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ABSTRACT

This article is devoted to the study of a flame ball model, derived by G. Joulin,
which satisfies a singular integro-differential equation. We prove that, when
radiative heat losses are too important, the flame always quenches; when heat
losses are smaller, it stabilizes or quenches, depending on an energy input pa-
rameter. We also examine the asymptotics of the radius for these different
regimes.
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0. Introduction

We are interested here in the study of the following equation, derived in [4], fur-
thering the study [9]:
R(s

(5) . (01)
Vit—3s
It describes the evolution of a spherical flame, initiated by a point source energy
input Eq(t), and at which are applied heat losses, represented here by the parameter
A, in the burnt gases. The intensity of this energy input is measured by the positive
constant F, and its time evolution is described by the function ¢. This one is a

1 t
RO, 2R = RLog R+ Eq(t) — AR®, R(0)=0, 8;,R= —/
VT Jo
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smooth, non-negative function, with connected support and unit total mass, and its
initial values satisfy the following assumption:

q(t) ~ qot’ as t — 0 with 0 < B < 1/2. (Q)
Also, ¢q tends to 0 as t — +o00.

Equation (01) is an asymptotic model for the classical thermo-diffusive model for
flame propagation, with simple chemistry A — B:

-1
T; — AT = BRgexp <ﬁ> Or=p.(t) = €F,
AY —1
}/t _ E = —BRO exp <ﬁ> 6T:Pe(t)'

Here, T'(t,z) is the temperature, Y'(¢,2) is the mass fraction of the reactant, and
pe(t, x) is the flame radius; Ry is the radius of the stationnary flame, T, is the tem-
perature at the flame sheet (defined by the location of the § function). The number
Le > 0 is the Lewis number, i. e. the ratio between thermal and molecular diffusion,
B is a multiplicative constant, and the function F' is a heat-loss term, chosen to have
the form:

"] 0 otherwise.

It is proved, by means of a 3-scale asymptotic expansion, that p.(t/e?) satisfies
(01) asymptotically. In the course of the computation, the term A comes out as:
A= F(T,)/6T?.

The study for (01) can also be done in the more general case where
ROy R = f(R) + Eq(t). (02)

The function f is polynomial, negative at x = 0, and has several zeroes. Qualitative
results on this equation are similar to the ones presented above: existence of critical
energies, and quenching, stabilization, or propagation phenomena; the ideas of the
proof are identical. See Part 5 at the end of the paper.

Equation (01) has been studied in [2] with no heat losses. The following threshold
phenomenon has been proved: there exists a critical energy E..(¢q) > 0 such that, if
E < E..(q), the flame quenches; if E > E..(q), it propagates; if E = E..(q), the
flame stabilizes to 1. Our goal is to find a similar result when A > 0 and to study the
asymptotics.
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Figure 1: Solutions of Log R = AR?

The long-time behaviour of the radius depends on the value of the parameter A:
we will see later that the equation

Log R = AR? (03)

plays a fundamental part in the asymptotic study. If A = A., = 1/2e, (03) has a
unique solution R.. = \/e; if A > A, it has not any solution; if A < A, it has
two solutions: Ry < R., < R, - see Fig. 1. The main results of the paper are the
following:

Theorem 0.1. Assume X\ < A.,.

(i) If q is positive on R, (01) has a unique global solution R(t). Moreover, there
exists Eer(q) > 0 such that:

- sz < Eq(q), t_l)lm)oR(t) =0,

- if E> Ecr(q), tllinmR(t) =Ry,

-if E=Eq.(q), tllinmR(t) =R;.

(13) If there ezists to > 0 such that q is positive only on |0,to[, then (01) admits a
unique solution R(t). Moreover, there exists E..(q) > 0 such that:

-if E > E..(q), the previous results hold.

- if E < E..(q), there exists a finite tmae > to such that the life span of R(t) is

[0, tmaa]; moreover, taht{?am R(t) = 0.

In particular, unlike the case A = 0, the flame cannot propagate any longer. Nev-

ertheless, if heat losses are small enough, we conserve the same structure of solution
with a threshold phenomenon. When A > .., the results are quite different:
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Theorem 0.2. Assume X\ > A... Let us denote by [0, to] the support of the function q.
(1) If to = +o0, (01) has a unique global solution, satisfying: tlir+n R(t) =0.

— 400
(ii) If to < +oc, there exists a finite tpmqe > to such that the life span of R(t) is
[0, tmaz]; moreover, t_l)itm R(t) = 0.

max

Thus, the flame always quenches when A\ > .., whatever the energy input is. The
case A = A\, presents more difficulties: its study forces us to consider energy inputs
which do not satisfy any longer the assumption fR+ q=1.

Theorem 0.3. Assume A = A;p.

(1) If q is a smooth, non-negative function, with connected support and unit total
mass, and if there exists o > 1/2 such that ¢(t) = O4o0(t~%), the results of Theorem
0.2 hold again.

(ii) If there ewists a positive constant C such that q(t) ~ C/\/t as t — +oo, there
exists E.r(q) > 0 such that:

-if E< Eer(q), tLiLnOOR(t) =0.

-if E > E..(q), tiiinoc R(t) = R.,, and there exists to > 0 such that R(t) > R., for
t > to.

Our last results deal with the speed of convergence of the radius:

Theorem 0.4. (i) If the flame quenches in a finite time tpq., there exists o > 0
such that:

R(t) = g\/tmam —t+ O(tmaz — 1)/*7® as t = timax.
(ii) If the function q is positive and if the flame quenches in an infinite time, then

R(t) ~ f(t), with fLog f + Eq = 0.

Theorem 0.5. Assume q(t) = O4oo(t™Y) with a > 1/2. If A < Ay and t_l)l:_n R(t) =
o0
R; (i=1,2), then

R? 1 1
w0 =Rt e i (1)

The first results obtained about the stabilization and the quenching of the flame
correspond to the ones described in [2]. The asymptotic behaviour is proved using
the semilinear parabolic equation:

Eq(t
Up — Ugy = 20,—0 (Logu—/\UQ-l—ﬂ), r € R
u
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But the consideration of heat losses forces us to be more careful: on the one hand,
when 0 < A < A, we have a similar threshold phenomenon, but the stabilization of
the flame for high energies needs another proof: the reminder term —AR? is all the
more important as R(t) is large, and the demonstration written in [2] is no longer
valid. On the other hand, in order to study the case A = ., we have to introduce a
larger type of energy inputs.

Theorems 0.1 to 0.5 are illustrated in the pictures 2 and 3; the numerical scheme
used to obtain these numerical pictures is presented in [3].

lambda=0.1<lambda lambda=0.2>lambda,
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Figure 2: Evolution of the radius when Figure 3: Evolution of the radius when
A < Aer and FE variable A > A and E variable

The study of the quenching phenomenon is a very classical problem - see e.g. [12].
In particular, the heat equation has often been studied, for example in [7]. However,
in this paper, the results concern equations of the form u; — u,, = f(u), with f
polynomially singular at u = 0; we consider here a weaker singularity in Log . In [5],
is studied a parabolic equation of the following type:

Ut — Ugy = 5z=0f(u)a

but the function f is monotone, as opposed to our problem. Moreover, the asymptotic
results are formally proved. We have therefore been led to introducing new arguments
to prove our results rigorously.

Nevertheless, the integro-differential equation stays an important tool for the
asymptotics in case of stabilization; indeed, the radius R; is unstable, and the tech-
niques used for the quenching cannot allow us to conclude here. Therefore, for the
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study of our problem, it is essential to use both diffusive and integral formulations.
This systematic combination of both formulations has not, to our knowledge, been
done.

This paper is organized in five sections. In the two first sections, we study the
asymptotic behaviour of the radius, whose analysis follows the ideas of [2]. In the
subsequent sections, we are interested in the asymptotics of the regimes obtained
previously: Section 3 is devoted to the quenching case, and Section 4 to the stabiliza-
tion case. In the last section, we extend these results to the more general parabolic
equations coming from the integro-differential equations (02).

1. Long-time behaviour of the flame for any \ non critical

The proof of the local existence for (01), and of the conditions of global existence
is omitted, being identical to the one written in [2]. Let us just only recall the main
results which will be useful later.

Equation (01) can be rewritten by:

E
R=1, <LogR+§q—/\R2>, (11)

t
where I 5 f = %/0 \/f%

denotes the Euler Beta function, defined by:

ds is the Abel integrator of order 1/2. In the sequel, B

B(a,8) = /01 o1 (1 - 0)* do.

Proposition 1.1. Let us assume q positive on [0,tq], ¢(0) = qo. Then, there exists
t1 €]0,to] such that (11) admits a solution in C3/%([0,t,]) satisfying:
Eqqo

R(t) ~o Rot'/*, with R? = ﬁB(3/4’ 1/2).

In the case ¢(0) = 0, we also obtain a local solution of (11) in a vicinity of 0 with
a similar equivalent. In order to prove the existence of a unique maximal solution,
the flame radius is expressed as the trace at « = 0 of a function u(t, ), solution of
the following parabolic equation:

E

Ut — Ugy = 20,—0 (Log u+ 24 )\u2> , x€R,
u

u(0,.) = 0.

(12)
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This formulation has been used in [6] to study Volterra integral equations, and here
it is essential to characterize the long-time behaviour of the flame. We will then deal
with more general Cauchy problems:

E
Ut — Ugy = 20,—0 (Log u+ Tq — )\u2> , = €R, (13)

u(0,z) = ug(x),

where ug is an even, Lipschitz, square-integrable, non-negative function. This is
equivalent to solving:

U — Uz =0, x>0,
ug(t,0) = — (Log u(t,0) +
u(0,.) = uo.

Eq(t)
u(t,0)

— M (t, 0)> , (14)

Theorem 1.2. Let q satisfying the assumption (Q). We suppose there exists to > 0

such that q(t) > 0 on ]0,t0[, and q(t) =0 if t > to.

(1) If to = +o00, (13) has a unique global positive solution, except at t = 0. Moreover,

u is C* on RY x R* and t — u(t,0) is C> on R .

(13) Iftg < +oc, (13) has a unique mazimal solution u, defined on an interval [0,y a0z,

positive, except at t = 0. Moreover, u is C* on |0, tmaz|. If tmaz < 400, there exists

tn = tmax Such that lim wu(t,,0) = 0.

n——+oo
In particular, an immediate consequence of this theorem is the existence of a

solution of (11). The uniqueness of u is based on the following comparison principle:

Theorem 1.3. Let g1 and q» be two smooth functions satisfying the assumptions of
Theorem 1.2. Let uy and us the solutions of (13) with respectively Eq = Eyq1, E2q2,
ug = ugy,upy and X = Ay, Aa. Let [0,T] an interval on which both uwy and us are
defined. Then, if E1q1 < Eaqq, ugy < ugy and Ay > Ao, up < wug on [0,T] x R.

In the sequel, ug will denote the solution of (12) and Rg(t) := ug(t,0) will be
the corresponding radius of the flame.

We can now turn to the asymptotic behaviour of the radius. An important tool
in the forthcoming study will be the usual theorem on sub and supersolutions [13].
But, before everything, let us quickly explain the importance of the parameter A: the
stationnary solutions of

Ut — Ugy = 20,=0(Log u — )\u2)

are the constants R satisfying:
Log R = AR?,
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hence the values of A\, and the distinction we have to make between the cases A < A,
A=A, and A > A... On the other hand, these heat losses introduced in this model,
prevent the flame from expanding:

Proposition 1.4. If A > 0, the solution ug of (13) is bounded.
1

Proof. Let u(t,z) = C € R}. For any £ < Ey = T
4|l

(AC?* — CLog C) (with
C < Ry or C > Ry if A < R.;), u is a supersolution of

E
—u" =26, <Log ut =1 )\u2>
u

and ug < Cif E < Eg and ug < C. [ |

We begin the study of the asymptotic behaviour of the flame ball by the case
A > A¢p, for which heat losses are too important and the flame always quenches; this
is a consequence of the following proposition:

Proposition 1.5. Assume X > ..
(1) If the function q is positive on R, the solution of (12) is global andt 1ir+n Rg(t) =0.
—+00

(ii) If q is compactly supported, Rp quenches in finite time.
Proof. (i) Let t. > 0 be such that ¢(t) < ¢/Eq for all ¢ > t., where Ey checks:

€
LogC-I—E—)\CQSU,

the constant C' being defined in the proof of Proposition 1.4. Then, by Theorem 1.3,
we have up < u. for ¢t > t., where u. is the unique solution of

(0 — Oz )Ue = 204—0 <L0g Us + £ Au?) ,

(t..)=C ) "
Us(te,.) = C.

Yet, since C' is a supersolution of the stationnary equation associated to (15), u.
converges towards the greatest zero, smaller than C| of the function:

u = uLog u + & — \u?

as t tends to +o00. For ¢ small enough, this function has a unique zero u.  and
Ue oo — 0 as e = 0. Hence, lim wug(t,z)=0.
| t——+oo
(1) Identical to [2], Proposition 4.2. [ |

We can now turn to the case X subcritical for which we conserve the threshold
phenomenon obtained in [2]; the results are summarized in the following theorems:

Theorem 1.6. Assume A\ < Ao, and ¢ > 0 on R. Then, (11) has a unique global
solution Rg(t) and there exists E..(q) > 0 such that:

Rewvista Matemdtica Complutense 214
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- ZfE < Ecr(q); tkinoo RE(t) =0,

-if E> E..(q), t_l)ig_nooRE(t) = R,
- ZfE = Ecr(q), lim RE(t) = Rl.

t—+o00

Theorem 1.7. Assume X\ < A.. and q is compactly supported, with support ]0,to],
then (11) has a unique solution Rg(t). Moreover, there exists E..(q) > 0 such that:
-if E > E..(q), the previous results hold again.

-if E < E..(q), RE quenches in finite time.

We are firstly going to study the asymptotic behaviour of the radius for small and
high energies. In a second part, the existence and uniqueness of the threshold will be
proved. Since the main arguments of the proof are identical to the case A = 0, we
only present its main lines and the necessary changes.

Let us introduce a family of subsolutions of:
—u'" = 26,—¢(Log u — \u?). (16)
Its only even solutions are the functions
éy(z) = —(Log b — \b?)|z| + b,

and the functions
Qb = max(QSb,U), Ry <b< R, (17)

are compactly supported subsolutions of (16).
Similarly, we get a family of supersolutions of
—u" = 28,-0 (Log u+ 2 — )\UQ)
for any small positive e: the functions
Pp(7) = min(pp, R1), 0<b< Ry, (18)
with:

wp(z) = — (Log b+ % - /\bQ) |z| + b,

and where R, . is the maximal zero smaller than R; of the function u — Log u +
e/u — Mu?. Moreover, these supersolutions are valid again in the case A = A, which
will be useful in the next part.

Let us now begin with the behaviour of Rg for small energies, whose proof, based
on the classical theorem on sub and supersolutions, is omitted.
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Proposition 1.8. (i) If q is compactly supported, there exists Eq > 0 such that for
all E < Ey, the solution quenches in finite time.
(it) Assume q >0 on R’ . Then, there exists Ey > 0 such that VE < Ep,

lim RE(t) =0.

t—+oc

When we are dealing with high energies, a stabilization of the radius is observed.
This behaviour is different from the one described in [2]: because of the heat losses,
the reminder term is all the more important as R(¢) is large, which prevents the flame
from propagating;:

Proposition 1.9. Let g satisfy the assumptions of Theorem 1.2. There exists a
positive energy E, such that, for all E > E1, tliin Rg(t) = R».
—+oo

Proof. We prove that limsupup(t) < Ry as in [2]. The fact that ltignjnf up(t) > R
o0

t—+oo
is based on a two-step argument. We first prove that R(t) is large on a fixed - with

respect to E - time interval. This allows us to use the argument of [2]: at the end of
this time interval, the function u is above a subsolution of

U — Uy = 20,—0(Log u — Iu?),

hence the conclusion using the usual theorem on sub and supersolutions. Let us turn
to the first point.

