Skip to main content
Log in

Second and third order forward difference operator: what is in between?

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In this article, we present a new geometrical notion for a real-valued function defined in a discrete domain that depends on a parameter \(\alpha \ge 2.\) We give examples to illustrate connections between convexity and this new concept. We then prove two criteria based on the sign of the discrete fractional operator of a function u\(\Delta ^{\alpha }u\) with \(2 \le \alpha < 4.\) Two examples show that the given criteria are optimal with respect to the established geometrical notion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

References

  1. Anastassiou, G.A.: Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 51(5–6), 562–571 (2010)

    Article  MathSciNet  Google Scholar 

  2. Atici, F.M., Eloe, P.W.: A transform method in discrete fractional calculus. Int. J. Differ. Equations 2(2), 165–176 (2007)

    MathSciNet  Google Scholar 

  3. Atici, F.M., Eloe, P.W.: Discrete fractional calculus with the nabla operator. Electron. J. Qual. Theory Differ. Equations 3, 1–12 (2009)

    Article  MathSciNet  Google Scholar 

  4. Atici, F.M., Eloe, P.W.: Two-point boundary value problems for finite fractional difference equations. J. Differ. Equations Appl. 17, 445–456 (2011)

  5. Baoguo, J., Erbe, L., Peterson, A.: Convexity for nabla and delta fractional differences. J. Differ. Equations Appl. 21(4), 360–373 (2015)

    Article  MathSciNet  Google Scholar 

  6. Bravo, J., Lizama, C., Rueda, S.: Qualitative properties of nonlocal discrete operators (2020) (Preprint)

  7. Cheng, W., Xu, J., O’Regan, D., Cui, Y.: Positive solutions for a nonlinear discrete fractional boundary value problem with a \(p\)-Laplacian operator. J. Appl. Anal. Comput. 9(5), 1959–1972 (2019)

    MathSciNet  Google Scholar 

  8. Clark, S., Henderson, J.: Uniqueness implies existence and uniqueness criterion for nonlocal boundary value problems for third order differential equations. Proc. Am. Math. Soc. 134(11), 3363–3372 (2006)

    Article  MathSciNet  Google Scholar 

  9. Dahal, R., Goodrich, C.S.: A monotonicity result for discrete fractional difference operators. Arch. Math. 102, 293–299 (2014)

    Article  MathSciNet  Google Scholar 

  10. Dahal, R., Goodrich, C.S., Erratum to: R. Dahal, C.S. Goodrich. A monotonicity result for discrete fractional difference operators, Arch. Math. (Basel) 102: 293–299. Arch. Math. 104(2015), 599–600 (2014)

  11. Dahal, R., Goodrich, C.S.: A uniformly sharp convexity result for discrete fractional sequential differences. Rocky Mt. J. Math. 49(8), 2571–2586 (2019)

    Article  MathSciNet  Google Scholar 

  12. Diaz, J.B., Osler, T.J.: Differences of fractional order. Math. Comput. 28, 185–202 (1974)

    Article  MathSciNet  Google Scholar 

  13. Erbe, L., Goodrich, C.S., Jia, B., Peterson, A.: Survey of the qualitative properties of fractional difference operators: monotonicity, convexity, and asymptotic behavior of solutions. Adv. Differ. Equations 43(1), 1–31 (2016)

    MathSciNet  MATH  Google Scholar 

  14. Ferreira, R.: Calculus of variations on time scales and discrete fractional calculus. Ph.D. Thesis, Universidade de Aveiro, Departamento de Matemática, Brasil (2010)

  15. Gómez-Aguilar, J.F., Rosales-García, J., Escobar-Jiménez, R.F., López-López, M.G., Alvarado-Martínez, V.M., Olivares-Peregrino, V.H.: On the possibility of the jerk derivative in electrical circuits. Adv. Math. Phys. 2016, 9740410 (2016). https://doi.org/10.1155/2016/9740410

    Article  MathSciNet  MATH  Google Scholar 

  16. Gómez, F., Rosales, J., Guía, M.: RLC electrical circuit of non-integer order. Central Eur. J. Phys. 11(10), 1361–1365 (2013)

    Google Scholar 

  17. Goodrich, C.S.: A convexity result for fractional differences. Appl. Math. Lett. 35, 58–62 (2014)

    Article  MathSciNet  Google Scholar 

  18. Goodrich, C.S., Peterson, A.C.: Discrete Fractional Calculus. Springer, New York (2015)

    Book  Google Scholar 

  19. Goodrich, C.S.: The relationship between sequential fractional differences and convexity. Appl. Anal. Discr. Math. 10(2), 345–365 (2016)

    Article  MathSciNet  Google Scholar 

  20. Goodrich, C.S.: A note on convexity, concavity, and growth conditions in discrete fractional calculus with delta difference. Math. Inequalities Appl. 19(2), 769–779 (2016)

    Article  MathSciNet  Google Scholar 

  21. Goodrich, C.S., Lizama, C.: A transference principle for nonlocal operators using a convolutional approach: fractional monotonicity and convexity. Isr. J. Math. 236, 533–589 (2020)

    Article  MathSciNet  Google Scholar 

  22. Goodrich, C.S., Lizama, C.: Positivity, monotonicity, and convexity for convolution operators. Discrete Contin. Dyn. Syst. Ser. A. 40(8), 4961–4983 (2020)

    Article  MathSciNet  Google Scholar 

  23. Gottlieb, H.P.W.: Question #38. What is the simplest jerk function that gives chaos? Am. J. Phys. 64(5), 525 (1996)

    Article  Google Scholar 

  24. Gottlieb, H.P.W.: Harmonic balance approach to periodic solutions of non-linear Jerk equations. J. Sound Vib. 271(3–5), 671–683 (2004)

    Article  MathSciNet  Google Scholar 

  25. Gottlieb, H.P.W.: Harmonic balance approach to limit cycles for nonlinear Jerk equations. J. Sound Vib. 297(1–2), 243–250 (2006)

    Article  MathSciNet  Google Scholar 

  26. Gray, H.L., Zhang, N.F.: On a new definition of the fractional difference. Math. Comput. 50(182), 513–529 (1988)

    Article  MathSciNet  Google Scholar 

  27. Holm, M.T.: The theory of discrete fractional calculus: development and applications, Ph.D. thesis, University of Nebraska (2011)

  28. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  29. Krasniqi, Xh Z.: On \(\alpha \)-convex sequences of higher order. J. Numer. Anal. Approx. Theory 43(2), 177–182 (2016)

    MathSciNet  MATH  Google Scholar 

  30. Krasniqi, Xh. Z.: On two-\(alpha\)-convex sequences of order three. Acta Math. Univ. Comenianae, vol. LXXXVII, no. 1, pp. 73–83 (2018)

  31. Kuttner, B.: On differences of fractional order. Proc. Lond. Math. Soc. 3, 453–466 (1957)

    Article  MathSciNet  Google Scholar 

  32. Liu, C.-S., Chang, J.-R.: The periods and periodic solutions of nonlinear jerk equations solved by an iterative algorithm based on a shape function method. Appl. Math. Lett. 102, 106151 (2020)

    Article  MathSciNet  Google Scholar 

  33. Lizama, C.: The Poisson distribution, abstract fractional difference equations, and stability. Proc. Am. Math. Soc. 145, 3809–3827 (2017)

    Article  MathSciNet  Google Scholar 

  34. Ma, X., Wei, L., Guo, Z.: He’s homotopy perturbation method to periodic solutions on nonlinear Jerk equations. J. Sound Vib. 314, 217–227 (2008)

    Article  Google Scholar 

  35. Miller, K.S., Ross, B.: Fractional difference calculus. Proceedings of the International Symposium on Univalent Functions, Fractional Calculus and Their Applications, Nihon University, Koriyama, pp. 139–152; Ellis Horwood Ser. Math. Appl., Horwood, Chichester (1989)

  36. Ortigueira, M.D., Coito, F.J.V., Trujillo, J.J.: Discrete-time differential systems. Signal Process. 107, 198–217 (2015)

    Article  Google Scholar 

  37. Rauch, L.L.: Oscillation of a third-order nonlinear autonomous system. In: Lefschetz, S. (ed.) Contributions to the Theory of Nonlinear Oscillations. Annals of Mathematics Studies, vol. 20, pp. 39–88. Princeton University Press, Princeton (1950)

  38. Sengul, S.: Discrete fractional calculus and its applications to tumor growth, Master thesis, Paper 161. http://digitalcommons.wku.edu/theses/161 (2010)

  39. Shohat, J.A., Tamarkin, J.D.: The Problem of Moments. American Mathematical Society, New York (1943)

    Book  Google Scholar 

  40. Singha, N., Nahak, C.: \(\alpha \)-fractionally convex functions. Fract. Calc. Appl. Anal. 23(2), 534–552 (2020)

    Article  MathSciNet  Google Scholar 

  41. Sprott, J.C.: Some simple chaotic jerk functions. Am. J. Phys. 65, 537–543 (1997)

    Article  Google Scholar 

  42. Stirangarajan, H.R., Dasarathy, B.V.: Study of third-order nonlinear systems-variation of parameters approach. J. Sound Vib. 40(2), 173–178 (1975)

    Article  Google Scholar 

  43. Widder, D.V.: An Introduction to Transform Theory. Academic Press, New York (1971)

    MATH  Google Scholar 

  44. Xu, J., Goodrich, C.S., Cui, Y.: Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. 113(2), 1343–1358 (2019)

    Article  MathSciNet  Google Scholar 

  45. Xu, J., O’Regan., D.: Existence and uniqueness of solutions for a first-order discrete fractional boundary value problem. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat 112(4), 1005–1016 (2018)

    Article  MathSciNet  Google Scholar 

Download references

Funding

J. Bravo is supported by ANID-PFCHA/Doctorado Nacional/2019-21190764. C. Lizama is partially supported by FONDECYT grant number 1180041. S. Rueda is supported by ANID-PFCHA/Doctorado Nacional/2017-21171405.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Lizama.

Ethics declarations

Conflict of interest

The authors declare that there is no conflicts of interest/competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravo, J., Lizama, C. & Rueda, S. Second and third order forward difference operator: what is in between?. RACSAM 115, 86 (2021). https://doi.org/10.1007/s13398-021-01015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01015-5

Keywords

Mathematics Subject Classification

Navigation