Skip to main content
Log in

Abstract

We prove that if \(1\le p<q,r<\infty \) are such that \(\frac{1}{p}=\frac{1}{q} +\frac{1}{r}\) then, each \(\left( r,p\right) \)-dominated (or \(\left( p,r\right) \)-dominated) operator \(U:X\times Y\rightarrow Z\) has the multiple splitting property: for every \(\left( x_{i}\right) _{1\le i\le n}\subset X\), \(\left( y_{j}\right) _{1\le j\le m}\subset Y\), there exists \(\left( \lambda _{i}\right) _{1\le i\le n}\subset {\mathbb {K}}\), \(\left( \nu _{j}\right) _{1\le j\le m}\subset {\mathbb {K}}\) and \(\left( z_{ij}\right) _{1\le i\le n;1\le j\le m}\subset Z\) such that

$$\begin{aligned} U\left( x_{i},y_{j}\right) =\lambda _{i}\nu _{j}z_{ij}\text { for }1\le i\le n,1\le j\le m;\text {\ }l_{r}\left( \lambda _{i}\right) \le 1, \, l_{r}\left( \nu _{j}\right) \le 1;\, \end{aligned}$$

and

$$\begin{aligned} w_{q}\left( z_{ij}\mid 1\le i\le n;1\le j\le m\right) \le Cw_{p}\left( x_{i}\mid 1\le i\le n\right) w_{p}\left( y_{j}\mid 1\le j\le m\right) \end{aligned}$$

where \(C=\Delta _{r,p}\left( U\right) \) (or \(\Delta _{p,r}\left( U\right) \) ). As a corollary we deduce the well known Maurey–Pietsch splitting property in the linear case. As applications we prove new Pietsch’s composition type results for multiple summing operators which have no linear analogue. Further we show that the classical Pietsch composition result and other new composition results for multiple summing operators can be deduced from our multiple splitting property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bombal, F., Pérez-García, D., Villanueva, I.: Multilinear extensions of Grothendieck’s theorem. Q. J. Math. 55(4), 441–450 (2004)

    Article  MathSciNet  Google Scholar 

  2. Defant, A., Floret, K.: Tensor norms and operator ideals. North-Holland Math. Stud. 176, 20 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Defant, A., Pérez-García, D.: A tensor norm preserving unconditionality for \({\cal{L}}_{p}\)-spaces. Trans. Am. Math. Soc. 360(6), 3287–3306 (2008)

    Article  Google Scholar 

  4. Diestel, J., Jarchow, H., Tonge, A.: Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, vol. 43. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  5. Geiss, S.: Ideale multilinearer Abbildungen. Diplomarbeit (1984)

  6. Matos, M.C.: Fully absolutely summing and Hilbert–Schmidt multilinear mappings. Collect. Math. 54(2), 111–136 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Maurey, B.: Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces Lp. Soc. Math. France Astèrisque 11, 120 (1974)

    MATH  Google Scholar 

  8. Pellegrino, D., Santos, J., Seoane-Sepúlveda, J.B.: Some techniques on nonlinear analysis and applications. Adv. Math. 229(2), 1235–1265 (2012)

    Article  MathSciNet  Google Scholar 

  9. Pérez-García, D.: The inclusion theorem for multiple summing operators. Stud. Math. 165, 275–290 (2004)

    Article  MathSciNet  Google Scholar 

  10. Pérez-García, D.: Comparing different classes of absolutely summing multilinear operators. Arch. Math. 85(3), 258–267 (2005)

    Article  MathSciNet  Google Scholar 

  11. Pietsch, A.: Absolut p-summierende Abbildungen in normierten Räumen. Stud. Math. 28, 333–353 (1967)

    Article  Google Scholar 

  12. Pietsch, A.: Operator Ideals. Veb Deutscher Verlag der Wiss, Berlin (1978)

    MATH  Google Scholar 

  13. Pietsch, A.: Ideals of multilinear functionals. In: Proceedings Second International Conference on Operator Algebras, Ideals and Their Applications in Theoretical Physics, Teubner-Texte, Leipzig, pp. 185–199 (1983)

  14. Pietsch, A.: Eigenvalues and s-Numbers, Cambridge Studies in Advanced mathematics, 13, Cambridge University Press 1987. Akad. Verlagsgesellschaft Geest & Portig K-G, Leipzig (1987)

    Google Scholar 

  15. Popa, D.: Multilinear variants of Maurey and Pietsch theorems and applications. J. Math. Anal. Appl. 368(1), 157–168 (2010)

    Article  MathSciNet  Google Scholar 

  16. Popa, D.: Multilinear variants of Pietsch’s composition theorem. J. Math. Anal. Appl. 370(2), 415–430 (2010)

    Article  MathSciNet  Google Scholar 

  17. Popa, D.: A new distinguishing feature for summing, versus dominated and multiple summing operators. Arch. Math. 96(5), 455–462 (2011)

    Article  MathSciNet  Google Scholar 

  18. Popa, D.: Mixing multilinear operators. Ill. J. Math. 56(3), 885–903 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Popa, D.: Mixing multilinear operators with or without a linear analogue. Integral Equ. Oper. Theory 75(3), 323–339 (2013)

    Article  MathSciNet  Google Scholar 

  20. Popa, D.: Nuclear multilinear operators with respect to a Banach ideal of multilinear functionals. Linear Algebra Appl. 489, 93–103 (2016)

    Article  MathSciNet  Google Scholar 

  21. Popa, D.: The splitting property for \(\left( p, S\right) \)-summing operators. Rev. R. Acad. Cienc. Exactas Fí s. Nat. Ser. A Mat. 111(1), 167–175 (2017)

    Article  MathSciNet  Google Scholar 

  22. Popa, D.: Operators with the Maurey–Pietsch multiple splitting property. Linear Multilinear Algebra 68(6), 1201–1217 (2020)

    Article  MathSciNet  Google Scholar 

  23. Tomczak-Jagermann, N.: Banach–Mazur Distances and Finite Dimensional Operator Ideals. Pitman Monographs and Surveys in Pure and Applied Mathematics 38, vol. 38. Longman, New York (1989)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dumitru Popa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popa, D. Multiple splitting property for dominated bilinear operators. RACSAM 115, 67 (2021). https://doi.org/10.1007/s13398-021-01007-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-01007-5

Keywords

Mathematics Subject Classification

Navigation