
Fuzzy reference model for daily outdoor air temperature 

Eugenio Fco. Sánchez Úbeda, Ana Berzosa Muñoz 
Instituto de Investigación Tecnológica 

Universidad Pontificia Comillas 
28015 Madrid 

Eugenio.Sanchez@iit.upco.es, Ana.Berzosa@iit.upco.es 
 
 
 

Abstract 
 
In this paper it is proposed a new methodology for 
modeling daily outdoor air temperature based on 
the Linear Hinges Model (LHM). In particular, the 
proposed model tries to capture the seasonal 
evolution of temperature throughout the year and 
it consists of two terms: the deterministic 
component describing the expected temperature, 
and the stochastic component describing the 
variance. Using a fuzzy representation of the 
LHM, a set of humanly understandable fuzzy 
rules are obtained. These rules are useful to 
describe qualitatively the evolution of temperature 
throughout the year. Several application examples 
are shown and salient features of the model are 
also discussed. 
 

1. Introduction 

The outdoor temperature time series can be 
described by a process fluctuating randomly 
around a seasonal long-run mean temperature. 
Figure 1 shows the daily evolution of the 
maximum and minimum outdoor air temperature 
recorded in the airports of Barcelona and Madrid 
from  October 1st 1999 to September 31st 2003. 
Note that departures from the “usual” behavior are 
so frequent and significant that one-year ahead 
punctual predictions of that variations are useless. 
However, the obvious annual periodicity of 
temperature time series allows us to obtain good 
daily estimates of both the mean temperature and 
a measure of the volatility around that reference 
temperature. 

The outdoor air temperature has a direct 
impact on many industrial and economic 
processes. Thus, many studies have been carried 
out to understand such relationships. 

 

 
Figure 1 daily evolution of the maximum and 
minimum outdoor air temperature at (a) the Barcelona 
airport and (b) the Madrid airport 

 
For example, the influence of temperature in 

energy consumption has been widely analyzed in 
the past, see e.g. [1][2][3][4]. This influence is 
usually captured by using the so-called heating 
degree days (HDD) and the cooling degree days 
(CDD). They are defined as the difference 
between the mean temperature for a day and some 
reference temperature: 
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where T(t) is the mean outdoor air temperature at 
day t and TR is a reference temperature (e.g. 65ºF 
in the USA, 15ºC in Spain). If T(t) is above TR, 
there are no HDD that day. If the T(t) is less than 
TR, there are no CDD that day. Thus, these 
indexes try to measure the intensity and duration 
of cold and heat in winter and summer days, 
respectively. Although these degree days can help 
to explain, for example, the daily variations of 
electricity and natural gas consumption due to 
temperature, they have severe limitations. 

Actas del III Taller Nacional de Minería de Datos y Aprendizaje, TAMIDA2005, pp.271-278
ISBN: 84-9732-449-8  © 2005 Los autores, Thomson



  
 

In this paper we propose a fuzzy reference 
model for daily outdoor air temperatures. This 
model can be used to improve and simplify many 
applications where temperature models are used 
(e.g. demand forecasting). 

The rest of the paper is organized as follows. 
Section 2 introduces the LHM as a general-
purpose automatic learning model. This is the 
basis of the proposed approach. Section 3 
describes how to apply the LHM to obtain a useful 
temperature reference model. Section 4 provides 
the fuzzy interpretation of the LHM. Section 5 
shows illustrative example. Finally, conclusions 
are pointed out in Section 6. 

2. The Linear Hinges Model 

The LHM has been proposed in [5]. It is an 
efficient approach to flexible and robust one-
dimensional curve fitting under stringent high 
noise conditions. Given a set of N points 
 ( ) Neeeee xfyx ,1)(, =+= ε  (2) 

the objective in the curve fitting from scatterplot 
data is to find a simple enough function f such that 
the following equation holds 
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with small enough error estimates εe, as measured 
empirically by the overall mean squared error 
(MSE): 
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Next we introduce the LHM, summarizing its 
main characteristics as well as its learning 
algorithm. 