We can suppose ¢(0) > 0 (if not, we begin from ¢ = ¢ small enough). Let ¢; > 0
be such that q(t) > gmin > 0 on [0,¢1]. Then, Rp > R, solution of:

E min
R=1, (Log R+ qT - >\E2>

on [0,t;]. Yet, by Proposition 1.1, R(t) ~ Rot'/* and this equivalent is only valid as
long as F/R > R?, namely R < E'/3 for instance. In particular, if 0 < v < 1/6,
Jto €]0,t1[ such that R(t) > E?7. Assume the existence of t5 €]tg,#1[ such that
R(ty) = E7. Let us consider R, the unique solution of:

R - 11/2 (Eliﬂy/(QR))

beginning at a time ¢y €]to, t2] and satisfying R(ty) = E7; then,
- | BE1—
R(t) = Vit—1tg,
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and R(t) = w(t,0) with:

B
wt_wmm:(sm—O( ):
w

w(tm,0) = 0.

Also, for v small enough, if 0 < R < E??, then

Eqmin E177

Log R+ —//—" _ \R* > )
%6t R = 3R

Thus, B > R on lte,t1] which is impossible here. Indeed, 0;R(t2) < 0 whereas
Ot R(t2) > 0. Hence, R(t) > E7 on [t1/2,t1] for ug(t,z) > min(E*?, w(t,z)). [
Remark. If A depends on the time and if there exists Ay, Ay such that: 0 < A\; <
A(t) < Xa < Mg, then, for sufficiently large energies, R} < R(t) < R3, where R} is
the greatest critical radius associated to \;. In particular, the flame does not quench.
We thank G. Joulin for pointing out to us this consequence.

The remaining of the study of the case A < A, is the same as in [2]: let us consider
the sets:
X ={E> O,tlg_nocRE(t) = Ry}

X_={E >0, lim Rg(t) =0 or Rr quenches in a finite time}.
t—+00

Proposition 1.10. The sets X and X_ are open subsets of R .

This fact follows from the two following results. The first one is a consequence of
the non-increase of the zero number theorem - see [1] - which does not depend on the
particular stucture of the nonlinearity:

Theorem 1.11. Let E > 0. For any t > 0, the function © — ug(t,x) — Ry vanishes
at most twice on R.

The proof is the same as in [2]. We deduce from this theorem a characterization of
X _ when ¢ is compactly supported.

Proposition 1.12. Let us assume that q is compactly supported, of support (0,t).
Then,
Ee X_ & Tty > g, RE(t) < R;.

Proposition 1.10 implies, by connectedness of R’ , that Xo = R} \ (X UX_) # 0.
In order to study this set Xy, let us introduce, for every Lipschitz function ug, square-
integrable, the w-limit set of uo with respect to (13):

w(ug) = {1 € C*(RYL UR" ), ¥ # 0 such that 3t, — 400/ nli)riloou(tn, )=} (19)
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This w-limit set is characterized in the following proposition:

Proposition 1.13. Assume w(0) # (). Then, there exists 1) € w(0) such that:
(1) either ¢ = Ry,

(i1) or ¢¥(x) > Ry for all z € R,

(iii) or v(x) < Ry for all x € R.

If the first case is true, S(t)¢ will converge to Ry, wich is our claim. Let us then
prove that the two other cases are impossible. For any positive fixed L, we consider
Sp,(t), the semi-group associated to the equation:

Up — Ugpy = 20,—0(Log v — Mu?), z €] — L, L], (110)
u(t,=L) = Ry, u(0,2) = ug(x).

Proposition 1.14. There exists Ly > 0 such that for all L > Lo, Si(t) has two
fized points: the unstable solution Ry and a stable solution 1/% > Ry. Moreover,
lim ¢} = Rs. Finally, let ug € C'([—L,L]) an even function checking uo(£L) =

L—+o0

Ry and ug(0) # Ry. If ug > Ry, Sp(t)ug — 1} on every compact subset of | — L, L.

This proposition applies when the function ¢ is compactly supported; when ¢ is
positive on R’ , we have to look at the stability of the semi-group Sg (), generated
by the problem:

E
Up — Ugy = 20,—0 (Log u+ Tq — )\u2> ,
U(t, :*:L) = Rl,

where € > 0, and we obtain a result similar to Proposition 1.14. With these tools,
we can then prove that the set Xg is reduced to a unique point R.. and that the
assertions (ii) and (7i7) of Proposition 1.13 are impossible; thus,

lim REcr (t) = Rl.
t——+oc
To prove Theorems 0.1 and 0.2, it remains, in the case of a compactly supported
function ¢(t), to make more precise the behaviour of Rg near its quenching point: let
[0, 0] be the support of q.

I_.emma 1.15. Let tya, be the quenching time. There exists t1 €]to, tmax| sSuch that
Rg(t) <0 for t €]t1, tmaz|.

This lemma is proved in [2]; we just recall its main steps. Either u(t,.) converges
uniformly on every compact subset of R’ , or there exist ¢ > 0, a sequence ,, converg-
ing to tmaz, and zg > 1 such that u(t,,zo) > . In this case, parabolic regularity and
the nonincrease of zero number theorem allow us to conclude. Otherwise, u(t,.) — uso

ast — tyae. Therefore, u — 0 on every compact subset of R} . We thus can extend u
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by 0 for ¢ > .42, and we have a contradiction using Holmgren’s uniqueness theorem.
This lemma implies that, if the flame quenches in a finite time ¢4, . litm Rg(t) =0.
—

maz

We have thus proved the dynamics of the model in case of non-critical heat losses.

2. Long-time behaviour of the flame for critical heat losses: proof of The-
orem 0.3

We now study the asymptotic behaviour of the radius when A = A.,.. Let us notice
that the behaviour of the function ¢ plays a fundamental role here, as opposed to the
previous part. Indeed, when A # A.., we only needed ¢(t) — 0 as ¢ — +o0 to prove
the desired results; it will not be the case anylonger here. Let us first examine the
case ¢ = Ot (t7%), where a > 1/2; we will prove the second point of Theorem 0.3
later.

Lemma 2.1. When XA = A, under the assumptions of Theorem 0.3 (i), if q(t) =
o(1/+\/t), there emists t, — +oc such that R(t,) — 0.

Proof. This directly comes from the integro-differential equation (11).

Indeed, suppose the result is false. Then, R(t) is bounded away from 0 for ¢
sufficiently large, and since ¢ € L; (R, ), and Log R — \..R? < 0 for any R > 0,

E E
R=1 <Log R+ fq - )\CTR2> < I (%) = 0400(1),

which contradicts our assumption. [ |

Therefore, the proof of Proposition 1.5 can be applied again when ¢ is compactly
supported, since Log C' — AC? < 0 for any positive constant C.

When the function ¢ is positive on R* , this proof is no longer valid. Let us
examine the w-limit set w(0). We want to get w(0) # 0. Yet, some results of the
previous part (A < A..) are still true; we conserve Theorem 1.11 about the number
of zeroes of ug — R, and the characterization of X _ when ¢ is compactly supported
(Proposition 1.12). Lemma 1.15 about the behaviour of the flame near its quenching
point holds again. This implies the equivalent of Proposition 1.13:

Proposition 2.2. Assume A = \¢p and w(0) # 0 (where w(ug) is defined in (19)).
Then, there exists 1 € w(0) such that:

(i) either v = R..,

(13) or Y(x) < Rep for all x € R.

Because of Lemma 2.1, R., ¢ w(0), and the second assertion is false:

Lemma 2.3. Assume w(0) # 0. There cannot exist 1) € w(0) such that (z) < Rep
for all x € R.
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Proof. Let us consider ¢ € w(0) such that ¢ (z) < R, for all x € R. Then, S(t)¢ is
solution of the problem:

u(0,.) = ¢,

and Proposition 2.2 implies that S(¢)y — 0 as ¢ — +oc. Then, for ¢ > 0 small
enough, there exist b < R.,. and ¢ sufficiently large so that:

{ut — Uy = 20,—0(Log u — Mu?),

Eq(t) < e for all t > to,

and
up(to, ) < gy(x) for all x € R,

where P, was defined in the previous part as a supersolution of
—u" = 28,—o(Log u — Agu?).
We can then conclude as in Proposition 1.5 that the flame quenches. [ |

In the remaining part of this section, we are going to prove the second point of
Theorem 0.3. Firstly, it will be seen that for sufficiently high energies, if ¢(t) = 1/v/t
for instance, the flame stabilizes to R... Then, we will obtain a threshold phenomenon,
similar to the one described in the previous part, and we will end by the proof of the
estimate on the critical energy.

Lemma 2.4. Let q(t) = 1/\/t. There exists Ey > 0, such that, for all E > Eq,
lim R(t) = Rep.

t—+o0

Proof. Let us write the diffusive formulation (12) in the similarity variables (7, 7),

given by:
x

t+1’

r=Log (t+1), n=
when q(t) = 1/+/t. There holds:
ur + Lu = 20,—¢ <(eT/2 —1)(Log u — Aepti) + %) ,
u(0,.) =0,

where £ denotes the differential operator:

N
£ - _6"7"7 - 5677
As in the previous part, we are going to use a subsolution compactly supported of:
T/2 2 E
Ur + Lu =250 | (€77 —1)(Log u — Aepu”) + — | . (22)
u
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The function
E

n 2
e " My
RCT‘ 0

v(n) = Rer —

is a stationary solution of (22), so that:

n
7(n) = max <0,RCT— E / 6“2/4dx)
Rer Jo

- cr

is a compactly supported subsolution of (22) when E > R2.\/T = ey/7. As in the
proof of Proposition 1.9, we can estimate u from below by v for E sufficiently large,
and we conclude easily that uv — R, as 7 — +oc. [ |

Then, there exists E..(q) > 0 such that:
-if E < E.(q), lim R(t)=0.
t——+oc

-if E > E.(q), tiiinoc R(t) = R.,.

Proposition 2.5. When q(t) = 1/v/t and X = X\, we have E.. > e\/7.

Proof. It directly follows from the fact that the stationary solution «y of (22) is
positive for E < R?.\/7. |

To end the proof of the asymptotic behaviour of the radius, we will need the
following lemma, consequence of the non-increase zeroes number [1]

Lemma 2.6. For any t > 0, the function n — ug(r,n) —v(n) has at most two zeroes
on R.

In particular, since v is a subsolution of (22), we have:

Proposition 2.7. If there exists to > 0 such that Rg(to) > R.,, then, for any t > to,
RE(t) > Rer.

