Skip to main content
Log in

Embedding dimension phenomena in intersection complete codes

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

Two tantalizing invariants of a combinatorial code \({\mathcal {C}}\subseteq 2^{[n]}\) are \({{\,\mathrm{cdim}\,}}({\mathcal {C}})\) and \({{\,\mathrm{odim}\,}}({\mathcal {C}})\), the smallest dimension in which \({\mathcal {C}}\) can be realized by convex closed or open sets, respectively. Cruz, Giusti, Itskov, and Kronholm showed that for intersection complete codes \({\mathcal {C}}\) with \(m+1\) maximal codewords, \({{\,\mathrm{odim}\,}}({\mathcal {C}})\) and \({{\,\mathrm{cdim}\,}}({\mathcal {C}})\) are both bounded above by \(\max \{2,m\}\). Results of Lienkaemper, Shiu, and Woodstock imply that \({{\,\mathrm{odim}\,}}\) and \({{\,\mathrm{cdim}\,}}\) may differ, even for intersection complete codes. We add to the literature on open and closed embedding dimensions of intersection complete codes with the following results:

  • If \({\mathcal {C}}\) is a simplicial complex, then \({{\,\mathrm{cdim}\,}}({\mathcal {C}}) = {{\,\mathrm{odim}\,}}({\mathcal {C}})\),

  • If \({\mathcal {C}}\) is intersection complete, then \({{\,\mathrm{cdim}\,}}({\mathcal {C}})\le {{\,\mathrm{odim}\,}}({\mathcal {C}})\),

  • If \({\mathcal {C}}\subseteq 2^{[n]}\) is intersection complete with \(n\ge 2\), then \({{\,\mathrm{cdim}\,}}({\mathcal {C}}) \le \min \{2d+1, n-1\}\), where d is the dimension of the simplicial complex of \({\mathcal {C}}\), and

  • For each simplicial complex \(\Delta \subseteq 2^{[n]}\) with \(m\ge 2\) facets, the code \({\mathcal {S}}_\Delta \) \(:=(\Delta *(n+1)) \cup \{[n]\}\) \(\subseteq 2^{[n+1]}\) is intersection complete, has \(m+1\) maximal codewords, and satisfies \({{\,\mathrm{odim}\,}}({\mathcal {S}}_\Delta )=m\). In particular, for each \(n\ge 3\) there exists an intersection complete code \({\mathcal {C}}\subseteq 2^{[n]}\) with \({{\,\mathrm{odim}\,}}({\mathcal {C}}) = \left( {\begin{array}{c}n-1\\ \lfloor (n-1)/2\rfloor \end{array}}\right) \).

A key tool in our work is the study of sunflowers: arrangements of convex open sets in which the sets simultaneously meet in a central region, and nowhere else. We use Tverberg’s theorem to study the structure of “k-flexible" sunflowers, and consequently obtain new lower bounds on \({{\,\mathrm{odim}\,}}({\mathcal {C}})\) for intersection complete codes \({\mathcal {C}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amenta, N., De Loera, J.A., Soberón, P.: Helly’s theorem: new variations and applications. In: Algebraic and Geometric Methods in Discrete Mathematics, volume 685 of Contemp. Math., pp. 55–95. American Mathematical Society, Providence, RI (2017)

  2. Chen, A., Frick, F., Shiu, A.: Neural codes, decidability, and a new local obstruction to convexity. SIAM J. Appl. Algebra Geom. 3(1), 44–66 (2019)

    Article  MathSciNet  Google Scholar 

  3. Cruz, J., Giusti, C., Itskov, V., Kronholm, B.: On open and closed convex codes. Discrete Comput. Geom. 61, 247–270 (2016)

    Article  MathSciNet  Google Scholar 

  4. Curto, C., Gross, E., Jeffries, J., Morrison, K., Omar, M., Rosen, Z., Shiu, A., Youngs, N.: What makes a neural code convex? SIAM J. Appl. Algebra Geom. 1(1), 222–238 (2017)

    Article  MathSciNet  Google Scholar 

  5. Curto, C., Gross, E., Jeffries, J., Morrison, K., Rosen, Z., Shiu, A., Youngs, N.: Algebraic signatures of convex and non-convex codes. J. Pure Appl. Algebra 223(9), 3919–3940 (2019)

    Article  MathSciNet  Google Scholar 

  6. Curto, C., Itskov, V., Veliz-Cuba, A., Youngs, N.: The neural ring: an algebraic tool for analyzing the intrinsic structure of neural codes. Bull. Math. Biol. 75(9), 1571–1611 (2013)

