Ir al contenido

Documat


Homotopy theory of Moore flows (II)

  • Philippe Gaucher [1]
    1. [1] Université de Paris I
  • Localización: Extracta mathematicae, ISSN-e 0213-8743, Vol. 36, Nº 2, 2021, págs. 157-239
  • Idioma: inglés
  • DOI: 10.17398/2605-5686.36.2.157
  • Enlaces
  • Resumen
    • This paper proves that the q-model structures of Moore flows and of multipointed d-spaces are Quillen equivalent. The main step is the proof that the counit and unit maps of the Quillen adjunction are isomorphisms on the q-cofibrant objects (all objects are q-fibrant). As an application, we provide a new proof of the fact that the categorization functor from multipointed d-spaces to flows has a total left derived functor which induces a category equivalence between the homotopy categories. The new proof sheds light on the internal structure of the categorization functor which is neither a left adjoint nor a right adjoint. It is even possible to write an inverse up to homotopy of this functor using Moore flows.

  • Referencias bibliográficas
    • [1] J. Ad ́amek, J. Rosick ́y, “ Locally presentable and accessible categories ”, London Mathematical Society Lecture Note Series, 189, Cambridge...
    • 2] F. Borceux, “ Handbook of categorical algebra, 2 ”, Encyclopedia of Math- ematics and its Applications, 51, Cambridge University Press,...
    • [3] D. Christensen, G. Sinnamon, E. Wu, The D-topology for diffeological spaces, Pacific J. Math. 272 (1) (2014), 87 – 110.https://doi.org/10.2140/pjm.2014.272.87
    • [4] W.G. Dwyer, P.S. Hirschhorn, D.M. Kan, J.H. Smith, “ Homotopy limit functors on model categories and homotopical categories ”, Mathemat-ical...
    • [5] U. Fahrenberg, M. Raussen, Reparametrizations of continuous paths, J. Homotopy Relat. Struct. 2 (2) (2007), 93 – 117.
    • [6] R. Garner, M. Ke ̧dziorek, E. Riehl, Lifting accessible model struc- tures, J. Topol. 13 (1) (2020), 59 – 76.https://doi.org/10.1112/topo.12123
    • [7] P. Gaucher, A model category for the homotopy theory of concurrency, Homology Homotopy Appl. 5 (1) (2003), 549 – 599. https://doi.org/10.4310/hha.2003.v5.n1.a20
    • [8] P. Gaucher, Comparing globular complex and flow, New York J. Math. 11 (2005), 97 – 150.
    • [9] P. Gaucher, T-homotopy and refinement of observation (IV): Invariance of the underlying homotopy type, New York J. Math. 12 (2006), 63...
    • [10] P. Gaucher, Towards a homotopy theory of process algebra, Homology Ho- motopy Appl. 10 (1) (2008), 353 – 388.https://doi.org/10.4310/HHA.2008.v10.n1.a16
    • [11] P. Gaucher, Homotopical interpretation of globular complex by multipointed d-space, Theory Appl. Categ. 22 (2009), 588 – 621.
    • [12] P. Gaucher, Enriched diagrams of topological spaces over locally contractible enriched categories, New York J. Math. 25 (2019), 1485...
    • [13] P. Gaucher, Flows revisited: the model category structure and its left de- terminedness, Cah. Topol. G ́eom. Diff ́er. Cat ́eg. 61 (2)...
    • [14] P. Gaucher, Homotopy theory of Moore flows (I), Compositionality 3 (2021), 1 – 38. https://doi.org/10.32408/compositionality-3-3
    • [15] P. Gaucher, Left properness of flows, Theory Appl. Categ. 37 (19) (2021), 562 – 612.
    • [16] P. Gaucher, Six model categories for directed homotopy, Categ. Gen. Algebr. Struct. Appl. 15 (1) (2021), 145 – 181.https://doi.org/10.52547/cgasa.15.1.145
    • [17] M. Grandis, Directed homotopy theory, I, Cah. Topol. G ́eom. Diff ́er. Cat ́eg. 44 (4) (2003), 281 – 316.
    • [18] M. Grandis, Inequilogical spaces, directed homology and noncommutative geometry, Homology Homotopy Appl. 6 (1) (2004), 413 – –437. https://doi.org/10.4310/hha.2004.v6.n1.a21
    • 19] M. Grandis, Normed combinatorial homology and noncommutative tori, Theory Appl. Categ. 13 (7) (2004), 114 – 128.
    • [20] M. Grandis, Directed combinatorial homology and noncommutative tori (the breaking of symmetries in algebraic topology), Math. Proc. Cambridge...
    • [21] A. Hatcher, “ Algebraic topology ”, Cambridge University Press, Cambridge,2002.
    • [22] S. Henry, Minimal model structures, 2020. https://arxiv.org/abs/2011.13408.
    • [23] K. Hess, M. Ke ̧dziorek, E. Riehl, B. Shipley, A necessary and sufficient condition for induced model structures, J. Topol. 10 (2) (2017), 324...
    • [24] P.S. Hirschhorn, “ Model categories and their localizations ”, Mathematical Surveys and Monographs, 99, American Mathematical Society,...
    • [25] M. Hovey, “ Model categories ”, Mathematical Surveys and Monographs, 63, American Mathematical Society, Providence, RI, 1999.https://doi.org/10.1090/surv/063
    • [26] V. Isaev, On fibrant objects in model categories, Theory Appl. Categ. 33 (3) (2018), 43 – 66.
    • [27] G.M. Kelly, “ Basic concepts of enriched category theory ”, Reprint of the 1982 original [Cambridge Univ. Press, Cambridge; MR0651714],...
    • [28] S. Krishnan, A convenient category of locally preordered spaces, Appl. Categ. Structures 17 (5) (2009), 445 – 466.https://doi.org/10.1007/s10485-008-9140-9
    • [29] S. MacLane, “ Categories for the working mathematician (second edition) ”,. Graduate Texts in Mathematics, 5, Springer-Verlag, New York,...
    • [30] J.P. May, J. Sigurdsson, “ Parametrized homotopy theory ”, Mathemat-ical Surveys and Monographs, 132, American Mathematical Society,...
    • [31] R.J. Piacenza, Homotopy theory of diagrams and CW-complexes over a category, Canadian J. Math. 43 (4) (1991), 814–824. https://doi.org/10.4153/CJM-1991-046-3
    • [32] D. Quillen, “ Homotopical algebra ”, Lecture Notes in Mathematics, 43, Springer-Verlag, Berlin-New York, 1967.https://doi.org/10.1007/BFb0097438
    • [33] J. Rosick ́y, On combinatorial model categories, Appl. Categ. Structures 17 (3) (2009), 303 – 316. https://doi.org/10.1007/s10485-008-9171-2

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno