Skip to main content

Advertisement

Log in

Approximation formulas and inequalities for the Euler-Mascheroni constant

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

Let \(a\in (0, \infty )\) and \(s \in (0, 1)\), and let \(\gamma \) denote the Euler-Mascheroni constant. The sequence \(\{y_n(a, s)\}_{n\in \mathbb {N}}\) is defined by

$$\begin{aligned} y_n(a, s)&=\frac{1}{a^s}+\frac{1}{(a+1)^s}+\cdots +\frac{1}{(a+n-1)^s}-\frac{(a+n-1)^{1-s}-a^{1-s}}{1-s} \end{aligned}$$

for each \(n\in \mathbb {N}:=\{1,2,3,\ldots \}\). The sequence \(\{y_n(a, s)\}_{n\in \mathbb {N}}\) is convergent and its limit, denoted by \(\ell (a, s)\), is a generalized Euler-Mascheroni constant. In this paper, we consider complete asymptotic expansions and inequalities related to generalized Euler-Mascheroni constant \(\ell (a,s)\). We determine the coefficients \(a_j\) and \(b_j\) such that

$$\begin{aligned} \sum _{k=1}^{n}\frac{1}{k}-\ln \frac{n^p+\sum _{j=1}^{p}a_jn^{p-j}}{n^q+\sum _{j=1}^{q}b_jn^{q-j}}=\gamma +O\left( \frac{1}{n^{p+q+1}} \right) ,\qquad n\rightarrow \infty , \end{aligned}$$

where \(p\ge 1\) and \(q\ge 0\) are any given integers and \(p=q+1\). This solves an open problem of Mortici.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series, vol. 55. 9th printing. Dover, New York (1972)

  2. Bachraoui, M. El, Sándor, J.: On \(q\)-Raabe integral and some extensions. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 114 (2), Art. 60, 8 pp (2020)

  3. Bercu, G.: Padé approximant related to remarkable inequalities involving trigonometric functions. J. Inequal. Appl. 2016, 99 (2016) http://www.doc88.com/p-0037658479714.html

  4. Boas Jr., R.P.: Partial sums of infinite series and how they grow. Amer. Math. Monthly 84, 237–258 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brezinski, C., Redivo-Zaglia, M.: New representations of Padé, Padé-type, and partial Padé approximants. J. Comput. Appl. Math. 284, 69–77 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, C.P.: On the coefficients of asymptotic expansion for the harmonic number by Ramanujan. Ramanujan J. 40, 279–290 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chen, C.P., Choi, J.: Unified treatment of several asymptotic expansions concerning some mathematical constants. Appl. Math. Comput. 305, 348–363 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Chen, C.P., Elezović, N., Vukšić, L.: Asymptotic formulae associated with the Wallis power function and digamma function. J. Classical Anal. 2, 151–166 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, C.P., Li, L., Xu, Y.Q.: Ioachimescu’s constant. Proc. Jangjeon Math. Soc. 13, 299–304 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Chen, C.P., Mortici, C.: New sequence converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 64, 391–398 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chen, C.P., Srivastava, H.M., Li, L., Manyama, S.: Inequalities and monotonicity properties for the psi (or digamma) function and estimates for the Euler-Mascheroni constant. Integral Transforms Spec. Funct. 22, 681–693 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dence, T.P., Dence, J.B.: A survey of Euler’s constant. Math. Mag. 82, 255–265 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. DeTemple, D.W.: A quicker convergence to Euler’s constant. Amer. Math. Monthly 100, 468–470 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng, J., Lu, D., Wen, Z.: Some New Sequences and Inequalities Related to Eulers Constant. Results Math. 73(4), 1–13 (2018)

    Article  MathSciNet  Google Scholar 

  15. Elezović, N.: Estimations of psi function and harmonic numbers. Appl. Math. Comput. 258, 192–205 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Fernández, J.L., Fernández, P.: Divisibility properties of random samples of integers. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (1), Paper No. 26, 35 pp (2021)

  17. Finch, S.R.: Mathematical Constants. Cambridge Univ, Press (2003)

    MATH  Google Scholar 

  18. Gavrea, I., Ivan, M.: A solution to an open problem on the Euler-Mascheroni constant. Appl. Math. Comput. 224, 54–57 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Gavrea, I., Ivan, M.: Optimal rate of convergence for sequences of a prescribed form. J. Math. Anal. Appl. 402, 35–43 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete mathematics. Addison-Wesley, (1994)

