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Abstract 

Laparoscopy is an operation carried out in the abdomen through small incisions with 
visual control by a camera. This technique needs the abdomen to be insuffated with 
carbon dioxide to obtain a working space for surgical instruments’ manipulation. Iden-
tifying the critical point at which insuffation should be limited is crucial to maximizing 
surgical working space and minimizing injurious effects. A Bayesian nonlinear growth 
mixed-effects model for the relationship between the insuffation pressure and the intra– 
abdominal volume generated is discussed as well as its plausibility to represent the 
data. 
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1. Introduction 

Laparoscopy is an operation carried out in the abdomen or pelvis through small inci-
sions with the help of a camera. It is performed by insuffating CO2 into the abdomen 
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that yields a working space, i.e., pneumoperitoneum, and passing surgical instruments 
through small incisions using a camera to have external visual control of the procedure 
(Neugebauer et. al., 2010). Laparoscopy has been gaining ground since its inception be-
cause it is associated with less morbidity than the traditional method performed through 
a single, larger skin incision (Pache et al., 2017). 

The introduction of CO2 into the abdomen is operated by medical devices, i.e., la-
paroscopic insuffators, through small plastic tubes, i.e. trocars, inserted in the patient’s 
abdominal wall. Laparoscopy technological development has been limited to improve-
ments in camera image quality, whereas little innovation has been made in insuffation 
devices (Colon Cancer Laparoscopic or Open Resection Study Group, 2009). 

The CO2 insuffation pressure, i.e., intra–abdominal pressure (IAP), is set manu-
ally on the insuffator by the surgical team. IAP is measured in millimeters of mercury 
(mmHg), and the usual fgures during laparoscopic surgery range between 12 and 15 
mmHg. Although international guidelines recommend working with the lowest IAP 
value that ensures an adequate working space, the standard practice is still to initially set 
the IAP value without further adjustments regardless of the amount of generated intra– 
abdominal volume (IAV ) (Neudecker et al., 2002), measured in litres (L). Operating at 
such high IAP increases perioperative morbidity since it leads to decrease abdominal 
blood perfusion, greater postoperative pain, peritoneal injury, and increased risk of pul-
monary complications. 

The abdominal compartment shows an anisotropic behaviour during pneumoperi-
toneum which is explained by its combination of rigid borders, e.g., spine, rib cage, and 
pelvis, and semirigid borders, e.g., abdominal wall muscles and the diaphragm (Becker 
et al., 2017). Initially, marginal gains in volume in response to pressure increments 
are proportional. In other words, the abdominal compliance (Cabd), which defnes the 
change in volume determined by a change in pressure, follows an approximately lin-
ear relationship (Mulier et al., 2009). According to biomechanics laws, the yield stress 
point is eventually reached, after which applying additional pressure leads to diminish-
ing gains in volume (Forstemann et al., 2011). Identifying this critical point at which 
insuffation should be limited is crucial to maximizing surgical working space while 
minimizing injurious IAP effects. 

The abdomen pressure–volume dynamics during pneumoperitoneum has been dis-
cussed in previous papers (Diaz-Cambronero et al., 2019, 2020; Mazzinari et al., 2020, 
2021). These studies suggest the adequacy of an increasing sigmoidal model for describ-
ing the relationship between both variables. Our aim in this work is twofold. On the one 
hand, we want to estimate such a model to gain knowledge about the relationship be-
tween IAP and IAV , especially about the parameters that determine the different growth 
stages of the process in accordance with the specifc characteristics of the individuals in 
the target population. On the other hand, the second goal of the paper is to discuss the 
quality of the ft of the model to the data. This is a relevant question since the logistic 
growth curve is a previously used model for the topic. The hypothesis is that, in a per-
sonalised medicine environment, patient responses to insuffation can be estimated and 
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predicted so that an ideal IAP value could be determined to optimise IAV with the lowest 
risks of potential negative effects. 

The statistical framework of this study is that of nonlinear growth mixed-effects 
models, also known as hierarchical nonlinear growth models. They have a long and im-
portant scientifc tradition for describing biological, medical, and environmental growth 
phenomena such as pharmacokinetics (Giltinan, 2006), epidemiology (Lindsey, 2001), 
physiological-response processes (Peek et al., 2002), or forestry (Fang and Bailey, 2001) 
among others. One of the major appeals of these models is that their parameters contain 
direct and intuitive information on the process under study. This fact generates a multi-
faceted knowledge about the phenomena in question of great scientifc value (Davidian, 
2008). 

