R�T (Spec OK (μpn ),S, Zp(1)) introduced in [3], Hi = 0 if i 	= 1, 2,

and H2 is related to the T -modified class group. On the other hand, in the study of
the ω-component of the full class group, T -modification is not allowed, and H3 of
R�et (SpecOK (μpn ),S, Zp(1)) does not vanish. So for this one would require an argu-

ment totally different from the one used for AT
K (μpn ). We hope that the approach of

the present paper provides some steps in this direction.

2 Proof of main result (I)

2.1 Integrality of�mod
S

Before proving themain theorem, let us give a proof of Theorem 1.5 in this subsection.
(We remark that this result is not used in the proof of the main theorem.)

For a subset J of S′, we define KJ /k to be the maximal subextension of K∞/k that
is unramified in J . Since J ∩ Sp is empty, KJ contains the cyclotomic Zp-extension
k∞ of k, which implies that K∞/KJ is a finite extension. We put GKJ = Gal(KJ/k).
Let

νK∞/KJ : Zp[[GKJ ]] −→ Zp[[G]] = R

be the norm homomorphism which is induced by the multiplication by the norm
element NGal(K∞/KJ ) = ∑

σ∈Gal(K∞/KJ )
σ . We extend νK∞/KJ to the total quotient

rings of both sides.
We first prove two lemmas.

Lemma 2.1 In Frac(R) we have

θmod
S,K∞/k =

∑

J⊂S′

∏
v∈J #Tv

[K∞ : KJ ]νK∞/KJ

(
θS\J ,KJ /k

∏

v∈J

N (v)−1 − 1

#Tv

σv,KJ

)

where J runs over all subsets of S′ and σv,KJ is the Frobenius automorphism of v in
GKJ .

Proof We compute the right hand side of the definition of θmod
S,K∞/k (see Definition 1.4).

Choosing a lift σ̃v ∈ G of σv ∈ G/Tv and putting ξv = N (v)−1−1
#Tv

σ̃v , we get
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1 − σvev

1 − σvevN (v)−1 = 1 + σvev(N (v)−1 − 1)

1 − σvevN (v)−1 = 1 + NTv

ξv

1 − σvevN (v)−1 .

Therefore, we have

θmod
S,K∞/k =

∑

J⊂S′
θS,K∞/k

∏

v∈J

(
NTv

ξv

1 − σvevN (v)−1

)
. (2.1)

On the other hand, for any element α of Frac(R), we know

(
∏

v∈J

NTv

)
α =

∏
v∈J #Tv

[K∞ : KJ ]νK∞/KJ (πK∞/KJ (α)), (2.2)

where

πK∞/KJ : Frac(R) −→ Frac(Zp[[GKJ ]])

is the natural restriction map. For a subset J of S′ and v ∈ J , put

ξv,KJ = πK∞/KJ (ξv) = N (v)−1 − 1

#Tv

σv,KJ .

Using πK∞/KJ (θS,K∞/k) = θS,KJ /k and

θS,KJ /k = θS\J ,KJ /k

∏

v∈J

(1 − σv,KJ N (v)−1),

we apply (2.2) to α = θS,K∞/k
∏

v∈J (ξv/(1 − σvevN (v)−1)) to get

θS,K∞/k

∏

v∈J

(
NTv

ξv

1 − σvevN (v)−1

)

=
∏

v∈J #Tv

[K∞ : KJ ]νK∞/KJ

(
θS,KJ /k

∏
v∈J ξv,KJ∏

v∈J (1 − σv,KJ N (v)−1)

)

=
∏

v∈J #Tv

[K∞ : KJ ]νK∞/KJ

(
θS\J ,KJ /k

∏

v∈J

ξv,KJ

)
.

The equation (2.1) together with the above equation implies that

θmod
S,K∞/k =

∑

J⊂S′

∏
v∈J #Tv

[K∞ : KJ ]νK∞/KJ

(
θS\J ,KJ /k

∏

v∈J

ξv,KJ

)

This completes the proof of Lemma 2.1. ��
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Lemma 2.2 The modified p-adic L-function θmod
S,K∞/k is a pseudo-measure of GK∞ in

the sense of Serre [20].

Proof We know that θS\J ,KJ /k is a pseudo-measure of GKJ . Since [K∞ : KJ ] divides∏
v∈J #Tv and #Tv p-adically divides N (v) − 1, Lemma 2.2 is a consequence of

Lemma 2.1. ��

Nowwe prove Theorem 1.5. By Lemma 2.2, θmod
S,K∞/k is holomorphic at any charac-

ters ofG except the trivial character. The rest of our task is to show that it is holomorphic
also at the trivial character.

Let γ ∈ G = Gal(K∞/k) be a lift of a generator of Gal(k∞/k). Since θS,K∞/k is a
pseudo-measure, as in [20] one can write

θS,K∞/k = NGal(K∞/k∞)

γ − 1
c + α

for some c ∈ Zp and some α ∈ Zp[[G]] (we are writing NH for the norm element in
a group ring for any finite group H ). We know that c can be expressed by the class
number of k, the p-adic regulator, etc. by Colmez’s theorem, but we do not need it.

We also write

θS\J ,KJ /k = NGal(KJ /k∞)

γ − 1
cJ + αKJ

for some cJ ∈ Zp and some αKJ ∈ Zp[[GKJ ]]. Let πK∞/KJ be the map in the proof
Lemma 2.1. Since

πK∞/KJ (θS,K∞/k) = θS,KJ /k = θS\J ,KJ /k

∏

v∈J

(1 − σv,KJ N (v)−1) ,

we have

[K∞ : KJ ]c = cJ
∏

v∈J

(1 − N (v)−1) ,

so
cJ = [K∞ : KJ ]c

∏

v∈J

(1 − N (v)−1)−1. (2.3)

By Lemma 2.2, θmod
S,K∞/k is also a a pseudo-measure. So we can write

θmod
S,K∞/k = NGal(K∞/k∞)

γ − 1
cmod + αmod
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for some cmod ∈ Zp and some αmod ∈ Zp[[GK∞]]. In order to prove Theorem 1.5, it
is enough to show cmod = 0. By Lemma 2.1 and (2.3), we have

cmod =
∑

J⊂S′

∏
v∈J #Tv

[K∞ : KJ ]cJ
∏

v∈J

N (v)−1 − 1

#Tv

=
∑

J⊂S′

1

[K∞ : KJ ]cJ
∏

v∈J

(N (v)−1 − 1)

= c
∑

J⊂S′

∏

v∈J

N (v)−1 − 1

1 − N (v)−1 = c
∑

J⊂S′
(−1)#J .

Put n = #S′. We note that n is positive since S′ is non-empty. Counting the subsets J
with #J = k, we deduce from the above equation that

cmod = c ·
n∑

k=0

(
n
k

)
(−1)k

= c · (1 + (−1))n

= 0 .

This completes the proof of Theorem 1.5.

2.2 Some facts on arithmetic complexes

We collect some facts on local and global arithmetic complexes. A comprehensive
reference is Nekovář [17].

Let kS/k be the maximal S-ramified algebraic extension. For each finite place v of
k, let kv be the completion at v. Fix an algebraic closure kv of kv and an inclusion
kS ↪→ kv over k. Then any representation of Gal(kS/k) will yield a representation of
Gal(kv/kv).

We denote by (−)∨ the Pontryagin dual of a module. This symbol will also be used
for the corresponding construction in derived categories. As usual, we denote by μpm

the group of pm-th roots of unity. Let Zp(1) = lim←−m
μpm be the Tate module. Let

χG : Gal(kS/k) � Gal(K∞/k) = G ↪→ R× be the tautological representation. We
consider

T = Zp(1) ⊗Zp R(χ−1
G ),

which is an R-module of rank one with a certain action of Gal(kS/k).
We shall study the complexes

R�(kS/k, T), R�(kS/k, T
∨(1))∨, R�(kv, T), R�(kv, T

∨(1))∨,

which are defined using the continuous cochain complexes for the profinite groups
Gal(kS/k) and Gal(kv/kv) (see [17, (3.4.1)]).
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We denote by Dperf(R) the derived category of perfect complexes of R-modules,
and by Dperf

tor (R) the subcategory of objects whose cohomology groups are torsion as
R-modules. We will see that most of the complexes we treat in this paper are objects
of Dperf

tor (R). First we recall the following fact.

Proposition 2.3 ([17, Proposition (4.2.9)]) The “global complex”

R�(kS/k, T),

as well as the “local complexes”

R�(kv, T)

for any finite place v of k, are objects of Dperf(R).

The following two propositions are interpretations of the local Tate duality and the
global Poitou-Tate exact sequence, respectively. It would be certain that they have been
known since Grothendieck’s works, and are explicitly mentioned in Nekovář [17]. We
use [17, (2.9.1)] to identify the Pontryagin dual and the Matlis dual [17, (2.3)].

Proposition 2.4 ([17, Proposition (5.2.4)(i)])We have an isomorphism

R�(kv, T) � R�(kv, T
∨(1))∨[−2].

Proposition 2.5 ([17, Proposition (5.4.3)(i)])We have a distinguished triangle

R�(kS/k, T) →
⊕

v∈S
R�(kv, T) → R�(kS/k, T

∨(1))∨[−2] →,

where the first morphism is obtained by the localization, and the second morphism by
the localization and the duality in Proposition 2.4.

Remark 2.6 It should also be possible to deduce this exact triangle from the paper
[1]. The notation there is closer in spirit to ours than Nekovář’s, but there is the
disadvantage that everything is formulated at finite level, and we have not checked
whether the transition to the projective limit offers problems. A little more precisely:
The definition of the cone in [1], formula (3) on p.1345, gives an exact triangle

R�(kS/k, Zp(1)) →
⊕

v∈S
R�(kv, Zp(1)) → C,

where C denotes the cone. Thenwith themethod of loc.cit. p.1357, see equation (36) in
particular, it should be possible to identify C withR�(kS/k, Zp(1)∨(1))∨[−2]. Again,
we gloss over some technical problems and we do not try to discuss the passage from
Zp(1) (finite level) to T (infinite level).

Next we compute the cohomology groups of the global and local complexes.