2.1. Model definition 

The LHM is a piecewise linear model defined by 
K knots, the points specifying the pieces (Fig. 2a). 
In particular, it can be expressed mathematically 
as: 

  
H( x) ≡ Hj (x) : kj −1 ≤ x ≤ k j+1{ }1≤ j ≤K

 (5) 

where one hinge is defined by the current knot 
plus two straight-line segments: 

 H j (x ) ≡ 1 kj−1 ,k j[ ]Hl, j (x ) + 1 kj , kj +1( ]Hr, j (x)
  (6) 
where 

 
Hl, j (x) = hj −1 +

∆hl, j

∆kl, j
x − k j−1( ) (7) 

 
Hr, j (x) = hj+1 +

∆hr, j

∆kr, j
x − kj +1( ) (8) 

 

∆hl, j = hj −1 − hj ; ∆hr, j = hj − hj+1

∆kl, j = kj−1 − kj ; ∆kr, j = k j − k j+1
 (9) 

and 1[•] and 1(•] are the indicator functions of the 
left and right intervals. Note that the subscripts l 
and r denote the left- and right-hand side of the 
hinge. 
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Figure 2 (a) LHM definition; (b) basis functions for it 
 

2.2. Features of the LHM 

The main general characteristics of the LHM are: 
• One of the salient features is its flexibility. 

This approach is able to produce adequate 
models in many different situations. The model 
is able to adapt its complexity to the quality 
and availability of the data. 

• Another very important advantage of the LHM 
is its accuracy. According to [6], the LHM 
seems to be in general less complex than other 
automatic learning models such as the 
Supersmoother [7] or the Hermite polynomial 
model. 

• The computational efficiency is another 
characteristic of the LHM. It is extremely fast. 
For problems with a few thousand learning 
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examples the computing time at the learning 
stage is in the order of magnitudes of 
milliseconds, (see examples below). On the 
other hand, in terms of testing CPU times, it is 
ultra fast (a few milliseconds). 

• Finally, simplicity is another feature of the 
LHM. Because it is generally desirable to 
interpret the obtained result, models in closed 
form approximations of maximal simplicity are 
in demand. Indeed, this characteristic has been 
used to develop the ORTHO model, a 
multidimensional model based on the LHM 
which is fully interpretable [6][8]. 

2.3. Learning algorithm 

The learning algorithm to fit the LHM combines a 
greedy divide-and-conquer strategy with a 
computationally efficient pruning approach and 
special updating formulas. In particular, it consists 
of four main stages: smoothing, growing, pruning 
and refitting. The first three steps are used to 
identify automatically the complexity required for 
a given problem, (i.e. the number of parameters of 
the model). The refitting stage then improves the 
accuracy of the model. A detailed description, 
including analytical formulas of the learning 
algorithm, can be found in [5] or [6]. 

Alternatively, this learning algorithm can be 
described as a particular implementation of the 
“backfitting” algorithm (see [6]). Friedman and 
Stuetzle initially proposed this term in the context 
of projection-pursuit regression [9]. In [10] 
authors make intensive use of this general 
alternating optimization strategy, providing 
justifications for its use. 

Basically, in this generic algorithm the 
parameters of the model are grouped such that the 
solution for those in each group is straightforward 
given fixed values for those outside the group. A 
solution is obtained for the parameters in a group, 
using these solution values as current values for 
the parameters in that group. This process is 
repeated for each group, one by one. The overall 
process is repeated several times until it agrees 
with the termination criteria used. 

This powerful algorithm enables us to fit any 
additive model, but its iterative nature has a cost. 
In some circumstances, according to [11], it can 
converge slowly. However, if the optimization 
process required for each group of parameters is 

not only straightforward but also fast enough, then 
the computer time for the overall process can be 
really acceptable. This is the situation of our 
particular implementation for the LHM. Its 
parameters are grouped into hinges, being the 
solution for each hinge straightforward given 
fixed values for the parameters of the rest of 
hinges. Figure 3 shows the hierarchical grouping 
used implicitly during the adjustment of the LHM. 
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Figure 3 Hierarchy used to fit the LHM, via the 
backfitting algorithm 

2.4. Fuzzy interpretation of the LHM 

In this section we relate the LHM to fuzzy rule-
based systems, where a collection of (fuzzy) rules 
specifies an input-output mapping by associating 
fuzzy sets in the input space with output fuzzy 
sets. The goal is to show that such fuzzy 
representation of the LHM is straightforward as 
well as useful for model interpretation. 

This fuzzy interpretation of the LHM allows 
coding the dynamic temperature behavior with a 
natural language syntax with which people are 
comfortable. 

First we describe the LHM in terms of a set of 
basis functions. According to this decomposition 
the connection of this model with some existing 
neurofuzzy approaches (e.g. [12][11]) becomes 
obvious. Next we discuss two alternative 
specifications of the rule outputs. Finally, an 
illustrative example is presented. 
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2.5. The LHM in terms of a set of basis 
functions 

Although no basis functions have been used to 
adjust the LHM, this model can be expressed as 
the linear combination of basis functions: 
 ),()(
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where the triangular-shape basis functions are 
given by (Fig 2b): 
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Thus, according to this formulation of the 

LHM, it is straightforward to represent the model 
as a neural network, similar to a RBFN. Figure 4 
shows this representation, where the input layer 
merely sends the input value to the hidden layer. 
This hidden layer consists of K units, where each 
unit has a triangular-shape activation function (i.e. 
a basis function). Finally, the output layer carries 
out the weighted linear combination of (10). Note 
that the weights feeding the hidden layer are fixed 
to one. 
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Figure 4 The LHM as a simple neural network 

2.6. Automatic fuzzy-partition of the input 
space 

A fuzzy system is a model whose behavior is 
described by a set of rules of the form “if x is A, 

then y is B” connecting antecedents (x is A) with 
consequences (y is B). The linguistic terms A and 
B are specified by their membership functions 
µA(x) and µB(y), respectively. For example, the 
fuzzy membership function µsmall(x) represents the 
grade of membership of a quantity value x 
belonging to the set small. 

The membership functions have values in the 
interval [0, 1]. The value 0 means that the variable 
x is not a member of the set small, whereas 
µsmall(x) = 1 indicates that x entirely belongs to the 
fuzzy set small. For further reading see e.g. 
[13][14]. 

In a traditional fuzzy system these input and 
output membership functions as well as the fuzzy 
rules are typically provided by application domain 
experts. On the other hand, more recent 
neurofuzzy systems try to estimate the input fuzzy 
sets from experimental data [11][12][13]. It is 
well-known that the modeling capabilities of a 
neurofuzzy model are mainly determined by the 
number, shape and distribution of the fuzzy input 
membership functions. In this respect, the LHM 
produces automatically a fuzzy partition of the 
input space as it finds the number, shape and 
distribution of the fuzzy input membership 
functions. Thus, the user only needs to decide a 
fuzzy label for each membership function to 
obtain the input fuzzy sets. 

Each basis function in (11) can be viewed as a 
membership function describing a particular 
abstract concept (fuzzy set): 
 Kjxbx jjA ,,1)()(, L==µ  (12) 
where Aj is a fuzzy label or linguistic term like 
'small' or 'large' describing the variable x. This 
label is the adjective selected by the user to refer 
to the concept defined by the membership 
function (12). Obviously, to obtain a truly 
transparent description these linguistic terms 
should be appropriate adjectives. 

