
A Survey of (pseudo)-Distance Functions
for Structured Data ∗

V. Estruch-Gregori C. Ferri-Ramı́rez J. Hernández-Orallo
M.J. Ramı́rez-Quintana

Departament Sistemes Informàtics i Computació

Universitat Politècnica de València

{vestruch, cferri, jorallo, mramirez}@dsic.upv.es

May 31, 2005

Abstract

Learning from structured data is becoming in-
creasingly important. Besides the well-known
approaches which deals directly with complex
data representation (inductive logic program-
ming and multi relational data mining), re-
cently new techniques have been proposed by
upgrading propositional learning algorithms.
Focusing on distance-based methods, they are
extended by incorporating similarity functions
defined over structured domains, for instance
a k-NN algorithm solving a graph classifica-
tion problem. Since a measure between ob-
jects is the essential component for this kind of
methods, this paper consists of a brief survey
about some of the recent similarity functions
defined over common structured data (lists,
sets, terms, etc.).

keywords: ILP, distance-based methods,
kernel and distance functions, structured data.

1 Introduction

Most real world data has no natural represen-
tation by means of tuples of pairs of attribute-
value being the value a nominal or a numer-
ical data. Some recent challenges in machine
learning, such as web and text mining, mollec-
ular classification, etc., demand a more power-
ful and expresive instance representation lan-

∗This work has been partially supported by the
EU (FEDER), the Spanish MEC, under grant TIN-
2004-7943-C04-02, and the Generalitat Valenciana
(MEDIM).

guage. For example, imagine how much struc-
tures a web page is. Several categories and
a variety of information can be distinguished:
the title, the content, the multimedia infor-
mation, the links, etc. Thus, a web site might
not have a trivial description as a collection
of nominal or numerical atributes. However,
a more readable and intuitive description way
can be achieved by allowing a data-typed rep-
resentation language. Namely, chain of atoms
and list of words can be mapped into lists of
data, a bag of words or a multiple-instance
problem [1] can be modelled by means of sets
or multi-sets, and a mollecule or a web-site
topology (internal connections) clearly corre-
sponds to a graph.

Inductive logic programming (ILP) and
multi-relational data mining (MRDM) have
been considered as the classical approaches in
order to handle structured instances directly.
Nevertheless, during the last years, an increas-
ing interest of upgrading some propositional
data mining methods has appeared. Thus, we
can find kernel and distance functions, and
probalistic distributions defined over struc-
tured domains in order to adapt kernel-based
(e.g. SVM), distance-based (e.g. k-Means)
and probabilistic-based (e.g. Naive Bayes)
methods to these complex scenarios.

In this paper we review some of the recent
similarity functions (concretely distance and
pseudo-distance functions) defined over struc-
tured data types. These (pseudo-)distances
have been employed by well-known learning al-

Actas del III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005, pp.233-242
ISBN: 84-9732-449-8 © 2005 Los autores, Thomson

gorithms (SVM, k-Means, DBDT) and tested
in different learning problems, as we remark.
Additionally, several (pseudo-)distances are
studied for the same data type because each
one mesures the proximity notion in some par-
ticular way, and sometimes, this quantifica-
tion becomes crucial for the perfomance of the
learning method.

The outline of the paper is as follows. Sec-
tion 2 introduces different structured data rep-
resentation language. A collection of (pseudo-
)distances are explained in Section 3. Finally,
some conclusions are given.

2 Representing Structured Data

Unlike non-structured data, where instances
are usually represented by attribute-value
pairs, there does not exist a standard notation
to represent structured information. How-
ever, several benefits can be derived from a
unified notation, for instance, a cost reduc-
tion in the preprocessing task (parsing, read-
ing and filtering). So far, the main steps in
this line rely on logic formalisms. Next, we
sketch some of these proposals: ISP (Individ-
uals, Structural predicates and Properties), re-
lational and term based representations [4].

• ISP representation: It is based on flat-
tened Prolog and consists of three parts
declaring the individuals (instances), the
structural predicates (structure of the
instances) and the properties (nominal
or numerical of the structured compo-
nents). This representation layout is
feature-extraction oriented. Let us show
it by means of an example:

Example 1 We need to represent a set
of tuples like this, 〈molecule, weight〉,
which describe a molecule and its corre-
spondent weight. Consider the concrete
case: 〈H2O , 32.99〉:

% INDIVIDUAL ; m1 is the molec. id.

molecule(m1,label_class)

% STRUCTURAL PREDICATES

% ai is the atom id.

mol_to_atom(m1,a1)

mol_to_atom(m1,a2)

mol_to_atom(m1,a3)

% PROPERTIES

weight(m1,32.99)

symbol(a1,H)

symbol(a2,H)

symbol(a3,O)

The features could be defined from the
structural and the property predicates.

• Relational representation: It is based on
relational data bases. Although under
certain restrictions it is equivalent to ISP,
however, it leads to more compact de-
scriptions.

Example 2 Relational representation of
〈H2O , 32.99〉:

molecule(m1,32.995)

symbol(a1,H,m1)

symbol(a2,H,m1)

symbol(a3,O,m1)

• Term-based representation: It is a declar-
ative description based on typed logic lan-
guages. Some ILP researchers advocate
the use of typed data in order to exploit
the information provided by the type to
prune the hypothesis space. This nota-
tion leads to self-contained objects.

Example 3 Term-based representation
of 〈H2O , 32.99〉:

% DECLARING DATA TYPES

type Molecule = ({Atom},weight,class)

type Atom = (Symbol)

% DECLARING INSTANCES

Water = ({Oxygen,Oxygen,Hydrogen},

32.99,class)

Atom Oxygen = 0, Hydrongen = H

234 III Taller de Minería de Datos y Aprendizaje

3 Some Recent (pseudo-)Distances
over Structured Data

In this section we review some novel
(pseudo-)distances introduced over struc-
tured domain which have been embedded in
distance-based classification or clustering algo-
rithms.clustering problems over complex data.

The pseudo-distance definitions exposed in
the second subsection come from kernel defini-
tions. They can easily be deduced, as we will
see, thanks to the formal relationship existing
between the concept of inner product (scalar
product) and the concept of distance.

3.1 Distance Functions

Distances over lists and trees are omitted at
this point because the widest-used definitions
are still dated from the last sixties and sev-
enties decades [20, 21, 19]. However some ad-
vances have been made as for other data types
such as sets and first-order terms.

• Sets: Finite collections of items appear
frequently in computer science problems.
So, measuring the similarity between two
sets of items have many useful applica-
tions not only in machine learning but
also in other areas such as computational
geometry.

Maybe, the most intuitive distance be-
tween two finite sets is given by the car-
dinality of the symmetric difference be-
tween them. Although it is is easily com-
putable, some more sophisticated defini-
tions are required in order to improve the
performance of the learning methods.

Two interesting distances from a practi-
cal point of view, explained at this point
are the Hausdorff distance 1[14] and a
matching-based distance [16].

At first sight, the Hausdorff distance pos-
sesses a weird and an artificial formula-
tion, but as years went by, it turned out

1Introduced by the German mathematician Felix
Hausdorff.

to play an important role not only in frac-
tal geometry but also as similarity mea-
sure for sets in classification and clus-
tering problems (multiple-instance prob-
lem). It is defined as follows,

Definition 1 Given X a set of points,
and d, a metric between points, the Haus-
dorff metric dh : 2X × 2X → R+ ∪ {0},
then

dh(A, B) = max

maxa∈A(A(a))
maxb∈B(B(b))

where A(a) = min{d(a, b) : b ∈ B} and
B(b) = min{d(a, b) : a ∈ A}.

In a few words, the distance between the
sets A and B is given by the maximum
distance of a set to the nearest point in
the another set. This makes it very sensi-
tive to outlying points from A or B. For
instance, let us consider A = {1, 2, 3} and
B = {4, 5, 20}, where 20 is some large
distance away from every point of A. In
this case, applying Definition 1, we ob-
tain that the distance between A and B
is 17 and, it is basically determined by the
outlying value. In [17] the Hausdorff dis-
tance has been tested over known struc-
tured data sets (multi-instance data sets)
achieving quite competitive results. In
[22] an extension of this distance is pro-
posed in order to reduce the noise sensi-
bility.

The matched-based distance is a formal
instantiation of a novel and attractive
schema introduced by [2]. This schema
consists of two equations. First,

Definition 2 Given two finite sets A and
B and a known distance d defined over the
items belonging to A and B, then

d(r, A, B) =

» X
(x,y∈r)

d(x, y)

–
+

M · |B − r(A)|+ |A− r−1(B)|
2

where r is a mapping from A to B.

III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005 235

It means that one sums the distances
of the pair of elements in r and adds a
penalty M/2 for each element not belong-
ing to r. The constant M stands for the
maximal possible distance between two el-
ements from A and B. The second equa-
tion is just employed to define the dis-
tance (dm) between A and B.

Definition 3 Let A and B be two sets,
the distance between A and B is defined

dm(A, B) = minr∈m(A,B)d(r, A, B)

where m(A, B) (simplifying the original
notation) is a family of mappings (surjec-
tions, fair surjections or linkings are the
family of mappings considered by the au-
thors) between A and B.

This schema leads to a semi-distance
function. The matched-distance defini-
tion follows the schema above but forcing
the mappings to be a matching (a map-
ping between A and B is a matching if
each element of A is associated to at most
one element of B.). Adding this new con-
dition, the authors show that the semi-
distance dm turns into a distance, where
in this case m denotes all possible match-
ings between A and B [17].

Example 4 Given the sets A = {1, 2, 3}
and B = {1, 4} and consider the dis-
tance between numbers as the absolute dif-
ference. Applying Definition 3, we ob-
tain that the optimal mapping is r =
{(1, 1), (3, 4)}, M = 4 − 1 = 3, and
dm(A, B) = 0 + 1 + 3 · 1+1

2
= 4.

The authors report some experimental re-
sults as well (multi-instance and biochem-
ical data sets), showing that the matched-
distance performs better than the semi-
distance functions. Additionally, these re-
sults are comparable w.r.t those achieved
by special-purpose methods.

• Terms and atoms: Before introducing the
distances defined over terms and atoms,
we briefly recall some logic terminology.
The set of terms T is built from the set
of variables V and the set of functors
F . An additional set A denoting the the
set of predicates symbols is needed. A
variable is a term, and a f/n a functor
symbol of arity n and t1, . . . , tn terms,
then f(t1, . . . , tn) is a term. Similarly, if
p/n is a predicate symbol of arity n then
p(t1, . . . , tn) is an atom. Given two atoms
a1 and a2 we will say that a1 is more
general if there exists a substitution σ (a
function which instantiates the variables
of an atom a by terms and it is denoted
by aσ) such that a2 = a1σ. Given two
atoms a1 and a2 the least general atom
w.r.t. a1 and a2 is denoted by lgg(a1, a2).

Initially some ad-hoc similarity functions
to handle first order terms were intro-
duced [3] but they do not preserve some
intuitive properties about the proxim-
ity between two atoms. For instance,
given the atoms p(a), p(b) and p(X), p(a)
should be closer to p(X) than to p(b) be-
cause p(a) is a instance of p(X). Consider
also the case when p(X) and p(Y), then
the distance should be zero.

It sounds reasonably that before measur-
ing how far two first order rules are, ini-
tially we need to quantifies the separation
between two atoms. The works in this line
concentrate in showing a feasible similar-
ity function over atoms.

In order to define an adequate distance,
an incremental strategy is followed in [15].
First, a distance between to ground atoms
is defined, and then, this distance is ex-
tended to atoms containing variables us-
ing the Hausdorff distance between sets
and the notion of Herbrand space.

Definition 4 Let E be the set of ground
terms and atoms, and let a1 =
p(s1, . . . , sn) and a2 = q(t1, . . . , tn) be two

236 III Taller de Minería de Datos y Aprendizaje

items belonging to E, then

d(a1, a2) =

8<:
0, if a1 = a2

1, if p 6= q
1
2n

Pn
1=1 d(si, ti)

The following example illustrate how this
distance works.

Example 5 Given the ground atoms
a1 = p(f(a), g(a, b)) and a2 = g(f(b), b)
then

d(a1, a2) =
1

4
(d(f(a), f(b)) + d(g(a, b), b))

=
1

4
(
1

2
+ 1) =

3

8

Now, If we want to calculate the distance
between no-ground atoms, it is necessary
to compute the Herbrand base of each
atom and calculate the Hausdorff distance
between them. However, the last defi-
nition yields not desirable results when
non-ground atoms are involved, in order
to overcome that, a new distance is pro-
posed in [17]. The authors of this work
present an original distance schema based
on a previous semi-distance definition in
[9]. This distance is on agreement with
the intuitive proximity relations between
atoms informally mentioned at the begin-
ning of this point. The mentioned dis-
tance between two atoms (not necessarily
ground) is expressed as a pair of integer
values (F, V) reflecting the differences of
them w.r.t. their lgg. The distance def-
inition is based on an auxiliary function
s(a) = (F, V), called size, which reflects
the structure of the atom a. Roughly
speaking, F is a function which counts the
number of predicate and function symbols
occurring in a, and the function V returns
the sum of the squared frequency of ap-
pearance of each variable in a. More for-
mally,

Definition 5 Given a1 and a2 two
atoms, then

d(a1, a2) = [s(a1)− s(lgg(a1, a2))]+

[s(a2)− s(lgg(a1, a2))]

Example 6 Consider the atoms a1 =
p(a, b) and a2 = p(b, b). The distance
d(a1, a2) is calculated as follows. First,
we compute the lgg of both atoms, that is,
lgg(a1, a2) = p(X, b) and then, we mea-
sure each atom structure by means of the
function size: s(a1) = s(a2) = (3, 0) and
s(lgg(a1, a2)) = (2, 12). Finally, the dis-
tance between a1 and a2 is

d(a1, a2) = [(3, 0)− (2, 1)]+

[(3, 0)− (2, 1)] = (1,−1) + (1,−1)

= (2,−2)

Note that with this definition of distance
the proximity relation (how far two atoms
are) is not as intuitive as in a conventional
metric space where its associated distance
returns only a positive real number (and
not a pair of values). For this reason,
the authors introduce a total order re-
lation over the pair of values which al-
lows to specify a proximity notion. Given
two ordered pairs A = (F1, V1) and B =
(F2, V2), A < B iff F1 < F2 or F1 = F2

and V1 < V2 (lexicographic order). Let us
illustrate how this order relation can be
used to determine the proximity among
atoms.

Example 7 Let a1 = p(a, b), a2 =
p(a, a) and a3 = p(b, b) be three atoms.
Since d(a1, a3) = (2,−2) and d(a2, a3) =
(4,−8) we can conclude according to the
order relation that a3 is closer to a1 than
to a2.

3.2 Kernel-Based (pseudo-)Distances

Some learning techniques need the structured
instances to be previously represented in a
more adequate space. This space is called
the feature space and the correspondent fea-
ture transformation is referred by σ. Com-
monly, the feature transformation leads to
an attribute-value representation language in

III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005 237

which a complex object is downgraded to a
vector of nominal and numerical values. As
we said in the introduction, a structured ob-
ject may not have a natural representation as
a vector of values. Therefore, the efforts in
this way lie on defining transformations which
try to reflect the semantic of the original rep-
resentation data. However, this task is not
straightforward.

Feature transformations are implicitly used
by kernel methods (SVM, Gaussian processes
and kernel principal analysis). These intro-
duce a special function, called kernel, embed-
ding a feature transformation. Theoretically
speaking, a kernel (denoted by k(·, ·)) is just an
application which computes the inner product
between two elements previously mapped into
their correspondent feature space. More for-
mally, k(x, y) = 〈σ(x), σ(y)〉 where 〈·, ·〉 stands
for the inner product 2. However, the attrac-
tiveness of a kernel function comes from the
fact it can be directly applied without explic-
itly computing σ.

As for distance-based methods, a kernel
function offers a new and rich possibility in
order to define a (pseudo-)distance (induced
(pseudo-)distance) by exploiting the existing
formal relationship between a distance and a
kernel. Let us see:

Definition 6 Let k : X×X → R be a positive
definite kernel on X and let x,y ∈ X. Then,
dk(x, y) =

p
k(x, x) + k(y, y)− 2k(x, y) is the

distance induced by k.

The expression above is obtained by con-
sidering that dk(x, y)2 = 〈σ(x)− σ(y), σ(x)−
σ(y)〉 such as it is pointed out by [6]. The func-
tion dk is a distance if σ is injective, otherwise,
it is a pseudo-distance. Although we are inter-
ested in (pseudo-)distances, in what follows,
only the kernel definition will be given since
automatically the (pseudo-)distance function
can be derived.

As we proceed in the subsection above, next,
we will sketch some kernel functions for well-
known structured data. Some of them have
been tested in real-world applications.

2For the sake of consistency the feature space must
be endowed of a Hilbert structure.

• Sets and multi-sets: A valid kernel for
two finite sets A and B can intuitively
be defined by considering the cardinality
of the set A ∩ B. Although this defini-
tion is rather simple, the underlying ideas,
which lead to it (convolution kernels), are
slightly more sophisticated [8]. The at-
tractiveness of this initial kernel function
comes from the fact it is a particular
case of a more general kernel definition
[7]. This one was specially introduced
to address the multiple-instance problem,
proving in the same work the appropriate-
ness of the kernel for this concrete task.
The definition is as follows

Definition 7 Let U be a set of items and
let X and Y be two finite subsets of U ,
then

kMI =
X

x∈X,y∈Y

kp
I (x, y),

where kI is a kernel function defined over
the elements of U and p is a positive real
number.

Note that this definition is valid for multi-
sets as well. We only have to treat those
repeated items as different ones. By doing
that, if the item x is n times in X, then
the term kp

I (x, ·) will appear n times in
the sum.

Example 8 Trivially, if we let kI =
kδ(x, y) where kδ(x, y) = 1 if x = y or 0
otherwise (discrete kernel), then the equa-
tion above turns into the symmetric dif-
ference between sets: kMI(A, B) = |A ∩
B|.

The kernel function 7 was embedded in
a SVM and tested in a drug prediction
problem being kI the Gaussian kernel.
The performance achieved was great even
w.r.t. specific-purpose algorithms.

• Basic terms: A high-order instance de-
scription language is presented in [12].

238 III Taller de Minería de Datos y Aprendizaje

This formalism allows to express any
structured data where an instance is rep-
resented by a closed term. Thus, a term
collects all the information relative to an
instance in a single object. Each term is
built from “indivisible” basic items: func-
tion types (to represent data types such
as sets and multi-sets), product types (to
construct fixed-size tuples) and construc-
tor types (to introduce constant symbols,
numbers, lists, trees, etc.).

Example 9 The list L = [A, B, B] is
represented by the term A : B : B : []
where the symbols : and [] are the list and
the empty list constructor respectively.
The multi-set S = {A, B, B} corresponds
to the function expression (in λ notation):
S = λx if x = A then 1, else if x = B then
2, otherwise 0.

The kernel function for closed terms is as
follows.

Definition 8 Let s and t be two closed
terms.

If s = C s1 · · · sn and t = D t1 · · · tn are
basic terms from instantiating type con-
structors (lists, trees, etc.), then

k(s, t)

kT (C, D) if C 6= D
kT (C, D)

Pn
i=1 k(si, ti)

if s and t correspond to λ-expressions
(sets or multi-sets), then

k(s, t) =
X

u∈s,v∈t

k(V (s u), V (t u))k(u, v)

where V (s u) computes how many times
the item u appears in s (t).

Finally, if s = s1 · · · sn and t = t1 · · · tn

are terms built from a tuple constructor,
then

k(s, t) =

nX
i=1

k(si, ti)

Let us illustrate these ideas by means of
next example.

Example 10 Given the lists L1 = A :
B : C : [] and L2 = A : D : [], then

k(L1, L2) = k(:, :) + k(A, A)+
k(B : C : [], D : [])

= 1 + 1 + k(:, :)+
k(B, D) + k(C : [], [])

= 3

Now, let us consider the multi-sets M1 =
{A, B, B} and M2 = {A, B},

k(M1, M2) = k(1, 1)k(A, A)+
k(1, 1)k(A, B)+
k(2, 1)K(B, A)
+k(2, 1)k(B, B)

= 1 + 0 + 0 + 2
= 3

Although this syntax-driven kernel per-
forms really well for known data sets
(biochemical and spatial clustering data
sets), it turns out to be excessively gen-
eral. Next, some more specific kernels are
slightly described.

• Lists (sequences): In what follows, we
consider that a sequence is built up from a
finite set of items (Σ). Roughly speaking,
the underlying idea of calculating the in-
ner product between two strings is based
on counting, in a some way, the number
of common subsequences. According to
[13], the problem is formalised in a in-
finite dimensional space, where each di-
mension corresponds to a word belonging
to Σ∗. Then, a string s is mapped into an
array of real-coefficient polynomial where
each polynomial encodes what words from
Σ∗ are a subsequence of s (not necessar-
ily contiguous) and how frequent and long
these subsequences are. Let us see the ex-
ample below:

Example 11 Consider the alphabet Σ =
{a, b, c} and the words w1 = aac and w2 =

III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005 239

ac. First, we obtain the subsequences in
w1 (u1i) and in w2 (u2i). Then, we asso-
ciate them the correspondent polynomial
(see Table 1).

subsequence polynomial

u11 a 2λ

u12 c λ

u13 aa λ2

u14 ac λ3 + λ2

u15 aac λ3

u21 a λ

u22 b λ

u23 ab λ2

Table 1: Subsequences of the words w1 (u1i)
and w2 (u2i).

The parameter λ is powdered as times as
the length of a subsequence is in wi (in-
cluding the gaps) whereas its coefficient
represents how many times a subsequence
appears in wi. Then, the scalar product
of w1 and w2 is computed using the poly-
nomials associated to the common subse-
quences of w1 and w2. The common sub-
sequences are {a, c, ac}. Organising all
these information into a vector, we have
that

σ(w1) =
`

2λ λ λ3 + λ2
´

σ(w2) =
`

λ λ λ2
´

and applying the inner product definition,

k(w1, w2) = 〈σ(w1), σ(w2)〉
= λ2(3 + λ2 + λ3)

The parameter λ is the so-called decay
factor. It quantifies how important a com-
mon subsequence is (generally λ ≤ 1). So,
setting λ = 1/2 and by Definition 6

d(w1, w2) =
√

1.39 + 0.56− 1.57
w 0.61

The calculus of the kernel can be ex-
pressed by the following definition,

Definition 9 Let Σ a finite set of sym-
bols and let w1 and w2 be two words from
Σ∗, then

k(w1, w2) =
X

∀u∈Σ∗

φu(w1)φu(w2)

=
X

u∈w1∩w2

(fu(w1) + fu(w2))λ
lu

where lu = lu(w1) + lu(w2) (lu(wi) is the
length of u in wi), φu(wi) computes the
polynomial associated to the subsequence
u in wi, fu(wi) returns the appearance
frequency of u in wi, and w1 ∩ w2 stands
for the common subsequences.

This latter kernel has been used for text
classification problems. Other kernel def-
initions consider that the subsequences u
must be contiguous in wi. In [5] more ker-
nel functions for string data are explained,
as well as plenty of references to related
works.

• Graphs: As a graph is a really highly
expressive and complex data structure,
defining a kernel for this data type based
on counting shared sub-graphs drives to
a NP -hard problem [18]. Some attempts
have been made in order to define com-
petitive kernels (expressive and less com-
putational expensive) by considering, as
a similarity measure, common particular
sub-graphs (paths, walks, random walks,
trees) rather than all possible sub-graphs.
Each of this approach leads to a differ-
ent kernel definition. For brevity, we
illustrate one based on common walks
which employs the formula k(G1, G2) =P

∀ g λ(s(g)) to compute the kernel be-
tween the graphs G1 and G2 (g denotes
a common walk, s(g) corresponds to the
size/length of g and λ(·) is the weight
function).

Example 12 Given the directed and
labelled graphs G1 = {(a, b), (b, c), (a, d)}
and G2 = {(a, b), (a, d)}. The

240 III Taller de Minería de Datos y Aprendizaje

common walks of G1 and G2

are {{(a, b)}, {(a, c)}}, and letting
s(g) = length(g) and λ = 1/s(g)!, then

k(G1, G2) = λ((a, b)) + λ((a, c))
= 1

1!
+ 1

1!
= 2

More elaborated and detailed kernel def-
initions can be found in [11, 10]. Ker-
nels over graphs have been successfully
employed in several tasks such as natural
language processing, digital image inter-
pretation, classification and clustering of
chemical compounds, etc.

4 Conclusions

Along with ILP and MRDM, new approaches
to handle structured data have emerged by up-
grading well-known propositional techniques.
For instance, distance-based method are ex-
tended by defining similarity functions over
structured domains. In this paper we particu-
larly described some useful (pseudo-)distances
introduced for concrete data types and, in a
succinct way, their application area.

References

[1] T. Dietterich, R. Lathrop, and T. Lozano-
Pérez. Solving the multiple instance prob-
lem with axis-parallel rectangles. Artifi-
cial Intelligence, 89(1–2):31–71, 1997.