We conclude the proof of Theorem 0.3 (ii) with the following proposition:

Proposition 2.8. If Rg(t) — R. as t — +oo, there exists to > 0 such that
RE(tO) > Rcr-

Proof. Let E > 0. Let us suppose that Rg(t) = R, as t — +oo and that Rg(t) <
R, for any t > 0. Let us first notice that, when 7 is sufficiently large, the functions:

7(\ C_—/ 71/4dﬂf

are supersolutions of (22), for any C €]C_, C. [, with C_ = \/E\/m and C; = (R +

VR2, + E+/m)/2. Then, there exist 7o > 0 and C > 0 such that ug(r,n) < 7-(n) for
any 1 € R, and, for any 7 > 79,

up(T.n) < 7o (n)-
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In particular R., ¢ w(0). Therefore, the flame quenches. [ |

Remark. If we search formally an equivalent of R — R., under the form Ct~1/4,

Propositions 2.7 and 2.8 imply that:

~ )

E R..\ 1
t) — Rep ~
R(t)— R e <Rcr - )

3. Asymptotic behaviour of the flame in the quenching case

This section is devoted to the proof of Theorem 0.4. Let us begin it by the
quenching in finite time: we study the diffusive formulation in the similarity variables

(1,m), where:
7= —Log (tmaw —1); 1 = ——a. (31)
tmam —t

Let (0,tp) be the support of ¢. Then, for any ¢ > to, the diffusive formulation can be
rewritten under the form:

(87+£+%) ug =0, n >0,
Oyup(7,0) = —e~7/?(Log up(r,0) — Aug(r,0)?)

and since ug(7,0) — 0 as 7 — 400, we are therefore led to considering the problem:

1
<BT+£+§>uE=O, n >0,
Oyup(r,0) = —e~"/?Log up(r,0),

(32)

where £ is the differential operator:

n 1
L=—0p+ 5877 — 5
If we search solutions of (32) under the form: e~7/2(r¢(n) + (1)), there holds:

£¢: 0: £1/) = _¢7
7¢/(0) +v'(0) = 3 — Log (76(0) +(0)).

This imposes ¢(0) = 0 and the solutions of this problem can be calculated explicitely,
and we get:

n
2’ ,
n ]_ ]_ n " 7
o) = Y=~ log ﬁ+n/ 1t / )/ g
2 2 o\ 2 \ U

+00
+/ (6(_77//2_7]/2)/4 _ 6_7]”2/4)dnll>> d,’,,’
0
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In the following, we are going to look for ug(7,n) under the form:
up(r,n) = e 7 (7¢(n) + $(n) + v(7,0)),
where the function v checks:

v+ Lv=0,n>0,

vy(7,0) = —Log (1 + %\;%0» _ (33)

Our goal is to prove that v(7,0) = O(e~“") for some w > 0. First, we will prove that
v(1,0) is bounded away from —Tﬂ; then, we will verify that v(7,0) — 0 as 7 — +oc,

and we will conclude by a stability argument.

Lemma 3.1. The quantity v(r,0) is bounded away from _777.
Proof. Since ug(r,n) > 0, we already know that v(7,0) > 5

JF

that v(7,0) # —Tﬂ-: let us set h = v,. Then,

. We have to prove

_ h(r,0)
hy + Lh =46, T

nr.) =04 0), - oo,

The nonincrease of the zero number theorem can be applied once again to the function
h; yet, h(r,n) — oo as 7 — +oc and this number of zeroes is finite and nonincreas-
ing. Since the function h is odd, the sign of h(7,0) is constant for large times, so that
v(7,0) converges to some value U. Let us prove that v > —g. To do so, we define
o(1) = v(1,0) and w(r,n) = v(1,17) — @(7). Then, the function w is solution of the
problem:
"2 .
wy +Lw == —¢, n>0,
g ~ (34)
w(r,0) = 0.
To study this prololem, we are going to examine the decomposition of w in L%(]&.),
where p(n) = e~ /* and
Ly(I) = {u € Li,(I), pu € L*(I)}

for any unbounded interval I of R. The eigenvalues of £ in L>(R;. ) are Ay = (k—1)/2,
k € N, and the corresponding simple eigenfunctions are ey (n) = Hy(n/2), where Hj,
is the k' Hermite polynomial. In L2(R, ) with scalar product:

+oc
(ufv) = 2 / w(n)o(m)e="""dp,
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the eigenvalues of £ with Dirichlet conditions are p; = Asg41, and the eigenfunctions
are €, = eg4+1. In particular,
_ 1
éo(n) = 27T—1/477-
If we express w in this basis:
w(r,n) =Y wi(7)éx(n), (35)

k>0

the functions w;, are solutions of the differential equations:

i+ e = (5 = ) (@), (36)
so that:
wn(r) =@+ [0 (B gy w60
0
, _ VT
Assume now that TEIEOC o(r) = 5 Then,
/4

wo(T) = ——5 T + O(1) and wg(7) = O(1)(éx|1) when k > 1.

These estimates imply:

w(r,n) = =30+ 0(1),

and then, there holds, in the L2(R, ) sense:

ur(rn) = (“Lm - T o))

in contradiction with the non-negativity of ug. Therefore, 7 > —\/7/2. [ |

An immediate consequence of this lemma is that there exists some k > 0 such
that up(r,0) > ke~7/2, hence the inequality:

|Log ug(r,0)| < 1/2+C (38)

for some C' > 0, which is the main tool of the following lemma:

Lemma 3.2. There exists C > 0 such that:

lo(7,0)] < C(1+ 7).
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Proof. Let us expand ug in L2(R):

up(T,m) = uk(r)ex(n).

k>0

Problem (32) can be rewritten under the form:
1
<BT + L+ 5) up = 20,—oLog ug(t,0),
which implies the following equations on the functions wy,:

1
g + (Ak + 5) uy = 2~ 7/?Log ug(r,0)ex(0). (39)

Then,
ug (1) = uk(O)e*(MH/?)T n 2/T 67()\;6+1/2)(770)670/2L0g u(,0)do ey, (0).
0
If k£ > 0, by the inequality (38), there holds u(7) = O(7). If k=0,
uo(T) = u(0) + 2 /OT e~ "?Log ug(0,0)do eg(0) = O(1),

which implies the expected result. [ ]

Proof of Theorem 0.4. Let us set h = v;, T = ¢(+00), with ¢(r) = v(r,0). We are
firstly going to prove that v = 0.

Case 1: ©# 0 and T # +oc.
Applying the same technique as in the proof of Lemma 3.1, based on the decomposi-
tion of w in L3(Ry ), we get:

. vTn
w(r) = NG +0(1).
Hence, _
w,(7,0) = ;i;% +0(1) (310)

for large times. On the other hand, the boundary condition in (33) implies:

lim w,(r,0) = -Log |1+ p

(1+277)

The signs of the quantities in (310) and (311) are different, hence a contradiction.

(311)
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Case 2: U = +o¢
Let us expand v in L2(R):

o(r.n) = 3 wr)en(n).

k>0

Because of the differential problem checked by v,

T 2
v (1) = e M)y () + 2/ e M (T og (1 + u(r, O)> do e (0)

70

> e Mw(T7T0)/ 2 ()

for some 15 > 0 sufficiently large. Yet,
I e
vo(To) = (€olv(70)) = —= e " Fo(ro,n)dn.

V2m ) s

Since v = +o00, the function vg(79) is positive for 75 large enough and v grows at least
like e7/2, contradicting Lemma 3.2.

Therefore 7 = 0, and problem (33) can be rewritten as:

vr+ Lv=0,n>0,
_ 2u(7,0)

Un (Tz O) - \/7—1_

This allows us to use a stability argument. Indeed, there does not exist any function
¢, solution of

+ O(v(1,0)%).

2¢(0)
VT
Then, the spectrum of the linearized operator around the null solution does not

contain 0, and we end the proof by applying a stable manifold argument in L%(]R) -
see [8] -, since the nonlinear terms are only localized at one point. |

Lo=0, ¢'(0)=-

We have thus proved the asymptotic behaviour of the radius of the flame when
it quenches in finite time. Let us now go on with studying the quenching in infinite
time. In the remaining of this section, the function f will denote the solution of the
equation:

fLog f+ Eq = 0. (312)

The proof of Theorem 0.4 (i7) will be given when A = 0: it is the same for any A > 0.

Lemma 3.3. Let us assume that q is positive and smooth on R, and that the flame
quenches. Then, there exists to > 0 and Cy,C> > 0 such that C1f(t) < u(t,0) <
Cof (t) for all z € R, t > to.
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Proof. Let us pick 79 > 0. The function f can be seen as the trace at z = 0 of the
function v, where:

Ut = Ugg = 25m:061/2fa
v(70,.) = f(70).

There exists Co(7g) > 1 such that u(rp,.) < Caf(70) when 7 is sufficiently large.
Moreover, let w = u — v. Then, there holds:

E
Wt — Wegy = 25:10:0 (LOg (U +U)) + U—q - 81/2]“) 3

+w (313)

w(ro,.) < 0.

Because of the smoothness of ¢ and the fact that f — 0, the quantity:
Log Cy — . 1) Log f—01,of
g L2 Cs g 1/2

is negative for Cy large enough, and 0 is a supersolution of (313). Therefore, u(r,.) <
Cy f(7) for any 7 > 79.
Moreover, the function

n 2
v(7,n) = max <le(7) - K/O e ” /4dx,0>

is a subsolution of (33) for any K > 0 and C; > 0; since there exists K > 0, C; > 0
such that v(79,7) < u(70,7), we have:

y(m,n) <u(r,n) for any 7> 10, 1 € R,

which ends the proof of this lemma. [ |
u(t, x)

Proof of Theorem 0.4 (iz): Let w(t) = D)

— 1. Then,

fi
!

Let us notice that, because of the lemma above, there exists C' > 0 such that w < w,
where:

W — Wey + =14+ w) = %@:0 <Log (1+w) + Log f(t)H_Lw> .

which yields:
" i)

012w(t,0) = Cw(t,0) + 7= . W

ds. (314)
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For ty sufficiently large, the smoothness of the function ¢ implies that

1 t ft(S)

f(® ———ds » 0ast— +oc.

B ﬁ to f($)VE—s
Applying the Laplace transform to (314), we get:
wW(t,0) = H % f, where H = O(min(t~'/2,t73/2)),

so that w(t,0) — 0 as t — +o0.
In the same manner, we can see that w > w, with w(¢,0) — 0 as ¢ — +oo, and
u(t,0) ~ f(t) as claimed. [ |

4. Asymptotic behaviour of the flame in case of stabilization

Let us begin this last section by the study of the case A < A, for which the flame
stabilizes to Ry or R», depending on whether E is equal or above E..(q). Since R
is an unstable fixed point, we cannot use as previously a stability argument, and the
proof of Theorem 0.5 will be based upon the integro-differential equation (01). Let us
just notice that this proof is also valid for the stabilization towards the stable fixed
point R,. In the following, we assume A < Ao, and R(t) converges to R; (i =1,2) as
t — +oc.