2.7. Takagi-Sugeno fuzzy rules (crisp output) 

Using the fuzzy partition of the input space 
provided by the LHM one can derive the 
following handful of fuzzy rules: 

If x is Aj then y = hj ,  Kj ,,1L=  
where Aj is the fuzzy label defined by µA,j(x) 
(known in this context as rule strength) and hj is 
the vertical position of the hinge j. This type of 
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rules are known as (zero-order) Takagi-Sugeno 
fuzzy rules [13] and they simply set the position 
of the hinges in both input and output spaces. 

Although in our approach these rules are used 
to describe the input-output mapping provided by 
the LHM in terms of humanly understandable 
statements, they could be used to infer the output 
for a given input. In particular, a standard fuzzy 
system with singleton fuzzification, the product as 
fuzzy implication operator for rule evaluation and 
centroid defuzzification will produce the same 
output than the LHM, (see e.g. [13][11] or [12] for 
further details). Note that these prescriptions are 
commonly used in practice. 

2.8. Zadeh-Mamdani fuzzy rules (fuzzy output) 

Another alternative is to use rules where the 
output is also fuzzy (known as Zadeh-Mamdani 
rules [13]). Indeed, because the issue of this fuzzy 
representation is the linguistic interpretation of the 
LHM, this last approach seems to be particularly 
interesting: one can obtain rules of different 
complexity describing the model by using 
different fuzzy output partitions (i.e. 
quantizations). For example, a coarse partition of 
the output can consist of two fuzzy sets (e.g. 
‘small’ and ‘large’), whereas a fine partition has a 
larger number of output fuzzy sets. 

These fuzzy rules can be formally defined as: 
If x is Aj then y is Bi (cij) WiKj ,,1;,,1 LL ==  

where Aj and Bi are the fuzzy labels defined on the 
input and output variables, respectively. The input 
fuzzy sets are specified by the LHM, whereas the 
W output ones are provided by the user. Each rule 
has a rule confidence cij, representing the 
confidence in the rule being true (0 means the rule 
does not contribute to the output). In particular, 
these rule confidences are given by: 
 ),(, jiBij hc µ=  (13) 
where hj is the vertical position of the hinge j and 
µB,i(x) is the membership function specified by the 
user to precisely define the vague fuzzy label Bi in 
the present context. 

Note that these rules will produce the same 
output than the LHM when one uses some typical 
prescriptions for fuzzification, rule evaluation and 
defuzzification, outlined in §2.7. However, we 
recall that these rules have been generated for 

linguistic interpretation of the LHM. To obtain the 
output one should use the more compact and 
computationally efficient mathematical form of 
(5). 

3. Modeling temperatures via the LHM 

In this section we describe the proposed fuzzy 
reference model for daily outdoor air temperature. 
In particular, the proposed model tries to capture 
the seasonal evolution of temperature throughout 
the year and it consists of two terms: 
• The deterministic component describes for 

each day of the year the (mean) expected 
temperature. 

• The stochastic component provides interval 
predictions based on confidence intervals 
around the mean value. 

To build this fuzzy model in terms of a LHM, 
first we need to form the set of learning examples 
describing the temperature behavior. This learning 
set is obtained by overlapping years of 365 days 
(discarding all February 29th). 

In order to obtain the determinist component, 
a LHM is built based on this set by applying the 
learning algorithm described above. Next, the 
stochastic component is obtained. This component 
is also modeled as a LHM, but a new scatterplot is 
used as learning set. Given the previous learning 
set and the deterministic component, the new set 
is built by computing for each day the square root 
of the difference between the real temperature 
value and the deterministic component. Figure 5 
sketches these two steps. 

4. An illustrative example 

In order to illustrate the proposed approach, we 
have studied the minimum outdoor air 
temperature at the Madrid airport. In particular, 
we have used 23 years (from 1980 to 2003, i.e. 
8395 points) to build the model shown in Figure 
6. This model, with only 7 hinges, summarizes the 
functional dependence of the outdoor air 
temperature on the day of the year (1 to 365). The 
Mean Absolute Error, estimated using the 8395 
samples, is 2.6367ºC. 
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Figure 5 General scheme showing the overall process proposed to built the fuzzy reference model 
 
 
 
The previous LHM can be described in terms 

of the following set of Takagi-Sugeno fuzzy rules 
(see §2.7): 

 
if the day is WTR then the temp is –1ºC 
if the day is SPG then the temp is 6ºC 
if the day is SPG-SMR then the temp is 16ºC 
if the day is SMR then the temp is 17ºC 
if the day is ATN then the temp is 2ºC  
if the day is ATN-WTR then the temp is 1ºC 
 
where the fuzzy labels WTR (winter), SPG 

(spring), SPG-SMR (spring-summer), SMR 
(summer), ATN (autumn) and ATN-WTR 
(autumn-winter) describing the variable 
“minimum temperature at the Madrid airport” 
have been precisely defined by the membership 
functions of Figure 6. 

On the other hand, according to §2.8, it is 
possible to use fuzzy sets for encoding the output 

variable. Following our expectation about real 
daily minimum temperatures in Madrid, it could 
be enough to distinguish between L (low), M 
(medium) and H (high) temperatures. 

According to Figure 7, the LHM of Figure 6 
can be described in terms of the following set of 
Zadeh-Mamdani fuzzy rules: 

 
if the day is WTR then the temp is L (1.0) 
if the day is SPG then the temp is L (0.8) 
if the day is SPG then the temp is M (0.2) 
if the day is SPG-SMR then the temp H (1.0) 
if the day is SMR then the temp H (1.0) 
if the day is ATN then the temp is L (1.0) 
if the day is ATN-WTR then the temp is L (1.0) 

 
where the number between brackets is the rule 
confidence. 
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Figure 6 (a) Obtained LHM for minimum outdoor air temperature and input fuzzy sets describing the variable 
“temperature”. The letters above the sets are linguistic labels (see main text) 

 
It is clear that the previous definition of fuzzy 

sets is very context-dependent, i.e. these sets may 
seem inappropriate to the reader. This is due to the 
nature of the language. However, using our 
approach the user only needs to label the abstract 
concepts (i.e. basis functions) identified 
automatically by the LHM. 

Finally, Figure 8 shows the real daily outdoor 
air temperature recorded in the Madrid airport 
from July 1st 2001 to June 31st 2002, as well as 
the obtained fuzzy reference model. Using this 
reference model it is possible to identify the 
temperature drop during December 2001. 
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Figure 7 A group of possible fuzzy sets defining the 
output variable “temperature” 

5. Conclusions 

In this paper we have proposed a novel approach 
to fuzzy modeling daily outdoor air temperature. 
It exploits a general-purpose automatic learning 
model, the so-called Linear Hinges model (LHM), 
to extract simple and at the same time reliable 
models of daily outdoor air temperature series. 
The LHM provides relevant interpretable 
information, which may receive various 
interesting uses. In this respect several 
applications have been illustrated, showing very 
promising results and in particular the ability of 
the model to capture the interesting information as 
well as to describe in terms of a set of humanly 
understandable fuzzy rules the input-output 
mapping. 
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Figure 8 Maximum and minimum daily outdoor air temperature recorded in the Madrid airport, and obtained fuzzy 
reference model for both temperatures 

 
 
Furthermore, such invertible relationship 

between the mathematical form of the LHM and 
its qualitative form in terms of fuzzy-rules can 
allow us to exploit and combine both expert 
knowledge and empirical data. In particular, this 
approach provides two main advantages: 

• Due to the ability of the LHM to capture 
the relevant information, it can be useful 
within some analytical tool to examine 
how temperatures are working. 

• The fuzzy interpretation of the LHM is 
particularly beneficial in applications 
where some subsequent human decision-
making must be carried out. 
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