Skip to main content
Log in

Polynomial–Sinc collocation method combined with the Legendre–Gauss quadrature rule for numerical solution of distributed order fractional differential equations

  • Original Paper
  • Published:
Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas Aims and scope Submit manuscript

Abstract

In the current work, we present an efficient collocation method based on the polynomial–Sinc combined with the Legendre–Gauss quadrature rule for numerically solving a class of distributed order fractional differential equations. This method uses Lagrange approximation at Sinc points. The main purpose of this work is to generalize polynomial–Sinc method to the fractional calculus. The convergence of our method is discussed. Finally, some test problems are used to verify the accuracy and applicability of the presented method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, San Diego (2006)

    MATH  Google Scholar 

  2. Podulbny, I.: Fractional differential equations. Academic Press, New York (1999)

    Google Scholar 

  3. Ali, M.S., Shamsi, M., Khosravian-Arab, H., Torres, D.F.M., Bozorgnia, F.: A space–time pseudospectral discretization method for solving diffusion optimal control problems with two-sided fractional derivatives. J. Vib. Control 25, 1080–1095 (2019)

    Article  MathSciNet  Google Scholar 

  4. Xu, Y., Zhang, Y., Zhao, J.: Error analysis of the Legendre–Gauss collocation methods for the nonlinear distributed-order fractional differential equation. Appl. Numer. Math. 142, 122–138 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  5. Dehestani, H., Ordokhani, Y., Razzaghi, M.: The novel operational matrices based on 2D-Genocchi polynomials: solving a general class of variable-order fractional partial integro-differential equations. Comput. Appl. Math. 39, 1–32 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  6. Zaky, M.A., Bhrawy, A.H., Van Gorder, R.A.: A space-time Legendre spectral tau method for the two-sided space–time Caputo fractional diffusion-wave equation. Numer. Algorithms 71, 151–180 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Saadatmandi, A., Dehghan, M., Azizi, M.R.: The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients. Commun. Nonlinear Sci. Numer. Simulat. 17, 4125–4136 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Saadatmandi, A.: Bernstein operational matrix of fractional derivatives and its applications. Appl. Math. Modelling 38, 1365–1372 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Saadatmandi, A., Khani, A., Azizi, M.R.: A sinc–Gauss–Jacobi collocation method for solving Volterra’s population growth model with fractional order. Tbilisi Math. J. 11, 123–137 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Almeida, M. Jleli, B. Samet, A numerical study of fractional relaxation-oscillation equations involving \(\psi \)-Caputo fractional derivative, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. RACSAM, 113, 1873-1891 (2019)

  11. B. Samet, Y. Zhou, On \(\psi \)-Caputo time fractional diffusion equations: extremum principles, uniqueness and continuity with respect to the initial data, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. RACSAM, 113, 2877-2887 (2019)

  12. Rahimkhani, P., Ordokhani, Y.: The bivariate Muntz wavelets composite collocation method for solving space-time fractional partial differential equations. Comput. Appl. Math. 39, 1–23 (2020)

    Article  MATH  Google Scholar 

  13. S. Haq, M. Hussain, The meshless Kansa method for time-fractional higher order partial differential equations with constant and variable coefficients, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. RACSAM, 113, 1935-1954 (2019)

  14. Rahimkhani, P., Ordokhani, Y.: Approximate solution of nonlinear fractional integro-differential equations using fractional alternative Legendre functions. J. Comput. Appl. Math. 365, 112365 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  15. K. Shah, J.R. Wang, A numerical scheme based on non-discretization of data for boundary value problems of fractional order differential equations, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. RACSAM, 113, 2277-2294 (2019)

  16. J. Xu, C.S. Goodrich, Y. Cui, Positive solutions for a system of first-order discrete fractional boundary value problems with semipositone nonlinearities, Rev. R. Acad. Cienc. Exactas Fs. Nat. Ser. A Mat. RACSAM, 113, 1343-1358 (2019)

  17. Caputo, M.: Elasticita e dissipazione. Zanichelli, Bologna (1969)

    Google Scholar 

  18. Hartley, T.T., Lorenzo, C.F.: Fractional-order system identification based on continuous order-distributions. Signal Process. 83, 2287–2300 (2003)

    Article  MATH  Google Scholar 

  19. Atanackovic, T.M., Budincevic, M., Pilipovic, S.: On a fractional distributed-order oscillator. J. Phys. A Math. General 38, 6703–6713 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Caputo, M.: Distributed order differential equations modelling dielectric induction and diffusion. Fract. Calc. Appl. Anal. 4, 421–442 (2001)

    MathSciNet  MATH  Google Scholar 

  21. Atanackovic, T.M., Pilipovic, S., Zorica, D.: Distributed-order fractional wave equation on a finite domain: stress relaxation in a rod. Int. J. Eng. Sci. 49, 175–190 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bagley, R.L., Torvik, P.J.: On the existence of the order domain and the solution of distributed order equations-Part I. Int. J. Appl. Math. 2, 865–882 (2000)

    MathSciNet  MATH  Google Scholar 

  23. Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, 96–104 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Jiao, Z., Chen, Y., Podlubny, I.: Distributed-order dynamic systems: stability, simulation, applications and perspectives. Springer, New York (2012)

    Book  MATH  Google Scholar 

  25. Gao, G.H., Sun, Z.Z.: Two difference schemes for solving the one-dimensional time distributed-order fractional wave equations. Numer. Algor. 74, 675–697 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kharazmi, E., Zayernouri, M.: Fractional pseudo-spectral methods for distributed-order fractional PDEs. Int. J. Comput. Math. 95, 1340–1361 (2018)

    Article  MathSciNet  Google Scholar 

  27. Abdelkawy, M.A., Lopes, M.A., Zaky, M.A.: Shifted fractional Jacobi spectral algorithm for solving distributed order time-fractional reaction-diffusion equations. Comput. Appl. Math. 38, 81 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zaky, M.A.: A Legendre collocation method for distributed-order fractional optimal control problems. Nonlinear Dynam. 91, 2667–2681 (2018)

    Article  MATH  Google Scholar 

  29. Rahimkhani, P., Ordokhani, Y., Lima, P.M.: An improved composite collocation method for distributed-order fractional differential equations based on fractional Chelyshkov wavelets. Appl. Numer. Math. 145, 1–27 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  30. Yuttanan, B., Razzaghi, M.: Legendre wavelets approach for numerical solutions of distributed order fractional differential equations. Appl. Math. Modelling 70, 350–364 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fan, W., Liu, F.: A numerical method for solving the two-dimensional distributed order space-fractional diffusion equation on an irregular convex domain. Appl. Math. Lett. 77, 114–121 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mashayekhi, S., Razzaghi, M.: Numerical solution of distributed order fractional differential equations by hybrid functions. J. Comput. Phys. 315, 169–181 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Jibenja, N., Yuttanan, B., Razzaghi, M.: An efficient method for numerical solutions of distributed order fractional differential equations. J. Comput. Nonlinear Dynam. 13, 1–11 (2018)

    Article  Google Scholar 

  34. Pourbabaee, M., Saadatmandi, A.: A novel Legendre operational matrix for distributed order fractional differential equations. Appl. Math. Comput. 361, 215–231 (2019)

    MathSciNet  MATH  Google Scholar 

  35. Khaliq, A.Q.M., Biala, T.A., Alzahrani, S., Furati, K.M.: Linearly implicit predictor-corrector methods for space fractional reaction-diffusion equations. Comput. Math. Appl. 75, 2629–2657 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  36. Li, J., Liu, F., Feng, L., Turner, I.: A novel finite volume method for the Riesz space distributed-order diffusion equation. Comput. Math. Appl. 74, 772–783 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  37. Abbaszadeh, M., Dehghan, M.: An improved meshless method for solving two-dimensional distributed order time-fractional diffusion-wave equation with error estimate. Numer. Algor. 75, 173–211 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  38. Dehghan, M., Abbaszadeh, M.: A Legendre spectral element method (SEM) based on the modified bases for solving neutral delay distributed-order fractional damped diffusion-wave equation. Math. Methods Appl. Sci. 41, 3476–3494 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Noroozi, H., Ansari, A.: Extremal positive solutions for the distributed order fractional hybrid differential equations. Comput. Methods Differ. Equ. 1, 120–134 (2013)

    MATH  Google Scholar 

  41. Katsikadelis, J.T.: Numerical solution of multi-term fractional differential equations. ZAMM 89, 593–608 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Stenger, F.: Numerical methods based on sinc and analytic functions. Springer, New York (1993)

    Book  MATH  Google Scholar 

  43. Stenger, F.: Handbook of Sinc numerical methods. CRC Press, New York (2016)

    Book  MATH  Google Scholar 

  44. Lund, J., Bowers, K.: Sinc Methods for Quadrature and Differential Equations. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  45. Azizi, M.R., Khani, A.: Sinc operational matrix method for solving the Bagley–Torvik equation. Comput. Methods Differ. Equ. 5, 56–66 (2017)

    MathSciNet  MATH  Google Scholar 

  46. Saadatmandi, A., Shateri, S.: Sinc-collocation method for solving sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates. J. Braz. Soc. Mech. Sci. Eng. 41, 158 (2019)

    Article  Google Scholar 

  47. Parand, K., Dehghan, M., Pirkhedri, A.: The use of Sinc-collocation method for solving Falkner-Skan boundary-layer equation. Int. J. Numer. Meth. Fluids 68, 36–47 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Yeganeh, S., Ordokhani, Y., Saadatmandi, A.: A sinc-collocation method for second-order boundary value problems of nonlinear integro-differential equation. J. Inform. Comput. Sci. 7, 151–160 (2012)

    Google Scholar 

  49. Tharwat, M.M., Bhrawy, A.H., Yildirim, A.: Numerical computation of the eigenvalues of a discontinuous Dirac system using the sinc method with error analysis. Int. J. Comput. Math. 80, 2061–2080 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  50. Abdella, K., Ross, G., Mohseniahouei, Y.: Solutions to the Blasius and Sakiadis problems via a new Sinc-collocation approach. Dynam. Syst. Appl. 26, 105–120 (2017)

    MathSciNet  MATH  Google Scholar 

  51. Saadatmandi, A., Razzaghi, M.: The numerical solution of third-order boundary value problems using Sinc-collocation method. Commun. Numer. Meth. Engng 23, 681–689 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  52. Stenger, F.: Polynomial function and derivative approximation of Sinc data. J. Complexity 25, 292–302 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  53. F. Stenger, M. Youssef, J. Niebsch, Improved approximation via use of transformations, In: Multiscale Signal Analysis and Modeling, Eds. X. Shen and A.I. Zayed, NewYork: Springer, 25-49 (2013)

  54. M. Youssef, Poly-Sinc approximation methods, PhD thesis, Math. Dept.German University in Cairo (2017)

  55. Youssef, M., Baumann, G.: Solution of nonlinear singular boundary value problems using polynomial-sinc approximation. Commun. Fac. Sci. Univ. Ank. Series A1(63), 41–58 (2014)

    MathSciNet  MATH  Google Scholar 

  56. Youssef, M., Baumann, G.: On bivariate Poly-Sinc collocation applied to patching domain decomposition. Appl. math. sci. 11, 209–226 (2017)

    Google Scholar 

  57. M. Youssef, R. Pulch, Poly-Sinc solution of stochastic elliptic differential equations, arXiv preprint arXiv:1904.02017 (2019)

  58. Brutman, L.: Lebesgue functions for polynomial interpolation-a survey. Ann. Numer. Math. 4, 111–127 (1997)

    MathSciNet  MATH  Google Scholar 

  59. Youssef, M., El-Sharkawy, H.A., Baumann, G.: Lebesgue constant using Sinc points. Adv. Numer. Anal. 2016, (2016)

  60. Hildebrand, F.B.: Introduction to Numerical Analysis. Dover Publications, New York (1956)

    MATH  Google Scholar 

  61. Henrici, P.: Fast Fourier methods in computational complex analysis. SIAM Rev. 21, 481–527 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  62. Brown, J.W., Churchill, R.V.: Complex variables and applications. McGraw-Hill Higher Education, Boston (2009)

    Google Scholar 

  63. Abd-Elhameed, W.M., Youssri, Y.H.: A novel operational matrix of caputo fractional derivatives of fibonacci polynomials: spectral solutions of fractional differential equations. Entropy 18, 345 (2016)

    Article  MathSciNet  Google Scholar 

  64. Katsikadelis, J.T.: The fractional distributed order oscillator, A Numerical solution. J. Serb. Soc. Comput. Mech. 6, 148–159 (2012)

    Google Scholar 

Download references

Acknowledgements

We express our sincere thanks to the anonymous referees for valuable suggestions that improved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Saadatmandi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moshtaghi, N., Saadatmandi, A. Polynomial–Sinc collocation method combined with the Legendre–Gauss quadrature rule for numerical solution of distributed order fractional differential equations. RACSAM 115, 47 (2021). https://doi.org/10.1007/s13398-020-00976-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13398-020-00976-3

Keywords

Mathematics Subject Classification

Navigation