Lemma 4.1. If there exists some k € R such that R(t) — R; = kt =/ 4 o(t~1/?),

then:
R\/m

STV

Proof. We look formally for an equivalent of R(t) — R; under the form kt—'/2. It has
been assumed that there exists a > 1/2 such that ¢(t) = O(t~%); and so, for large

times,
Eq b ds B(a—1,1/2) < 1 )
I — | <C =C : = — .
1/2 < R ) — 0 s/t — s ta71/2 0 \/Z
On the other hand,

"Log (R; + ks /%) — \(R; + ks*1/2)2d8

11/2(L0g R - >\R2) ~ /

0 m(t —s)
/t (k/R; — 2AR;k)s~'/? "
0 7T(t — s)
k(1 — 2\R?)
~ Tﬁ
hence the desired result. [ |
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Lemma 4.2. There exists some k € R such that

R(t) — R; = kt~'/% 4+ o(t71/?).

Proof. Let us pick tg > 0. Then, for any t > ¢,

N 1 ["Log R(s) + Eq(s)/R(s) — AR(s)*
L t—s

where T is the heat semi-group. This comes from the diffusive formulation (12).

Let us set p(t) = R(t) — R;. In the sequel, we are going to estimate p, using the
integro-differential equation (41). Since R(t) — R; as t — 400 and

R(t) = T(t — to)u(te)(0) ds,  (41)

Log R—AR>=x(R—-R;)+ f(R— R;) as R — R;,

1
with y = Y 2)\R; and f(R — R;) = O(R — R;)?, (41) implies:

(]

1 o1 Eq
t) =T(t—to)u(to)(0) + —= —_ — | ds.
,0() T( 0)“(0)()+ﬁ tom<xp+f(p)+ R> 8
From now on, we will write for any function f:
Lo["f(s)
I =— d
el = ) et

even if it is not the real Abel integrator. Let v € C§°(R’ ) such that v(to) = p(to).
Setting p := p — v and g(t,p) = f(p — ) — f(—7), there holds:

E
p=xIij2p+ I 2(9(p)) + I 2 <fq + f(=v) — xv) +v = Ri + T (t — to)u(to)(0).
Let us define:

6= Tl = wulta)© + s (2L + 1) = x7) +7 - .

Then,
p=xli2p+ 112(9(p)) + ¢. (42)

Since p(tg) = 0 and g(p(to)) = 0, taking the half derivative and the derivative of (42),
then adding the two equations, we get:

01720 = xp + g(p) + 0120, (43)

p = X020+ 01/29(p) + &', (44)
p=x"p+01,29(p) + x9(p) + ¢ + x01 20. (45)
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Yet, there exists kg > 0 such that:

—1/2 —1/2 d ko —3/2 —3/2
T(t=to)u(to)(0) = kot */?+o(t™/?) and 2T (t=to)u(to) (0) =~ **+o(t ¥/2).

Moreover, since 7 is compactly supported and because of the assumption on the
asymptotic behaviour of ¢, there exists ki, k> € R such that:

ujap = kit™"/% + o(t™"/2) and ¢ = kat™'/? + o(t71/?).

Let us look at the quantities g(p) and d;/29(p). On the one hand, we have g(p) =
O(p?) for large times, so that there exists €; > 0 such that |g(p)| < e1|p| for to large
enough. On the other hand,

(t
Br29(p) / pg'(t, p) p
\/_ Vi—s
Parabolic regularity - see [10] - applied to (42) implies that p(¢t) — 0 as t — +oc.

Moreover, ¢'(p) = O(p) for ¢ large enough, and therefore, there exists £2,£5 > 0 such
that:

|01/29(p)| < €2|01 /2p]
S 53|p| + k3t—1/2 +O(t_1/2)

by (43). Finally, there exists ¢ > 0 and k € R such that:
16— (" —e)pl < (k+e)t™'/?,

hence the expected result. [ |

5. Generalizations

In this part, we are dealing with a generalization of the study we have done just
above. We are going to treat parabolic equations of the following type:

Ut—Umszz:o (f(u)-l'EqT(t)) :EE]Ra

u(0,.) =0,

(51)

where f is polynomial, and negative at z = 0. We recover on such an equation a
similar threshold phenomenon to the one described just above with the example of
the spherical flame. In particular, there exist critical energies, and the dynamics of
equation (51) will depend on the different positive zeroes of f. Let us denote them
by 1 < -+ < zp.

We can prove easily that z;, x3, ..., xap11, ... are unstable solutions, and that
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the critical energies are associated to these zeroes: if E = E* . then, tlim u(t,0) =

—+00
Topr1. If B < El | the solution will quench - in finite time if ¢ is compactly supported
- in infinite time otherwise. If E¥"! < E < Ek | then u(t,.) will converge to the stable
solution zo;. Indeed, a mere adaptation of Proposition 1.9 yields the existence of a
small closed interval of energies such that u(t,0) converges towards the zero xay; the
remaining of the proof is analogous.

From now on, let us restrict our attention to the case £ > E£€/2]. The asymptotic
behaviour depends now on the number of zeroes of f: if this one is even (p = 2q), as
in the case treated in this paper, the largest zero is a stable solution; and if E > EY,,
then t_l)ig_noou(t, 0) = 22,. More interesting is the case where the number of positive
zeroes of f is odd: in [2] is studied equation (51) with f(u) = Log w; it is not a
polynomial function as the one we are dealing with in this part, but it gives an idea of
what can happen, namely the propagation of the solution: u(t,0) — +oc as ¢ tends to
+00. Nevertheless, (51) has been studied in [11] and [14]; they proved that blow-up
occurs when the growth of f is at least quadratic. When f has linear growth, we get
the same behaviour as in [2], namely we have global existence and u(t,0) — +oc as
t — +oc.
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