
Experiments with Adaboost and linear programming ∗

Maria Dolores Valverde, Francesc J. Ferri
Dept.d’Informàtica

Universitat de València

46100 Burjassot (València). Spain

{M.Dolores.Valverde, Francesc.J.Ferri}@uv.es

Abstract

In the context of classification problems,
boosting refers to methods that create an
ensemble of ’weak’ classifiers in order to get a
combined classifier that improves the perfor-
mance of any of the weak classifiers combined
and eventually leads to competitive results.
It has been reported that the performance
of boosting is related to the diversity of the
combined classifiers. This paper presents
a preliminary approach to obtain a sparse
combination of classifiers from a previously
learned ensemble that can improve boosting
results in such cases.

1 Introduction

The basic idea of boosting methods is to
create a combination of the outputs of many
weak classifiers in order to get a better
one. This weak classifiers, called also base
classifiers could be at first any given classifier
slightly better than random. Then the
motivation of this combination is to gently
improve the performance of any of the single
classifiers that are combined.
Adaboost [2] [3] is one of the most well-known
boosting algorithms that sequentially creates
an ensemble of classifiers trained on different

∗This work has been partially supported by
grants TIC2003-08496-C04-01, TIC2003-08496-C04-
01, TIC2002-12744-E and TIN2004-21343-E

versions of the training set chosen deter-
ministically in such a way that in each step
more emphasis is given on examples that are
misclassified in previous steps. Adaboost has
created so much interest both because its
simplicity and because of the fact that very
little prior knowledge seems to be needed in
principle.
On the other hand, it depends basically on
the dataset and the selected base classifier.
Many researchers [1] [7] show that Adaboost
could be interpreted as an approximation
of a solution of a linear programming that
tries to maximize the minimum margin of the
ensemble. The margin for an example, could
be understood as a measure of confidence in
the prediction. Then Adaboost maximizes the
margin of all the examples [3] concentrating in
each step on the examples misclassified, i.e.,
examples that have the minimum margins.
Dietterich showed in [8] that Adaboost
creates very diverse classifiers
in the absence of noise but in the presence
of noise the combined classifier deteriorates
because the individual classifiers are less
diverse and have high individual error rates.
This behavior can be also understood as a
consequence of the strategy of the margin.
The added noisy prototypes have the high
weights and then Adaboost concentrates too
much on them creating classifiers with poor
performance.

Actas del III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005, pp.153-158
ISBN: 84-9732-449-8 © 2005 Los autores, Thomson

2 Adaboost

The Adaboost algorithm described below,
takes as input a training set S={(xi, yi)}
where each xi lies in some space <d and yi are
labels in the set Y = {−1, 1}. Other inputs
are the base learner H, i.e., the classification
rule that will give a classifier ht at each step,
and T that it is the number of maximum iter-
ations.
The idea of Adaboost is to create sequentially
T classifiers over different distributions of the
training set.

Input: (S={(xi, yi)} i = 1, ..., N,

H base learner, T max iter)

Initialize D1(xi) = 1/N
for t = 1, ..., T

Train ht over subset St sampled

from S with distribution Dt

Compute the weighted error for ht:

εt =
∑N

i=1
wiI(ht(xi) = yi)

if ht is worse than random or

have zero training error,

STOP

Compute alpha, coefficient of ht

αt = log((1− εt)/εt)

Update the distribution Dt

Dt+1(xi) = Dt(xi) exp (−αtyiht(xi))

end

Output final classifier,

F (x) = sign(
∑T

t=1
αtht(x))

Algoritmo 1: Adaboost

The selection of the training set in each step
could be done in two ways, one is boosting by
reweighting and the other one is boosting by
resampling [3]. In order to consider a wider
family of classifiers including those that can-
not explicitly deal with weights, only the re-
sampling strategy has been considerer in this
preliminary experimentation.
In the first step, every point in the training
set has the same relevance and Adaboost ini-

tializes D1 as a uniform distribution. This
distribution is updated at each iteration and
the weight of an example increases when
it is misclassified and decreases when it is
correctly classified. The weight of a training
object roughly reflects at each moment the im-
portance of this object for the classification
task. The higher the weight the more priority
for being well classified in the next step. In
this way the algorithm tries to compensate the
classifiers because in the end we want the com-
bined classifier to be more robust. At the same
time, each classifier will have a different perfor-
mance over the weighted training set, and this
information is used for create the coefficients
αt of each classifier in the combined classifier.
It is in some way a measure of the relevance of
each classifier in the combined rule, because it
depends on the weighted error of the classifier.
The smaller the error εt the higher the αt and
then the classifier associated ht will have more
relevance in the combined classifier.

3 Improving the results of Ad-
aboost

One of the most important components of Ad-
aboost is the base classifier used. In [9], exper-
iments with different linear discriminants as
base classifiers in Adaboost are carried out to
solve problems with small sample size. When
the datasets are large the question of what
to use as base classifier still remains an open
problem. In this report, the first part of the
experiments consist of using four different clas-
sification rules as base classifiers in order to see
whether Adaboost could improve the perfor-
mance of any of this classification rules. The
classification rules considered are:

1. Decision Trees, used frequently in data
mining because not need for prior knowl-
edge of the data.

2. Linear Discriminant classifier. This clas-
sifier is optimal for the case of two nor-
mals with the same covariance matrix. If
this is not the case, it tries to minimize
the mean square error.

154 III Taller de Minería de Datos y Aprendizaje

3. Nearest Neighbor rules, that classify each
example assigning the label of the nearest
object in the training set.

4. Nearest Mean classifier, a very simple lin-
ear classifier that estimates the means of
the classes and generate the bisection of
them.

The second part of this work focuses in
the study on the classifiers created by the
boosting process. As is explained by
Dietterich [8], the good performance of Ad-
aboost has a direct relation with the diversity
of the classifiers in the ensemble. When the
classifiers are very similar, selecting some of
them could increase the relative diversity and
then lead to better generalization error. Ad-
aboost creates a linear classifier in the space of
labels, whose coefficients are (α1, ..., αt). The
aim of our approach is to find a linear classifier
in this space, that only uses few of the classi-
fiers. Selecting classifiers can be accomplished
by making some of the α coefficients vanish.
One way to do this is by solving a linear pro-
gram that tries to create a linear classifier in
this space. Recent research has put forward
the properties of the boosting process and lin-
ear programming formulations has been pro-
posed in order to study what are the charac-
teristics that make Adaboost work so well as in
[1], or to improve the performance of Adaboost
as in [7]. In this report, a linear programming
formulation [4] is also used but with the inten-
tion of selecting classifiers and creating a new
combination of the classifiers. Fung and Man-
gasarian describe a linear programming formu-
lation that use a fast Newton method which
founds an exact least 2-norm formulation to
the SVM classifier. This approach is based on
a 1-norm formulation of (soft margin) SVM
that gives as a result a sparse solution.

min ‖w‖1 + ν
∑N

i=1
ξi

s.t. yi(Aiw) + ξi >= 0

ξi>=0 for i = 1, ..., N.

Algoritmo 2: Linear Programming (LP)

This means that the SVM classifier only de-
pends on a few features. In the same way, we
want our ensemble to rely only in few, diverse
enough classifiers. Consequently, the same for-
mulation is used but on the outputs of the clas-
sifiers as new feature space. The Algorithm 3
shows the formulation of this linear program.
A, is a N x T matrix with elements given by
At

i = ht(xi). Note that the elements of A are
1 or −1. The ξi for i = 1, .., N represent the
misclassification for each example that can be
understood as the quantity necessary to satisfy
the margin constraint. Minimizing the sum of
this variables is then a strategy to minimize
the number of examples misclassified. Apply-
ing the linear programming to this matrix, will
give a linear classifier constructed in the T-
dimensional space of labels, as Adaboost do,
but with the target now of getting a sparse so-
lution in this space that only works with a few
classifiers. The sparse vector of coefficients is
represented by w leading to the new combined
classifier :

∑T

t=1
wjhj .The best possible solu-

tion is searched changing the value of ν that
it is the parameter that represents the trade
off between the importance of minimizing the
1-norm of the vector w and the sum of the
misclassifications

∑N

i=1
ξi.

