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Resumen

In most problems of data mining the human
analyst previously constructs a new set of
features, derived from the initial problem in-
put attributes, based on a priori knowledge of
the problem structure. These different features
are constructed from different transformations
which must be selected by the analyst. This
paper provides a first step towards a method-
ology that allows the search for near-optimal
representations in classification problems by
allowing the automatic selection and compo-
sition of feature transformations from an ini-
tial set of basis functions. In many cases, the
original representation for the problem data is
not the most appropriate, and the search for a
new representation space that is closer to the
structure of the problem to be solved is criti-
cal for the successful solution of the problem.
On the other hand, once this optimal repre-
sentation is found, most of the problems may
be solved by a linear classification method. As

a proof of concept we present a classification
problem where the class distributions have a
very intricate overlap on the space of origi-
nal attributes. For this problem, the proposed
methodology is able to construct representa-
tions based on function compositions from the
trigonometric and polynomial bases that pro-
vide a solution where some of the classical
learning methods, e.g. multilayer perceptrons
and decision trees, fail. The methodology con-
sists of a discrete search within the space of
compositions of the basis functions and a lin-
ear mapping performed by a Fisher discrim-
inant. We play special emphasis on the first
part. Finding the optimal composition of ba-
sis functions is a difficult problem because of
its nongradient nature and the large number
of possible combinations. We rely on the glob-
al search capabilities of a genetic algorithm to
scan the space of function compositions.
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1. Introduction

Data mining has become an increasingly im-
portant field of research due to the large poten-
tial to be tapped from many commercial, sci-
entific and industrial databases. Nevertheless,
in most cases the knowledge discovery process-
es are still quite costly due to the number of it-
erations that the human analysts have to per-
form over the discovery loop [3]. To reduce this
cost a number of tasks within the knowledge
discovery loop can be partially automated.
This is the case for feature selection and fea-
ture construction [4, 5, 6, 7, 8, 11, 13, 14, 17].
In most problems of knowledge discovery the
human analyst previously constructs a new set
of features, derived from the initial problem in-
put attributes, based on a priori knowledge of
the problem structure. These different features
are constructed from different transformations
which must be selected by the analyst.

For each new feature, a subset of input at-
tributes must be selected (attribute selection)
and a transformation to be applied to those
attributes must be also selected (transforma-
tion selection). Both processes can be viewed
as a search process and hence both can be au-
tomated to some degree by heuristic search.
In this regard, domain knowledge can be in-
troduced by choosing a set of bases that in-
clude transformations closer to the problem
structure and heuristics that guide/bias the
search process. The methodology described in
this paper intertwines attribute selection and
transformation selection in an overall search
process implemented by a genetic algorithm.
We have introduced the bias by means of the
set of basis functions included. The differ-
ent bases provide with different transforma-
tion properties, for instance the trigonometric
basis introduces periodicity in an explicit man-
ner. Furthermore, the architecture presented
in this paper allows for basis function compo-
sition. Function composition enriches the ex-
pressive power by allowing the construction of
features that have combined properties from
the selected bases while giving rise to more
compact representations. This is so since a ba-
sis closer to the problem structure gives rise to

111 Taller deMineriade Datosy Aprendizaje

a more compact representation of the problem
solution.

Classical methods for pattern classification
are based on the existence of statistical dif-
ferences among the distributions of the differ-
ent classes. The best possible situation is per-
fect knowledge of these distributions. In such a
case, Bayes classification rule gives the recipe
to obtain the best possible solution. In re-
al problems, however, class distributions are
rarely available because the number of pat-
terns is generally small compared with the di-
mensionality of the feature space. To tackle
this problem many techniques of density esti-
mation have been developed, both parametric
and non-parametric [2]. When density estima-
tion becomes too difficult, there is a variety of
supervised learning algorithms, such as neu-
ral networks [1] or support vector machines
[16], that try to find a non-linear projection of
the original attribute space on to a new space
where a simple linear discriminant is able to
find an acceptable solution.

Let us assume a particular classification
problem in which, when looking at the origi-
nal attribute space, we observe an almost com-
plete overlap among the class distributions.
Following the Bayes rule, we see that for any
point in this attribute space, the probabilities
of belonging to any of the classes are all equal.
‘We could be tempted to conclude that there is
no solution to the problem better than choos-
ing the class randomly. However, it could be
that the overlapping is due to a bad represen-
tation of input data, and that there exists a
transformation that separates the classes. We
hypothesize that if such a transformation ex-
ists, there must exist a suitable basis in which
it has a simple and compact expression. So
solving such a problem can be reduced to find-
ing the most appropriate basis or representa-
tion for the input data (with respect to the
classification target). Once this representation
is found, a linear discriminant will suffice to
find a simple and compact solution. We pro-
pose an expansion of the work in [15] that in-
corporates other bases apart from the polyno-
mial one. We use a genetic algorithm to per-
form both variable selection and search in the



111 Taller Nacional de Mineria de Datosy Aprendizaje, TAMIDA2005

transformation space, and a Fisher discrimi-
nant that performs the final linear projection.
We show that this approach is able to solve
problems where other methods fail to find a
solution, even when the overlap is so large that
there are no apparent statistical differences
among the classes. This overlap may be due
simply to the fact that the original represen-
tation of data is not well suited to the problem.
Actually, it is well known that many classifi-
cation problems are solved only after the ap-
plication of some “intelligent” transformations
provided by a domain “expert”. Here we want
to go a step closer into the automatic selection
of these intelligent transformations, by allow-
ing the algorithm to search for the optimal ba-
sis.

2. Methodology

When facing a two-class classification prob-
lem, our starting point is the assumption that
there exists a non-linear function that projects
the input data onto a unidimensional space
where a linear separator is able to discrim-
inate among the two classes. This function
must have a simple and compact form in some
basis, so finding an appropriate set of basis
functions will strongly contribute to the sim-
plification of the problem: the final projection
may be constructed as a linear combination of
these non-linear transformations. Here we pro-
pose to explore jointly the Taylor and Fourier
bases, as well as compositions of both. We use
a genetic algorithm (GA) to construct the non-
linear transformations that operate on the raw
input data, and a Fisher discriminant to per-
form the linear projection on the transformed
attributes. In this regard our approach follows
on the work developed by [15] with the EFLN
algorithm, introducing two main differences:
first, we do not limit the transformations to
polynomials, but we expand the representation
capabilities by adding trigonometric functions;
and second, the linear projection is performed
by a Fisher discriminant, instead of a linear
neural network.

The proposed algorithm includes feature
construction as well as feature selection. For

the first task, it combines different bases of
transformation (e.g. polynomial and trigono-
metric) to generate the input for the linear
classifier. Feature selection is performed by the
application of the genetic algorithm, which se-
lects the best subsets of transformed variables
by using the linear classifier error rate as the
fitness criterion. Consequently our algorithm
can be viewed as a wrapper method [7].

The general form for the input transfor-
mations operating in a n-dimensional feature
space is given by the expression:

F(z1,25, .., 20) = [ [ 4 To(bimys) (1)

i=1

where the z; represent the original input vari-
ables, a; and b; are integer coefficients, and
T; is a trigonometric function (a sine or a co-
sine). Each y; is either equal to z; or to a new
F(z1,z2,...,&s). In this way compositions of
polynomials and trigonometric functions can
be constructed.

Our algorithm starts by generating K dif-
ferent function sets, each one composed of m
functions as that of equation 1:

S;={Fj,Fi, . .,F.},i=12,.,K (2)

Each of these sets S; corresponds to an in-
dividual in the initial population which will
be evolved by the genetic algorithm. The fit-
ness of the individual S; is calculated as the
classification error of a Fisher linear discrimi-
nant operating on the transformed attributes
Fi(x), Fi(x), ..., Fi,(x). Note that an exhaus-
tive search over the space of input transforma-
tions would be computationally too expensive
and would not scale properly on the number
of input variables. This fact, together with the
absence of gradient information, makes the use
of an evolutionary approach very appropriate.
In figure 1 we show a scheme of the algorithm,
which is briefly described below:

1. Initialize the first population of individu-
als randomly, and set the parameters for
the GA, such as the number of iterations
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and the mutation probability.

2. For each evolution iteration:

a) For each individual:

1) Generate the new features apply-
ing the input transformations to
the original attributes.

2) Ewaluate its fitness value as the
classification error of the Fish-
er Linear Discriminant applied
to the transformed features on
the training and validation data
sets.

b) Select the lowest error individuals for
the newt tteration.

c) Generate a new population applying
genetic operators and the individuals
selected in (b).

8. FEwvaluate the most accurate individual on
the test data set.

3. Test case

We have applied the previous methodology
to a synthetic data set that consists of two
classes, A and B, in a two-dimensional in-
put space, given by the attributes = and y.
The problem presents the following proper-
ties: (i) there exists an appropriate non-linear
transformation that is able to separate the
classes with no error; and (ii) in the original
input space the classes present a very high
overlap and, given the number of examples,
seem to follow the same distribution. This last
fact makes the problem particularly difficult
to solve. We present the results of our algo-
rithm in comparison with the results obtained
with other classification methods, namely mul-
tilayer perceptrons trained with backpropaga-
tion, decision trees trained with the C4.5 al-
gorithm, and evolutionary FLNs that use the
polynomial basis. The backpropagation algo-
rithm was tested using networks of one single
hidden layer, with different number of hidden
units (ranging from 3 to 10) with a sigmoidal
activation function. Different values for the
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learning rate between 0,01 and 0,3 were tried.
For the decision trees, we used Quinlan’s C4.5
algorithm [12] with probabilistic thresholds for
continuous attributes, windowing, a gain ratio
criterion to select tests and an iterative mode
with ten trials. Finally, the evolutionary FLN
was trained as described in [15], with polyno-
mials of up to degree 3.

