Ir al contenido

Documat


Invariant Algebraic Curves and Hyperelliptic Limit Cycles of Liénard Systems

  • Qian, Xinjie [1] ; Shen, Yang [2] ; Yang, Jiazhong [2]
    1. [1] Jinling Institute of Technology

      Jinling Institute of Technology

      China

    2. [2] Peking University

      Peking University

      China

  • Localización: Qualitative theory of dynamical systems, ISSN 1575-5460, Vol. 20, Nº 2, 2021
  • Idioma: inglés
  • DOI: 10.1007/s12346-021-00484-8
  • Enlaces
  • Resumen
    • In this paper we deal with the Liénard system x˙=y,y˙=−fm(x)y−gn(x), where fm(x) and gn(x) are real polynomials of degree m and n, respectively. We call this system the Liénard system of type (m, n). For this system, we proved that if m+1≤n≤[4m+23], then the maximum number of hyperelliptic limit cycles is n−m−1, and this bound is sharp. This result indicates that the Liénard system of type (m,m+1) has no hyperelliptic limit cycles. Secondly, we present examples of irreducible algebraic curves of arbitrary high degree for Liénard systems of type (m,2m+1). Moreover, these systems have a rational first integral. Finally, we proved that the Liénard system of type (2, 5) has at most one hyperelliptic limit cycle, and this bound is sharp.

  • Referencias bibliográficas
    • Li, J.: Hilbert’s 16th problem and Bifurcations of planar polynomial vector fields. Int. J. Bifur. Chaos 1(3), 47–106 (2003)
    • Ilyashenko, Y.: Centennial history of Hilbert’s 16th problem. Bull. Am. Math. Soc. 39, 301–354 (2002)
    • Odani, K.: The limit cycle of the van der Pol equation is not algebraic. J. Differ. Equ. 115, 146–152 (1995)
    • Chavarriga, J., Garcia, I.A., Llibre, J., Zoladek, H.: Invariant algebraic curves for the cubic Liénard system with linear damping. Bull....
    • Liu, C., Chen, G., Yang, J.: On the hyperelliptic limit cycles of Liénard systems. Nonlinearity 25, 1601–1611 (2012)
    • Llibre, J., Zhang, X.: On the algebraic limit cycles of Liénard systems. Nonlinearity 21, 2011–2022 (2008)
    • Yu, X., Zhang, X.: The hyperelliptic limit cycles of the Liénard systems. J. Math. Anal. Appl. 376, 535–539 (2011)
    • Zoladek, H.: Algebraic invariant curves for the Liénard equation. Trans. Am. Math. Soc. 350, 1681–1701 (1998)
    • Qian, X., Yang, J.: On the number of hyperelliptic limit cycles of Lienard systems. Qual. Theory Dyn. Syst. 19, 30 (2020)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno