Skip to main content
Log in

Abstract

We present explicit formulas for the following family of parametric binomial sums involving harmonic numbers for \(p=0,1,2\) and \(|t|\le 1\).

$$\begin{aligned} \sum _{k=1}^{\infty }\frac{H_{k-1}t^k}{k^p\left( {\begin{array}{c}n+k\\ k\end{array}}\right) } \quad \text{ and }\quad \sum _{k=1}^{\infty }\frac{t^k}{k^p\left( {\begin{array}{c}n+k\\ k\end{array}}\right) }. \end{aligned}$$

We also generalize the following relation between the Stirling numbers of the first kind and the Riemann zeta function to polygamma function and give some applications.

$$\begin{aligned} \zeta (n+1)=\sum _{k=n}^{\infty }\frac{s(k,n)}{kk!}, \quad n=1,2,3,\ldots . \end{aligned}$$

As examples,

$$\begin{aligned} \zeta (3)=\frac{1}{7}\sum _{k=1}^{\infty }\frac{H_{k-1}4^k}{k^2\left( {\begin{array}{c}2k\\ k\end{array}}\right) }, \quad \text{ and }\quad \zeta (3)=\frac{8}{7}+\frac{1}{7}\sum _{k=1}^{\infty } \frac{H_{k-1}4^k}{k^2(2k+1)\left( {\begin{array}{c}2k\\ k\end{array}}\right) }, \end{aligned}$$

which are new series representations for the Apéry constant \(\zeta (3)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adamchik, V.: On Stirling numbers and Euler sums. J. Comput. Appl. Math. 79, 119–130 (1997)

    Article  MathSciNet  Google Scholar 

  2. Alzer, H.: A fundamental inequality for the polygamma functions. Bull. Aust. Math. Soc. 72, 455–459 (2005)

    Article  MathSciNet  Google Scholar 

  3. Amghibech, S.: On sums involving binomial coefficients. J. Integer Seq. 10 (2007) (Article 07.2.1)

  4. Andrew, M.R.: Sums of the inverses of binomial coefficients. Fib. Q. 19, 433–437 (1981)

    MathSciNet  Google Scholar 

  5. Batir, N.: Remarks on Vălean’s master theorem of series. J. Class. Anal. 1(23), 79–82 (2018)

    Article  Google Scholar 

  6. Bendt, B.C.: Ramanujan’s Notebooks, Part I. Springer, Heidelberg (1985)

    Book  Google Scholar 

  7. Blagouchine, I.V.: Two series expansions for the logarithm of the gamma function involving Stirling numbers and containing only rational coefficients for certain arguments related to \(\pi ^{-1}\). J. Math. Anal. 442, 404–434 (2016)

    Article  MathSciNet  Google Scholar 

  8. Briggs, W.E., Chowle, S., Kempner, A.J., Mientka, W.E.: On some infinite series. Scripta Math. 21, 28–30 (1955)

    MathSciNet  MATH  Google Scholar 

  9. Comtet, L.: Advanced Combinatorics. R. Reidel Publishing Company, Dordrecht (1974)

    Book  Google Scholar 

  10. Daǧlı, M.C.: Closed formulas and determinental expressions for higher-order Bernoulli and Euler polynomials in terms of Stirling numbers. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ses. A Mat. RACSAM 115(1) (2021) (Paper No. 32)

  11. De Doelder, P.J.: On some series containing \(\psi (x)-\psi (y)\) and \((\psi (x)-\psi (y))^2\) for certain values of \(x\) and \(y\). J. Comput. Appl. Math. 37, 125–141 (1991)

    Article  MathSciNet  Google Scholar 

  12. Duren, P.: Invitation to Classical Analysis. American Mathematical Society, Providence (2012)

  13. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics, 2nd edn. Addison-Wesley, New York (1994)

    MATH  Google Scholar 

  14. Gun, D., Şimşek, Y.: Some new identities and inequalities for Bernoulli polynomials and numbers of higher order related to the Stirling and Catalan numbers. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ses. A Mat. RACSAM 114(4) (2020) (Paper No. 167)

  15. Hassani, M., Rahimpour, S.: \(L\)-summing method, RGMIA. Res. Rep. Collect. 7(4) (2004) (Article 10)

  16. Jordan, C.: The Calculus of Finite Differences. Chelsa Publishing Company, New York (1947)

    Google Scholar 

  17. Lewin, L.: Polylogarithms and Associated Functions. Elsevier, Amsterdam (1981)

    MATH  Google Scholar 

  18. Kim, T., Kim, D.S.: Extended Stirling numbers of the first kind associated with Daehee numbers and polynomials. Rev. R. Acad. Cienc. Exactas Fis. Nat. Ses. A Mat. RACSAM 113(2), 1159–1171 (2019)

    Article  MathSciNet  Google Scholar 

  19. Sato, H.: On a relation between the Riemann zeta function and the Stirling numbers. Integers (53) (2008)

  20. Shen, L.-C.: Remarks on some integrals and series involving the Stirling numbers and \(\zeta (n)\). Trans. Am. Math. Soc. 4(347), 1391–1399 (1995)

    MathSciNet  MATH  Google Scholar 

  21. Sofo, A.: New families of alternating harmonic number sums. Tbilisi Math. J. 8(2), 195–209 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Sofo, A.: Identities for alternating inverse squared binomial and harmonic number sums. Mediterr. J. Math. 13, 1407–1418 (2006)

    Article  MathSciNet  Google Scholar 

  23. Sofo, A.: Quadratic harmonic number sums. J. Number Theory 154, 144–159 (2015)

    Article  MathSciNet  Google Scholar 

  24. Sofo, A.: Harmonic numbers and double binomial coefficients. Integr. Transforms Spec. Funct. 20(11), 847–857 (2009)

    Article  MathSciNet  Google Scholar 

  25. Sofo, A.: Harmonic number sums in closed form. Math. Commun. 16, 335–345 (2011)

    MathSciNet  MATH  Google Scholar 

  26. Sofo, A.: Summation formulas involving harmonic numbers. Anal. Math. 37, 51–54 (2011)

    Article  MathSciNet  Google Scholar 

  27. Sofo, A.: Second order alternating harmonic number sums. Filomat 30(13), 3551–3524 (2016)

    Article  MathSciNet  Google Scholar 

  28. Sofo, A.: Harmonic numbers of order two. Miscolc. Math. Notes 13(2), 499–514 (2012)

    Article  MathSciNet  Google Scholar 

  29. Sofo, A., Srivastava, H.M.: A family of shifted harmonic sums. Ramanujan J. 37, 89–108 (2015)

    Article  MathSciNet  Google Scholar 

  30. Sofo, A.: Closed form representations of harmonic numbers. Hacet. J. Math. Stat. 39(2), 255–263 (2010)

    MathSciNet  MATH  Google Scholar 

  31. Sofo, A.: General properties involving reciprocals of binomial coefficients. J. Integer Seq. 9 (2006) (Article 06.4.5)

  32. Sondow, J., Weisstein, E.W.: Harmonic number, From Math World: A WolframWeb resources (2020). https://mathworld.wolfram.com/HarmonicNumber.html

  33. Sury, B., Wang, T., Zhao, F.-Z.: Identities involving reciprocals of binomial coefficients. J. Integer Seq. 7 (2004) (Article 04.2.8)

  34. Sury, B.: Sums of the reciprocal binomial coefficients. Eur. J. Combin. 14, 351–353 (1993)

    Article  MathSciNet  Google Scholar 

  35. Terrell, W.J.: A Passage to Modern Analysis. American Mathematical Society, Providence, RI (2019)

  36. Vǎlean, C.I.: A master theorem of series and evaluation of cubic harmonic series. J. Class. Anal. 2(10), 97–107 (2017)

    Article  MathSciNet  Google Scholar 

  37. Xu, C.: Identities for the shifted harmonic numbers and binomial coefficients. Filomat 31(19), 6071–6086 (2017)

    Article  MathSciNet  Google Scholar 

  38. Yang, J.H., Zhao, F.Z.: Certain sums involving inverses of binomial coefficients and some integrals. J. Integer Seq. 10 (2007) (Article 07.8.7)

  39. Zhao, F., Wang, T.: Some results for sums of the inverse binomial coefficients. Integer 5(11), #22 (2005)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous referees for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Necdet Batır.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batır, N. Parametric binomial sums involving harmonic numbers. RACSAM 115, 91 (2021). https://doi.org/10.1007/s13398-021-01025-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01025-3

Keywords

Mathematics Subject Classification

Navigation