Specifically, let us consider the following
problem. It consists of 2000 patterns in a two-
dimensional input space, defined in the inter-
val [0 < z <100, 0 < y < 100]. We select 1000
patterns of each class. The patterns of class A
are defined as:

(z,y) € A +— mod(int(z’y’),2) =
mod(int(y), 2) (3)

where int(z) is the integer part of z and
mod(z,2) is the remainder of z/2. Class B pat-
terns are those that do not satisfy the equali-
ty in eq. 3. Note that there exists a non-linear
transformation that solves this problem with
0 error. However, in spite of the determinis-
tic nature of the problem, the small number of
patterns makes it appear that the two classes
fully overlap, which makes the problem partic-
ularly difficult to most classification methods.
To ilustrate this, we show in figure 2 the pat-
terns of each class in the original input space.

We applied the previous three traditional
methods to this problem, obtaining the results
shown in table 1. Classification error rates are
in all cases close to 50 %, which indicates that
no improvement with respect to random class
selection is achieved. This means that they
are not performing much better than select-
ing the class randomly. The difficulty these
traditional methods are confronting is due
to the high overlap between the two classes.
Note that for an absolute class overlap, even
the best (Bayes) class estimator fails. Howev-
er Bayesian decision theory assumes perfect
knowledge of class distributions, which is not
the present case. In fact, we know that below
the apparent class mixing there is a hidden
structure that the tested methods are not able
to discover when just focusing on the original
input space.
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ATTRIBUTE AND
TRANSFORMATION SELECTION

CLASSIFICATION

TRANSFORMATION METHOD

1 1 1

GENETIC .
F(zy, 29, .., 2,) = | | 27 Ti(bimz;) ] FISHER
ALGORITHM Py ) 131 ' Tilber) S

Figura 1: Schematics of the overall methodology. The genetic algorithm evolves individuals consisting of
different sets of transformations that operate on the input data. The transformed attributes are then fed
into a Fisher discriminant whose error rate determines the fitness of the individual, used by the genetic
algorithm to compute the next generation of transformation sets.

Figura 2: Input patterns for the test case consisting of two classes, A and B, and two attributes, = and y.
The problem data consist of 1000 patterns of class A (circles) and 1000 patterns of class B (crosses).

individuals, each one consisting of a set of

Algorithm || Train Error % || Test Error % m = 6 input transformations. The optimiza-
Backprop 50,4 49,5 tion was performed using a standard GA pack-
C4.5 46,4 50,2 age [10]. All the trials we ran converged fastly
EFLN 44,6 46,4 to the optimal solution, the outcome of one of

them is shown below:

Cuadro 1: Comparison of performances of var-
ious classification methods on the problem of

. 2 2\ .
test case 2. sin(wz’y?) sin(my)

0
z? sin(3mz2y?)y sin (2w z2y? sin(37x) sin(7y))
0
Finally, to test our algorithm we used a ge- 0
netic algorithm with populations of up to 50 cos(3mz2y?)
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The corresponding Fisher projection is giv-
en by:

(—9,53 006 0 0 0 0)

Which produces the final transformation
—9,53 sin(mzy?) sin(ny) that separates the
two classes with no error (see figure 3).

4. Conclusions

This paper presents a proof of concept for
the construction of near-optimal problem rep-
resentations in classification problems, based
on the combination of functions selected from
an initial family of transformations. The selec-
tion of an appropriate transformation allows
the solution of complex nonlinear problems
by a simple linear discriminant in the newly
transformed space of attributes.

Work on progress includes the introduction
of a more extensive family of basis functions
that will allow for the construction of a wider
repertoire of problem representations. Addi-
tionally, mechanisms to control the combi-
natorial explosion in the space of represen-
tations and the complexity of solutions will
be analyzed. Additional work in progress al-
so includes information/statistical measures
that allow to uncover the structural /statistical
properties of the input attributes and this in
turn provides additional heuristics over which
transformations to select.

Other advantages of the proposed method
are that a closer, more compact problem rep-
resentation usually allows for easier model in-
terpretation [15], and, hence, a deeper under-
standing of the structure and mechanisms un-
derlaying the problem under study. Related
work on the extraction of hidden causes [9],
which provide the generative alphabet, will be
farther explored.
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