    Article  MathSciNet  Google Scholar 

  7. Curto, C., Vera, R.: The Leray dimension of a convex code. arXiv e-prints: arXiv:1612.07797 (2016)

  8. de Perez, A.R., Matusevich, L.F., Shiu, A.: Neural codes and the factor complex. Adv. Appl. Math 114, 101977 (2020)

    Article  MathSciNet  Google Scholar 

  9. Franke, M.K., Muthiah, S.: Every binary code can be realized by convex sets. Adv. Appl. Math. 99, 83–93 (2017)

    Article  MathSciNet  Google Scholar 

  10. Garcia, R., Garcia-Puente, L., Kruse, R., Liu, J., Miyata, D., Petersen, E., Phillipson, K., Shiu, A.: Gröbner bases of neural ideals. Int. J. Algebra Comput. 28(4), 553–571 (2018)

    Article  Google Scholar 

  11. Goldrup, S.A., Phillipson, K.: Classification of open and closed convex codes on five neurons. Adv. Appl. Math. 112, 101948 (2020)

  12. Gunturkun, S., Jeffries, J., Sun, J.: Polarization of neural rings. J. Algebra Appl. 19(8) (2019)

  13. Itskov, V., Kunin, A., Rosen, Z.: Hyperplane neural codes and the polar complex. In: Nils, A., Baas, G.,Quick, Markus, S., Marius, T., Gunnar, E.C (eds.), Topological Data Analysis—The Abel Symposium, 2018, Abel Symposia, pp. 343–369. Springer (2020)

  14. Jeffs, R.A.: Sunflowers of convex open sets. Adv. Appl. Math., 111, 101935 (2019)

  15. Jeffs, R.A.: Morphisms of neural codes. SIAM J. Appl. Algebra Geom. 4, 99–122 (2020)

    Article  MathSciNet  Google Scholar 

  16. Jeffs, R.A.: Morphisms, Minors, and Minimal Obstructions to Convexity of Neural Codes. Ph.D. thesis, University of Washington, Seattle (2021). Available online at http://hdl.handle.net/1773/48062

  17. Jeffs, R.A., Novik, I.: Convex union representability and convex codes. Int. Math. Res. Notices (2019)

  18. Jeffs, R.A., Omar, M., Suaysom, N., Wachtel, A., Youngs, N.: Sparse neural codes and convexity. Involve J. Math. 12(5), 737–754 (2015)

    Article  MathSciNet  Google Scholar 

  19. Kunin, A., Lienkaemper, C., Rosen, Z.: Oriented matroids and combinatorial neural codes. arXiv e-prints: 2002.03542, arXiv:2002.03542 (2020)

  20. Lienkaemper, C., Shiu, A., Woodstock, Z.: Obstructions to convexity in neural codes. Adv. Appl. Math. 85, 31–59 (2017)

    Article  MathSciNet  Google Scholar 

  21. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer-Verlag, New York (2002)

  22. Mulas, R., Tran, N.M.: Minimal embedding dimensions of connected neural codes. Algebraic Stat. 11(1), 99–106 (2020)

    Article  MathSciNet  Google Scholar 

  23. Schrijver, A.: Theory of integer and linear programming. Discrete Mathematics and Optimization, Wiley Interscience (1986)

  24. Tancer, M.: d-representability of simplicial complexes of fixed dimension. J. Comput. Geom. 2(1), 183–188 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Tancer, M.: Intersection patterns of convex sets via simplicial complexes: a survey. In: Thirty essays on geometric graph theory, pp. 521–540. Springer, New York (2013)

  26. Ziegler, G.M.: Lectures on polytopes. Graduate Texts in Mathematics, vol. 152. Springer-Verlag, New York (1995)

Download references

Acknowledgements

We would like to thank Florian Frick for raising the question of whether there exist open convex codes \({\mathcal {C}}\subseteq 2^{[n]}\) with \({{\,\mathrm{odim}\,}}({\mathcal {C}}) > n-1\), and for interesting discussions on this question. Isabella Novik provided detailed feedback on initial drafts of this paper, as well as helpful discussions on its mathematical content. Anne Shiu also provided thorough feedback on an initial draft of the paper. Finally, we would like to thank the anonymous referees for their comments, which greatly improved the presentation of our results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Amzi Jeffs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Jeffs’ research is supported by a graduate fellowship from NSF Grant DGE-1761124.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeffs, R.A. Embedding dimension phenomena in intersection complete codes. Sel. Math. New Ser. 28, 18 (2022). https://doi.org/10.1007/s00029-021-00742-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00742-2

Mathematics Subject Classification

Navigation