Skip to main content
Log in

Abstract

Let \({\mathcal {H}}\) be an infinite dimensional complex Hilbert space and \(\mathcal {B(H)}\) be the algebra of all bounded linear operators on \({\mathcal {H}}\). For \(T\in \mathcal {B(H)}\), we say T has property \((\omega )\) if \(\sigma _{a}(T){\setminus }\sigma _{aw}(T)=\pi _{00}(T)\) and is said to have property \((\omega _{1})\) if \(\sigma _{a}(T){\setminus }\sigma _{aw}(T)\subseteq \pi _{00}(T)\), where \(\sigma _a(T)\) and \(\sigma _{aw}(T)\) denote the approximate point spectrum and the Weyl essential approximate point spectrum of T respectively, and \(\pi _{00}(T)=\{\lambda \in iso\sigma (T): 0<dim N(T-\lambda I)<\infty \}\). In this paper, we focus on the characterization on the operators for which property \((\omega _{1})\) and property \((\omega )\) are stable under compact perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiena, P.: Fredholm and local spectral theory, with applications to multipliers. Kluwer Academic Publishers, Dordrecht (2004)

    MATH  Google Scholar 

  2. Aiena, P.: Property \((\omega )\) and perturbation II. J. Math. Anal. Appl. 342, 830–837 (2008)

    Article  MathSciNet  Google Scholar 

  3. Aiena, P., Biondi, M.T.: Property \((\omega )\) and perturbation. J. Math. Anal. Appl. 336, 683–692 (2007)

    Article  MathSciNet  Google Scholar 

  4. Bereberian, S.K.: An extension of Weyl’s theorem to a class of not necesssarily normal operators. Mich. Math. J. 16, 273–279 (1969)

    Google Scholar 

  5. Coburn, L.A.: Weyl’s theorem for nonnormal operators. Mich. Math J. 3, 285–288 (1966)

    MathSciNet  MATH  Google Scholar 

  6. Conway, J.B.: A course in functional analysis. Grad. Text in Math., 2nd edn. Springer, New York (1990)

    Google Scholar 

  7. Herrero, D.A.: Approximation of Hilbert space operators, vol. 1, Pitman Research Notes in Mathematics Series, 2nd edn, vol. 224. Longman Scientific and Technical, Hasrlow (1989)

  8. Herrero, D.A., Taylor, T.J., Wang, Z.Y.: Variation of the point spectrum under compact perturbations. Oper. Theory Adv. Appl. 32, 113–158 (1988)

    MathSciNet  MATH  Google Scholar 

  9. Harte, R., Lee, W.Y.: Another note on Weyl’s theorem. Trans. Am. Math. Soc. 349, 2115–2125 (1997)

    Article  MathSciNet  Google Scholar 

  10. Jiang, C.L., Wang, Z.Y.: Structures of Hilbert space operators. World Scientific Publishing, Hackensack (2006)

    Book  Google Scholar 

  11. Li, C.G., Zhu, S., Feng, Y.L.: Weyl’s theorem for functions of operators and approximation. Integr. Equations Oper. Theory 67, 481–497 (2010)

    Article  MathSciNet  Google Scholar 

  12. Radjavi, H., Rosenthal, P.: Invariant subspaces, 2nd edn. Dover Publications, Mineola (2003)

    MATH  Google Scholar 

  13. Shi, W.J.: Topological uniform descent and compact perturbations. Rev. R. Acad. Cienc. Exactas F\(\acute{i}\)s. Nat. Ser. A Mat. RACSAM. 113, 2221–2233 (2019)

  14. Shi, W.J., Cao, X.H.: Property \((\omega )\) and its perturbations. Acta Math. Sinica 5, 797–804 (2014)

    Article  MathSciNet  Google Scholar 

  15. Rakoc̆ević, V.: On a class of operators. Mat. Vesnik. 37, 423–426 (1985)

  16. Weyl, H.: Über beschränkte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo 27, 373–392 (1909)

    Article  Google Scholar 

  17. Zhu, S., Li, C.G.: SVEP and compact perturbations. J. Math. Anal. Appl. 380, 69–75 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities (Grant No. GK 202007002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohong Cao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Cao, X. Property \((\omega )\) and its compact perturbations. RACSAM 115, 60 (2021). https://doi.org/10.1007/s13398-020-00985-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00985-2

Keywords

Mathematics Subject Classification

Navigation