4 Experimental study

4.1 Setup

The datasets used are Phoneme from ELENA
project[6] and Satimage from the UCI Ma-
chine Learning Repository [5]. Phoneme con-
sist of five dimensional data that tries to
distinguish between nasal and oral vowels.
Satimage has six classes originally. Some
classes were collapsed and here is presented
as a skewed two class dataset.The table 1 de-
scribes the datasets:

Dataset Features Ex. per class Total

Phoneme 5 3818 1586 5404
Satimage 17 5106 1329 6435

Table 1: Datasets

The two datasets have only two classes and
the outputs of the classifiers will be +1,−1.

III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005 155

TstEr Cl AB LP

Pho ldc 0.2419 0.3501 0.2517
(447±74)

nmc 0.2609 0.3806 0.2311
(404±38)

tree 0.3329 0.1860 0.2167
(500)

1-nn 0.0951 0.1214 0.1710
(386±50)

Sat ldc 0.1091 0.1905 0.1125
404±60

nmc 0.1436 0.3584 0.1382
(290±25)

tree 0.1155 0.0827 0.1209
(484±5)

1-nn 0.0625 0.0817 0.0803
(257±32)

Table 2: Results

The data is divided into five folds and for each
of them in a cross validation way, it is con-
structed a combined classifier of 500 classifiers
using Adaboost for each of the four classifi-
cation rules. The resulting matrix of labels
is used for the linear programming with dif-
ferent values of the parameter ν that controls
the trade off in the LP formulation. The final
value of ν is close to 0.01 in most of the cases.

4.2 Results

In table 2, the averages over the five results for
each classifier, for Adaboost at last step and
for the best LP result are shown. The number
of selected classifiers is also shown in brackets.
The best result in each case is in bold.

The figures 1, 3 show the test error for some
of the results in table 1. The curves represent
the test error of the combined classifier on each
step of Adaboost. Horizontal lines show test
error for a single classifier, and for the best LP
result.
Figures 2 and 4 show the alphas, i.e., the coef-
ficients created by Adaboost for each classifier
to be combined in the ensemble. The figures
5, 6 give a representation of the distribution of
the different normalized coefficients both for
Adaboost and for LP.

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of classifiers in ensemble

E
rr

or

Generalization Error boosting decision trees

ts error boost
ts error trees
ts error LP

Figure 1: Dataset Phoneme. Adaboost with deci-
sion trees

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

Set of classifiers

co
ef

fic
ie

nt
s

va
lu

es

Coefficients created by Adaboost boosting decision trees

Figure 2: Dataset Phoneme. Alphas for the com-
bination of decision trees created by Adaboost

5 Discussion and Concluding Re-
marks

The first thing observed is that in both cases
the nearest neighbor rule gives the best result.
In three of the four classification rules investi-
gated, work with Adaboost is useless, and in
the cases of linear discriminant and the near-
est mean rule are even much worse than for
the single rule. In [9] nearest mean was used
with Adaboost with success. The reason could
be the choice of the reweighted technique in-
stead of resampling used here in each step for
training the classifiers. Also the properties of

156 III Taller de Minería de Datos y Aprendizaje

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of classifiers in ensemble

E
rr

or

Generalization Error boosting linear discriminant

ts error boost
ts error ldc
ts error LP

Figure 3: Dataset Satimage. Adaboost with linear
discriminat

these datasets could be important in their per-
formance, due to they have overlapping area
that makes hard the description of their bor-
der by linear classifiers. In the figure 2 it is
showed the behavior in the case of decision
trees or nearest neighbor, where it can be ob-
served that the value of the alpha does not
decrease as Adaboost creates more classifiers.
The figure 4 shows the behavior in the case of
linear discriminant and nearest mean, where
the value of alpha flips between two ranges.
This probably means that Adaboost creates
overall two types of classifiers and then classi-
fiers very similar that does not converge to a
combined classifier more robust.

With respect to the second question refer-
ring to linear programming, experiments in-
dicate that the combined classifier created by
this linear programming usually increases the
generalization error in the cases where Ad-
aboost improves the single classification rule
and decrease in the cases where Adaboost does
not improve it. In general the reduction in
the number of classifiers combined as solution
of linear programming is not very significant
in relation with their performance. The fig-
ures 5 and 6 show the normalized alphas cre-
ated by Adaboost and by LP arranged in in-
creasing order. The curve that represents the
alphas of linear programming, shows in both
figures that most of the coefficients are almost

0 50 100 150 200 250 300 350 400 450 500
0

5

10

15

20

25

30

35

40

Set of classifiers

co
ef

fic
ie

nt
s

va
lu

es

Coefficients created by Adaboost boosting linear discriminants

Figure 4: Dataset Satimage. Alphas for the combi-
nation of linear discriminant created by Adaboost

zero or have a small value in comparison with
the highest ones. This could mean that most
of the classifiers combined by linear program-
ming are irrelevant for the classification task
and the sparsity is in fact more significant than
the results show.

6 Future Work

In the future, it could be interesting to study
if these results are the same using the con-
tinues confidences for the linear programming
instead of crisp labels of the classifiers. Other
techniques to select features could be also ap-
plicable to this problems and other LP formu-
lation could be considered.

References

[1] Grove, A. J. & Schuurmans D.Boosting
in the limit: maximizing the margin of
learned ensembles, In Proceedings of the
Fifteenth National Conference on Artificial
Intelligence. AAAI Press , Meno Park, NJ,
1998.

[2] Freund Y. & Schapire, R. E., Experi-
ments with a new boosting algorithm,In
Machine Learning: Proceedings of the
Thirteenth Intenational Conference,148-
156.Morgan Kauffman, San Francisco,
1996.

III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005 157

[3] Freund Y. & Schapire, R. E., A Short
Introduction to Boosting, Journal of
Japanese Society for Artificial Intelli-
gence,14(5): 771-780, September, 1999.

[4] Fung M. G. & Mangasarian, O. L., A Fea-
ture Selection Newton Method for Support
Vector Machine Classification, Computa-
cional Optimization and Aplications,28,
185-202, 2004.

[5] Merz C. J. & Murphy P.M.,
UCI Machine Learning Repository,
www.ics.uci.edu/ mlearn/MLRepository.html.

[6] UCL Neural Network Group ELENA
project, ftp.dice.ucl.ac.be at directory,
pub/neural nets/ELENA/databases.

[7] Rätsch, G. & Schölkopf, B. & Smola A.J.
& Mika S. & Onoda T. & Müller K.-R.,
Robust Ensemble Learning, In A.J. Smola,
P.L. Bartlett, B. Schölkopf, and D. Schu-
urmans editors, Advances in Large Mar-
gin Classifiers, 207-219. MIT Press, Cam-
brigde, MA, 2000a.

[8] Dietterich, T. G. An Experimental com-
parison of three methods for construct-
ing ensembles of decision trees: Bag-
ging, boosting and randomization, Machine
Learning,1-22,1998.

[9] Skurichina, M.& Duin, R.P.W. Boosting
in Linear Discriminant Analysis, Multi-
ple Classifier Systems (Proc. First Inter-
national Workshop, MCS 2000, Cagliari,
Italy, June 2000), J. Kittler, F. Roli (eds.),
Lecture Notes in Computer Science, vol.

1857, Springer-Verlag, Berlin, pp. 190-199,
2000

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

Set of classifiers

no
rm

al
iz

ed
 c

oe
ffi

ci
en

ts
 v

al
ue

s

Distribution of coefficients

Alphas Adaboost
Alphas LP

Figure 5: Dataset Phoneme. Alphas created by
Adaboost boosting decision trees and LP normal-
ized and arranged in increasing order

0 50 100 150 200 250 300 350 400 450 500
0

0.01

0.02

0.03

0.04

0.05

0.06

Set of classifiers

no
rm

al
iz

ed
 c

oe
ffi

ci
en

ts
 v

al
ue

s

Distribution of coefficients

Alphas Adaboost
Alphas LP

Figure 6: Dataset Satimage. Alphas created by
Adaboost boosting linear discriminant and LP
normalized and arranged in increasing order

158 III Taller de Minería de Datos y Aprendizaje