Data for the study come from a repeated measures design (Lindstrom and Bates, 
1990). In our case, the variable of interest IAV is measured for each individual with 
regard to different IAP values. This design generates two types of data: data from the 
same individual and data from several individuals. Random effects in these models are 
essential elements to glue together the different observations of the same individual as 
they could be considered as a within-individual variation (Laird and Ware, 1982). 

The statistical analysis of the problem has been carried out using Bayesian inference. 
This statistical methodology accounts for uncertainty in terms of probability distribu-
tions (Loredo, 1989, 1992) and uses Bayes’ theorem to update all relevant information. 
The Bayesian approach simplifes the implementation and interpretation of mixed effects 
models. The conditional formulation of this type of model, which explicitly includes 
random effects in the conditional mean, allows individual and population inferences to 
be made. This is due to the simplicity process of integrating out the random effects of 
the model, that is, moving from the conditional formulation of the model to its marginal 
formulation (Lee and Nelder, 2004). This feature of Bayesian models is of utmost im-
portance in the case of growth models because it expresses in a natural probabilistic way 
all information about the parameters and other relevant features of the growth process 
through the respective posterior distribution. Furthermore, model checking can be con-
ducted in a straightforward way to detect possible systematic bias in the model. This is 
particularly important for medical applications to avoid patients from receiving a sub-
optimal medical treatment. 

The paper is organised as follows. Section 2 presents the data with a brief description 
that emphasises the particular features of the repeated-means design through the number 
of observations per individual and their IAV trajectories according to the IAP values. 
Section 3 introduces and formulates the statistical modelling. Section 4 accounts for 
posterior inferences and prediction. Section 4.1 discusses the posterior distribution of the 
estimation process. Sections 4.2 and 4.3 contain, respectively, some relevant results of 
clinical interest at specifc individual levels and in general terms for different population 
groups. Section 5 deals with model checking by means of the cross-validated predictive 
density. The paper ends with an overview of the results and some conclusions. 
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2. Intra-abdominal volume and intra-abdominal pressure data 

The data for the current modelling come from a previously published individual patient 
meta–analysis (Mazzinari et al., 2021) that included experimental information from three 
previous homogeneous clinical studies (Mazzinari et al., 2020; Diaz-Cambronero et al., 
2019, 2020). All patients in these studies underwent a standardized pneumoperitoneum 
insuffation at a constant low fow, i.e., 3 Lmin−1, under deep neuromuscular block with 
a posttetanic count (PTC) between one and fve assessed by quantitative monitoring. 
The insuffation was carried out through a leakproof trocar up to an IAP of 15mmHg for 
abdominal wall prestretching and then stepwise changes in IAP in the 8 to 15 mmHg 
pressure range were recorded. In all studies, patients’ legs were placed in padded leg-
holder supports with hips fexed before the initial insuffation. 
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Figure 1. Number of repeated measures in the men’s group (top panel) and in the women’s 
group (bottom panel). Each bar corresponds to a person and its ordinate is the number of 
measurements of that person during the study. Patients are ordered according to their age from 
youngest to oldest. 

The original databank had information on 204 patients, but 6 patients presented miss-
ing information on IAP, IAV , and/or age values. There are very few individuals whose 
missing observations do not appear to have been generated by non-ignorable mecha-
nisms. For this reason, we decided to eliminate them directly and not engage in a very 
unhelpful imputation process. The fnal databank has 198 patients, 118 men and 80 
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women, and a total of 1361 observations. We have a repeated measures design with a 
very different number of observations per individual: from individuals with only one 
observation to individuals with 15. Figure 1 shows the number of repeated measures for 
the group of men and women in order of age. It is interesting to note that women have 
in general less measurements than men in all ages. 

The data have a very wide age range. The youngest patient is 23 years old and the 
oldest is 92, with a mean age of 64.65 years. In the men’s group, the minimum and 
maximum also are 23 and 92, respectively, and their average is 64.49 years. Women 
have a minimum age of 34 and a maximum of 85, and their mean is 64.87 years. 

IAP values range between 0 and 16 mmHg, and IAV values between 0.5 and 13 L. 
Figure 2 shows a spaghetti plot of IAV for men and women. They all show a fairly 
similar pattern of the IAV with IAP, although a greater range of values is observed in 
men, especially in large values of IAP. In both groups there are individuals with different 
behaviour but men behave more homogeneously than women. 

0

5

10

15

0 5 10 15
IAP

IA
V

0

5

10

15

0 5 10 15
IAP

IA
V

Figure 2. IAV profles (in L) according to IAP (in mmHg) for men (top panel) and women 
(bottom panel) in the sample. 

3. Logistic growth mixed-effects modelling 

Let the nonlinear mixed-effects model for the response random variable IAVi j that records 
the intra-abdominal volume value for individual i, i = 1, . . . ,n with standardized intra-
abdominal pressure value IAPi j, j = 1, . . . ,Ji, defned in terms of a conditional normal 
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distribution as follows 
(IAVi j | µi j,σ

2) ∼ N(µi j,σ
2), (1) 

where µi j is the mean of the IAV value of a patient with IAPi j value and can be expressed 
in terms of the conditional logistic growth function 

ai
(µi j | ai,bi,ci, IAPi j) = , (2)

1+ exp{−(bi + ci IAPi j)} 

with parameters ai, bi, and ci determining the growth of the function, and σ2 the un-
known variance associated to the random measurement error of the normal (1). 
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Figure 3. Graphics of the logistic growth function 5/[1 + exp{−(−10 + x)}], the subsequent 
asymptotic value, and its MAP, IP, ADP, and MDP points. 

The logistic growth model for µi j has important features which are very valuable to 
better understand the relationship between IAP and IAV (Davidian, 2008): 

• It is an increasing sigmoid function (see Figure 3), or S-curve, whose name comes 
from its shape and was introduced by the mathematician Pierre-François Verhulst 
in the 19th century to study the growth of populations in autocatalytic chemical 
reactions (Cramer, 2004). 

• The asymptotic value of IAV when IAP goes to infnity is ai. 

• The infection point (IP), where the curve changes from being concave downward 
to concave upward and therefore it is the point at which the acceleration of the 
process switches from positive to negative, is −bi/ci for IAP. The value of IAV at 
this point is ai/2. 

• The maximum acceleration and deceleration point, MAP and MDP respectively, √ 
have the following IAP and IAV coordinates, ((−(ln(2 + 3) + bi)/ci, ai/(3 −√ √ √ 

3)) and (−(−ln(2− 3)+ bi)/ci, ai/(3 + 3)). 
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• The asymptotic deceleration point (ADP) is calculated by equalling the fourth 
derivative to 0. It is located after the maximum deceleration point, and it indicates 
the point in which the acceleration is negative but close to 0. Therefore, it is 
expected that the increase of the function is not of much practical interest. The√ 
ADP is −(ln(5 − 2 6)+ bi)/ci for IAP. The value of IAV at this point is ai(3 +√ 

6)/6. 

By way of illustration, Figure 3 shows the graph of the logistic growth model y = 
5/[1 + exp{−(−10 + x)}] with generic variables x and y, and the location on the graph 
of the special points described above. 

Hierarchical modelling for parameters ai and bi was based on expert information and 
connected them with standardized age and gender covariates. Parameter ci was associ-
ated to covariate gender. We discarded its connection to covariate age as a consequence 
of a previous analysis of variable selection that we will discuss later. Furthermore, ai 

and bi also included a random effect specifcally associated to each individual that allow 
to connect all their repeated observations. We have not included any random effect in 
the modelling of the parameter ci because it would generate a random interaction term 
with the IAP values that would be diffcult to understand and justify. Following this 
reasoning, our model would be 

(a)
+ β (a)ai = β (a) + u IW (i)+ β (a)Agei, (3)0 i W A 

bi = β (b) (b)
+ β (b) 0 + ui IW (i)+ βA 

(b)Agei, (4)W 

+ β (c)ci = β (c) W IW (i), (5)0 

,β (b) ,β (c)where β 0 = (β (a) )T stands for the common intercept with the men group being0 0 0 
the reference group, IW (i) is the indicator variable with value 1 if individual i is a woman 
and 0 otherwise, βW = (β (a) ,β (b) ,βW 