  21. Havil, J.: Gamma: exploring Euler’s constant. Princeton Univ. Press, Princeton, NJ (2003)

    MATH  Google Scholar 

  22. Ioachimescu, A.G.: Problem 16. Gaz. Mat. 1, 39 (1895)

    Google Scholar 

  23. Ivan, M.: Problem 466. Gazeta Matematică. Seria A. 3–4, 46 (2017)

    Google Scholar 

  24. Ivan, M.: Solution 466. Gazeta Matematică. Seria A. 3–4, 51–52 (2018)

    Google Scholar 

  25. Karatsuba, E.A.: On the computation of the Euler constant \(\gamma \). Numer. Algorithms 24, 83–97 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Lampret, V.: A double inequality for a generalized-Euler-constant function. J. Math. Anal. Appl. 381, 155–165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  27. Lin, L.: Asymptotic formulas associated with psi function with applications. J. Math. Anal. Appl. 405, 52–56 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Mortici, C.: Improved convergence towards generalized Euler-Mascheroni constant. Appl. Math. Comput. 215, 3443–3448 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Mortici, C.: Fast convergences towards Euler-Mascheroni constant. Comput. Appl. Math. 29, 479–491 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Mortici, C.: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 59, 2610–2614 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  31. Negoi, T.: A faster convergence to the constant of Euler. Gazeta Matematică, seria A 15, 111–113 (1997). (in Romanian)

    Google Scholar 

  32. Popa, D., Raşa, I.: Complete monotonicity and limit of a generalized Euler sequence. Ramanujan J. 34, 177–186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Ramanujan, S.: On the sum of the square roots of the first n natural numbers. J. Indian Math. Soc. 7, 173–175 (1915)

    Google Scholar 

  34. Sándor, J.: On generalized Euler constants and Schlömilch-Lemonnier type inequalities. J. Math. Anal. Appl. 328, 1336–1342 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  35. Sîntămărian, A.: Regarding a generalisation of Ioachimescu’s constant. Math. Gaz. 94, 270–283 (2010)

    Article  MATH  Google Scholar 

  36. Sîntămărian, A.: A generalisation of Ioachimescu’s constant. Math. Gaz. 93, 456–467 (2009)

    Article  MATH  Google Scholar 

  37. Sîntămărian, A.: Regarding a generalisation of Ioachimescu’s constant. Math. Gaz. 94, 270–283 (2010)

    Article  MATH  Google Scholar 

  38. Sîntămărian, A.: Some sequences that converge to a generalization of Ioachimescu’s constant. Autom. Comput. Appl. Math. 18, 177–185 (2009)

    MathSciNet  Google Scholar 

  39. Sîntămărian, A.: Some inequalities regarding a generalization of Ioachimescu’s constant. J. Math. Inequal. 4, 413–421 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sîntămărian, A.: A generalization of Euler’s constant. Numer. Algorithms 46, 141–151 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sîntămărian, A.: Some inequalities regarding a generalization of Euler’s constant. JIPAM J. Inequal. Pure Appl. Math. 9, art. 46 (2008) https://www.emis.de/journals/JIPAM/images/352_07_JIPAM/352_07.pdf

  42. Sîntămărian, A.: Sequences that converge quickly to a generalized Euler constant. Math. Comput. Modelling 53, 624–630 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sîntămărian, A.: About a generalization of Euler’s constant. Automat. Comput. Appl. Math. 16, 153–163 (2007)

    MathSciNet  MATH  Google Scholar 

  44. Sîntămărian, A.: Some new sequences that converge to a generalized Euler constant. Appl. Math. Lett. 25, 941–945 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sofo, A.: Integrals involving the Legendre Chi function. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 115 (1), Paper No. 24, 21 pp. (2021)

  46. Srivastava, H.M., Choi, J.: Zeta and \(q\)-Zeta functions and associated series and integrals. Elsevier Science Publishers. Amsterdam, London and New York (2012)

    MATH  Google Scholar 

  47. Yang, S.: On an open problem of Chen and Mortici concerning the Euler-Mascheroni constant. J. Math. Anal. Appl. 396, 689–693 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhu, Y.-H., Yang, B.C.: Accurate inequalities of partial sums on a type of divergent series. Acta Scifntiarum Naturalium Universitatis Sunyaatseni 37, 33–37 (1998). (in Chinese)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by Key Science Research Project in Universities of Henan (20B110007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Ping Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, CP. Approximation formulas and inequalities for the Euler-Mascheroni constant. RACSAM 115, 56 (2021). https://doi.org/10.1007/s13398-021-00999-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-021-00999-4

Keywords

Mathematics Subject Classification

Navigation