14 Page 16 of 48 C. Greither et al.

Definition 2.7 Let v be a finite place of k outside p. Put

Jv = Jv(K∞) = lim←−
n

μp∞(Kn ⊗k kv),

whereμp∞(Kn⊗k kv) denotes the p-primary subgroup of (Kn⊗k kv)
× and the inverse

limit is taken with respect to the norm maps. Then Jv is naturally an R-module and
its structure is as in Remark 2.8. Put

JS′ =
⊕

v∈S′
Jv.

Let XS = XK∞,S be the S-ramified Iwasawamodule. Fromglobal class field theory,
we have an exact sequence

0 → JS′ → XS → XSp → 0 (2.4)

where the injectivity of JS′ → XS follows from the weak Leopoldt conjecture.

Remark 2.8 Take a place w of K∞ above v, and put

Jw = Jw(K∞) = lim←−
n

μp∞(Kn,w).

Here Kn,w denotes the completion of Kn at the place below w. Then we have Jv �
R ⊗Rv

Jw, where Rv = Zp[[Gv]].
If μp∞(K∞,w) = 0, then we have Jw = 0 and thus Jv = 0. Otherwise, we have

μp∞ ⊂ (K∞,w)× and Jw � Zp. In the latter case, the action of Gv on Jw is given
by the cyclotomic character κv : Gv → Z

×
p at v, and we have Jv � Zp[G/Gv] as a

Zp-module.

Proposition 2.9 We have

Hi (kS/k, T
∨(1))∨ �

⎧
⎪⎨

⎪⎩

XS (i = 1)

Zp (i = 0)

0 (i 	= 0, 1)

and

Hi (kv, T) �

⎧
⎪⎨

⎪⎩

Jv (i = 1)

Zv (i = 2)

0 (i 	= 1, 2)

for v � p where Zv was defined in Sect. 1.1.
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Proof We feel that it should also be possible to assemble a proof from suitable ref-
erences to Nekovář’s book [17], but we will write out a direct proof for the reader’s
convenience.

We have

T = Zp(1) ⊗Zp R(χ−1
G ) � lim←−

n

(
Zp(1) ⊗Zp Zp[Gal(Kn/k)](χ−1

Gn
)
)

,

where χGn : Gal(kS/k) � Gal(Kn/k) ↪→ Zp[Gal(Kn/k)]× is the tautological repre-
sentation. Then

Hi (kS/k, T
∨(1)) � lim−→

n

Hi (kS/k, (Zp(1) ⊗Zp Zp[Gal(Kn/k)](χ−1
Gn

))∨(1))

� lim−→
n

Hi (kS/k, (Qp/Zp) ⊗Zp Zp[Gal(Kn/k)](χGn ))

� lim−→
n

Hi (kS/Kn, Qp/Zp)

� Hi (kS/K∞, Qp/Zp),

where the third isomorphism follows from Shapiro’s lemma. The weak Leopoldt con-
jecture, which says that H2(kS/K∞, Qp/Zp) vanishes, is known to be true. This
implies the first assertion of Proposition 2.9.

For the second assertion, we use Proposition 2.4 to see that Hi (kv, T) �
H2−i (kv, T

∨(1))∨. Take a placew of K∞ above v. A computation similar to the global
case that we just have done shows (Gv,n is an ad hoc abbreviation for Gal(Kn,w/kv)):

Hi (kv, T
∨(1))∨ �

[
lim−→
n

Hi (kv, (Zp(1) ⊗Zp Zp[Gal(Kn/k)](χ−1
Gn

))∨(1))

]∨

�
[
lim−→
n

Hi (kv, (Qp/Zp) ⊗Zp Zp[Gal(Kn/k)](χGn ))

]∨

�
[
lim−→
n

Hi (kv, (Qp/Zp) ⊗Zp Zp[Gal(Kn,w/kv)](χGn ))

⊗Zp[Gv,n ]Zp[Gal(Kn/k)]
]∨

�
[
lim−→
n

Hi (Kn,w, Qp/Zp)

]∨
⊗Rv

R

� Hi (K∞,w, Qp/Zp)
∨ ⊗Rv

R.

This implies the assertion for i 	= 1. For i = 1, the above computation implies

H1(kv, T) �
[
lim←−
n

H1(Kn,w, Zp(1))

]
⊗Rv

R.
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For each positive integer m, the exact sequence 0 → μpm → kv
× (−)p

m

→ kv
× → 0

induces an isomorphism K×
n,w/(K×

n,w)p
m � H1(Kn,w, μpm ). By taking the inverse

limit with respect tom and n, we obtain lim←−n
H1(Kn,w, Zp(1)) � Jw. This completes

the proof. ��
Corollary 2.10 The complexesR�(kS/k, T

∨(1))∨ andR�(kv, T) for v � p are objects

of Dperf
tor (R).

Proof Propositions 2.3 and 2.5 imply that these complexes are objects of Dperf(R).
By Proposition 2.9, the cohomology groups are torsion. ��

2.3 The algebraic part of the proof

We define a complex CS = CS(K∞/k) as a mapping cone of
⊕

v∈S′ R�(kv, T) →
R�(kS/k, T

∨(1))∨[−2], namely define it such that it fits into a distinguished triangle

⊕

v∈S′
R�(kv, T) → R�(kS/k, T

∨(1))∨[−2] → CS →, (2.5)

where the first morphism is induced by the restriction, using Proposition 2.4. By
Corollary 2.10, CS is actually an object of Dperf

tor (R).

Proposition 2.11 We have Hi (CS) = 0 unless i = 1, and an exact sequence

0 → XSp → H1(CS) → Z0
S′ → 0 (2.6)

of R-modules.

Proof Taking the long exact sequence associated to (2.5) and using Proposition 2.9,
we obtain an exact sequence

0 → H0(CS) → JS′ → XS → H1(CS)

→ ZS′ → Zp → H2(CS) → 0.

Then the assertion follows from the exact sequences (1.1) and (2.4). ��
Corollary 2.12 The projective dimension of H1(CS) is at most one, and we have

FittR(XSp ) = FittR(H1(CS))Fitt
[1]
R (Z0

S′). (2.7)

Proof Since CS is perfect, the first statement of Proposition 2.11 tells us that
pdR(H1(CS)) < ∞. By the exact sequence (2.6), H1(CS) does not contain any
non-trivial finite submodule. Hence we have pdR(H1(CS)) ≤ 1. The formula (2.7) is
therefore a consequence of (2.6) and the definition of Fitt[1]R . ��
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2.4 Principality of FittR(XSp)

At the end of this section we put the preceding result into perspective by discussing
the exact conditions under which the ideal FittR(XSp ) is principal. Keep the setup of
preceding sections.

Lemma 2.13 Suppose that there is a place v∗ ∈ S′ such that Gv∗ ⊃ Gv for any v ∈ S′.
Then we have an isomorphism

Z0
S′ � Z0

v∗ ⊕
⊕

v∈S′,v 	=v∗
Zv.

Proof Put ZS′\{v∗} = ⊕
v∈S′,v 	=v∗ Zv . Consider the commutative diagram with exact

rows and columns

0 �� Z0
v∗ ��
� �

��

Zv∗ ��
� �

��

Zp �� 0

0 �� Z0
S′ ��

����

ZS′ ��

����

Zp �� 0

ZS′\{v∗} ZS′\{v∗}

We shall show that the left vertical sequence splits. Pick any v ∈ S′ with v 	= v∗. Then
since Gv∗ ⊃ Gv , we have a natural surjective homomorphism

πv : Zv = Zp[G/Gv] → Zp[G/Gv∗ ] = Zv∗ .

Using these homomorphisms, define a homomorphism s : ZS′\{v∗} → ZS′ as follows.
For x = (xv)v∈S′,v 	=v∗ ∈ ZS′\{v∗}, put s(x)v = xv if v 	= v∗ and put

s(x)v∗ = −
∑

v∈S,v 	=v∗
πv(xv).

Then define s(x) = (s(x)v)v∈S′ ∈ ZS′ . By construction, s is a section of the natural
projection ZS′ → ZS′\{v∗}, and moreover the image of s is contained in Z0

S′ . Therefore
s gives a splitting of the left vertical sequence, which completes the proof. ��
Proposition 2.14 Suppose K/k is a p-extension. Put S = Sp∪Sram(K/k) and suppose
that S′ = S \ Sp 	= ∅ (note that this implies K∞ 	= k∞). Then the following are
equivalent.

(i) FittR(XSp ) is a principal ideal.
(ii) pdR(XSp ) ≤ 1.
(iii) pdR(Z0

S′) ≤ 1.
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(iv) Z0
S′ = 0.

(v) S′ consists of only one place v∗, and this place satisfies Gv∗ = G. In other words,
v∗ must be totally inert in k∞/k and totally ramified in K∞/k∞.

Proof The equivalence (i)⇔ (ii) follows from the argument of [4, Proposition 4]. The
equivalence (ii) ⇔ (iii) follows from the short exact sequence (2.6) and the first line
of Corollary 2.12. The equivalence (iv) ⇔ (v) is clear, and the implication (iv) ⇒ (iii)
is trivial.

Now we show the implication (iii) ⇒ (iv). Put H = Gal(K∞/k∞), which is a
non-trivial p-group by assumption. We note that, for any R-module M which is free
of finite rank over Zp, we have pdR(M) ≤ 1 if and only if M is a freeZp[H ]-module.

First suppose that all quotientsG/Gv withv ∈ S′ are non-trivial. Then theZp-rankof
every Zv = Zp[G/Gv] is a p-power > 1, so that we have rankZp (Z

0
S′) ≡ −1(mod p).

Hence Z0
S′ cannot be free over Zp[H ].

Consequently, if pdR(Z0
S′) ≤ 1, then we have at least one v∗ ∈ S′ such that G/Gv∗

is trivial. Then by Lemma 2.13, we obtain

Z0
S′ �

⊕

v∈S′,v 	=v∗
Zv.

It is easy to check that, for each v ∈ S′ with v 	= v∗, we have Zv = Zp[G/Gv] is free
over Zp[H ] if and only if Gv ∩ H = 1. But Gv ∩ H is the decomposition group of (a
prime above) v in K∞/k∞, and by the assumption S′ = Sram(K/k) \ Sp, the prime v

must ramify in K∞/k∞. Hence we must have S′ = {v∗}. ��
For completeness, we note the following.