(c)
)T and β A = (β (a) ,β (b))T are the vector of regres-W W A A 

sion coeffcients associated with individual i being a woman and their standardized age, 
(a) (b)respectively. Random effects u and u , i = 1, . . . ,n, are assumed conditional inde-i i 

(a)pendent given σ2 and σb 
2 and normally distributed according to (u |σ2)∼N(0,σ2) anda i a a 

(b)
(u |σb 

2)∼N(0,σb 
2).i 

The Bayesian model is completed with the elicitation of a prior distribution for the 
parameters and hyperparameters θ = (β 0, βW , β A,σ ,σa,σb)

T of the model. We assume 
prior independence between them and select the uniform distribution U(0,10) for all 
standard deviation terms. The elicited marginal prior distributions for β (a) and β (c) are0 0 
U(0,20) and U(0,10), respectively. These uniform distributions are suffciently large 
to cover generously the whole range of possible values of both parameters. A normal 
distribution N(0,102) is selected for β (b) , β (a) , β (b) , β (c) , β (a) , and β (b) to allow the0 W W W A A 
parameters to move freely between a wide range of positive and negative values. 
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4. Posterior inferences and predictions 

4.1. Posterior distribution 

The relevant quantities in the inferential process are the parametric vector θ and the set of 
random effects associated to the individuals in the sample u = (u1, . . . , un)

T , where ui = 
(a) (b)

(u ,u ). The posterior distribution π(θ , u | D), where D represents the observed IAVi i 
and IAP data of all individuals in the sample as well as their age and gender, contains all 
the relevant information of the problem and it is usually the starting point of all relevant 
inferences. It was approximated by means of Markov Chain Monte Carlo (MCMC) 
simulation methods through the JAGS software (Plummer, 2003). For the estimated 
model, we ran three parallel chains with 1,000,000 iterations and a burn-in of 500,000. 
Chains were also thinned by storing every 1,000th iteration to reduce autocorrelation in 
the sample. Convergence to the joint posterior distribution was guaranteed by visualising 
every autocorrelation function plot by means of mcmcplot package for the R software 
and assuring an effective number of independent simulation draws greater than 100. For 
the sake of reproducibility we have generated a fctitious databank, which together with 
the R code for the analyses is available as supplementary material here https://github. 
com/gcalvobayarri/intra abdominal volume model.git. 

Table 1. Posterior summaries (mean, standard deviation and 95% credible interval) for the 
parameters and hyperparameters of the logistic growth model with covariates gender and stan-
dardized age. 

Logistic growth model 
Parameters mean sd CI0.95 

β (a) 0 

β (a) W 

β (a) A 

σa 

5.729 

−0.418 

0.101 
1.670 

0.377 

0.259 

0.124 
0.090 

(4.968, 6.452) 

(−0.927, 0.095) 

(−0.145, 0.349) 
(1.501, 1.860) 

β (b) 0 

β (b) W 

β (b) A 

σb 

1.080 

−0.270 

0.134 
0.650 

0.181 

0.125 

0.054 
0.041 

(0.730, 1.440) 

(−0.517, −0.028) 

(0.026, 0.241) 
(0.572, 0.736) 

β (c) 0 

β (c) W 

2.260 

−0.264 

0.120 

0.082 

(2.029, 2.503) 

(−0.431, −0.101) 

σ 0.490 0.011 (0.469, 0.513) 

Table 1 summarizes π(θ , u | D). The posterior mean of β (a) and β (b) provides an0 0 
approximate overall assessment of the baseline values of ai and bi for male patients. In 

https://github.com/gcalvobayarri/intra_abdominal_volume_model.git
https://github.com/gcalvobayarri/intra_abdominal_volume_model.git
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the case of the asymptotic value ai, it decreases by about 0.418 in the female group (al-
though this estimation has a lot of uncertainty), and shows a slight positive trend with 
age. Differences between individuals are relevant as it can be seen from the estimation of 
the standard deviation of the random effect in ai, 1.67. The parameter bi has an approxi-
mate basal value of 1.08 in the men group, which decreases by −0.27 units in the women 
group. Age also has a positive estimation and the random effect associated to individuals 
are also important for bi, especially because this term appears on an exponential scale 
and negative sign in the quotient of the growth curve. Finally, the posterior mean for 
the ci term is about 2.26 in the men group and decreases in 0.264 units in the group of 
women. The posterior mean of the standard deviation associated to the measurement 
error is not very large but it does have a very high accuracy. The fact that the IAP value 
of the IP, ADP, MAP and MDP of individual i depends on bi and ci proportionally to 
−bi/ci, and that the estimated coeffcient associated to age is positive for bi implies that 
the relationship of the IP, ADP, MAP and MDP for IAP coordinate with age is negative 
but barely important. 
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Figure 4. Posterior mean and 95% credible interval of the ADP (IAP value) of the men (top 
panel) and the women (bottom panel) in the sample. Patients are ordered in the x-axis in terms 
of their age. 

As mentioned above, the posterior distribution is the starting point for the analysis of 
the different outcomes of interest in the study. In the following, we will present different 
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results that may be useful to better understand the relationship between IAV and IAP 
at both the individual and population level and thus be able to answer the scientifc 
questions raised by the study. But frst we would like to make a brief comment on the 
variable selection process discussed above for parameter ci of the growth model. In this 
context, we considered different modelling approaches for ci with regard to covariate 
gender. The Deviance Information Criterion (Spiegelhalter et al., 2002) was used for 
model comparison and according to this criterion the best model was the one with only 
the gender covariate and a common population term in parameter ci as stated before. 

4.2. Posterior individual outcomes 

The basic inferential process allows the Bayesian methodology to obtain information 
both individually and in terms of the target population. In the following we focus on 
ADP. The mean of the IAP value of ADP for individual i, ADPi, depends on bi and ci, 
which in turn depends on (θ , ui). Consequently, we can compute the posterior distribu-
tion of the true ADPi of each individual i in the sample from the subsequent posterior 
distribution π(θ , ui | D). Figure 4 shows the posterior ADP mean and a 95% credible 
interval for the individuals in the sample ranked by age. The frst thing that is striking 
in both graphs is the great difference in both the men and women groups in the range 
of credibility intervals, which is mainly explained by the differences in the number of 
repeated observations for each of them. 
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Figure 5. Posterior predictive mean of the IAV and 95% predictive interval with regard to IAP 
values for a man (top panel) and a woman (bottom panel) aged 64.65 years (the sample mean). 
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Figure 6. Posterior predictive mean of the IAV with regard to IAP values for a man (top panel) 
and a woman (bottom panel) stratifed by age. 

Prediction of observations for new individuals of the target population is an impor-
tant issue that Bayesian statistics approaches in a natural way. The posterior predictive 
distribution of the random variable Yn+1, j that records the IAV value for a new indi-
vidual, n + 1, of the population with regard to their IAP, standardized age and gender 
values, which from now on we will denote by xn+1, j, depends on the conditional model 
in (1) and the posterior distribution π(θ , un+1 | D), where un+1 are the random effects 
associated to that individual n + 1. It is computed as follows Z 

f (yn+1, j | xn+1, j,D) = f (yn+1, j | xn+1, j,θ , un+1)π(θ , un+1 | D)d(θ , un+1), (6) 

where the posterior π(θ ,un+1 | D) factorizes in terms of the marginal posterior distri-
bution π(θ | D) and the conditional distributions for the random effects (ua

n+1 | σ2)∼a 
bN(0,σ2) and (un+1 | σb 

2)∼N(0,σb 
2). Figure 5 shows the posterior predictive mean anda 

a 95% predictive interval for the IAV value of a new individual of the target population 
with age 64.65, the sample mean of the data, with respect to their IAP value and their 
gender. Both groups behave very similarly. The stabilisation of the values of IAV in both 
groups can be clearly seen, as well as the variability associated with the predictive pro-
cesses, which is always greater in comparison with the estimation processes themselves. 
Finally, Figure 6 shows the posterior predictive mean for the response IAV variable with 
regard to IAP values of men and women with different ages. Of course, as we observed 
with the approximate posterior distribution of β (b) in the Table 1, a positive relationshipA 
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between IAV and age can be observed in the graphic, but it is very mild and possibly not 
very relevant for practical purposes in clinical scenarios. 

4.3. Posterior population outcomes 

Random effects connect the different repeated measures of the same individual in the 
statistical model and allow for the computation of individual-specifc outcomes. We 
would also like to be able to have not only that individual information, but also outcomes 
that can provide general information about the target population. This aim implies to 
work with the marginal formulation of the model in (1) and (2) which we would obtain 
by integrating out the random effects of the conditional modelling as follows Z Z 

f (yi j | xi j, θ ) = f (yi j | xi j, θ , u) f (u | θ)du = N(µi j,σ
2) f (u | θ )du. (7) 

This marginal formulation only depends on the parameter and hyperparameters of 
the model θ and is the basis for the computation of any feature of this marginal model. 
For simplicity, we only focus on the true asymptotic IAV value and the true asymptotic 
deceleration point ADP for a patient with an average age. 

Figure 7 shows the posterior distribution of the asymptotic IAV for men and women 
aged 64.65 years (the mean of the sample). There is not much difference between the 
two distributions. An estimation of the asymptotic IAV in the group of men is 5.60 L. 
while in the group of women it is 5.25 L. Figure 8 shows the joint posterior distribution, 
in terms of contour lines, of the ADP pressure point and the subsequent volume value for 
men and women aged 64.65 years (the sample mean) as well as the marginal distributions 
of both quantities. Posterior mean for the ADP’s pressure and volume is 10.06 mmHg. 
and 5.05 L. in men aged 64.65, and 10.87 mmHg. and 4.74 L. in the group of women 
with the same age, respectively. A similar analysis is possible for MAP, IP and MDP. 
However, their posterior results for both coordinates (IAP and IAV ) are proportional to 
those of ADP and their information would be repetitive. 
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Figure 7. Posterior distribution of the asymptotic IAV for men (on the left) and women (on the 
right). 
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5. Model checking 

Model checking is an essential component of any statistical analysis which has gener-
ated an extensive literature within the Bayesian reasoning (Vehtari and Ojanen, 2012). 
Our interest in this subject focuses on assessing, following the philosophy in Gelman et 
al (2014), whether the possible shortcomings of our model have a relevant effect on the 
derived results. We approach model checking via posterior predictive distributions fol-
lowing the ideas by Box (1980), who states that prediction (and not estimation) enables 
“criticism of the entertained model in light of current data”. 
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Figure 8. Joint posterior distribution and contour lines of the IAP and IAV coordinates for the 
true ADP and posterior marginal distribution for each of both quantities for men (top panel) and 
women (bottom panel) aged 64.65 years (the sample mean). The horizontal and vertical lines 
represent the approximate posterior mean of IAV − ADP and the approximate posterior mean of 
IAP − ADP, respectively. 
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We check our model through the cross-validated predictive density Gelfand, Dey and 
(rep)Chang (1992) defned as the conditional posterior density of a future IAV value y fori j 

individual i, i = 1, . . . ,n with standardized IAP value xi j of a replicate experiment 

Z 
(rep) | D−(i j)) = (rep) | xi j, θ , u)π(θ , u | D−(i j))d(θ , u),f (y f (yi j i j 

where D−(i j) are all the data in D except for the observation yi j (leave-one-out (LOO) 
procedure). 

The fundamental idea underlying this proposal assumes that if the estimated model is 
correct, each observation can be considered as a random value from the cross-validated 
predictive density Chen, Shao, and Ibrahim (2000). In this framework, we consider two 
complementary characteristics of such predictive distribution assessed at each observed 
value yi j. These quantities are the conditional predictive ordinate (CPO) and the cross-
validated probability integral (PIT), and are defned as: 

CPOi j = f (yi j | D−(i j)), 

PITi j = P(Y (rep) ≤ yi j | D−(i j)).i j 

CPOi j values correspond to the ordinates in the yi j of the cross-validated predictive 
density. Large CPOi j values support the selected model because indicate a good tuning 
between the data and the model. PITi j is the posterior probability that the replicated 
(i j)th observation is less or equal the subsequent observed value. When the model is 
well calibrated these probabilities follow a uniform distribution in the unit interval. 

The direct implementation of these quantities is computationally very expensive be-
cause we would need to approximate as many posterior distributions as we have ele-
ments in D. This is not necessary because the application of self-normalized importance 
sampling allows CPOs and PITs to be approximated from draws of the posterior distribu-
tion π(θ , u | D) computed with the complete data D (Gelfand, 1996; Ntzoufras, 2011). 
Computation of CPOs and PITs was done by means of the R software from the posterior 
outputs obtained with JAGS. 

Figure 9 shows the histogram of CPOs and PITs respectively. The information pro-
vided in both cases suggests that the model used has some shortcomings that can be 
improved. We have some values of the CPO that are small and the PITs do not seem to 
be uniformly distributed mainly due to a remarkable abundance of values close to zero. 

′Figure 10 shows how PIT values are distributed along IAP. Theoretically, PIT s 
should be uniformly distributed between 0 and 1 at each IAP point. However, from 
IAP ≈ 6.5 (vertical red line) to IAP ≈ 14 PIT values do in general do not exceed 0.5. 
This behaviour indicates that our model performs well when we work with small values 
of IAP, overpredicts observations of IAV for medium and medium-high values of the 
covariate IAP, and fnally, it seems to improve with large IAP values. 
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Figure 9. Histogram of the approximate CPO (on the top) and density histogram of the approx-
imate PIT (in the bottom) quantities for all the observations. 
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Conclusions 

Precision medicine tenets are that different interventions have distinct effects in different 
people and that this variability can, at least in part, be characterized and predicted (Senn, 
2016). In this study we have tried to lay the foundation for the mathematical modeling 
of the abdomen behaviour during pneumoperitoneum insuffation. We have also pa-
rameterized such model to achieve predictive capability based on a few simple baseline 
characteristics. This is the frst step in a precision medicine approach to pneumoperi-
toneum insuffation for laparoscopic surgery. This process can be potentially scaled up 
and recursively performed throughout the duration of the surgical intervention to ensure 
that even if conditions change, we could be able to provide an optimal surgical feld to 
the surgeon while exposing the patient the lowest possible pressure. 

With this procedure, we would like to achieve an optimal surgical workspace while 
minimizing the pressure administered to the patient. In other words, each subject would 
receive a titrated pressure according to her/his characteristics. Also, the ability to pre-
dict where the marginal gain in volume diminishes by deriving critical points on the 
parameterized curve have an especially interesting clinical potential. 

Bayesian inference can provide a suitable inferential framework in this context. 
First of all, Bayesian hierarchical models are useful to elicit and formulate the differ-
ent sources of variation and uncertainty of the problem and incorporate suitable terms 
into the model to account for them. In this particular case, the model includes nonlinear 
effects through a logistic growth function. As model ftting relies on MCMC meth-
ods, inference about particular elements of interest in the model becomes feasible. For 
example, the logistic growth model has a known parametric form from which some cru-
cial critical points can be derived analytically but inference on these points is far from 
straightforward. However, the output produced by MCMC during model ftting can be 
exploited to compute the posterior marginals of these particular points as well as those 
of the other model parameters. This provides extra information that can be used during 
the laparoscopic surgery. Inference about these critical points under other inferential 
frameworks would not be so straightforward. 

The most important critical point in our study is ADP, as this controls how much 
air is insuffated during surgery. From a clinical point of view, when operating on new 
patients, ADP’s predictive distribution can help physicians provide adequate insuffation 
during laparoscopic surgery. 

As we have illustrated, model checking is critical for health applications of statistical 
methodology as this will allow potential bias to be detected. We believe that the use of 
the model checking techniques should be widely adopted when relying on statistical 
models for medical practice to detect and avoid systematic biases in medical treatment 
(Obermeyer et al., 2019). 

The study presented in this paper illustrates a preliminary analysis in which 198 pa-
tients have been enrolled. In the future, we aim to conduct a larger trial so that a wider 
range of patients is represented. Furthermore, other covariates will be recorded and in-
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cluded into the model to reduce the uncertainty about the estimates and predictions, and 
increase the accuracy of insuffation. We plan to refne our model with anthropometric 
measurements. We are recording not only height and weight, but also waist and hip 
circumference and abdomen sagittal height to have abdominal, volume and body mass 
surface and update our model with these new data. Furthermore, data from medical 
imaging such as abdominal volume estimation based on routine preoperative computer-
ized tomography images or ultrasonic assessment of the abdominal wall thickness and 
fat component can be explored as covariate alternatives. We will also record the number 
of previous open and laparoscopic abdominal surgeries, as well as, in the case of women, 
the number of pregnancies. Finally, models with different assumptions will be consid-
ered such as non-homoscedastic models with increasing variability, different types of 
curves such as the Gompertz curve (Funatogawa and Funatogawa, 2018), or even the 
inclusion of random effects to assess the possible variability among the different studies. 
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