[2] T. Eiter and H. Mannila. Distance mea-
sures for point sets and their computa-
tion. Acta Informatica, 34(2):109–133,
1997.

[3] W. Emde and D. Wettschereck. Re-
lational instance-based learning. In
Fachgruppentreffen der Fachgruppe Ma-
chinelles Lernen der GI, FGML’95. Uni-
versity of Dortmund, 1995.

[4] P.A. Flach and N. Lachiche. Naive
bayesian classification of structured data.
Machine Learning, 57:233–269, 2004.

[5] T. Gärtner. A survey of kernels for struc-
tured data. SIGKDD Explor. Newsl.,
5(1):49–58, 2003.

[6] T. Gartner, J. W. Lloyd, and P. A. Flach.
Kernels and distances for structured data.
Machine Learning, 57, 2004.

[7] Thomas Gartner, Peter A. Flach, Adam
Kowalczyk, and Alex J. Smola. Multi-
instance kernels. In Claude Sammut and
Achim Hoffmann, editors, Proceedings of
the 19th International Conference on Ma-
chine Learning, pages 179–186. Morgan
Kaufmann, July 2002.

[8] David Haussler. Convolution kernels
on discrete structure. Technical Report
UCSC-CRL-99-10, University of Califor-
nia at Santa Cruz, Santa Cruz, CA, USA,
July 1999.

[9] A. Hutchinson. Metrics on terms and
clauses. In Maarten van Someren and
Gerhard Widmer, editors, Proceedings
of the 9th European Conference on Ma-
chine Learning, volume 1224 of LNAI,
pages 138–145, Berlin, April 24–24 1997.
Springer.

[10] H. Kashima, K. Tsuda, and A. Inokuchi.
Kernels for graphs, 2004.

[11] J. Lafferty and R. Imre Kondor. Diffusion
kernels on graphs and other discrete input
spaces, 2002.

[12] J. W. Lloyd. Logic for learning: learn-
ing comprehensible theories from struc-
tured data. Springer-Verlag, 2003.

[13] H. Lodhi, J. Shawe-Taylor, N. Cristian-
ini, and C. Watkins. Text classification
using string kernels. In Todd K. Leen,
Thomas G. Dietterich, and Volker Tresp,
editors, Advances in Neural Information
Processing Systems 13, pages 563–569.
MIT Press, 2001.

[14] B. Mendelson. Introduction to Topology.
Dover Pubn., 3rd edition, July 1990.

III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005 241

[15] S. Nienhuys-Cheng. Distance between
Herbrand interpretations: A measure for
approximations to a target concept. In
Nada Lavrač and Sašo Džeroski, ed-
itors, Proceedings of the 7th Interna-
tional Workshop on Inductive Logic Pro-
gramming, volume 1297 of LNAI, pages
213–226, Berlin, September 17–20 1997.
Springer.

[16] J. Ramon and M. Bruynooghe. A poly-
nomial time computable metric between
point sets. Acta Informatica, 37(10):765–
780, August 2001.

[17] J. Ramon, M. Bruynooghe, and W. Van
Laer. Distance measures between atoms.
In CompulogNet Area Meeting on Com-
putational Logic and Machine Learing,
pages 35–41. University of Manchester,
UK, 1998.

[18] J. Ramon and T. Gärtner. Expressiv-
ity versus efficiency of grapgh kernels. In
Luc De Raedt and Takashi Washio, ed-
itors, Proceedings of the First Interna-
tional Workshop on Mining Graphs, Trees
and Sequences (MGTS-2003), pages 65–
74. ECML/PKDD’03 workshop proceed-
ings, 2003.

[19] T. F. Smith and M. S. Waterman. Iden-
tification of common molecular subse-
quences. Journal of Molecular Biology,
147:195–197, 1981.

[20] Kuo-Chung Tai. The tree-to-tree correc-
tion problem. Journal of the ACM, 26(3),
1979.

[21] R. Wagner and M. Fischer. The string-
to-string correction problem. Journal of
the ACM, 21(1):168–173, 1974.

[22] J. Wang and J.D. Zucker. Solving
multiple-instance problem: A lazy learn-
ing approach. In Proceedings of the
17th International Conference on Ma-
chine Learning, pages 1119–1125, 2000.

242 III Taller de Minería de Datos y Aprendizaje

