Skip to main content
Log in

Quantum modular invariant and Hilbert class fields of real quadratic global function fields

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

This is the first of a series of two papers in which we present a solution to Manin’s Real Multiplication program (Manin in: Laudal and Piene (eds) The Legacy of Niels Henrik Abel, Springer, Berlin, 2004) —an approach to Hilbert’s 12th problem for real quadratic extensions of \(\mathbb Q\)—in positive characteristic, using quantum analogs of the modular invariant and the exponential function. In this first paper, we treat the problem of Hilbert class field generation. If \(k=\mathbb F_{q}(T)\) and \(k_{\infty }\) is the analytic completion of k, we introduce the quantum modular invariant

$$\begin{aligned} j^\mathrm{qt}: k_{\infty }\multimap k_{\infty } \end{aligned}$$

as a multivalued, discontinuous modular invariant function. Then if \(K=k(f)\subset k_{\infty }\) is a real quadratic extension of k and f is a fundamental unit, we show that the Hilbert class field \(H_{\mathcal {O}_{K}}\) (associated to \(\mathcal {O}_{K}=\) integral closure of \(\mathbb F_{q}[T]\) in K) is generated over K by the product of the multivalues of \(j^\mathrm{qt}(f)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the case \(j(\upmu )=0,12^{3}\), one must use multiples of \(\wp _{\upmu }^{3}\) resp. \(\wp _{\upmu }^{2}\).

  2. A quadratic extension K/k is real if the place at \(\infty \) splits completely, otherwise it is called complex.

  3. The problem is that \({\mathcal {O}}_{L}\) has in general an infinite unit group (by Dirichlet’s Theorem on units), so that its images by the place embeddings are indiscrete. That is, apart from the complex quadratic case, \({\mathcal {O}}_{L}\) has rank \(>1\) and so its class fields cannot be treated by Hayes’ rank 1 techniques.

  4. Since \(A_{\infty _{1}}\) is Dedekind, for any non-zero \(x\in {\mathfrak {a}}\), there exists \(y\in {\mathfrak {a}}\) with \({\mathfrak {a}}=(x,y)\). See for example Theorem 17 of [15], page 61.

References

  1. Castaño Bernard, C., Gendron, T.M.: Modular invariant of quantum tori. Proc. Lond. Math. Soc. 109(4), 1014–1049 (2014)

    Article  MathSciNet  Google Scholar 

  2. Cohn, P.M.: Algebraic Numbers and Algebraic Functions. Chapman and Hall/CRC, London (1991)

    Book  Google Scholar 

  3. Demangos, L., Gendron, T.M.: Quantum \(j\)-Invariant in positive characteristic I: definition and convergence. Arch. Math. 107 (1), 23–35 (2016). Correction, Arch. Math. 111 (4), 443–447 (2018)

  4. Demangos, L., Gendron, T.M.: Quantum \(j\)-Invariant in positive characteristic II: formulas and values at the quadratics. Arch. Math. 107(2), 159–166 (2016)

    Article  MathSciNet  Google Scholar 

  5. Demangos, L., Gendron, T.M.: Quantum Drinfeld modules and ray class fields of real quadratic global function fields, arXiv:1709.05337 (2017)

  6. Demangos, L., Gendron, T.M.: Modular invariant of rank 1 Drinfeld modules and class field generation. To appear in Journal of Number Theory

  7. Gekeler, E.-U.: Zur Arithmetik von Drinfeld Moduln. Math. Ann. 262, 167–182 (1983)

    Article  MathSciNet  Google Scholar 

  8. Gekeler, E.-U.: On the coefficients of Drinfeld modular forms. Invent. Math. 93(3), 667–700 (1988)

    Article  MathSciNet  Google Scholar 

  9. Gendron, T.M., Leichtnam, E., Lochak, P.: Modules de Drinfeld quasicristallins. arXiv:1912.12323 (2019)

  10. Goss, D.: Basic Structures of Function Field Arithmetic. Springer, Berlin (1998)

    MATH  Google Scholar 

  11. Hayes, D.R.: A brief introduction to Drinfeld modules. In: Goss, D., Hayes, D. R., Rosen, M. I. (eds.) The Arithmetic of Function Fields, vol. 2, pp. 313–402. Ohio State U. Mathematical Research Institute Publications, Walter de Gruyter, Berlin (1992)

  12. Hirschfeld, J.W.P., Korchmáros, G., Torres, F.: Algebraic Curves over a Finite Field. Princeton Series in Applied Mathematics, Princeton University Press, Princeton (2008)

  13. Liu, Q.: Geometry, Algebraic, Curves, Arithmetic: Oxford Graduate Texts in Mathematics 6. Oxford University Press, Oxford (2002)

    Google Scholar 

  14. Manin, Y.I.: Real multiplication and noncommutative geometry. In: Laudal, O.A., Piene, R. (eds.) The Legacy of Niels Henrik Abel, pp. 685–727. Springer, New York (2004)

    Chapter  Google Scholar 

  15. Marcus, D.A.: Fields, Number: Universitext. Springer, New York (1995)

    Google Scholar 

  16. Neukirch, J.: Algebraic Number Theory. Grundlehren der mathematischen Wissenschaften 322, Springer, Berlin(1999)

  17. Pink, R.:Private communication, (21 October 2017)

  18. Rosen, M.I.: The Hilbert class field in function fields. Expo. Math 5, 365–378 (1987)

    MathSciNet  MATH  Google Scholar 

  19. Schappacher, N.: On the history of Hilbert’s 12th problem. A comedy of errors. Séminaires et Congrès 3, Société Mathématique de France, 243–273 (1998)

  20. Serre, J.-P.: Complex multiplication. In: Cassels, J.W.S., Frölich, A. (eds.) Algebraic Number Theory, 2nd edn, pp. 293–296. London Mathematical Society, London (2010)

    Google Scholar 

  21. Shu, L.: Kummer’s criterion over global function fields. J. Number Theory 24, 319–359 (1994)

    Article  MathSciNet  Google Scholar 

  22. Silverman, J.H.: Advanced Topics in the Arithmetic of Elliptic Curves. Graduate Texts in Mathematics, vol. 151. Springer, New York (1994)

  23. Thakur, D.S.: Function Field Arithmetic. World Scientific, Singapore (2004)

    Book  Google Scholar 

  24. Villa Salvador, G.D.: Topics in the Theory of Algebraic Function Fields. Birkhäuser, Boston (2006)

Download references

Acknowledgements

We thank the referee for taking the time to carefully read this paper and making suggestions for its improvement. We also thank Federico Pellarin and Dinesh Thakur, who each responded to questions which came up during the writing up of this work. We would like to express our gratitude to the Instituto de Matemáticas (Unidad Cuernavaca) of the Universidad Nacional Autónoma de México, as well as the University of Stellenbosch (and particularly Florian Breuer) for their generous support of L. Demangos during his stays at each institution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. Gendron.

Additional information

In memory of David Goss.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demangos, L., Gendron, T.M. Quantum modular invariant and Hilbert class fields of real quadratic global function fields. Sel. Math. New Ser. 27, 13 (2021). https://doi.org/10.1007/s00029-021-00619-4

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00029-021-00619-4

Keywords

Mathematics Subject Classification

Navigation