Lemma 2.15 Suppose that K/k is a p-extension and that Sram(K/k) ⊂ Sp. Then
FittR(XSp ) is a principal ideal if and only if K∞ = k∞.

Proof As already used in the proof of Proposition 2.14, the ideal FittR(XSp ) is
principal if and only if pdR(XSp ) ≤ 1. By Propositions 2.3 and 2.9, we see that
pdR(XSp ) ≤ 1 is equivalent to pdR(Zp) ≤ 1, which is true exactly when K∞ = k∞.

��

3 Proof of main result (II)

In this section, we complete the proof of Theorem 0.1 by determining the ideal
FittR(H1(CS)). This is in a certain way the arithmetic part of the proof. We need
a few preliminaries concerning determinants and Fitting ideals.

3.1 The determinant homomorphism

This subsection is devoted to the homological algebra related to the determinant func-
tor. Let I(R) be the commutative group of invertible fractional ideals ofR. We shall
introduce a group homomorphism, called the determinant,
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DetR : K0(D
perf
tor (R)) → I(R).

Here K0 denotes the Grothendieck group of a triangulated category. We refer to
Knudsen-Mumford [14] for more on the theory of determinants.

Let Chperf(R) be the abelian category of perfect complexes of R-modules. More
precisely, Chperf(R) consists of bounded complexes F of R-modules such that Fi

is finitely generated and projective for all i . Let Chperftor (R) be the subcategory of
complexes with torsion cohomology groups.

Definition 3.1 A graded invertibleR-module is a pair (L, α) where L is an invertible
R-module and α : Spec(R) → Z is a locally constant map. Two graded invertible
R-modules (L, α) and (L ′, α′) are said to be isomorphic if α = α′ and L and L ′ are
isomorphic as R-modules. For two graded invertible R-modules (L, α), (L ′, α′), we
define

(L, α) ⊗ (L ′, α′) = (L ⊗R L ′, α + α′).

Then (HomR(L,R),−α) is the inverse of (L, α).

Definition 3.2 For a finitely generated projectiveR-module F , let rank(F) denote the
(locally constant) rank of F , and define the determinant of F by

DetR(F) =
⎛

⎝
rank(F)∧

R
F, rank(F)

⎞

⎠ ,

which is a graded invertible R-module. Let Det−1
R (F) be the inverse of DetR(F). ��

Lemma 3.3 The following statements hold true.
(1) Let 0 → F ′ → F → F ′′ → 0 be an exact sequence of finitely gener-

ated projective R-modules. Then we have a canonical isomorphism DetR(F) �
DetR(F ′) ⊗ DetR(F ′′).

(2) Let F and F ′ be finitely generated projective R-modules. Then we have a
canonical isomorphism

DetR(F) ⊗ DetR(F ′) � DetR(F ′) ⊗ DetR(F),

which is locally given by

a1 ∧ · · · ∧ ar ⊗ b1 ∧ · · · ∧ br ′ �→ (−1)rr
′
b1 ∧ · · · ∧ br ′ ⊗ a1 ∧ · · · ∧ ar .

Here r and r ′ denote the local rank of F and F ′, respectively.

The appearance of the sign is the reason of introducing the information of the rank
in the definition of the determinant.
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Definition 3.4 For each complex F ∈ Chperf(R), we define its determinant by

DetR(F) =
⊗

i∈Z
Det(−1)i

R (Fi ).

Thanks to Lemma 3.3(2), this is independent from the ordering of Z. We denote by
Det−1

R (F) its inverse.

Lemma 3.5 The following hold true.
(1) Let 0 → F ′ → F → F ′′ → 0 be an exact sequence in Chperf(R). Then we

have a natural isomorphism DetR(F) � DetR(F ′) ⊗R DetR(F ′′).
(2) If F is acyclic, then we have a natural isomorphism DetR(F) � (R, 0).
(3) Every quasi-isomorphism F ′ → F induces an isomorphism DetR(F ′) �

DetR(F).

Proof (1) and (2) follow from Lemma 3.3(1).
(3) Consider the mapping cone F ′′ of F ′ → F . Then we have an exact sequence

0 → F → F ′′ → F ′[1] → 0. Since F ′′ is acyclic, (1) and (2) imply

DetR(F ′[1]) ⊗ DetR(F) � DetR(F ′′) � (R, 0).

Now the observation DetR(F ′[1]) � Det−1
R (F ′) completes the proof. ��

Definition 3.6 Suppose F ∈ Chperftor (R). Since Frac(R) ⊗R F is acyclic, Lemma
3.5(2) gives a natural isomorphismDetFrac(R)(Frac(R)⊗RF) � (Frac(R), 0). There-
fore, we have a natural map

DetR(F) ↪→ DetFrac(R)(Frac(R) ⊗R F) � Frac(R).

Here we disregard the degree since it is zero. From now on, we identify DetR(F)

with its image in Frac(R). This defines a mapping DetR from the set of isomorphism
classes of objects of Dperf

tor (R) to the set of fractional ideals of R.

Lemma 3.7 The map DetR that was just defined induces a group homomorphism
DetR : K0(D

perf
tor (R)) → I(R).

Proof This follows from Lemma 3.5 (1) and (3). ��
As a preparation for the main arguments, we now formulate two lemmas, relating

determinants to Fitting ideals.

Lemma 3.8 Let F ∈ Dperf
tor (R) be a complex and n be an integer. Suppose that we have

Hi (F) = 0 for any i 	= n and pdR(Hn(F)) ≤ 1. Let Q be the foll ring of quotients
ofR and let λ = λFQ be the canonical trivialization DetQ(FQ) → Q. Then we have

FittR(Hn(F)) = DetR(F)(−1)n−1

in I(R).
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Proof By translation, wemay andwill assume that n = 0. By using truncations, we see
that the complex F is quasi-isomorphic to the complex H0(F)[0]. Taking a projective
resolution of H0(F) of length 2, we can construct a perfect complex F ′ ∈ Chperftor (R)

which is quasi-isomorphic to F such that (F ′)i = 0 for i 	= −1, 0. We can assume
that both (F ′)−1 and (F ′)0 are freeR-modules of the same rank a.

We take bases e1, . . . , ea of (F ′)−1 and f1, . . . , fa of (F ′)0. Then we can identify
the homomorphism d : (F ′)−1 → (F ′)0 with a matrix A ∈ Ma(R), and we have
FittR(H0(R)) = (det(A)).

On the other hand, one may verify DetR(F ′)−1 = (det(A)). This is a standard fact,
but we give a sketch of the proof for completeness. Let f ∗

1 , . . . , f ∗
a be the dual basis

of f1, . . . , fa . Put Q = Frac(R) for notational simplicity. Then we have a natural
isomorphism

Det−1
Q (Q ⊗R F ′) =

a∧

Q
(Q ⊗R (F ′)−1) ⊗Q HomQ

⎛

⎝
a∧

Q
(Q ⊗R (F ′)0),Q

⎞

⎠

�
a∧

Q
(Q ⊗R (F ′)−1) ⊗Q

a∧

Q
HomQ((Q ⊗R (F ′)0),Q),

under which the trivialization Det−1
Q (Q ⊗R F ′) � Q is given by

(x1 ∧ · · · ∧ xa) ⊗ (ϕ1 ∧ · · · ∧ ϕa) �→ det(ϕi (d(x j )))i, j

for x1, . . . , xa ∈ Q ⊗R (F ′)−1 and ϕ1, . . . , ϕa ∈ HomQ((Q ⊗R (F ′)0),Q). Now

Det−1
R (F ′) �

a∧

R
(F ′)−1 ⊗R

a∧

R
HomR((F ′)0,R)

has (e1 ∧ · · · ∧ ea) ⊗ ( f ∗
1 ∧ · · · ∧ f ∗

a ) as a basis over R and it goes to

det(ϕi (d(x j )))i, j = det(A)

by the trivialization. This proves DetR(F ′)−1 = (det(A)). ��
Lemma 3.9 Let F ∈ Dperf

tor (R) be a complex and n be an integer. Suppose that we
have Hi (F) = 0 for i 	= n, n + 1 and Hi (F) does not contain any nonzero finite
submodule for i = n, n + 1. Then we have

FittR(Hn(F)∗) = DetR(F)(−1)n+1
FittR(Hn+1(F)),

where the superscript (−)∗ denotes the Iwasawa adjoint.

Proof By translation, we may assume that n = 0. By using truncations, we see that
the complex F is quasi-isomorphic to a complex F ′ such that (F ′)i = 0 for i 	= 0, 1.
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Moreover, the construction of the truncations allows us to assume (F ′)1 is a projective
R-module. Then we have an exact sequence

0 → H0(F) → (F ′)0 → (F ′)1 → H1(F) → 0.

We can construct a projective R-module F and a homomorphism F → (F ′)0 such
that the composition F → (F ′)0 → (F ′)1 is an injective homomorphism with torsion
cokernel. Then, by defining P1 and P2 as the cokernel of F → (F ′)0 and F → (F ′)1
respectively, we have an exact sequence

0 → H0(F) → P0 → P1 → H1(F) → 0.

By the assumption, none of thesemodules contain any nonzero finite submodule. Then
by the construction, we deduce that pdR(Pi ) ≤ 1 for i = 0, 1. By a purely algebraic
result (see [2, Lemma 5] or [13, Remark 4.8]), we have

FittR(H0(F)∗) = FittR(P0)FittR(P1)−1 FittR(H1(F)).

On the other hand, by construction, the complex F is quasi-isomorphic to the
complex [P0 → P1] located at degrees 0 and 1. Hence the distinguished triangle

P0[0] → [P0 → P1] → P1[−1] →

shows that

DetR(F) = DetR(P0[0])DetR(P1[−1]) = FittR(P0)−1 FittR(P1).

The final equation follows from Lemma 3.8. This completes the proof. ��

3.2 Description of CS by p-adic L-functions

Let us now go back to the arithmetic situation. Recall that it is our goal to determine
the Fitting ideal of H1(CS). We first express it as a combination of determinants of
one global and some local complexes.

