
A review of data complexity measures and their applicability to
pattern classification problems

J. M. Sotoca, J. S. Sánchez, R. A. Mollineda
Dept. Llenguatges i Sistemes Informàtics

Universitat Jaume I

Av. Sos Baynat, s/n

12071 Castelló de la Plana - SPAIN

{sotoca,sanchez,mollined}@uji.es

Abstract

It is widely accepted that the empirical be-
havior of classifiers strongly depends on avail-
able data. For a given problem, it is rather
difficult to guess which classifier will provide
the best performance. Traditional experimen-
tal studies consist of presenting accuracy of a
set of classifiers on a small number of prob-
lems, without analyzing why a classifier out-
performs other classification algorithms. Re-
cently, some researchers have tried to charac-
terize data complexity and relate it to clas-
sifier performance. In this paper, we present
a review of data complexity measures in the
framework of pattern classification and discuss
possible applications to a number of practical
problems.

1 Introduction

Pattern classification is a growing field with
applications in very different areas such as
speech and handwriting recognition, computer
vision, image analysis, marketing, data min-
ing, medical science, and information retrieval,
to name a few.

In brief, pattern classification constitutes a
subdiscipline of Pattern Recognition devoted
to extracting relevant information from data
by identifying meaningful patterns. A pattern
can be represented by an ordered set of n vari-
ables as the single vector x = {x1, x2, . . . , xn}.

Each pattern belongs to one of C possible
classes or categories, denoted as ykc. Thus
we have x ∈ X ⊆ Rn as the input pattern
space and y ∈ Y = {y1, y2, . . . , yc} as the out-
put class space. Therefore, pattern classifica-
tion can be regarded as a function d : X → Y ,
which assigns an output class label ykc to each
input pattern x ∈ X.

The main problem of pattern classification
refers to the capability of the learned classi-
fier to generalize, that is, correctly classify un-
seen patterns. This problem is very hard to
put in a theoretical setting and most common
approaches are to a large extent heuristic in
nature.

Typically, classification rules are established
from randomly selected training instances
from each class and are applied to test sam-
ples to evaluate their classification accuracy.
In such a situation, performance of each clas-
sifier is closely related to the characteristics of
the data. Consequently, an analysis of data
characteristics appears to be an essential tool
for selecting the appropriate classification al-
gorithm in a particular problem.

Only few works relating the performance
of classifiers to data characteristics have been
carried out up to now [1, 4, 6, 10]. The gen-
eral idea consists of predicting the applicabil-
ity and performance of a classifier based upon
certain data characteristics. To this end, one
could employ a set of data complexity mea-
sures, usually concerning statistical, geometri-
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cal and information theoretic descriptions.

In this paper, we present a number of data
measures existing in the literature and discuss
how they could be utilized in the domain of
pattern classification. We conclude that the
analysis of data characteristics could become
especially useful when working with very large
databases (for instance, in data and web min-
ing applications). In this context, one could
estimate the utility of a classifier for a partic-
ular problem by simply computing a number
of complexity measures on the training data,
instead of experimenting with it.

2 Some measures for data charac-
terization

As already mentioned, the behavior of classi-
fiers is strongly dependent on data complexity.
Usual theoretical analysis consists of searching
accuracy bounds, most of them supported by
impractical conditions. Meanwhile, empirical
analysis is commonly based on weak compar-
isons of classifier accuracies on a small number
of unexplored data sets.

Such studies usually ignore the particular
statistical and geometrical descriptions of class
distributions to explain classification results.
Various recent papers [1, 3, 8, 10] have intro-
duced the use of measures to characterize the
data complexity and to relate such descrip-
tions to classifier performance.

Most of the data measures discussed in this
paper are defined only for two-class discrimi-
nation, although in many cases it is possible
to generalize them for the C-class problem.
Next sections describe a number of measures
selected from various papers.

A natural measure of a problem difficulty
(or complexity) is the error rate associated to
a given classifier. However, it can result im-
portant to employ other measures that are less
dependent on the classifier chosen. Moreover,
these alternative measures could be useful as
a guide to select a particular classifier for a
given problem.

2.1 Measures of overlap

These measures mainly focus on the effective-
ness of a single feature dimension in separat-
ing the classes. They examine the range and
spread of values in the data set with respect
to each feature, and check for overlaps among
different classes.

2.1.1 Fisher’s discriminant ratio (F1)

The plain version of this well-known measure
computes how separated are two classes ac-
cording to a specific feature.

F1 =
(m1 −m2)

2

σ2
1 + σ2

2

(1)

where m1, m2, σ2
1 , and σ2

1 are the means of the
two classes and their variances, respectively.

A possible generalization for C classes,
which also considers all feature dimensions,
can be stated as follows [7]:

F1gen =

∑C

i=1
ni · δ(m, mi)∑C

i=1

∑ni

j=1
δ(xi

j , mi)
(2)

where ni denotes the number of samples in
class i, δ is a metric, m is the overall mean,
mi is the mean of class i, and xi

j represents
the sample j belonging to class i.

2.1.2 Volume of overlap region (F2)

This measure computes, for each feature fk,
the length of the overlap range normalized by
the length of the total range in which all val-
ues of both classes are distributed. Then the
volume of the overlap region for two classes is
obtained as the product of normalized lengths
of overlapping ranges for all features.

F2 =
∏

k

minmaxk −max mink

max maxk −minmink
(3)

where k = 1, . . . , d for a d-dimensional prob-
lem, and

minmaxk = min{max(fk, c1), max(fk, c2)}
max mink = max{min(fk, c1), min(fk, c2)}
max maxk = max{max(fk, c1), max(fk, c2)}
minmink = min{min(fk, c1), min(fk, c2)}
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A very simple generalization of F2 for the
C-class problem can be obtained by summing
the plain measure for all possible pairs of
classes [7]:

F2gen =
∑

(ci,cj)

∏
k

minmaxk −max mink

max maxk −minmink

(4)
where (ci, cj) goes through all pairs of classes,
k = 1, . . . , d, and

minmaxk = min{max(fk, ci), max(fk, cj)}
max mink = max{min(fk, ci), min(fk, cj)}
max maxk = max{max(fk, ci), max(fk, cj)}
minmink = min{min(fk, ci), min(fk, cj)}

2.1.3 Feature efficiency (F3)

In high dimensional problems, it is important
to know how the discriminatory information
is distributed across the features. In this con-
text, it has to be used a measure of efficiency
of individual features that describes how much
each feature contributes to the separation of
the two classes [2].

We can use a procedure that progressively
removes unambiguous points falling outside
the overlapping region in each dimension. The
efficiency of a feature is defined as the frac-
tion of all remaining points that can be sep-
arated by that feature. For a two-class prob-
lem, the maximum feature efficiency (that is,
the largest fraction of points distinguishable
by using only one feature) is taken as a mea-
sure of overlap.

The generalization for C classes can be de-
fined as the overall fraction of points in some
overlap range of any feature for any pair of
classes. Obviously, points in more than one
range are counted once.

2.2 Measures of class separability

These measures evaluate to what extent two
classes are separable by examining the exis-
tence and shape of the class boundary.

2.2.1 Probabilistic distance measures

The Bayes error is supposed to be theoreti-
cally the best estimate to describe class sepa-
rability. However, it is difficult to use in prac-
tice because of its computational complexity
and it is often empirically rather than ana-
lytically derived. In these situations, a num-
ber of statistical probability distances such
as Bhattacharya, Chernoff, Mahalanobis, Ma-
tusita, etc. provide upper and lower bounds
for the error as a special case for a two-class
problem [8].

2.2.2 Linear separability (L1, L2)

The linear separability is the maximum prob-
ability of correct classification when discrim-
inating the pattern distribution with hyper-
planes. In two-class problems, it represents
the probability of overlapping if each class is
distributed in a convex region.

Linear classifiers can be obtained by a lin-
ear programming formulation proposed by
Smith [9] that minimizes the sum of distances
of error points to the separating hyperplane
(subtracting a constant margin).

minimize att
subject to Ztw + t ≥ b

t ≥ 0

where a, b are arbitrary constant vectors, w is
the weight vector, t is an error vector, and Z
is a matrix where each column z is defined on
an input vector x and its class c (with value
c1 or c2) as follows:

z = +x if c = c1

z = −x if c = c2

The value of the objective function is used
in [3] as a class separability measure (L1). It
is zero for a linearly separable problem. It is
to be noted that this measure can be heavily
affected by the presence of outliers in the data
set.

On the other hand, a second measure (L2)
simply corresponds to the error rate of such
a linear classifier (that defined for L1) on the
original training set.
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2.2.3 Fraction of points on boundary
(N1)

This method is based on the construction of
a Minimum Spanning Tree (MST), connect-
ing all points in the data set to their near-
est neighbors. Then it counts the number of
points connected to the opposite class by an
edge in the MST. These points are considered
to be close to the class boundary.

N1 is computed as the fraction of such
points on boundary over the total number of
points in the data set.

2.2.4 Non-parametric separability of
classes (N2, N3)

The first measure (N2) is the ratio of the av-
erage distance to intraclass nearest neighbor
and the average distance to interclass nearest
neighbor. It compares the intraclass disper-
sion with the interclass separability. Smaller
values suggest more discriminant data.

The second measure (N3) simply corre-
sponds to the estimated error rate of the near-
est neighbor classifier by the leaving-one-out
method.

2.3 Measures of geometry and density

These measures are intended to describe the
geometry or the shapes of the manifolds
spanned by each class.

2.3.1 ε-Neighborhoods (T1)

This measure counts the number of balls
needed to cover each class, being each ball
centered at a training point and grown to the
maximal size (in units of ε) before it reached a
point from another class [3]. Redundant balls
lying completely in the interior of other balls
are removed. This count is then normalized
by the total number of points.

This provides an interior description rather
than a boundary description as given by the
MST-based measures (see Section 2.2.3).

2.3.2 Average number of points per di-
mension (T2)

It has to be noted that this measure con-
tributes to understand the behavior of some
classification problems. Thus T2 describes the
density of spatial distributions of samples by
computing the number of instances in the data
set over the number of feature dimensions.

2.3.3 Density (D1)

This density measure can defined as the av-
erage number of samples per unit of volume
where all points are distributed [7]. This vol-
ume is the product of the lengths of all fea-
ture ranges where values are spanned across
all classes.

Note that D1 presents two extreme cases
when a moderate number of points is de-
scribed by a (relative high) number of features
which either varies from 0 to 1, or takes values
greater than 1.

2.3.4 Nonlinearity (L3, N4)

Hoekstra and Duin [5] proposed a measure for
the nonlinearity of a classifier with respect to
a given data set. Given a training set, this
method first generates a test by linear interpo-
lation between randomly drawn pairs of points
belonging to the same class. Then, the error
rate of the classifier on such a test set is mea-
sured.

In [3], both the nonlinearity of the linear
classifier (L3) and that of the nearest neighbor
classifier (N4) are considered.

2.4 Statistical measures

In Statlog project, several classification tech-
niques were compared over 22 data sets. These
sets were described in terms of various statis-
tics, trying to predict the applicability of a
classifier based on certain data characteristics.
(Statlog is an acronym for an ESPRIT project
(1990-1993) involved in comparative testing of
statistical and logical machine learning algo-
rithms).

Among others, the following descriptive and
multivariate statistics were used to summarize
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the data sets in the Statlog project: total num-
ber of patterns in the whole data set, number
of training patterns, number of patterns used
for test, number of features, number of binary
attributes, number of classes, mean absolute
correlation coefficients between two features,
mean skewness of features, mean kurtosis of
features, entropy of classes, and average en-
tropy of discrete features.

All these and many other descriptive and
statistical measures could be still applied to
data characterization as a tool for predicting
the most appropriate classifier on a particular
problem, although the reliability of the predic-
tions can be rather questionable.

3 Applicability of data complexity
measures

The following sections discuss some possible
applications of data complexity measures in
the general framework of pattern classifica-
tion. We review several recent works in which
those measures have been employed with dif-
ferent aims.

3.1 Meta analysis of classifiers

Recently, several researchers have attempted
to perform a meta analysis of classification al-
gorithms. The aim is that given a data set
with known characteristics, one can derive a
number of "meta" rules for providing practi-
cal guidelines in classifier selection.

For instance, Sohn [10] derives a total of
19 data characteristics and performs a regres-
sion analysis between the error rate of eleven
classifiers (including statistical, machine learn-
ing and neural networks) and those data mea-
sures.

Bernardó and Ho [1] firstly define a space of
nine data complexity measures and compute
the complexity measures for each problem us-
ing all available data points. Then they look
for regions in the complexity space where each
classifier is significantly better than the oth-
ers, and regions where multiple classification
methods score similarly. In their study, they
evaluate six classifiers.

3.2 Prototype selection

Prototype selection consists of selecting an ap-
propriate reduced subset of patterns from the
original training set and applying the nearest
neighbor rule using only the selected exam-
ples. Two different families of prototype se-
lection methods exist in the literature: editing
and condensing algorithms.

While editing approaches eliminate erro-
neous patterns from the original set and
"clean" possible overlapping between regions
from different classes (note that these usually
leads to significant improvements in perfor-
mance), condensing aims at selecting a suf-
ficiently small set of training patterns that
produces approximately the same performance
than the nearest neighbor rule using the whole
training set.

Singh [8] employs several data complexity
measures to remove outliers from a training set
and also points out that another utility would
be to help reduce the data set size without
compromising on the test performance of clas-
sifiers. More specifically, those patterns that
are found deep inside class boundaries could
be removed from the training set since they
are least likely to help in classification of test
samples.

Mollineda et al. [7] investigate on the util-
ity of a set of complexity measures as a tool
to predict whether or not the application of
some prototype selection algorithm could re-
sult appropriate in a particular problem. They
test different data complexity measures using
17 databases and derive a number of practical
situations under which prototype selection is
suited.

3.3 Feature selection

Attribute or feature selection consists of pick-
ing, out of all attributes potentially available
for the classification algorithm, a subset of fea-
tures relevant for the target task. One im-
portant motivation for feature selection is to
minimize the error rate. Indeed, the existence
of many irrelevant/redundant attributes in a
given data set may "confuse" the classifier,
leading to a high error rate.
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There are two major approaches to feature
selection, namely the wrapper and the filter
approaches. In the wrapper approach, the
data set is divided into two subsets: the train-
ing subset and the evaluation subset. Then a
heuristic search is done in the space of sub-
sets of attributes. In this search, the quality
of a subset of attributes is computed in two
steps. Firstly, the classifier itself is trained on
the training subset by using only the subset of
attributes being evaluated. Secondly, the error
rate of the discovered rules on the evaluation
subset is measured and it is directly used as
a measure of the quality of the feature subset
being evaluated.

In contrast, in the filter approach the quality
of a given subset of attributes is evaluated by
some method that does not employ the target
classification algorithm.

Most of the measures defined in Section 2
(especially those related to class separability)
can be employed in a filter approach as an
effective optimization criterion to obtain the
best feature subset. For example, Singh [8]
conducts an empirical study to demonstrate
that using a neighborhood separability mea-
sure constitutes a suitable criterion for opti-
mization in feature selection for a face recog-
nition problem.

4 Concluding remarks

This paper provides a review of data complex-
ity measures found in the literature and dis-
cusses three important application fields be-
longing to the framework of pattern classifica-
tion.

The measures here described correspond to
four categories: measures of overlap, measures
of class separability, measures of geometry and
density, and statistical measures. However,
other measures could be still applied to char-
acterize data complexity.

We point out three application areas where
those measures have already been successfully
employed: meta analysis of classifiers, proto-
type selection, and feature selection. Alterna-
tive utilities can be devised in other domains.
In this sense, data complexity measures could

be useful for classifier selection in a context of
classifier fusion. In fact, this constitutes one
of most important direction for our future re-
search.

In the context of pattern classification, we
think that data complexity measures can be
especially relevant for applying to very large
data sets. Suppose we have a very large train-
ing data set and a number of classifiers. We
have to choose the most appropriate classi-
fier for the problem in hand. To this end,
one could test all the classifiers on the (large)
training data set and then select the one with
the highest accuracy. However a better alter-
native (in the sense of less computing time)
would consist of describing the problem in
terms of data complexity and then pick the
most suitable classifier according to the char-
acteristics of the problem.
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