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Exponentiated power Maxwell distribution with
guantile regression and applications

Francisco A. Segovia', Yolanda M. Gémez? and Diego 1. Gallardo®

Abstract

In this paper we introduce an extension of the power Maxwell distribution. We also dis-
cuss a reparametrized version of this model applied to quantile regression. Some prop-
erties of the model and estimation based on the maximum likelihood estimation method
are studied. We also present a simulation study to assess the performance of estima-
tors in such finite samples, and two applications to real data sets to illustrate the model.

MSC: 62E10, 62J02.

Keywords: Maxwell distribution, exponentiated distributions, maximum likelihood, quantile regres-
sion.

1. Introduction

Lehmann (1953) and Durrans (1992) introduced a family of distributions named expo-
nentiated distributions. Their cumulative distribution function (CDF) is defined as

Or(w;y) =F(w)", weR,y>0 (1)

where F(w) is the CDF for a certain random variable. It follows directly that the proba-
bility density function (PDF) is

@r(w;y) = Yf(W)F(w)"", )

where f(w) is the PDF related to F(w). Durrans (1992) considered this methodology
by using the normal distribution, i.e., F = ® and f = ¢, the normal CDF and PDF of
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the standard normal distribution, respectively. This model was also discussed in more
detail in Gupta and Gupta (2007), Pewsey, Gomez and Bolfarine (2012) and Régo, Cin-
tra and Cordeiro (2012). Gupta and Kundu (1999) used this methodology to introduce
the generalized exponential distribution, setting F(w) as the CDF of the exponential
model. Gémez and Bolfarine (2015) consider the case where F(w) is the CDF of a
half-normal distribution, resulting in a distribution which belongs to the family of beta
generalized half-normal distributions. Other extensions using this methodology include
the exponentiated Weibull (Mudholkar and Srivastava, 1993; Mudholkar, Srivastava and
Freimer, 1995), the exponentiated Pareto (Gupta, Gupta and Gupta, 1998), exponenti-
ated Gumbel (Nadarajah, 2005), exponentiated log-normal (Kakde and Shirle, 2006),
exponentiated gamma (Nadarajah and Gupta, 2007) and power piecewise exponential
(G6émez, Gallardo and Arnold, 2017). The Maxwell (M) distribution was proposed by
Maxwell (1860) in order to model velocities among gas molecules. Maxwell’s research
was generalized by Boltzmann (1871a,c,b), to develop the distribution of energies among
molecules. This distribution has diverse applications in the areas of physics, chem-
istry, and physical chemistry, (see Dunbar (1982)). Singh et al. (2018) introduced the
power Maxwell (PM) distribution, based on taking the power of a random variable that
has Maxwell distribution. Segovia et al. (2020) introduced the slashed power Maxwell
(SPM) distribution and use it for outlier data modelling. However they do not use those
extensions of the PM distribution considering a regression structure. We consider the
specific parametrization considered in Huang and Chen (2015), where the CDF and PDF
of the variable are given by

w2B 3
FW(W;W7ﬁ):G 27'([/275 9 WEO (3)
4B _ 1
fW(W;W,ﬁ):WWﬂs ICXP{—WWM},

respectively, where y, 8 > 0, and G(+,a) denotes the CDF for the gamma distribution
with shape and scale parameters equal to a and 1, respectively. On the other hand,
Galarza et al. (2017) used the skewed distributions family (SKD) in order to intro-
duce quantile regression, where one parameter represents the quantile of the distribution.
Gomez et al. (2019) introduced the Gamma-sinh Cauchy (GSC) distribution aiming at
applying the model to quantile regression. The resulting model can be either unimodal
or bimodal depending on the combinations of two parameters, where one of them is fixed
and depends on the modelled quantile. Gallardo et al. (2020a) introduced a novel para-
metric quantile regression model for asymmetric response variables, where the response
variable follows a power skew-normal distribution. Gallardo, Gémez-Déniz and Gémez
(2020b) presented a discrete distribution by discretizing a generalized half-normal distri-
bution, which can be reparametrized for use in a regression model based on the median.
Sanchez et al. (2020) use a model based on the Birnbaum-Saunders distribution in order
to perform quantile regression.
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The aim of this paper is to introduce an extension of the PM distribution using the
methodology presented in equation (1), aiming to perform quantile regression. The re-
sulting PDF can be either strictly increasing or unimodal. The manuscript is organized
as follows. In Section 2 we introduce the exponentiated power Maxwell (EPM) distri-
bution, and we propose the reparametrized EPM (REPM) distribution with some prop-
erties such as its CDF, hazard function (HF) and moments. In Section 3, we discuss
the inference for the REPM regression model based on the maximum likelihood (ML)
estimation. In Section 4 we present a simulation study in finite samples, focusing our
attention on parameter recovery. In Section 5 we present two applications to real data,
fitting the REPM distribution to two real data sets. Finally, in Section 6 we present the
main conclusions of the work.

2. Exponentiated power Maxwell distribution

Following the methodology related to equation (1), we introduce the following extension
of the PM model.

Definition 1. A random variable W follows an exponentiated power Maxwell distribu-
tion with scale parameter W and shape parameters 3 and ¥y, if its CDF, PDF and HF are

given, respectively, by:

w2B 3 4
Fy(wyw,B,y) = |G w22/ w>0 “4)
w28 3)]Y‘lﬁw26—l wh 3
fY(W’lI/7ﬁ7’Y) - ’}/|:G<2II/2,2 WZ 4 21’/275 ) W>07
28 r-1 28
o d)] pwrio(23)
hw(wiw,B,Y) = 4 V-2 w0

o{i-fole )

where y,,v > 0 and g(-,a) is the PDF related to G(-,a).

In Figure 1, we illustrate the PDF, CDF, and HF of the REPM distribution. It is
interesting to point out that the HF can be strictly increasing, strictly decreasing, or
have a bathtub shape. The equation for finding the mode is immediately obtained from
calculating the first derivative of the density. However, we consider a parametrization
for this model based on (u,f3,y), where u = l//%. We denote this as REPM(u, 3,7).
The main object of this parametrization will be justified later.
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Figure 1. Plots of the PDF (a), CDF (b) and HF (c) for different combinations of parameters of
the REPM(y, B, ) distribution.

Proposition 1. If W ~ REPM(u, B,7), the rth non-central moment of W can be calcu-

lated as
1
1
E(W") :/0 —zﬁrw’*muzﬁ(l —u)'du
" ey 3)
8 2ub’ 2

forr > 1, where w = [2u*P G~ (u,3/2)]"/®P), G~V is the inverse function of G(-,a).

Proof. By using the definition of expectation and making the substitution u = G

w2 3
——, — |, the result is immediate H.
2p?’2
The gamma distribution is very useful to express both the CDF and the PDF of the
REPM distribution. However, usual quantities of interest such as he mean and mode of
the model do not have closed form. Therefore, in order to perform regression analy-
sis in the model, other alternatives should be studied, as we illustrate in the following

proposition.

Proposition 2. [fW ~ REPM(u,B,7), then 100 x p-th, the p-th quantile 0 < p < 1, is

given by
3 1/28
Pp= [wzﬁG“ (p”y, 2)] : )

Proof. 1t is immediate using the definition of quantile H.
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Corollary 1. From proposition 2, it follows directly that the median of the REPM distri-

bution is
3 1/28
Me(w) = [2u2ﬁG—1(0.51/7, 2)] .

Table 1 shows the mean, variance, median and mode for different values of u, B and
7. Note that the mean, variance and median increase as Y increases; all four quantities in-
crease as U increases. It is also interesting to point out that the variance grows extremely
as f3 decreases (8 < 1). On the other hand

Table 1. Mean, variance, median and mode for the REPM model with different combination of
parameters.

(u,B,7) Mean Variance Median Mode

1.403 1.386 1.365 0.347
1.738 1.732 1.724 0.254
1.912 1.904 1.891 0.207
2.024 2.015 1.997 0.179

1.3,1.5,0.5
1.3,1.5,1.0
1.3,1.5,1.5
1.3,1.5,2.0

( )
( )
( )
( )
(2.3,0.5,1.5) 8566  7.230  4.545  34.909
(2.3,1.0,1.5) 4.189  4.078  3.848  2.154
(2.3,1.5,1.5) 3382 3369 3346 0.648
(2.3,2.0,1.5) 3.055  3.063  3.081  0.305
( )
( )
( )
( )

0.882 0.879 0.872 0.044
1.471 1.465 1.455 0.122
1.912 1.904 1.891 0.207
2.353 2.344 2.328 0.313

0.6,1.5,1.5
1.0,1.5,1.5
1.3,1.5,1.5
1.6,1.5,1.5

13
Fw(ﬂ,ﬂ»ﬁ,?’):{G<272>} :Cya (6)

with C =G (1/2,3/2) =2®(1) —2¢(1) — 1 ~ 0.199. In equation (6), we note that the
CDF evaluated in u depends only on the value of y. As C? is a strictly decreasing
function for y and 0 < C < 1, the equation Fyy (u;i,B,y) = p, (for 0 < p < 1) has a

unique solution for Y. Specifically,

log(p)
log(C)’

Fy(u;p,By)=pey=
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For a fixed p, if we set y=y(p) =log(p)/log(C) as fixed, then i represents directly
the pth quantile of the distribution. Table 2 shows some values for y(p) with different
values for p. Henceforth, we will use the notation REPM(u, 3, 7) to refer to this alterna-

tive parametrization. This is a very useful result, because in practice many characteris-

Table 2. Value of Y(p) for some values of p.

p 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

v(p) 1425 0996 0.745 0.567 0429 0316 0.221 0.138 0.065

tics inherent to each observation are available. For this reason, we introduce a regression
framework for applying the model to any quantile of the distribution. This also allows
a more detailed relation among the covariates and the response variable than is possible
using the regression in a single measure such as mean or median. To be more specific,
for a non-homogeneous population, we consider that w;(p), the p-th quantile of the re-
sponse variable, are independent and are such that w;(p) ~ REPM(u;(p),B(p),y(p)),
i =1,...,n, where the quantile of such variable is related to a set of covariates, say
X; = (X1, ...,%;p), through the logarithmic link as

logpi(p) =xit(p), i=1,...,n, (7)

where T(p) = (t0(p),...,Tp(p))" are the regression coefficients. These can be inter-
preted as follows: exp(7y(p)) represents the value of the p-th quantile of the response
variable when all covariates are fixed at 0; and exp(7;(p)), j = 1,..., p, represents the
percentage increment (or decrement) in the p-th quantile for the response variable when
the j-th covariate is increased by one unit and the rest of the covariates are fixed.

To avoid overloading the notation, hereinafter we use simply p;, 8 and y instead of
wi(p),B(p),y(p) to specify the parameters, but understanding that in a regression model
context, we are interested in modelling the p-th quantile.

3. Inference

In this section, we discuss the ML estimation for the REPM regression model under
a classical approach. Let W;(p) ~ REPM(u;, B,7) independent variables, where the
ith observation is related to a set of covariates x; as in equation (7) and v = y(p) =
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log(p)/log(C) is fixed. The log-likelihood function for 8 = (7', B,7)" is

Wzﬁ

£(0) =nlog(y) +(y—1) Zn‘,log<G(2H"2B, ;>>+nlog(ﬁ) —Zilog(uiﬁ) +
i=1 i i=1

2B
1—*(3/2) B n B n N L n <Wl>

®

+(2B - 1)ilog(wz-)—nlog<
i=1

The ML estimators can be obtained by maximizing equation (8), using numeri-
cal procedures such as the Newton-Raphson algorithm. As an alternative, we use the
optim routine in the R software (R Core Team, 2021) for the L-BFGS—B method,
which is a limited memory modification for the traditional Broyden-Fletcher-Goldfarb-
Shanno algorithm (BFGS), a constrained Quasi-Newton type algorithm which avoids
the computation of the hessian matrix for the objective function and its respective in-
verse. The asymptotic variance of the ML estimators (say 6) can be estimated as fol-
lows \Er(\e) = diag( —1(5)*1), where 1(5) is observed Fisher information evaluated in

~

0, that is

19210
2006 le=b
Details about the components of this matrix can be found in appendix A. The asymp-
totic distribution of 8 is \/ﬁ(a -0) NN(O,I(a)*l),as n— oo,
In order to perform a residual analysis, we can use the quantile residuals (see Dunn
and Smith (1996)) defined as

ri=® '[Fy(wi 0)], i=12..n,

where Fy (wi; 5) is the CDF of the REPM model evaluated in the ML estimate of 0.
As the ML estimator is a consistent estimator (when n — +o0), and if the model is
appropriate for the data, 7y, ry, ..., r, should be a random sample from the standard normal
distribution. Also note that the independent observation assumption implies that the
quantile residuals are also independent. The normality assumption can be tested, for
instance, by a normality test such as the Kolmogorov-Smirnov (KS) (see Kolmogorov
(1993) and Smirnov (1939)), Shapiro-Wilks (SW) (see Shapiro and Wilks (1965)) and
Anderson-Darling (AD) (see Anderson and Darling (1952)) tests.
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4. Simulation study

In this section, we present a simulation study in order to assess the performance of the
ML estimators for the REPM regression model. We considered one covariate, i.e., [l; =
To+ T1xi, Y(p) as fixed, and the covariates xi,...,x, were simulated from the standard
uniform distribution. We considered six vectors for (3, 7o, 71): (2, 2, 0.5), (2, 2, 1.5), (2,
0.5, 2), (2, 1.5, 2), (0.5, 2, 2), (1.5, 2, 2); three values for the sample size: 50, 100 and
200; and two values for the modelled quantile: 0.50 and 0.75, totalling 36 combinations
of parameters, sample size and quantile. Each scenario was replicated 1,000 times. To
simulate values from the REPM model, we can use the following algorithm based on the

inverse transform method:

* Generate U; ~U(0,1), i=1,2,...,n.

3 1/28
* Compute W; = [Z,uzﬁGl(Uil/y, 2)] .

For each sample, we compute the ML estimates and the estimated standard errors based
on the estimated hessian matrix. Table 3 summarizes the results, considering the mean of
the ML estimations, their standard errors (SE), the 95% coverage probability (CP) based
on the asymptotic normality for the ML estimators and the estimated root mean squared
error (RMSE). Note that as the sample size increases, the mean of the ML estimators is
closer to the true value of the parameters, while the RMSE decreases, suggesting than
the estimators are consistent for the REPM model even in a finite sample size. Results
also suggest that the CP terms converge to the nominal values with which they were
built, suggesting that the asymptotic normality of the estimators is also reasonable in
finite samples for the REPM model.

5. Application

In this section we illustrate our proposal with two real data sets, comparing it with other
proposals in the literature. In the first application we fit the REPM model without co-
variates. We compare the results with the M, PM and gamma (G) distributions. In the
second application we fit our proposal considering covariates, comparing results with the
GSC, skewed Laplace (SKL) and skewed Student-t (SKT) models. Codes in R software
(R Core Team, 2021) are avaliable as supplementary material.
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5.1. Reinfection time data

In certain populations the occurrence of sexually transmitted diseases blue is a major
problem. Even those that are not lethal represent a threat that must be taken into ac-
count. Specifically, gonorrhea and chlamydia are a focus of investigation because they
are often asymptomatic in females. As a result they are often left untreated, which can
lead to complications such as sterility. The following data set corresponds to the time to
reinfection of 887 individuals by either gonorrhea or chlamydia, where the subject had
already been infected with one of these diseases previously (see Klein and Moeschberger
(2003)). This data set can be found in the std data included in the KMSurv R package
(Klein, Moeschberger and Yan, 2012).

Table 4. Descriptive analysis for the reinfection time data.

mean s.d. median interquartile range min. max. skewness kurtosis
369.5 370.1 247.0 501.0 1.0 1529.0 1.2 3.5

Table 4 shows a descriptive analysis for this data set. Note that 50% of the individuals
were reinfected within the first 8 months. The times also present a positive skewness and
a kurtosis slightly greater than normal distribution. Figure 5 shows the ML estimates
for the parameters of the M, PM, G and REPM distributions. For each model we also
present the AIC criteria, which suggest that the REPM model gives a better fit than the
rest of the models. Figure 2 depicts the histogram with the estimated PDF and comparing
the empirical CDF with the estimated CDF for the models discussed, showing that the
REPM model presents a better fit for this data. Finally, Figure 3 shows the quantile-
quantile (QQ) plots for the REPM, PM and G distributions. Note that the QQ plots
suggest that, of the three models tested, the REPM is the most appropriate for this data

set.

5.2. Clotting data

This data set presents measurements of the clotting time of blood (t ime, in seconds) for
normal plasma diluted to nine different percentage concentrations with prothrombin-free
plasma (1conc, in logarithm scale) for 18 patients. It must also be considered that the
clotting time was induced by two lots of thromboplastin (1ot 2, categorized as 0 and 1).
The data (see MLGdata R package) are available in McCullagh and Nelder (1989) (p.
302) (see R code below).
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clotting<-data.frame (time=c (118, 58, 42, 35, 27, 25, 21, 19,
18, 69, 35, 26, 21, 18, 16, 13, 12, 12),

lconc=c(1.609, 2.303, 2.708, 2.996, 3.401, 3.689, 4.094,
4.382, 4.605, 1.609, 2.303, 2.708, 2.996, 3.401, 3.689,
4.094, 4.382, 4.605),

lot=factor (c(rep(0, 9), rep(l, 9))))

Table 5. Maximum likelihood estimates for the data with it’s respective standard deviation in

parenthesis for the infection time data

density
0.0010

Parameter M PM G REPM
a < 0.001(0.028) 0.038 (0.004)  0.796 (0.027) —
B — 0.321 (0.009) 0.002(< 0.001)  1.079 (0.158)
u — — — 578.576(0.150)
Y — — — 0.177(0.195)
log-likelihood —7593.0 —6053.0 —6033.8 —6013.3
AIC 15188.0 12109.9 12071.6 12032.7
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Figure 2. Histogram and empirical plot for the reinfection time data.

We aim to model the clotting t ime for the i-th individual using 1conc, 1ot2 and

the interaction between those covariates. We considered time(p) ~REPM(u;, B,7),

where Y= y(p) = log(p)/log(C) is fixed and

W= wi(p)=exp(t+11lconc;+mlot2;+3lconc; X lot2;), i=1,...18,
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Figure 3. O-Q plot for the REPM, PM and G models for the reinfection time data.

Table 6 presents a descriptive analysis for the global time, time for lot =0
(timeg), time for lot =1 (time;) and 1conc for the clotting data set. We can ver-
ify that the global t ime has a significant standard deviation and is positively skewed,
with a considerable kurtosis coefficient. Moreover, Figure 4 shows the plots for t ime

versus 1conc separated by lot.

Table 6. Descriptive analysis for the clotting data.

variable mean s.d. median interquartile range ~ min. max. skewness  kurtosis
global time 32500 26.440 23.000 17.000 12.000 118.000 2.127 7.185

timeg 40.333  31.851 27.000 21.000 18.000 118.000 1.805 5.078

timeg 24.667 18.248  18.000 13.000 12.000  69.000 1.780 5.012

Table 7 shows the AIC values and p-values obtained in the K-S test for the quan-
tile residuals, for the SKL, SKT, GSC and REPM quantile regression models different
quantile values. Note that the AIC for the REPM is the lowest value of all the models
(except for p = 0.1); the K-S test does not reject the null hypothesis that quantile resid-
uals for this model are a random sample from the standard normal distribution (except
for p = 0.9) with any significance level, suggesting that the model is appropriate for all
the modelled quantiles (except for p = 0.90).

Figure 5 shows the ML estimator for the regression coefficients with their their re-
spective asymptotic 95% confidence intervals. Note that 1conc and lot2 are signif-
icant in explaining all the quantiles modelled. Figure 6 shows the profile density for
the p-th quantile of time for p = 0.5 and p = 0.75. Note how the distribution of the
time according to our model seems to differ from the other distributions, showing a

better representation of the population. Regarding the interpretation of the coefficients,
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Figure 4. Plot for clotting data.

for example, we can conclude that
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e For p = 0.5 (the median case) we obtain exp (7]) = 0.528. This means that for a

fixed type of thromboplastin, the median of the clotting t ime decreases by 47.2%

for each unit increase in the 1nonc.

¢ For p = 0.5 (the median case) exp (7>) = 0.490. This implies that for a fixed

1nonc, the median of the clotting t ime decreases by 51.0% when the type of

thromboplastin is changed from 1ot2 =1to lot2 =0.

Table 7. AIC and p-values for the K-S test of SKT, SKL, GSC, and REPM model for the clotting

data.
AIC K-S

p SKT SKL GSC REPM | SKT SKL GSC REPM
0.10 121.130 127916 110.820 111.367 | 0.003 0.003 0.186 0.431
0.25 125.554 132958 118.335 109.253 | 0.004  0.001 0.119 0.428
0.50 133.049 143.110 129.903 111.556 | 0.002 < 0.001 0.250 0.247
0.75 151.402 155.568 144.733 113.330 | 0.092 0.500 0.018 0.190
0.90 149.034 150.596 167.269 130.857 | 0.125 0.200 <0.001 < 0.001
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Figure 5. ML estimation of the regression coefficientes (with their respectively asymptotic 95%
confidence interval), for the different values of the p-th quantile for the clotting data

6. Conclusions

Exponentiated distributions have been used to extend a variety of well-known distribu-
tion models, resulting in flexible distributions that can be applied in a greater diversity of
scenarios. This paper proposes the REPM distribution as an alternative model by which
to introduce covariates, obtaining interpretations related to the quantile of the distribu-
tion. Nowadays there is a reasonable set of classic distributions with positive support,
such as the exponential, gamma, Weibull, log-normal (LN), etc. So the question nat-
urally arises “Why consider the REPM model instead of the common distribution that
works well?”. While it is true that models like LN and G have proved to be flexible
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Figure 6. Distribution for 0.5 (a) and 0.75 (b) quantiles of time considering 1conc and 1ot2
equal to 2.3 and 0, respectively. Curves in solid, dashed, dotted and dot-dash line represent
the density functions estimated by the REPM, GSC, SKL and SKT models, respectively, for the
clotting data

enough to cover many situations, there are a few factors that must be borne in mind.
For example, the LN distribution has a hazard rate function that may be unrealistic in
some contexts, such as lifetimes data sets, since it is decreasing for long values. On the
other hand, the G distribution, although it has a less strict hazard rate function, is not as
flexible as the corresponding REPM model; moreover it does not have a closed function
for the p-th quantile, i.e. quantile regression cannot be applied simply in this model.
The real data applications above show that the REPM is a competent alternative to such

traditional models.
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A. Appendix: Score function and observed Fisher information

We devote this section to express the components of 1(5) discussed in Section 3.
If W ~ REPM(0), with @ = (i, 8,7)", then we can d°log fiy (w; 0)/0008", as fol-
lows

9%1og fiw (w; ) { { 1 8G()} 1 [alogG()H <w> ag(-)“
—agz (y=1) WW +g( 9B log ﬁ g(')“‘ﬁ )
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