Lemma 3.10 We have

FittR(H1(CS)) = DetR(R�(kS/k, T
∨(1))∨)

∏

v∈S′
DetR(R�(kv, T))−1.

Proof By Lemma 3.8, we have

FittR(H1(CS)) = DetR(CS).
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But the definition (2.5) of CS and Lemma 3.7 imply

DetR(CS) = DetR(R�(kS/k, T
∨(1))∨[−2])

∏

v∈S′
DetR(R�(kv, T))−1.

This completes the proof, since the shift by −2 does not change the determinant. ��
Now we deal with the global term in the preceding lemma. The following is a

formulation of an abelian equivariant main conjecture.

Theorem 3.11 We have

DetR(R�(kS/k, T
∨(1))∨) = (θS).

Proof This is now a theorem of Johnston and Nickel. They have proved this theorem
unconditionally in [12], using a recent celebrated theorem by Dasgupta and Kakde [5]
on the strongBrumer-Stark conjecture.More precisely, the equivariantmain conjecture
was known to be true under the assumption of μ = 0 by Ritter and Weiss [19], and
Johnston and Nickel have succeeded in removing this condition.

For context, let us also explain how the equality in Theorem 3.11 can be deduced
from the result of Ritter andWeiss in [19, §4] if one is willing to make the assumption
μ = 0. They constructed a certain exact sequence

0 → XS → Cok(�) → Cok(ψ) → Zp → 0

of finitely generated torsionR-modules with pdR(Cok(�)) ≤ 1, pdR(Cok(ψ)) ≤ 1
(we do not give the definitions of � and ψ here), and proved the equality

FittR(Cok(�))FittR(Cok(ψ))−1 = (θS),

assuming the vanishing of the μ-invariant. By Nickel [18, Theorem 2.4], the complex
R�(kS/k, T

∨(1))∨ is isomorphic in Dperf
tor (R) to the complex

[Cok(�) → Cok(ψ)]

located at degrees −1, 0. So similarly as in the final paragraph of the proof of Lemma
3.9, we have

DetR([Cok(�) → Cok(ψ)]) = FittR(Cok(�))FittR(Cok(ψ))−1.

Thus we get Theorem 3.11 under the assumption of μ = 0. ��
In preparation for the final part of the proof, we state another lemma, which by now

seems to be well known. Recall �K = Gal(K∞/K ) and put � = Zp[[�K ]], which is
a subring of R = Zp[[G]]. For a prime ideal q of �, let Rq be the localization of R
with respect to the multiplicative set � \ q.
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Lemma 3.12 Let f , g ∈ R be non-zero-divisors and I an ideal of R. Suppose that
IRp� = Rp�. If f I = gI holds, then fR = gR holds.

Now we compute the local contributions in Lemma 3.10.

Proposition 3.13 For every finite place v of k outside p, there exists a unique element
fv ∈ Frac(R)× satisfying the following.
(1)We have

DetR(R�(kv, T)) = ( fv).

(2) For any continuous character ψ : G → Qp
×
such that ψ |Gv

is non-trivial, we
have

ψ( fv) =
{

1−ψ(σv)N (v)−1

1−ψ(σv)
ifψ is unramified at v;

1 ifψ is ramified at v.

Proof Observe that property (2) ensures the uniqueness of fv .
LetRv = Zp[[Gv]] ⊂ R andTv = Zp(1)⊗Rv(χ

−1
Gv

), which is a local counterpart
of T. Then R�(kv, T) is induced by R�(kv, Tv), so

DetR(R�(kv, T)) = DetRv
(R�(kv, Tv))R.

This reduces the problem to a completely local statement. We will in fact find fv in
the ring Frac(Rv). Fix a place w of K∞ above v so that Gv = Gal(K∞,w/kv).

Put nv = ordp(N (v)− 1) ≥ 0, which is the maximal integer such that μpnv ⊂ k×
v .

Recall that Tv is the inertia subgroup of v in G. Since Tv is a quotient of O×
kv

by local

class field theory, the p-Sylow subgroup T (p)
v of Tv is a cyclic p-group of order at

most pnv . Fix a generator δv of T (p)
v .

We decomposeGv intoGv = G(p)
v ×G(p′)

v such thatG(p)
v is pro-p andG(p′)

v is of order
prime to p. Then as in Sect. 1.4 we have Rv = Zp[[Gv]] = ⊕

χ Oχ [[G(p)
v ]] where

χ runs over equivalence classes of p-adic characters of G(p′)
v . We also decompose

Tv = T (p)
v ×T (p′)

v whereT (p)
v is pro-p andT (p′)

v is of order prime to p. PutT ′
v = T (p′)

v

and R′
v = Zp[[Gv/T ′

v ]]. Then we decompose Rv = Zp[[Gv]] as

Rv = R′
v ×

∏

χ|T ′
v
	=1

Rχ
v , (3.1)

where χ runs over the equivalent classes of characters of G(p′)
v , which are non-trivial

on T ′
v . We define an element fv of Frac(Rv) such that

fv =
(

δv − 1 + NT (p)
v

(1 − σvN (v)−1)

δv − 1 + NT (p)
v

(1 − σv)
, (1)χ|T ′

v
	=1

)
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using the identification (3.1).
We shall show that this element satisfies the desired properties (1) and (2); let us

begin with the latter.
Property (2): Let ψ : Gv → Qp

×
be a non-trivial continuous character.

First suppose that ψ is unramified at v. Then ψ is trivial on T ′
v , ψ(δv) = 1, and

ψ(NT (p)
v

) = �T (p)
v . Hence

ψ( fv) = ψ

(
δv − 1 + NT (p)

v
(1 − σvN (v)−1)

δv − 1 + NT (p)
v

(1 − σv)

)
= 1 − ψ(σv)N (v)−1

1 − ψ(σv)
.

Now suppose that ψ is ramified at v. If ψ is non-trivial on T ′
v , then ψ( fv) = 1 by

the definition of fv . Otherwise,ψ is non-trivial on T (p)
v and hence we haveψ(δv) 	= 1

and ψ(NT (p)
v

) = 0. Therefore

ψ( fv) = ψ

(
δv − 1 + NT (p)

v
(1 − σvN (v)−1)

δv − 1 + NT (p)
v

(1 − σv)

)
= 1.

Property (1): By Proposition 2.9 and Remark 2.8, we can apply Lemma 3.9 to
obtain

FittRv
((Jw)∗) = DetRv

(R�(kv, Tv))FittRv
(Zp).

Note that we have (Jw)∗ � Jw by the simple description in Remark 2.8. By Lemma
3.12, this formula characterizes DetRv

(R�(kv, Tv)). Hence it is enough to show that

FittRv
(Jw) = fv FittRv

(Zp). (3.2)

Recall the identification (3.1). Since the actions of T ′
v on Zp and Jw are trivial, the

Eq. (3.2) for the χ -part with χ|T ′
v

	= 1 holds trivially. Thus we have only to worry
about the R′

v = Zp[[Gv/T ′
v ]]-component.

First we suppose μp 	⊂ k×
v , namely nv = 0. Since T (p)

v = 1, we have Tv = T ′
v

and R′
v = Zp[[Gv/Tv]], whose augmentation ideal is generated by 1 − σv . Then the

R′
v-component of the Eq. (3.2) says

1 − σvN (v)−1

1 − σv

(1 − σv) =
{

(1) (μp∞(K∞,w) = 0)

(1 − σvN (v)−1) (μp∞ ⊂ K×∞,w)

as ideals. Here we used Remark 2.8 and κv(σv) = N (v) in the latter case.
We shall show that σv − N (v) is a unit of R′

v when μp∞(K∞,w) = 0. To do
this, by Nakayama’s lemma, it is enough to show χ(σv) − N (v) ∈ O×

χ for every

character χ of G(p′)
v which is trivial on T ′

v . Put f = #(G(p′)
v /T ′

v ). Since χ(σv)
f = 1,

it suffices to show N (v) f 	≡ 1 (mod p). Let M be the maximum intermediate field
of K∞,w/kv such that M/kv is a finite unramified extension of degree prime to p, so
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Gal(M/kv) = G(p′)
v /T ′

v . Our assumption μp∞(K∞,w) = 0 implies μp 	⊂ M×. Since
the residue field of M is FN (v) f , it follows that N (v) f 	≡ 1 (mod p).

Next we suppose μp ⊂ k×
v . Take a lift σ̃v ∈ Gv of σv . Then we have

FittR′
v
(Zp) = (1 − σ̃v, δv − 1)

FittR′
v
(Jw) = (1 − σ̃vN (v)−1, δv − 1).

Hence the Eq. (3.2) on R′
v says

(δv − 1 + NT (p)
v

(1 − σv))(1 − σ̃vN (v)−1, δv − 1)

= (δv − 1 + NT (p)
v

(1 − σvN (v)−1))(1 − σ̃v, δv − 1).

By NT (p)
v

(δv − 1) = 0, the each side is generated by (δv − 1)2 and

(δv − 1 + NT (p)
v

(1 − σv))(1 − σ̃vN (v)−1),

(δv − 1 + NT (p)
v

(1 − σvN (v)−1))(1 − σ̃v),

respectively. Thus, it is enough to show that the difference of these elements,

σ̃v(1 − N (v)−1)(δv − 1),

is contained in the ideal (δv − 1)2. By δ
pnv

v = 1, we have

0 = ((δv − 1) + 1)p
nv − 1 ≡ pnv (δv − 1) mod (δv − 1)2.

Since N (v) − 1 is an element of pnvZp by the definition of nv , this implies (N (v) −
1)(δv − 1) ∈ (δv − 1)2. This completes the proof. ��

3.3 Proof of Theorem 0.1

By comparing the values given by the respective interpolation formulas, we have

θmod
S = θS

∏

v∈S′
f −1
v ,

where fv is introduced in Proposition 3.13. Therefore, Lemma 3.10, Theorem 3.11,
and Proposition 3.13 imply

FittR(H1(CS)) = (θmod
S ).

Then Theorem 0.1 follows immediately from Corollary 2.12.
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Remark 3.14 Let us give a direct argument showing that the right hand side of Theorem
0.1 is actually independent of the choice of S. Since this independence is a logical
consequence of our main result, this verification is not strictly necessary, but we think
that doing it anyway gives a nice consistence check for our result.

Let S1 ⊃ S be another finite set and put S′
1 = S1 \ Sp. By the exact sequence

0 → ZS′ → ZS′
1

→
⊕

v∈S1\S
Zv → 0,

we have an exact sequence

0 → Z0
S′ → Z0

S′
1

→
⊕

v∈S1\S
Zv → 0.

Note that all v ∈ S1 \ S are unramified in K∞. Since pdR(Zv) ≤ 1 for v ∈ S1 \ S, we
obtain

Fitt[1]R (Z0
S′
1
) = Fitt[1]R (Z0

S′)
∏

v∈S1\S
Fitt[1]R (Zv)

(recall that Fitt[1]R is again a Fitting invariant by [13, Theorem 2.6]). For v ∈ S1 \ S,
the description Zv = R/(1 − σv) shows

Fitt[1]R (Zv) = (1 − σv)
−1.

Hence, using Lemma 1.6(1), we obtain

Fitt[1]R (Z0
S′
1
)θmod

S1 = Fitt[1]R (Z0
S′)θmod

S .

This completes the proof of independence from the choice of S.

4 A strategy for computing Fitt[1]
R (Z0

S′)

In this section, we look at methods of computing Fitt[1]R (Z0
S′). Themotivation for this is

fairly obvious: without any concrete information on this Fitting ideal, our main result
would remain rather abstract and impractical. As one application among others, we
will reprove in Sect. 5 a previous result of the third author [15].

Throughout this section, we assume that K/k is a p-extension.

4.1 The algebraic problem

We propose an algebraic problem whose full understanding (if it can be achieved) will
help a lot in computing Fitt[1]R (Z0

S′).
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Let p be a prime number and G a finite abelian p-group. We denote the group
ring by R = Zp[G]. Take subgroups G1, . . . ,Gr of G with r ≥ 1. We consider the
R-module

Z =
r⊕

i=1

Zp[G/Gi ]

and the R-submodule Z0 of Z , defined by the exact sequence

0 → Z0 → Z → Zp → 0,

where the surjective map is the augmentation map. Now the algebraic problem is the
following.

Problem 4.1 How can we construct a free R-resolution of Z0?

In the subsequent sections, wewill try to solve this problem. Before that, we explain
how to utilize a solution of Problem 4.1 for a computation of Fitt[1]R (Z0

S′).
In the arithmetic situation as in Theorem 0.1, let Kn be the n-th layer of K∞/K .

Take n sufficiently large such that no places in S′ split in K∞/Kn . With this choice,
put G = Gal(Kn/k) and let Gv be the decomposition group of v in G. Then we can
identify

Zv = Zp[G/Gv] = Zp[G/Gv].

Let us moreover put R = Zp[G], and note that pdR(R) ≤ 1, since R = R/(γ
pn

K −
1)R with γK ∈ �K = Gal(K∞/K ) a topological generator.

For a matrix B over a commutative ring and a non-negative integer e, let Mine(B)

denote the ideal generated by the e-minors of B.

Proposition 4.2 In the above situation, let

Rt3 A→ Rt2 → Rt1 → Z0
S′ → 0

be an exact sequence over R. We identify A with a matrix and take a lift Ã of A over
R. Then we have

Fitt[1]R (Z0
S′) = (γ

pn

K − 1)t2−t1
t2∑

e=0

(γ
pn

K − 1)−e Mine( Ã).

Proof The short exact sequence

0 → Cok(A) → Rt1 → Z0
S′ → 0
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provides an equality

Fitt[1]R (Z0
S′) = (γ

pn

K − 1)−t1 FittR(Cok(A)).

Furthermore there is an exact sequence

Rt3 ⊕ Rt2
( Ã,γ

pn

K −1)→ Rt2 → Cok(A) → 0.

By the definition of Fitting ideals, we obtain

FittR(Cok(A)) =
t2∑

e=0

(γ
pn

K − 1)t2−e Mine( Ã).

��

4.2 How to attack Problem 4.1: an idea

We explain a very general idea which will be essential in the subsequent sections. We
shall construct a homological complex D of R-modules such that:

(a) the components of D are finitely generated free R-modules;
(b) D is located in degrees ≥ 0, that is, all components in degree ≤ −1 are zero

(remember that the numbering is homological, so the degrees increase when we
go to the left);

(c) D is exact except in degree 1, and

H1(D) � Z0.

We have to warn our readers right away that we have to write the degrees as super-
scripts, not as subscripts (which would be much more customary), in our homological
complexes.Wewill need the subscript position later, to distinguish different complexes
of similar type.

Such a complex D gives away to compute Fitt[1]R (Z0
S′) from a complex D as follows.

Proposition 4.3 Consider the arithmetic situation as in Proposition 4.2. Let

D = [· · · → D3 A→ D2 → D1 → D0 → 0]

be a complex over R satisfying the above conditions (a)(b)(c). Put tn = rankR(Dn)

for n ≥ 0. We regard A as a matrix over R by choosing bases of D3 and D2, and take
a lift Ã over R. Then we have

Fitt[1]R (Z0
S′) = (γ

pn

K − 1)t2−t1+t0
t2∑

e=0

(γ
pn

K − 1)−e Mine( Ã).
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Proof By the properties (b) and (c), we have exact sequences

0 → Ker(d1) → D1 d1→ D0 → 0

and

· · · → D3 A→ D2 → Ker(d1) → Z0 → 0.

By the first sequence, the module Ker(d1) is free of rank t1 − t0. Now Proposition 4.2
implies the assertion. ��

In order to construct such a complex D, we will first construct complexes C and
Ci (i = 1, . . . , r ) which have similar properties. More precisely, (a) and (b) will hold
without change; and (c) is modified to (c′): C and Ci are exact except in degree 0,
satisfying

H0(C) � Zp, and H0(Ci ) = Zp[G/Gi ] for i = 1, . . . , r .

Moreover, we will construct a morphism of complexes

f :
r⊕

i=1

Ci → C, (4.1)

which induces the augmentation homomorphism in degree 0 homology. Then, roughly
speaking, D can be constructed by either taking the mapping cone of f or the cokernel
of f ; the choice between these two options will depend on the precise setting.

4.3 Themost general situation

Let us describe a completely general method, even though its usefulness is limited
because it produces modules with far too large ranks. The main ingredient is the
standard resolution of finite groups, which we recall now.

Definition 4.4 Let G be a finite group. For each n ≥ 0, let Bn(G) be the free Zp[G]-
module on the set {(g1, . . . , gn) | g1, . . . , gn ∈ G}. For n ≥ 1, define a Zp[G]-
homomorphism Bn(G) → Bn−1(G) by

dn((g1, . . . , gn)) = g1(g2, . . . , gn) +
n−1∑

j=1

(−1) j (g1, . . . , g j g j+1, . . . , gn)

+(−1)n(g1, . . . , gn−1).

Moreover, define ε : B0(G) → Zp by sending the empty tuple (which is by definition
the only basis element of B0(G)) to 1.

The following is well known.



Fitting ideals of p-ramified Iwasawa modules over totally… Page 33 of 48 14

Proposition 4.5 The sequence

· · · → B2(G)
d2→ B1(G)

d1→ B0(G)
ε→ Zp → 0

is exact.

Therefore, the complex

C = [· · · → B2(G)
d2→ B1(G)

d1→ B0(G) → 0]

satisfies the conditions described above. Similarly, for each 1 ≤ i ≤ r , the complex

Ci = [· · · → B2(Gi )
d2→ B1(Gi )

d1→ B0(Gi ) → 0] ⊗Zp[Gi ] Zp[G]

satisfies the required conditions, because then H0(Ci ) = Zp ⊗Zp[Gi ] Zp[G] =
Zp[G/Gi ].

For every i ∈ {1, . . . , r} there is a natural morphism Ci → C induced by

· · · �� B2(Gi )
d2 ��

��

B1(Gi )
d1 ��

��

B0(Gi )

��

�� 0

· · · �� B2(G)
d2

�� B1(G)
d1

�� B0(G) �� 0

where the vertical arrow in degree n sends the basis element (g1, . . . , gn) ∈ Bn(Gi )

to the “same” basis element (g1, . . . , gn) ∈ Bn(G). Thus we have a morphism f as
claimed in (4.1).

Let D = Cone( f ) be the mapping cone of f , so we have an exact sequence

0 → C → D →
r⊕

i=1

Ci [−1] → 0.

Then the conditions (a)(b)(c) for D hold by construction.

4.4 A first special setting

As we said above, the above construction tends to lead to a free resolution of Z0 with
extremely unwieldy terms.Motivated by this, we consider in this subsection the (fairly
rare) case where

G = G1 × · · · × Gr

and moreover Gi is cyclic for each i . In this case, we shall obtain an alternative
construction of C,Ci , and D involving much smaller modules.
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4.4.1 Definition of C

The construction of C will closely follow the approach of the first and the third author
in [8]. For all i , we choose a generator σi of Gi , and we denote by NGi the norm
element of Zp[Gi ]. Define a complex Ei by

Ei = [. . . σi−1→ Zp[Gi ]
NGi→ Zp[Gi ] σi−1→ Zp[Gi ] → 0]. (4.2)

Then Ei is exact except for degree 0, and H0(Ei ) = Zp. We define

C = E1 ⊗Zp · · · ⊗Zp Er ,

which satisfies the conditions (a)(b)(c), since H0(C) = Zp ⊗Zp · · · ⊗Zp Zp = Zp.
The structure of C is fully described in [8]. In particular, for each n ≥ 0, the n-th

component of C is the free R-module on the set of monomials

{xl1 . . . xln | 1 ≤ l1 ≤ · · · ≤ ln ≤ r}.

4.4.2 Definition of Ci

For each 1 ≤ j ≤ r , define

E ′
j = Zp[G j ][0] = [· · · → 0 → 0 → Zp[G j ] → 0].

Thus, Zp[G j ] is placed in degree zero. Define Ci by

Ci = E ′
1 ⊗Zp · · · ⊗Zp Ei ⊗Zp · · · ⊗Zp E ′

r .

(Here, only the i-th component is Ei , and all other components are E ′
j .) Then the

conditions (a)(b)(c) hold because

H0(Ci ) = Zp[G1] ⊗Zp · · · ⊗Zp Zp ⊗Zp · · · ⊗Zp Zp[Gr ] = Zp[G/Gi ].

Note that the structure of Ci is quite easy to understand. In a way, Ci arises from
Ei via base change from the smaller group ring Zp[Gi ] to the big group ring Zp[G].
For each n ≥ 0, the n-th component of Ci is a free R-module of rank one, and the
differentials are “the same” as in the complex Ei . The definition of the complexes Ci

is arranged in this particular way in order to make it possible to construct a map f of
complexes below.

4.4.3 Definition of f

For each j 	= i , we have a unique morphism E ′
j → E j which is identity in degree 0.

Together with the identity morphism Ei → Ei , we get a morphism Ci → C . Thus
we obtain a morphism f as claimed in (4.1).
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It is not hard to see that in degree n, the morphism f sends the canonical basis
element of Ci to the basis element xni of Cn . This is a very special basis element,
labeled by a power of one single variable xi ; recall that the general basis element of
Cn is labeled by a general monomial of degree n in x1, . . . , xr .

4.4.4 Definition of D

We can take the mapping cone of f to construct D as in Sect. 4.3. However, in our
special case, it is much more efficient to consider the “cokernel” of f . The quotation
marks are supposed to draw attention to the minor problem that f is not injective in
degree 0. In fact, in degree 0, the morphism f looks like

� :
r⊕

i=1

Zp[G] → Zp[G].

On the other hand, in all strictly positive degrees, the morphism f : ⊕r
i=1 Ci → C

is fortunately injective and the cokernel is free over R = Zp[G]. These facts can be
read off from the description of f just given, in terms of the bases.

To avoid the minor problem in degree 0, we modify C to

C ′ = C ⊕ Y ,

where the acyclic complex Y = [· · · → 0 →⊕r
i=1 Zp[G] id→⊕r

i=1 Zp[G] → 0] is
concentrated in degrees 1 and 0. Then we can extend f to an injective morphism f ′ :⊕r

i=1 Ci → C ′ such that the cokernel D = Cok( f ′ : ⊕r
i=1 Ci → C ′) satisfies the

conditions (a)(b)(c). More precisely, we stipulate that in degree 0, the new component
of f ′, that is, the additional morphism of complexes

⊕r
i=1 Ci → Y , is simply the

identity morphism on
⊕r

i=1 Zp[G].
This completes the construction of D. Moreover the construction gives us a nice

description of D at no expense at all. Indeed, the component Dn of D in any degree
n ≥ 2 is the free R-module on the set

{xl1 . . . xln | 1 ≤ l1 ≤ · · · ≤ ln ≤ r} \ {xn1 , . . . , xnr }.

(Here is a catch phrase describing this set: Take all monomials of degree n and throw
out the pure powers.) The structure morphisms of D are canonically induced by those
of C .

4.4.5 Arithmetic situation

Let us get back to the arithmetic situation.
We assume K ∩ k∞ = k and also that every v ∈ S′ is inert in K∞/K . By this

assumption, we can put G = Gal(K/k) (see the text before Proposition 4.2). We label
S′ = {v1, . . . , vr }, put the decomposition groups Gi = Gvi for i = 1, . . . , r , and
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we suppose that G = G1 × · · · × Gr and each Gi is cyclic. Then, using the above
information, it is possible to obtain much more precise information on FittR(Z0

S′).

Example 4.6 Here is a modest numerical example. We take p = 3, k = Q and K the
compositum of the cubic extensions of Q with conductor 7 and 223 respectively. The
primes 7 and 223 stay inert in k∞ because they are congruent to 1 modulo 3 but not
modulo 9. We take S′ = {7, 223}. The group G = Gal(K/Q) is the product of the two
decomposition groups at 7 and 223, since these two primes are cubic residues modulo
each other. This shows that we are indeed in the setting considered in this subsection
with r = 2. We have not made any effort to determine the modified Stickelberger
element (even approximately), but this should be possible, in principle, by going over
to the minus side and using classical cyclotomic Stickelberger elements.

Returning to the general case, we construct the complex D as above. Then the
ranks tn = rankR(Dn) satisfy t0 = 1, t1 = r , t2 = r(r − 1)/2. Let A be the matrix
that describes the differential d3 : D3 → D2 in the complex D constructed above,
in the canonical bases. Then the rows (columns) of A are indexed by the monomials
in x1, . . . , xr of degree 3 (degree 2 respectively), with the extra restriction that the
pure powers x3i (x2i resp.) are omitted. In [8] and [10], the differential C3 → C2 was
studied. It was described by a matrix M̃r , whose rows and columns were indexed in
exactly the same fashion, with the only difference that the pure cubes and squares
were still present as labels. Since D is obtained as a homomorphic image of C as
discussed above, it is very simple to describe the newmatrix A. It is obtained from M̃r

in [8,10] by eliminating all rows with labels x3i and all columns with labels x2j (with
1 ≤ i, j ≤ r ).

The entries of A are all of the form νi or τi (neglecting signs), where we put
νi = NGi , the norm element, and τi = σi − 1 for compatibility with [8]. Note that
τiνi = 0. Since we are assuming K ∩k∞ = k, the natural map H = Gal(K∞/k∞) →
G = Gal(K/k) is an isomorphism, so thematrix A can be lifted to amatrix Ã uniquely
as a matrix over Zp[H ]. We denote this matrix Ã simply by A. Similarly by abuse of
notation, we use the same symbols σi , νi , τi in H , which are the canonical lifts from
G. Then the entries of the lifted matrix A = Ã have the same description in terms of
νi and τi . Now by Proposition 4.3, we have

Fitt[1]R (Z0
S′) = T t2−r+1

t2∑

e=0

T−e Mine(A), (4.3)

where we put T = γK − 1.
Let us first give examples where r = 2 or r = 3. When we write presentation

matrices in this section, we use the row vector convention.

Example 4.7 Suppose that r = 2. Then we have

A =
(

ν1
ν2

)
,
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which shows that

Fitt[1]R (Z0) = (1, ν1/T , ν2/T ).

Example 4.8 Suppose r = 3. We then get:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν1
ν2

ν1
ν3

ν2
ν3

τ3 −τ2 τ1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let us compute the 3-minors of A. To begin with, we easily see that neither ν21τ2 nor
ν21τ3 appears as a minor. But ν1ν2τ3 does appear. By a not overly tedious complete
verification, one obtains the following result. Let

J = (ν1, ν2, ν3, τ1, τ2, τ3)

be the ideal ofR generated by the given list of elements. Then we find that

Min3(A) = (ν1ν2, ν2ν3, ν3ν1)J ;
Min2(A) = (ν1, ν2, ν3)J ;
Min1(A) = J ;
Min0(A) = (1).

Thus we obtain in the case r = 3:

Fitt[1]R (Z0) = T−2(ν1ν2, ν2ν3, ν3ν1)J + T−1(ν1, ν2, ν3)J + J + (T ).

Let us now go back to general r . In the situation of the paper [10], which deals
with the somewhat larger matrix M̃r instead of A, the minors of M̃r are completely
determined for general r . Since A is a submatrix of M̃r , this certainly gives an upper
bound for Fitt[1]R (Z0), which is already something to start with.Wewill be a little more
ambitious and state a conjectural equality in a moment.

Our conjectural decription involves the notion of “admissible” ν-monomials, which
was already crucial in [10]. We quickly review the definition here and refer to that
paper ([10, Section 1.2]) for more information.

A ν-monomial is, by definition, any expression ν
f1
1 . . . ν

fr
r with exponents

f1, . . . , fr ≥ 0. Similarly, one defines τ -monomials. A (τ, ν)-monomial is, by defi-
nition, a product z = xy with x a τ -monomial and y a ν-monomial. We also demand
that the events τi appears in x , and νi appears in y do not happen simultaneously for
any i (because if that happens, we get z = 0). The ν-part of such a (τ, ν)-monomial
z is simply y; we write ν(z) = y.
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Definition 4.9 We say that a ν-monomial y = ν
f1
1 . . . ν

fr
r is admissible if there is a

permutation σ of {1, 2, . . . , r} satisfying

fσ(1) ≥ fσ(2) ≥ · · · ≥ fσ(r)

and

i∑

j=1

fσ( j) ≤
i∑

j=1

(r − j)

for any 1 ≤ i ≤ r .

Putting it very roughly: to be an admissible monomial, the exponents must not be
distributed too unevenly.

Example 4.10 For r = 3, a ν-monomial of degree 3 is admissible if and only if it is
not the cube of one νi .

Suppose r = 4 and let us look at ν-monomials of degree 6. Then for instance no
exponent in an admissible monomial can exceed 3; but this does not suffice, since for
example ν31ν

3
2 is not admissible either. On the other hand, ν31ν

2
2ν3 is admissible, and

many other ν-monomials as well.

The following is proved in [10].

Theorem 4.11 [10] For all e ≥ 0, the eth minor ideal Mind(M̃r ) is generated by all
(τ, ν)-monomials of degree e whose ν-part is admissible.

To state our conjecture, a little extra notation will be useful. For any ν-monomial
y, let n(y) denote the number of indices i such that νi occurs in y. Define M(d, �)

to be the set of (τ, ν)-monomials z of degree d such that ν(z) is admissible and
n(ν(z)) ≥ � (more simply put: which contain at least � different νi ). Finally, recall
that t2 = r(r − 1)/2.

Conjecture 4.12 For all e ≥ 0, the e-th minor idealMine(A) is generated by M(e, r−
1 − t2 + e).

Note that for all e ≥ t2 − r − 1, the second argument of M(e,−) occurring here is
non-positive, so the restricting condition concerning the number of νi that must show
up in the monomials is vacuously satisfied.

By the Eq. (4.3), this conjecture implies the following statement. We could call it
the weak form of the above conjecture (which then would be called the strong form):

Conjecture 4.13 We keep the same notation and assumptions. Then the union of the
following sets generates the ideal Fitt[1]R (Z0

S′):

T 1−r M(t2, r − 1), T 2−r M(t2 − 1, r − 2), T 3−r M(t2 − 2, r − 3), . . . ,

T t2+1−r M(0, r − 1 − t2).

Here the last exponent t2 + 1 − r can be rewritten (r − 1)(r − 2)/2, and the last set
M(0, r − 1 − t2) only consists of the trivial monomial 1.
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It is not difficult to see that these conjectures agreewith the result of our calculations
in the cases r = 2 (Example 4.7) or r = 3 (Example 4.8).We think thatwehave verified
it completely for r = 4 as well. However, a general proof for all r would probably
require to revisit most of the technical arguments in [10], and we haven’t tried to do
this.

We point out that while the latter conjecture seems logically weaker than the former,
it is hard to image a proof (even partial) of the weaker conjecture which does not pass
through a proof of the strong one.

4.5 Another special setting

In this subsection, apart from the setting in Sect. 4.4, we suppose that r = 1, so we
are given only one subgroup G1 ⊂ G. In this case, we can decompose G as an abelian
group into

G = G(1) × · · · × G(s)

where all factors G( j) are non-trivial cyclic. Hence s is the p-rank of G. Moreover,
we can arrange the decomposition so that

G1 = G(1)
1 × · · · × G(s)

1

with subgroupsG( j)
1 ⊂ G( j). Note that this is where we use r = 1; in the general case,

we cannot expect a decomposition of G into cyclic factors that is compatible with all
subgroups Gi .

Remark 4.14 An important remark is in order. In our arithmetical setting for abelian
p-extension K/k, G1 is always the decomposition group Gv of a tamely ramified
prime v in some abelian extension Kn/k with group G. Since the ramification group
of such a prime is always cyclic, Gv is always generated by at most two elements
as an abelian p-group. Thus in the last formula we can arrange things so as to have
G1 = G(1)

1 × G(2)
1 . But in practice, this reduction is possibly not too helpful, see a

further comment below, where we do some calculations for the case s = 2.

4.5.1 Definition of C, C1, f ,D

Exactly as in Sect. 4.4.1, we fix a generator σ ( j) of G( j), for 1 ≤ j ≤ s. We define
a complex E ( j) for every j by (4.2), with Gi replaced by G( j), and a complex C =
E (1) ⊗ · · · ⊗ E (s). Moreover, we may define E ( j)

1 exactly as E ( j), just replacing

G( j) by G( j)
1 and taking (σ ( j))m j as the chosen generator of G( j)

1 , where we put

m j = (G( j) : G( j)
1 ). Then we may put C1 = (E (1)

1 ⊗ · · · ⊗ E (s)
1 ) ⊗Zp[G1] Zp[G]. It

can be checked that C and C1 again satisfy the conditions (a)(b)(c). (Note that there
is only one value of the index i now; i = 1.)

Wecandefine amorphism f : E ( j)
1 → E ( j) explicitly.We stipulate that f is identity

in every even degree, and f is multiplication by μ( j) = 1 + σ ( j) + · · · + (σ ( j))m j−1
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in every odd degree. We omit some easy verifications that certain squares commute,
making f into a morphism of complexes.

Hence we obtain a morphism f : C1 → C . By taking the mapping cone of f , it is
again possible to construct a complex D satisfying the conditions (a)(b)(c). However,
the matrices representing the maps Cn

1 → Cn in each degree n will contain entries
involving factors μ( j). Since these elements are in general neither zero nor units in
R, it cannot be expected (and indeed does not happen in general) that the degree-wise
cokernels of f are again free over R. So it does not seem possible to replace the cone
of f by the cokernel, and this makes the calculations more difficult.

4.5.2 Arithmetic situation

As in Sect. 4.4.5, we assume K ∩ k∞ = k and that every v ∈ S′ is inert in K∞/K . Put
G = Gal(K/k), which admits an isomorphism from H = Gal(K∞/k∞). Suppose
that S′ consists of a single place v1 and put G1 = Gv1 . Let s be the p-rank of G.

Example 4.15 First suppose s = 1; we omit all super- and subscripts j , since j = 1
is the only value. For example, σ is a generator of G, τ = σ − 1, and m = (G : G1).
Let ν̃ be the norm element of G1.

One can check that the ranks tn of Dn are given by tn = 2 for n ≥ 1 and t0 = 1.

The differential from D3 to D2 is given by the square matrix

(
ν̃ 1
0 τ

)
. Let T = γK − 1

be defined as in Sect. 4.4.5. By Proposition 4.3 again, we obtain:

Fitt[1]R (Z0
S′) = (1, T−1ν̃τ ).

For this case it is quite possible (and actually quicker) to calculate the left hand side
directly, by finding a simple resolution of Z0 by hand; we did it, and the results agree.

Example 4.16 Next suppose s = 2. This case should be prototypical in a certain way,
since (as pointed out in Remark 4.14) we can always assume that G1 has only two
cyclic summands G(1)

1 and G(2)
1 ; of course s can be larger than 2. Even letting s = 2,

we found the calculation rather cumbersome. Again, we need to take the cone, not the
cokernel.

The R-ranks tn of Dn are given by tn = 2n + 1 for n ≥ 0. We determined the
matrix A of the differential D3 → D2. To write it down we have to review notation:
For j = 1, 2, σ ( j) is a generator of G( j) and m j = (G( j) : G( j)

1 ); we put

τ ( j) = σ ( j) − 1, τ̃ ( j) = (σ ( j))m j − 1,

ν( j) = 1 + σ ( j) + · · · + (σ ( j))n j−1, ν̃( j) = 1 + (σ ( j))m j + · · · + (σ ( j))n j−m j ,

μ( j) = 1 + σ ( j) + · · · + (σ ( j))m j−1,
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where n j = ord(σ ( j)) = �G( j). The outcome is the following 7 times 5 matrix:

A =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

ν̃(1) 1
τ̃ (2) ν̃(1) μ(1)μ(2)

ν̃(2) 1
τ (1)

τ (2) ν(2)

ν(2) τ (1)

τ (2)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

up to sign. Using ideals generated by the minors of this matrix A, it is again possible
to write down an expression that gives Fitt[1]R (Z0). But we have strong doubts whether
such an expression would be very enlightening. All 5-minors are 0 (unless wemade an
error), but theminors of degree 4 and less seem to be so numerous and hard-to-describe
that it is not really helpful to write them all down; in fact we gave up somewhere along
the way.

5 Description of the Fitting ideal in the case that Gal(K/k) is cyclic

In this section,we concentrate on cyclic p-extensions K/k andwedescribe FittR(XSp )

more explicitly from Theorem 0.1. We deduce two results from Theorem 0.1 (see
Theorems 5.1 and 5.4). Both are a generalization of the main result of the third author
in [15] where the case [K : k] = p was studied. We keep the notations of Theorem
0.1. We assume throughout K ∩ k∞ = k.

For each finite place v of k outside p, as in Sect. 1.4, νv:Frac(Zp[[G/Tv]]) →
Frac(Zp[[G]]) is the map induced by the multiplication by NTv

= ∑
σ∈Tv

σ . Recall
that σv ∈ G/Tv is the Frobenius automorphism (Definition 1.1).

Put �k = Gal(k∞/k) and H = Gal(K∞/k∞). Then NH =∑h∈H h also induces a
map Frac(Zp[[�k]]) → Frac(Zp[[G]]), which we denote by νH . Choose a topological
generator γ of �k .

Theorem 5.1 Suppose that K/k is a cyclic p-extension and K ∩ k∞ = k. Assume that
we have a place v∗ ∈ S′ such that v∗ is totally ramified in K/k and that Gv∗ ⊃ Gv

holds for all v ∈ S′. Then we have

FittR(XSp ) =
(
1, νH

γ − 1

σv∗ − 1

) ∏

v∈S′,v 	=v∗

(
1, νv

1

σv − 1

)
θmod
S .

Note that, since v∗ is totally ramified in K/k, we have νH = νv∗ .

Before we prove this theorem, let us deduce a corollary which is exactly Theorem
0.1 (1) in [15].

In general, for the cyclotomic Zp-extension k∞/k, let kn denote its n-th layer. For
each finite place v of k outside p, let nv be the non-negative integer such that the
decomposition field of v in k∞/k is knv . This use of nv cancels an earlier meaning of
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nv in the proof of Proposition 3.13. Note that, if v is totally ramified in K∞/k∞, then
σv is an element of �k = Gal(k∞/k) which generates the same subgroup as γ pnv .

Corollary 5.2 [15, Theorem 0.1(1)] Suppose that K/k is a cyclic extension of degree p
and that K ∩ k∞ = k. Take S = Sp ∪ Sram(K/k) and suppose that S′ = S \ Sp 	= ∅.1
Then we have

FittR(XSp ) =
∑

v′∈S′

⎛

⎝
(
1, νH

γ − 1

σv′ − 1

) ∏

v∈S′,v 	=v′

(
1, νH

1

σv − 1

)⎞

⎠ · θmod
S .

Proof In this situation, any v ∈ S′ is totally ramified in K/k since its degree is p.
Therefore, we have νv = νH . Moreover, if we take v∗ ∈ S′ such that nv∗ is the
minimum of the nv , v ∈ S′, then v∗ satisfies the condition in Theorem 5.1. Then it is
not hard to see that

∑

v′∈S′

⎛

⎝
(
1, νH

γ − 1

σv′ − 1

) ∏

v∈S′,v 	=v′

(
1, νH

1

σv − 1

)⎞

⎠

=
(
1, νH

γ − 1

σv∗ − 1

) ∏

v∈S′,v 	=v∗

(
1, νH

1

σv − 1

)
.

Thus Theorem 5.1 implies the corollary. ��

Remark 5.3 The equivalence of Theorem 5.2 and [15, Theorem 0.1] can be seen in the
following way. First, the statement of [15] concerns (Aω

K (μp∞ ))
∨, which is connected

to XSp via theKummer duality aswe recalled in the Introduction. Second, themodified
Stickelberger element ϑK (μp∞ ) is defined in [15, (2.3.4)], using a modifying factor ξ .

This factor ξ corresponds to our modifying factor
∏

v∈S′ f −1
v . Finally we remark that

we removed the assumption μ = 0 in [15], using Johnston and Nickel [12].

Proof of Theorem 5.1 By Theorem 0.1, it is enough to show

Fitt[1]R (Z0
S′) =

(
1, νH

γ − 1

σv∗ − 1

) ∏

v∈S′,v 	=v∗

(
1, νv

1

σv − 1

)
.

By Lemma 2.13, we have

Fitt[1]R (Z0
S′) = Fitt[1]R (Z0

v∗)
∏

v∈S′,v 	=v∗
Fitt[1]R (Zv)

1 While in Theorem 0.1 we may assume S′ 	= ∅ by simply adding an arbitrary non-p-adic finite place, in
Theorem 5.2 we have to take S′ = Sram(K/k) \ Sp , so the condition S′ 	= ∅ is a non-trivial restriction.
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since shifted Fitting ideals are multiplicative on direct sums. The second term in the
right hand side is computed in Proposition 1.8. For the first term, it is enough to show

Fitt[1]R (Zp[Gal(kn/k)]0) =
(
1, νH

γ − 1

γ pn − 1

)

for any non-negative integer n.
In the rest of this calculation we will neglect some signs; this will play no role in the

calculation of Fitting ideals via minors of certain matrices, and it spares us the effort of
being precise about the signs of morphisms in the tensor product of complexes. These
sign questions are certainly important in many settings, but for us they are inessential
and would mess up some arguments.

We apply the arguments of Sects. 4.4 and 4.5 to

G = Gal(Kn/k) = Gal(Kn/kn) × Gal(Kn/K ).

Take a generator δ of H = Gal(K∞/k∞), which is identified with Gal(Kn/kn) ⊂ G.
Let γK ∈ Gal(K∞/K ) be the lift of γ ∈ �k . As in Sect. 4.4, define complexes

C1 = [. . . δ−1→ Zp[G] NH→ Zp[G] δ−1→ Zp[G] → 0]

and

C = [. . . d3→ Zp[G]3 d2→ Zp[G]2 d1→ Zp[G] → 0],

where

d1 =
(

γK − 1
δ − 1

)
,

d2 =
⎛

⎝
Nn 0

δ − 1 −(γK − 1)
0 NH

⎞

⎠ ,

d3 =

⎛

⎜⎜⎝

γK − 1 0 0
δ − 1 −Nn 0
0 NH γK − 1
0 0 δ − 1

⎞

⎟⎟⎠

with Nn = 1 + γK + γ 2
K + . . . γ

pn−1
K We have a natural injective homomorphism

C1 → C whose cokernel D looks like

· · · → Zp[G]3 d ′
3→ Zp[G]2 d ′

2→ Zp[G] → 0 → 0,
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where d ′
2, d

′
3, . . . are obtained by removing both the final row and the final column of

d2, d3, . . . . From this complex D, we obtain an exact sequence

R3 ⊕ R2 (d̃ ′
3,γ

pn

K −1)→ R2 → Zp[G] → Zp[Gal(kn/k)]0 → 0,

where d̃ ′
3 is any lift of d ′

3. Explicitly we can write down

(d̃ ′
3, γ

pn

K − 1) =

⎛

⎜⎜⎜⎜⎝

γK − 1 0
δ − 1 −Nn

0 NH

γ
pn

K − 1 0

0 γ
pn

K − 1

⎞

⎟⎟⎟⎟⎠

and it is easy to see that the ideal generated by its 2 × 2 minors is

(γ
pn

K − 1, NH (γK − 1)).

Hence

Fitt[1]R (Zp[Gal(kn/k)]0)=(γ
pn

K − 1)−1(γ
pn

K − 1, NH (γK − 1))=
(
1, νH

γ − 1

γ pn − 1

)
.

This completes the proof. ��
Finally there is another variant, where there is no privileged place v∗ and still

the degree of the cyclic p-extension K/k can be arbitrary. The proof again uses the
techniques of Sect. 4; but this time the reduction lemma 2.13 cannot be used. So one
has to work with the full direct sum of “local” complexes Ci , not just one of them, and
thismakes it inevitable toworkwith the cone, not the cokernel, of themap

⊕
i Ci → C

of complexes. This makes the proof more complicated, but it will be given in very
explicit terms.

Theorem 5.4 Suppose that K/k is a cyclic p-extension with K ∩ k∞ = k as before,
and let δ denote a generator of H = Gal(K∞/k∞). Assume that the inertial degrees
of all v ∈ S′ in K/k are all 1 (that is, there is only ramification and splitting). Then
Fitt[1]R (XSp ) is generated by the following list of quantities:

(γ − 1, δ − 1)
∏

v∈S′

νv

σv − 1
· θmod

S

and

∏

v∈J

νv

σv − 1
· θmod

S ,
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where J runs through all proper subsets of S′. The quantity corresponding to J = ∅
is to be understood as 1.

Proof We use the lift γK ∈ �K of γ ∈ � to define T = γK − 1 ∈ R. We number
S′ = {v1, ..., vr } and put Gi = Gvi , Ti = Tvi , and νi = νvi = νTi for simplicity. By
the assumption that the inertial degree of vi in K/k is one, the decomposition field
of vi in K∞/k is an intermediate field of the cyclotomic Zp-extension (K∞)Ti /KTi .
Hence there is a unique lift σ̃i ∈ �K of σi = σvi ∈ G/Ti . Put δi = δ[H :Ti ], which is a
generator of Ti . Then Gv is generated by δi and σ̃i .

We have two exact sequences involving Zp and ZS′ = ⊕r
i=1 Zp[G/Gi ], aligning

in a commutative ladder as follows:

· · · (δi−1)i ��⊕r
i=1

R
(σ̃i−1)

(νi )i ��

nat

��

⊕r
i=1

R
(σ̃i−1)

(δi−1)i ��

∑
i μi

��

⊕r
i=1

R
(σ̃i−1)

��

nat

��

ZS′ ��

nat

��

0

· · ·
δ−1

�� R/(T )
νH

�� R/(T )
δ−1

�� R/(T ) �� Zp �� 0

.

The second and the fourth vertical arrows from the right are the canonical maps, whose
existence follow from the fact that T divides σ̃i − 1. (This would not have worked
without assuming that vi has no inertia in K/k.) The third vertical arrow from the right
on the i-th component comes from multiplication by μi = 1 + δ + · · · + δ[H :Ti ]−1.

By the cone construction, we obtain a complex D of the form

r⊕

i=1

R
(σ̃i − 1)

⊕ R
(T )

d3→
r⊕

i=1

R
(σ̃i − 1)

⊕ R
(T )

d2→
r⊕

i=1

R
(σ̃i − 1)

⊕ R
(T )

d1→ R
(T )

→ 0,

where the termR/(T ) is located at degree 0. Here,

d1(x1, ..., xr , y) = (x1modT , ..., xr mod T , (δ − 1)y),

d2(x1, ..., xr , y) = (−(δ1 − 1)x1, ...,−(δr − 1)xr ,
r∑

i=1

μi xi mod T + νH y),

d3(x1, ..., xr , y) = (−ν1x1, ...,−νr xr ,
r∑

i=1

xi mod T + (δ − 1)y).

Recall that the degree n component of D is denoted by Dn . By a property of the cone,
the complex D is exact except in degree 1, and H1(D) � Z0

S′ . Then as in the proof of
Proposition 4.3, we have short exact sequences

0 → Ker(d1) → D1 → D0 → 0

and

0 → Cok(d3) → Ker(d1) → Z0
S′ → 0.
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Since we have pdR(Dn) ≤ 1 for any degree n, the first exact sequence implies
pdR(Ker(d1)) ≤ 1 and

FittR(Ker(d1)) = FittR(D1)FittR(D0)−1 =
r∏

i=1

(σ̃i − 1).

Then the second exact sequence implies

Fitt[1]R (Z0
S′) = FittR(Ker(d1))

−1 FittR(Cok(d3))

=
(

r∏

i=1

(σ̃i − 1)−1

)
FittR(Cok(d3)). (5.1)

By thedescriptionofd3 above,we easily see that themoduleCok(d3)has apresentation
as anR-module

B =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−ν1 1
−ν2 1

. . .
...

−νr 1
δ − 1

σ̃1 − 1
σ̃2 − 1

. . .

σ̃r − 1
T

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(all blank entries being zero). To obtain FittR(Cok(d3)), we have to compute the max-
imal minors of B. As a consequence, we shall show that FittR(Cok(d3)) is generated
by the following elements:

T
r∏

i=1

νi , (δ − 1)
r∏

i=1

νi ,
∏

i∈J

νi
∏

i /∈J

(σ̃i − 1) (5.2)

where J runs through all proper subsets of {1, 2, . . . , r}.
Let V run through all subsets of {1, 2, . . . , 2r + 2} of cardinality r + 1, and let

dV be the determinant of the submatrix of B picking up the v-th rows for v ∈ V (we
ignore the sign throughout). For each 1 ≤ i ≤ r , the i-th column in B is zero except
for the i-th and (r + 1 + i)-th rows. Hence dV 	= 0 only if, for each 1 ≤ i ≤ r , we
have either i ∈ V or r + 1 + i ∈ V . We divide the argument into two cases.

Case 1. There is (a unique) 1 ≤ l ≤ r such that both l ∈ V and r + 1+ l ∈ V hold.
In this case, putting J = (V ∩ {1, 2, . . . , r}) \ {l}, we can see that

dV = ±
∏

i∈J

νi
∏

i /∈J

(σ̃i − 1),
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where i /∈ J means i runs through {1, 2, . . . , r} \ J . In this way, we obtain the third
family of elements in (5.2).

Case 2. For each 1 ≤ i ≤ r , exactly one of i ∈ V or r + 1 + i ∈ V holds. Put
J = {1, 2, . . . , r} ∩ V . Then exactly one of r + 1 ∈ V or 2r + 2 ∈ V holds, and
accordingly we obtain4

dV = ±(δ − 1)
∏

i∈J

νi
∏

i /∈J

(σ̃i − 1), dV = ±T
∏

i∈J

νi
∏

i /∈J

(σ̃i − 1).

These elements are in the ideal generated by (5.2). Moreover, if we choose V to be
{1, 2, . . . , r , r +1} and {1, 2, . . . , r , 2r +2} respectively, we can produce the first two
elements in (5.2) among the dV .

We obtain Theorem 5.4 from (5.1), (5.2), and Theorem 0.1. ��
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