Ir al contenido

Documat


Ground State Sign-Changing Solution for Schrödinger-Poisson System with Critical Growth

  • Zhang, Ziheng [2] ; Wang, Ying [1] ; Yuan, Rong [1]
    1. [1] Beijing Normal University

      Beijing Normal University

      China

    2. [2] Tiangong University
  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00487-5
  • Enlaces
  • Resumen
    • This article is devoted to study the nonlinear Schrödinger-Poisson system with pure power nonlinearities −u + u + φu = |u|p−1u + |u| 4u, x ∈ R3, −φ = u2, x ∈ R3, where 4 < p < 5. By employing constraint variational method and a variant of the classical deformation lemma, we show the existence of one ground state signchanging solution with precisely two nodal domains, which improves and generalizes the existing results by Wang, Zhang and Guan (J. Math. Anal. Appl. 479 (2019), 2284–2301).

  • Referencias bibliográficas
    • 1. Alves, C.O., Souto, M.A.S., Soares, S.H.: A sign-changing solution for the Schrödinger-Poisson equation in R3. Rocky Mountain J. Math....
    • 2. Ambrosetti, A.: On Schrödinger-Poisson Systems. Milan J. Math. 76, 257–274 (2008)
    • 3. Ambrosetti, A., Ruiz, R.: Multiple bound states for the Schrödinger-Poisson problem. Commun. Contemp. Math. 10, 391–404 (2008)
    • 4. Azzollini, A., Pomponio, A.: Ground state solutions for the nonlinear Schrödinger-Maxwell equations. J. Math. Anal. Appl. 345, 90–108 (2008)
    • 5. Batista, A.M., Furtado, M.F.: Positive and nodal solutions for a nonlinear Schrödinger-Poisson system with sign-changing potentials. Nonlinear...
    • 6. Benci, V., Fortunato, D.: An eigenvalue problem for the Schrödinger-Maxwell equations. Topol. Methods Nonlinear Anal. 11, 283–293 (1998)
    • 7. Brezis, H., Lieb, E.: A relation between pointwise convergence of functions and convergence of functionals. Proc. Am. Math. Soc. 88, 486–490...
    • 8. Brezis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl....
    • 9. Cerami, G., Solimini, S., Struwe, M.: Some existence results for superlinear elliptic boundary value problems involving critical exponents....
    • 10. Cerami, G., Vaira, G.: Positive solutions for some non-autonomous Schrödinger-Poisson systems. J. Differ. Equ. 248, 521–543 (2010)
    • 11. Chen, S., Tang, X.: Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in R3, Z. Angew. Math. Phys.,...
    • 12. D’Avenia, P.: Non-radially symmetric solutions of nonlinear Schrödinger equation coupled with Maxwell equations. Adv. Nonlinear Stud....
    • 13. Gu, L., Jin, H., Zhang, J.: Sign-changing solutions for nonlinear Schrödinger-Poisson systems with subquadratic or quadratic growth at...
    • 14. Hofer, H.: Variational and topological methods in partially ordered Hilbert spaces. Math. Ann. 261, 493–514 (1982)
    • 15. Huang, L., Rocha, E.M., Chen, J.: Positive and sign-changing solutions of a Schrödinger-Poisson system involving a critical nonlinearity....
    • 16. Ianni, I.: Sign-changing radial solutions for the Schrödinger-Poisson-Slater problem. Topol. Methods Nonlinear Anal. 41, 365–385 (2013)
    • 17. Khoutir, S.: Infinitely many high energy radial solutions for a class of nonlinear Schrödinger-Poisson system in R3. Appl. Math. Lett....
    • 18. Li, G.: Some properties of weak solutions of nonlinear scalar fields equation. Ann. Acad. Sci. Fenn. Math. 14, 27–36 (1989)
    • 19. Liang, Z., Xu, J., Zhu, X.: Revisit to sign-changing solutions for the nonlinear Schrödinger-Poisson system in R3. J. Math. Anal. Appl....
    • 20. Liu, Z., Guo, S.: On ground state solutions for the Schrödinger-Poisson equations with critical growth. J. Math. Anal. Appl. 412, 435–448...
    • 21. Liu, Z., Wang, Z., Zhang, J.: Infinitely many sign-changing solutions for the nonlinear SchrödingerPoisson system. Ann. Mat. Pura Appl....
    • 22. Miranda, C.: Unosservazione su un teorema di Brouwer. Boll. Unione Mat. Ital. 3, 5–7 (1940)
    • 23. Rabinowitz, P.H.: Variational methods for nonlinear eigenvalue problems. In: Prodi, G. (ed.) Eigenvalues of Nonlinear Problems, pp. 141–195....
    • 24. Ruiz, D.: The Schrödinger-Poisson equation under the effect of a nonlinear local term. J. Funct. Anal. 237, 655–674 (2006)
    • 25. Ruiz, D.: On the Schrödinger-Poisson-Slater system: behavior of minimizers, radial and nonradial cases. Arch. Ration. Mech. Anal. 198,...
    • 26. Sánchez, O., Soler, J.: Long-time dynamics of the Schrödinger-Poisson-Slater system. J. Stat. Phys. 114, 179–204 (2004)
    • 27. Shuai, W., Wang, Q.: Existence and asymptotic behavior of sign-changing solutions for the nonlinear Schrödinger-Poisson system in R3....
    • 28. Tarantello, G.: Nodal solutions of semilinear elliptic equations with critical exponent. Differ. Integral Equ. 5, 25–42 (1992)
    • 29. Wang, D., Zhang, H., Guan, W.: Existence of least-energy sign-changing solutions for SchrödingerPoisson system with critical growth. J....
    • 30. Wang, Z., Zhou, H.: Sign-changing solutions for the nonlinear Schrödinger-Poisson system in R3. Calc. Var. Partial Differential Equations...
    • 31. Willem, M.: Minimax Theorems. Birkhäuser Boston Inc, Boston (1996)
    • 32. Zhang, J.: On the Schrödinger-Poisson equations with a general nonlinearity in the critical growth. Nonlinear Anal. 75, 6391–6401 (2012)
    • 33. Zhang, J.: On ground state and nodal solutions of Schrödinger-Poisson equations with critical growth. J. Math. Anal. Appl. 428, 387–404...
    • 34. Zhang, J.: Ground state and multiple solutions for Schrödinger-Poisson equations with critical nonlinearity. J. Math. Anal. Appl. 440,...
    • 35. Zhao, L., Zhao, F.: On the existence of solutions for the Schrödinger-Poisson equations. J. Math. Anal. Appl. 346, 155–169 (2008)
    • 36. Zhong, X., Tang, C.: Ground state sign-changing solutions for a Schrödinger-Poisson system with a critical nonlinearity in R3. Nonlinear...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno